
ADVANCEMENTS ON PROBLEMS INVOLVING
MAXIMUM FLOWS

A Thesis
Presented to

The Academic Faculty

by

Douglas S. Altner

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
August 2008

ADVANCEMENTS ON PROBLEMS INVOLVING
MAXIMUM FLOWS

Approved by:

Professor Özlem Ergun,
Committee Chair
Industrial and Systems Engineering
Georgia Institute of Technology

Professor William Cook
Industrial and Systems Engineering
Georgia Institute of Technology

Professor Özlem Ergun, Advisor
Industrial and Systems Engineering
Georgia Institute of Technology

Professor Dana Randall
College of Computing
Georgia Institute of Technology

Professor Shabbir Ahmed
Industrial and Systems Engineering
Georgia Institute of Technology

Professor Joel Sokol
Industrial and Systems Engineering
Georgia Institute of Technology

Date Approved: August 2008

To my parents.

iii

ACKNOWLEDGEMENTS

I have the sincerest appreciation for my thesis advisor, Dr. Özlem Ergun. Her con-

tinuous guidance, encouragement, patience and financial support was instrumental

in making the research contained within possible as well as in allowing me to develop

as a researcher. Words cannot express the full extent of my gratitude towards her

valuable influence as my advisor and a role model.

I thank Dr. Shabbir Ahmed, Dr. William Cook, Dr. Dana Randall and Dr. Joel

Sokol for serving on my dissertation committee and for their valuable feedback. I

am proud to have the opportunity to present my research to such accomplished aca-

demics. In addition, I thank Dr. Ravindra Ahuja and his research group for allowing

me to collaborate with them on railroad optimization problems in the summer of

2007. Although brief, this experience has been very influential on my future research

interests. Furthermore, I also thank Dr. Faiz Al-Khayyal for helping me develop as

a teacher.

I am also very grateful towards many of my fellow doctoral students at Georgia Tech,

most notably Alejandro, Andrew, Chris, Dan, Fatma, Fred, Guanghui, Juan Pablo,

Kael and Ricardo as well as Nelson from MIT’s Operations Research Center. All of

the aforementioned have supported me on both technical matters and in friendship.

Although there are too many to name explicitly, there are also many others who

have still earned my sincere appreciation and they all should rest assured that they

are appreciated.

Finally, I would like to thank my parents, my brother and my grandmother for being

supportive throughout all of my years of schooling.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

SUMMARY . xii

I INTRODUCTION . 1

1.1 Network Optimization . 1

1.2 The Maximum Flow Problem . 5

II CARDINALITY MAXIMUM FLOW NETWORK INTERDICTION . . 9

2.1 Introduction . 9

2.2 Wood’s Formulation of MFNIP . 13

2.3 Strengthening the LP Relaxation of Wood’s ILP for CMFNIP . . . 15

2.3.1 Node-to-Sink Path Valid Inequalities 15

2.3.2 Source-to-Node Path Valid Inequalities 18

2.3.3 Strength of Valid Inequalities 21

2.3.4 Using the Valid Inequalities in Practice 23

2.4 Integrality Gap Result . 24

2.5 Hardness of Approximation of MFNIP 31

2.6 Conclusions and Future Work . 34

v

III LOCAL SEARCH IN MAXIMUM FLOW NETWORK INTERDICTION 36

3.1 Introduction . 36

3.2 Time Sensitivity on the Interdiction Budget 39

3.3 Node-Flip Neighborhood . 41

3.3.1 Storing and Evaluating Solutions 42

3.3.2 Neighborhood Function . 43

3.3.3 Searching the Neighborhood 44

3.3.4 Meta-Heuristic Search . 48

3.4 Computational Experiments . 50

3.4.1 Previous Computational Settings 50

3.4.2 Experimental Settings . 50

3.4.3 Experimental Results . 53

3.5 Conclusions and Future Work . 57

IV SOLVING ONLINE SEQUENCES OF MAXIMUM FLOWS 63

4.1 Introduction . 63

4.1.1 Motivation . 63

4.1.2 Our Contributions . 67

4.1.3 Related Work . 69

4.2 The Maximum Flow Single Arc Reoptimization Problem 71

4.2.1 Complexity of Reoptimizing a Maximum Flow 71

4.2.2 Solution Approach . 76

vi

4.2.3 Storing Minimum Capacity s-t Cuts 78

4.2.4 Extensions of Single Arc Reoptimization 87

4.2.5 Algorithmic Enhancement 89

4.3 Computational Results . 90

4.3.1 Maximum Flow Single Arc Reoptimization Problem 91

4.4 Conclusions and Future Work . 95

V COMPUTING ROBUST MINIMUM CAPACITY S-T CUTS 98

5.1 Introduction . 98

5.2 The Robust Minimum Capacity s-t Cut Problem 101

5.2.1 Problem Statement . 101

5.2.2 Algorithmic Result . 102

5.3 Algorithm for RobuCut . 103

5.3.1 Overview of Algorithm . 103

5.3.2 Algorithm Details . 105

5.3.3 Algorithmic Result . 112

5.4 Computational Results . 113

5.4.1 Testing the Effectiveness of Incremental Networks 114

5.5 Conclusions . 117

VI STOCHASTIC MAXIMUM FLOWS . 120

6.1 Introduction . 120

6.2 Problem Description and Formulation 122

vii

6.3 Benders’ Decomposition Approach 123

6.3.1 Benders’ Reformulation . 123

6.3.2 Aggregating the Optimality Cuts 126

6.4 Combining Maximum Flow Reoptimization and the Cutting Plane
Method . 127

6.4.1 Two Schemes for Maximum Flow Reoptimization 128

6.4.2 Modified Goldberg-Tarjan Algorithm 129

6.4.3 Computational Results . 132

6.5 Conclusions and Future Work . 136

APPENDIX A PRELIMINARIES . 138

REFERENCES . 143

VITA . 149

viii

LIST OF TABLES

1 Prototypical Results for MFNIP Valid Inequalities 25

2 Number of arcs by network topology type. Network topology types
are defined in Section 3.4.2. 58

3 Percentage of “easy” instances by network topology type. “Easy” in-
stances are defined in Section 3.4.3; network topology types are defined
in Section 3.4.2. 58

4 Meta-heuristic performance by initial solution type. Initial solution
types are defined in Section 3.4.2. Numbers in parentheses are stan-
dard deviations. The quality of a given solution is the ratio between
the objective value of the solution and the objective value of an op-
timal solution. The results in this table are limited to instances that
were not detected as “easy” by the variable depth neighborhood search
algorithm, and instances for which CPLEX was able to find an opti-
mal solution in 10 minutes. “Easy” instances are defined in Section
3.4.3. 59

5 Mean quality of initial and final meta-heuristic solutions by network
topology and initial solution type. Network topology and initial so-
lution types are defined in Section 3.4.2. Numbers in parentheses are
standard deviations. The quality of a given solution is defined as the
ratio between the objective value of the solution and the objective
value of an optimal solution. The results in this table are limited
to instances that were not detected as “easy” by the variable depth
neighborhood search algorithm, and instances for which CPLEX was
able to find an optimal solution in 10 minutes. “Easy” instances are
defined in Section 3.4.3. 59

6 Percentage of instances in which meta-heuristic finds the optimal solu-
tion, by network topology and initial solution type. Network topology
and initial solution types are defined in Section 3.4.2. The results in
this table are limited to instances that were not detected as “easy”
by the variable depth neighborhood search algorithm, and instances
for which CPLEX was able to find an optimal solution in 10 minutes.
“Easy” instances are defined in Section 3.4.3. 60

ix

7 Mean solution times by network topology and initial solution type.
Network topology and initial solution types are defined in Section
3.4.2. The results in this table are limited to instances that were
not detected as “easy” by the variable depth neighborhood search
algorithm, and instances for which CPLEX was able to find an optimal
solution in 10 minutes. “Easy” instances are defined in Section 3.4.3. 60

8 Standard deviation of solution times by network topology and initial
solution type. Network topology and initial solution types are defined
in Section 3.4.2. The results in this table are limited to instances
that were not detected as “easy” by the variable depth neighborhood
search algorithm, and instances for which CPLEX was able to find
an optimal solution in 10 minutes. “Easy” instances are defined in
Section 3.4.3. 60

9 Computational Results for alt Instances 94

10 Computational Results for spa Instances 96

11 Computational Results for Robust Minimum Cut 118

12 Advantage of Using Incremental Networks 119

13 Prototypical Results for Two-Stage Stochastic Maximum Flow 133

x

LIST OF FIGURES

1 Network for CMFNIP instance Iw,κ with κ = 3 and µ = 11. 22

2 Network for CMFNIP instance Iκ with κ = 3 and µ = 8. 26

3 Approximation-factor-preserving reduction from an instance of RIC
with |Vf | = 3, |Vc| = 5 and R = 2 to MFNIP. 34

4 The computational sensitivity of an instance on its interdiction budget. 40

5 The number of optimally exposed cuts depends on the interdiction
budget. 41

6 Solution tree that has a depth of 3 and a breadth of 4. 45

7 Solution times of an edge instance over a wide range of interdiction
budgets. 57

8 Constructed instance for NAMFRP given a MFP with six nodes. . . . 72

9 Constructed instance for RAMFRP given a MFP with six nodes. . . . 73

10 Saturating the “wrong” arc. 83

11 Identifying v2 and t to form a new sink t2; before and after. 86

12 Splitting a Node; Before and After. 89

13 Cumulative time required for each solver to solve a single instance of
MFSAROP. 92

14 Grid topology with three rows and four columns. 115

xi

SUMMARY

This thesis presents both theoretical and computational advancements on problems

involving maximum flows. Four problems are explored: the Maximum Flow Network

Interdiction Problem (MFNIP), the Maximum Flow Single Arc Reoptimization Prob-

lem (MFSAROP), The Robust Minimum Capacity s-t Cut Problem (RobuCut) and

the Two-Stage Stochastic Maximum Flow Problem (2SMFP). Discussions and anal-

yses of each of these four problems compose chapters 2-6 of this thesis. The first

chapter is an introduction to network programming in general, with an emphasis on

the Maximum Flow Problem.

The first problem discussed is MFNIP. Although there have been papers on various

optimization models of similar network interdiction problems since the 1950s (e.g.,

[41]), MFNIP, in particular, is first introduced in Wood [77]. MFNIP is defined as the

following problem: given a capacitated s-t flow network, allocate a finite amount of

resources to delete arcs from the network so as to minimize the maximum flow in the

network induced on the set of undeleted arcs. This problem has numerous nontrivial

applications including those in intercepting smuggled nuclear material [23], combat-

ting illegal drug trafficking [77], sewage treatment [63] and maintaining infection

control in a hospital [7].

Wood proved this problem is strongly NP-hard [77] and there are several results on

solving instances of MFNIP using Lagrangian relaxation (e.g., [11], [74] and [67].)

However, very few theoretical results on the widely used integer linear programming

(ILP) formulation of Wood [77] are documented. In the second chapter of this

xii

thesis, we present several new results on the Cardinality Maximum Flow Network

Interdiction Problem (CMFNIP), which is the special case of MFNIP where the

interdictor removes a fixed number of arcs from the network. Studying CMFNIP is

important; it is also known as the n Most Vital Arcs Problem and it has nontrivial

applications in flood control [65].

With regards to new theoretical results, first, we introduce two exponentially large

classes of valid inequalities for CMFNIP and prove that they can be separated in

polynomial time. Second, we prove a non-constant lower bound on the integrality

gap of Wood’s ILP and show that this same bound holds even when the LP relaxation

is strengthened with our two classes of valid inequalities. Both the introduction of

polynomial-time separable, exponentially large valid inequalities for Wood’s ILP and

the lower bound on the integrality gap of Wood’s ILP are the first known results of

their kind. We note that one of our classes of valid inequalities is a natural extension

of the Type I inequalities introduced by Wood [77].

In the third chapter, we illustrate that the time required for CPLEX to solve an

instance of MFNIP to optimality is extremely sensitive on the interdiction budget.

As an alternate solution approach to MFNIP, we design a variable-depth flip neigh-

borhood as well as a meta-heuristic framework to allow escape from locally optimal

solutions. We demonstrate that our neighborhood terminates with good quality

locally optimal solutions in an amount of time that demonstrates to be relatively

insensitive to the value of interdiction budget.

The fourth chapter of this thesis concerns rapidly solving an online sequence of

Maximum Flow Problems (MFPs) on topologically similar networks. There are a

diverse collection of applications that might require one to solve such a sequence of

MFPs. This includes, but is not limited to, estimating the physical difference between

the tertiary structures of two proteins [72], searching a database of fingerprints [40]

xiii

and computing an expected maximum flow in the context of two-stage stochastic

network programming [75] and [76].

To initiate the study of solving an online sequence of MFPs, we examine a problem

where the networks of every two adjacent MFPs in the sequence differ from each other

by exactly one arc; all other arcs possess the same capacity. We hereby refer to this

special case as the Maximum Flow Single Arc Reoptimization Problem (MFSAROP)

and we note that it has applications in scheduling jobs on a dual-processor machine

in real-time [71].

To efficiently solve an entire online sequence of MFPs, we modify the highly regarded

pre-flow push algorithm of Goldberg and Tarjan [38] so that it is possible to warm

start the algorithm from solutions that do not satisfy the flow balance constraints.

We observe that when a single arc is added or deleted in a MFP that was solved

to optimality, there are fundamentally four possible cases for reoptimization. To

exploit this fact, we store two minimum s-t cuts from the previous MFP, in addition

to the optimal residual network, to heuristically identify which of the four funda-

mental reoptimization cases modifying a given arc leads to. We demonstrate that

our algorithm is very practical as it typically uses around 15% of the time required

to solve an instance of MFSAROP compared to an approach that repeatedly uses a

black-box maximum flow solver to solve each MFP.

In the fifth chapter of this thesis, we develop maximum flow reoptimization heuristics

for computing a robust minimum cut under the Bertsimas and Sim model of robust-

ness [10]. We hereby refer to this problem as the Robust Minimum Capacity s-t Cut

Problem (RobuCut). RobuCut models the decision of conservatively choosing an s-t

cut in light of data uncertainty on the arc capacities. RobuCut extends nicely to

many real-world applications of the Minimum Capacity s-t Cut Problem (MinCut)

where data uncertainty on the arc capacities is a serious possibility. In particular, we

xiv

speculate that RobuCut has applications in open-pit mining [43], project scheduling

[55] and compiler optimization [78] and [79].

To solve RobuCut, we develop a special implementation of the algorithm of Bert-

simas and Sim for robust combinatorial optimization problems (RobuCOPs). Our

implementation requires that a sequence of MFPs be solved. We identify that the

sequence has several properties that can be exploited for efficient maximum flow re-

optimization techniques. We demonstrate that our algorithm is very fast in practice,

as it can solve several RobuCut instances in under thirty seconds that would nor-

mally require over four hours if we use an approach that repeatedly uses a black-box

maximum flow solver to solve each MFP.

The sixth chapter of this thesis details research on developing maximum flow reopti-

mization heuristics for solving what we formulate as the Two-Stage Stochastic Max-

imum Flow Problem (2SMFP). 2SMFP assumes we have a maximum flow network,

a finite budget for increasing arc capacities and a randomly distributed operating

level for each arc, which dictates whether the arc fails. That is, the arc gets removed

from the network after the capacities have been installed but before flow may be

sent. Assuming there are a polynomial number of possible scenarios for arc failures,

the objective is to use the budget to increase arc capacities so as to maximize the

expected maximum flow.

In this chapter, we present a Benders’ reformulation of 2SMFP and provide a cutting

plane algorithm to obtain an optimal solution. The structure of the cutting plane

algorithm motivates two possible approaches for incorporating maximum flow reop-

timization heuristics, both of which are implemented and tested. We conclude that

our implementations can obtain very modest, but never substantial, savings on solv-

ing 2SMFP when compared to an implementation that iteratively uses a black-box

maximum flow solver.

xv

CHAPTER I

INTRODUCTION

This chapter provides a general overview of network programming. The second

section presents an essentialized history of the Maximum Flow Problem. The final

section of this chapter offers a summary of this thesis.

1.1 Network Optimization

This thesis concerns itself with the area of network programming. That is, the study

of mathematical programs where a subset of the decision variables correspond to

routing decisions on a network. Network flows typically refers to the study of algo-

rithms to solve optimization problems on networks. Before discussing what a network

is in the context of mathematics, we first highlight the importance of and motivation

for studying networks. Networks abstract the essential infrastructure-related issues

from human industry. For example, the electricity industry depends on electricity

grids to power homes, offices, factories and warehouses. The internet, arguably the

largest network created by mankind, has revolutionized the frequency, quantity and

quality of information that can be shared for both business and recreational pur-

poses. Road, rail, airline service and sea cargo networks compose the lifeblood of the

global economy as they allow for the distribution of food, raw materials, health sup-

plies and consumer products. Everywhere one looks, it is undeniable that networks

are critical to the flourishing of human industry and therefore to raising standard of

living and advancing civilization.

1

Generally speaking, a network is a discrete structure that defines connectivity rela-

tionships amongst a set of nodes. In this context, an arc denotes a direct connection

between two nodes. Arcs typically have an orientation, which indicates which node

the arc originates from and which node the arc terminates in. For example, if our

network is modeling an interstate road network, then the nodes might correspond

to cities and the arcs could correspond to highways. Analogously, if our network

is modeling the internet, then nodes could correspond to webpages and arcs could

represent hyperlinks between websites.

A flow on an arc denotes the number of units of the commodity in question, be it

electricity, freight, fluid, et cetera, that will traverse the arc. A network flow is an

assignment of a value of flow to each arc in the network. A network flow is balanced

if, for each node, the total amount of the flow entering the node equals the total

amount of the flow leaving the node. For many real-world applications of network

optimization, the requirement that the network flow be balanced is natural and often

non-negotiable.

In addition to having an orientation and a flow value, arcs typically have an associated

cost, which often denotes the cost per unit of flow that traverses the arc. In addition,

arcs have flow bounds, that respectively denote the minimum and maximum amount

of flow that may traverse an arc. Often, an upper bound on the amount of flow that

may traverse an arc is called an arc capacity.

Unless otherwise stated, it is typically assumed that a network has no parallel arcs

and that no arc terminates in the same node that it has originated from. In addition,

it is typically assumed that all units of flow in a network are of the same, indistin-

guishable commodity. Lastly, unless otherwise stated, it is often assumed that all

flow in a network travels instantaneously.

In all of such applications of networks, a decision maker typically wishes to move

2

an entity, typically merchandise, passengers, information, bulk material or the like,

from one location to another as efficiently as possible. The reasoning for doing so is

often to provide quality service to customers or to utilize one’s resources efficiently.

This motivates the study of network optimization. Given the ubiquity of networks

in human industry and the large-scale impact that good, large-scale routing deci-

sions can have in raising the standard of living, we see that the study of network

optimization is well motivated.

Network optimization is crucial to many different academic areas, including, but

not limited to, operations research, applied mathematics, computer science, hy-

draulics engineering, civil engineering and operations management. Arguably, the

first network optimizer in history was Charles Babbage, who worked on transporta-

tion and sorting operations for England’s postal system. Interestingly, Babbage’s

efforts played an integral part in the universal “penny post” of England during the

middle of the 19th century [70]. Another significant advance in the history of network

optimization came with Gustav Kirchhoff and the other electrical engineers who first

systematically analyzed electrical circuits in the later part of the 19th century.

The next major milestone of network optimization was during World War II, where

scientists in the United Kingdom including Patrick Blackett, Cecil Gordon, C. H.

Waddington, Owen Wansbrough-Jones and Frank Yates along with United States-

man George Dantzig investigated formal methods for making intelligent logistical

decisions. After the second world war the science of operations research, including

network optimization, began to be applied to similar problems in industry.

There are three fundamental problems in the study of network optimization. The

first is called The Shortest Path Problem, which can be stated as follows: given a

network with a starting location, called a source, an ending location, called a sink,

and an associated length on each arc, find the path of shortest length from the source

3

to the sink.

The second fundamental problem of network optimization, which is also the keystone

of this thesis, is called the Maximum Flow Problem. This problem can be stated as

follows: given a network with a source, a sink and a capacity on each arc, find the

maximum possible flow that can be routed through the network from the source to

the sink. This problem is often used to model real-world situations where the routing

costs are negligible relative to the profit per unit of flow.

The third fundamental problem of network optimization is the Minimum Cost Flow

Problem. This problem can be stated as follows: given a network where each arc has

an associated cost per unit of flow, a lower bound and an upper bound on the flow

that may traverse the arc and each node either has an associated supply, an amount

of flow that must originate from the node or an associated demand, the amount

of flow that must terminate in the node or is a transhipment node, that is, has no

associated supply or demand, find a minimum cost flow in the network such that

all demands are satisfied. Both the Shortest Path Problem and the Maximum Flow

Problem may be modeled as Minimum Cost Flow Problems.

Although there are numerous other widely studied optimization problems that oc-

cur on networks, such as multicommodity flow problems, the Traveling Salesman

Problem and vehicle routing problems, we omit them from this discussion. These

problems are very difficult to solve in practice, and are not approached with net-

work flow algorithms. Usually these problems are approached with a combination of

integer programming techniques as well as optimization heuristics.

4

1.2 The Maximum Flow Problem

This thesis focuses on several problems related to the Maximum Flow Problem

(MFP). MFP in and of itself has numerous applications in mathematical model-

ing, including those in internet traffic routing [3], railroad freight transportation [2],

trucking [3], open-pit mining [43], sports team elimination [22], airline scheduling [3]

and numerical linear algebra [3].

There are many interesting properties of the MFP. First of all, there is the property

of integrality. If the capacities on all of the arcs in the network are integers, then

there will be a maximum flow in the network such that every arc will assume an

integer value and the total flow through the network will be integer. This property

is important because integrality constraints are typically very difficult to enforce in

practice, which is why integer linear programs are much more difficult to solve in

practice than linear programs. The integrality property of maximum flows allows

the integrality on the arc flows to be guaranteed by merely assigning integer arc

capacities. Thus, a maximum flow problem can be solved as a linear program, despite

integrality requirements on the flow.

A second important property of MFP is known as the Maximum Flow Minimum Cut

Theorem. Before we describe the implication of this theorem, first we introduce a

few concepts. Given a network N with a source s and a sink t, a s-t cut is a set of

arcs C such that every path from s to t contains at least one arc in C. The capacity

of a s-t cut is the sum of all of the capacities of the arcs in the cut. The Maximum

Flow Minimum Cut Theorem states that the value of the maximum flow from s

to t equals the capacity of the minimum capacity s-t cut. This property is very

intuitive. In the context of modeling a series of pipes, this theorem is conceptually

equivalent to stating that the maximum flow through a system is limited by the

system’s bottleneck.

5

Ford and Fulkerson presented the first formal treatment of the Maximum Flow Prob-

lem in [30]. Ford and Fulkerson were also the first to identify the Maximum Flow

Minimum Cut Theorem. As a side note, the Minimum Capacity s-t Cut Problem first

appeared in [41], where researchers at RAND Corporation modeled the throughput

of the Soviet railroad network during the Cold War.

In [30], Ford and Fulkerson also present an algorithm for computing a maximum flow

in a network. Their algorithm, although ground breaking in its time, is conceptually

simple. The fundamental idea is to maintain a residual network, that is, a network

that allows the user to either increase the flow on an arc with unused capacity or to

decrease the flow that has already been tentatively routed on an arc. The algorithm

iteratively augments flows along a path in the residual network until no more such

paths exist.

So long as the maximum flow in the network is finite, the algorithm of Ford and

Fulkerson is guaranteed to terminate in a finite number of iterations with a maxi-

mum flow. However, there is no guarantee that the Ford-Fulkerson algorithm will

terminate in a small number of iterations with respect to the number of nodes and

the number of arcs in the network. In fact, it is possible for the algorithm to require

on the order of cmax iterations, where cmax denotes the largest arc capacity in the

network.

After Ford and Fulkerson, there has been an intensive study of algorithms for MFP.

For a nice survey on worst-case complexity results, please see [35]. Important mile-

stones include the algorithm of Edmonds and Karp [29], which is an implementation

of the Ford-Fulkerson Algorithm that iteratively finds the shortest augmenting path

and terminates with a polynomial number of computations with respect to the prob-

lem input. In [27], Dinic presents the first maximum flow algorithm based on the

idea of iteratively solving for maximal flows in a layered network. In [47], Karzanov

6

presents the first algorithm using the concept of pre-flows, that is, an assignment of

flow values to the arcs where the amount of flow entering a node is greater than or

equal to the amount of flow leaving a node. Karzanov’s algorithm combines the use

of pre-flows with layered networks to develop a new maximum flow algorithm. In

[52], Malhotra et al. introduce the eponymous MKM Algorithm, a maximum flow

algorithm that is based on iteratively assigning flow on arcs incident to node with

the smallest throughput in the residual network.

The science of computing maximum flows drastically changed after the publication

of Goldberg and Tarjan [38]. Goldberg and Tarjan present a widely implemented

algorithm that uses pre-flows in conjunction with a new concept called distance labels,

which are labels on the nodes that are a lower bound on the length of the shortest

path, in terms of the number of arcs, from the node to the sink in the residual

network. In [4], Ahuja and Orlin introduce a maximum flow algorithm that is based

on the idea of capacity scaling. That is, iteratively finding paths with relatively large

throughput capability. In [37], Goldberg and Rao introduce an innovative concept of

a binary arc length function. In many previous maximum flow algorithms, such as

the Goldberg-Tarjan algorithm [38], there is a concept of distance that assumes all

arcs have a length of 1 unit. In order to obtain a better worst-case algorithmic result,

Goldberg and Rao relax this assumption by allowing arc lengths to assume values 0

or 1. This algorithm has receives a lot of attention because it achieves the best known

worst-case algorithmic result for MFP: O(min(|V | 23 ,
√
|A|) |A| log(|V |

2

|A|) log(cmax))

where cmax = max{ce|e ∈ A}. This result is for a MFP on a network N = (V, A)

where ce denotes the capacity of arc e.

One final algorithm that is worthy of note is the algorithm of Fujishige [32]. At

each iteration, this algorithm constructs an augmenting subgraph using maximum

adjacency orderings, which are a concept that is introduced in [56]. This algorithm is

7

interesting in that at each iteration, it can augment more flow than can be augmented

on any single augmenting path in the present residual network. In [53], Matsuoka and

Fujishige test an improved version of Fujishige’s algorithm that uses pre-flows and

demonstrate that it outperforms the Goldberg-Tarjan on a few classes of randomly

generated instances of MFP.

Despite a flurry algorithmic ideas for the maximum flow problem, the algorithm of

Goldberg and Tarjan is still considered the most efficient in practice [19] and [53].

8

CHAPTER II

CARDINALITY MAXIMUM FLOW NETWORK

INTERDICTION

This chapter discusses theoretical results on the Cardinality Maximum Flow Network

Interdiction Problem (CMFNIP). The first section introduces CMFNIP and briefly

overviews relevant literature. In the second section we discuss previous results on

CMFNIP, including the widely used ILP of Wood [77]. In the third section, we

introduce our two exponentially large classes of valid inequalities for Wood’s ILP for

CMFNIP and prove that they can be separated in polynomial-time. In the fourth

section, we prove that the integrality gap for Wood’s ILP is contained in the set

Ω(|V |1−ε) for any ε ∈ (0, 1), even when the LP relaxation is strengthened with our

polynomially-separable valid inequalities. Here, |V | denotes the number of nodes in

the underlying network. In the fifth section, we discuss the hardness of approximation

implication of the above integrality gap result and provide an approximating-factor-

preserving reduction from an interdiction problem that is much simpler in structure

to the more general Maximum Flow Network Interdiction Problem (MFNIP). In

the final section we draw conclusions and state an open problem concerning the

approximability of MFNIP.

2.1 Introduction

The Maximum Flow Network Interdiction Problem (MFNIP) is defined as a Stack-

elberg game where an interdictor allocates a finite amount of resources towards re-

moving arcs from a network so as to minimize the maximum flow that can be routed

9

through the remaining network. Since this is a Stackelberg game, the arcs are first

removed from the network before the adversary routes his flow.

Interdiction problems abstract the essential issues in many real-world resource allo-

cation problems including, but not limited to, military applications [54], combatting

drug trafficking [77], controlling the spread of disease in a hospital [7], chemically

treating raw sewage [63] and controlling floods in a system of dams or in a sewage

system [65].

Network interdiction is important in the history of operations research. An inter-

diction problem motivated the first application of the Minimum Capacity s-t Cut

Problem. During the Cold War, analysts at the RAND Corporation were research-

ing how to interdict the Soviet Union’s railroad traffic into Eastern Europe using

the fewest possible interdiction resources. To do this, requires the computation of

a minimum capacity s-t cut and hence is the earliest known formulation of this

fundamental problem [41].

From the 1960’s to the turn of the 21st century there has been an extensive amount of

academic literature on various interdiction problems, most of which is listed in [21].

The basic framework for maximum flow network interdiction when the interdictor

could not afford to stop all traffic was first studied, with minor variants, in [54]. In

the early 1990’s, Wood resurrected interest in MFNIP with the widely cited [77]. A

relaxation of MFNIP, called the Network Inhibition Problem (NIP), has also been

independently explored by Phillips [63].

A broad class of network interdiction problems have been intensively studied. This

includes, but is not limited to, shortest path network interdiction [44], stochastic

network interdiction [23], [45], multiple commodity network interdiction [51], [77],

facility interdiction [21] and a variant where the adversary routes flow before arcs

are removed [28]. There is also literature on more-than-two-stage interdiction models

10

where infrastructure may be reinforced against attacks [13].

Essentially all of the recent work on MFNIP (e.g., [11], [67], [74] and [77]) uses an in-

teger linear programming formulation (ILP) that was originally introduced by Wood

in [77], which we hereby refer to as Wood’s ILP. Wood’s ILP is also used as a starting

point for the mathematical programming formulations of many of the extensions of

MFNIP (e.g., [23], [45] and [51]).

Of particular interest is the special case of MFNIP when an interdictor removes

exactly R arcs from the network in order to minimize the maximum flow in the

resulting network. This is known as the Cardinality Maximum Flow Network In-

terdiction Problem (CMFNIP) and is equivalent to the R-Most Vital Arcs Problem,

which is cited to have applications in controlling floods in a system of dams or a

sewage system as well as military applications [65].

Despite its wide use in nearly all papers on maximum flow network interdiction,

there are not many theoretical results on Wood’s ILP. The first main contribution of

this chapter is to introduce two new exponentially large classes of valid inequalities

for Wood’s ILP for CMFNIP along with polynomial-time separation algorithms for

each. The first of the two classes introduced is a generalization of the “Type I”

valid inequalities provided by Wood [77]. These are the first documented separation

results for valid inequalities for CMFNIP.

The second major contribution of this chapter is that we identify and prove that the

integrality gap of Wood’s ILP for CMFNIP is contained in the set Ω(|V |1−ε) even

when the LP relaxation of Wood’s ILP is strengthened with our two classes of valid

inequalities. In this context, |V | is the number of nodes in the network and ε is any

constant in (0, 1). In other words, we prove that there is no constant factor lower

bound to the integrality gap. Note that this result also applies for Wood’s ILP for

CMFNIP, since this would be a relaxation of the ILP which we studied, as well as

11

Wood’s ILP for general MFNIP.

Bounds on integrality gaps are commonly sought theoretical results in integer linear

programming. The integrality gap is a commonly used metric to assess the quality of

a linear programming (LP) relaxation, which are commonly used as part of implicit

enumeration techniques in commercial integer programming solvers. In addition,

knowing the integrality gap of an ILP often provides general problem insight, bounds

for LP-based approximation algorithms and a method for evaluating the quality of

heuristically obtained solutions.

This chapter also contains contributions on the hardness of approximating MFNIP.

An immediate corollary of our integrality gap result is that it is NP-hard to obtain

a O(|V |1−ε)-approximate optimal solution to MFNIP when using the LP relaxation

of Wood’s ILP as a lower bound. We are currently unable to resolve the question

if this result is true for any arbitrary lower bound. However, we do show that any

hardness of approximation result on the R-Interdiction Covering Problem (RIC),

which is a facility interdiction version of MFNIP that is much simpler in structure

but still strongly NP-hard, immediately extends to MFNIP. Thus, future researchers

may focus on a problem of simpler structure, RIC, to indirectly obtain a hardness

of approximation result on MFNIP. Hardness of approximation results are often

insightful because they detail the worst-case complexity of obtaining a polynomial-

time algorithm that guarantees a solution within a provable factor of the optimal

solution for a given optimization problem.

With regards to related literature, there have been a few approximation algorithm

results on NIP, which is a relaxation of MFNIP where arc interdictions may be con-

tinuous instead of binary. In [63], Phillips introduced three pseudopolynomial-time

algorithms for the special case of NIP on planar networks as well as instructions for

12

extending these algorithms into fully-polynomial-time approximation schemes (FP-

TAS). In [14], Burch et al. provide a polynomial-time algorithm for NIP that either

returns a (1 + 1
ε
)-approximate optimal solution or a (1 + ε)-pseudoapproximation.

However, it is not known a priori which solution is returned. In this context, ε is a

user-specified error parameter.

2.2 Wood’s Formulation of MFNIP

Wood’s ILP for MFNIP can be viewed as a Stackelberg game. First the interdictor

chooses what arcs to interdict. After the arcs have been removed, the adversary, with

perfect information on which arcs have been removed, chooses a minimum capacity

s-t cut in the network induced on the set of non-interdicted arcs.

We denote the value of the interdiction budget by R. In addition, for any arc e

we denote its flow capacity by ce and its interdiction cost by re. All data for this

problem are positive integers.

Decision Variables

αi :=





1 if i ∈ N is on the sink side of the cut.

0 otherwise.

βe :=





1 if e ∈ A is in the cut and is interdicted.

0 otherwise.

γe :=





1 if e ∈ A is in the cut and is not interdicted.

0 otherwise.

Formulation

13

Minimize
∑

e∈A ceγe

Subject to

αu − αv + β(u,v) + γ(u,v) ≥ 0 ∀(u, v) ∈ A

αt − αs ≥ 1

∑
e∈A reβe ≤ R

αi ∈ {0, 1} ∀i ∈ N

βe ∈ {0, 1} ∀e ∈ A

γe ∈ {0, 1} ∀e ∈ A

The first set of constraints enforce that if arc (u, v) is in the cut defined by the α

variables, then (u, v) is either interdicted or is not interdiction. One such if-then

constraint exists for each arc (u, v).

The second line of constraints fixes αt to 1 and αs to 0.

The third line of constraints enforces that the interdiction budget is not exceeded.

We refer to this as the knapsack constraint.

To use Wood’s ILP to model CMFNIP, set re = 1 for each arc e ∈ A.

Theorem 1. CMFNIP (and therefore MFNIP) is strongly NP-hard.

Proof: See [77]. The argument is a reduction from the Maximum Clique Problem.

2

We define the linear programming relaxation of Wood’s formulation to be identical

to the ILP but where the binary constraint on each variable is replaced with a

corresponding lower bound of 0 and an upper bound of 1 on that same variable.

14

We note that we have reversed the roles of the β and the γ decision variables from

Wood’s paper. In [77], Wood uses γ as an indicator decision variable to denote if an

arc is in the s-t cut defined by the α variables that is also interdicted and uses β as

an indicator decision variable to denote if an arc is in the s-t cut defined by the α

variables that is not interdicted.

2.3 Strengthening the LP Relaxation of Wood’s ILP for
CMFNIP

In this section, we present two general, polynomial-time separable classes of valid

inequalities for CMFNIP. In the first subsection, we introduce our node-to-sink path

valid inequalities, prove their validity and provide a polynomial-time separation algo-

rithm. In the second subsection, we do the same for another class of valid inequalities

that we call the source-to-node path valid inequalities.

2.3.1 Node-to-Sink Path Valid Inequalities

Consider an arbitrary instance of CMFNIP on a network N = (V, A) with interdiction

budget R. For any node u ∈ V on the source-side of the s-t cut defined by the α

variables and let Pu−t be a set of arc-disjoint u-t paths in N such that |Pu−t| > R.

Then, since at most R paths may be interdicted, we know that for all of the arcs

in a path in Pu−t, at least |Pu−t| − R of these arcs must have their corresponding γ

variable equated to 1.

We can exploit this idea to develop the class of node-to-sink valid inequalities:

(|Pu−t| −R)αu +
∑

e∈A(Pu−t)

γe ≥ |Pu−t| −R ∀ u ∈ V ; ∀ Pu−t ∈ PR
u−t (1)

where A(Pu−t) denotes the set of all arcs contained in a u-t path in Pu−t and PR
u−t

15

denotes the family of all possible sets of arc-disjoint u-t paths that have cardinality

strictly greater than R.

We note that this class of valid inequalities is more general than the “Type I inequal-

ities” presented in Wood [77]. Specifically, his result is for any set of arc-disjoint u-t

paths of maximum cardinality and of size at least R + 1. However, we note that

the fact that the set must be maximum is inessential to the coefficient strengthening

argument used in his proof of validity.

Theorem 2. The node-to-sink inequalities are valid for Wood’s ILP for CMFNIP.

Proof: We present a combinatorial argument. Consider any node u ∈ V and any

set of paths Pu−t ∈ PR
u−t. Let x̂ = (α̂ β̂ γ̂) be a feasible solution to Wood’s ILP for

CMFNIP. If α̂u = 1, then the inequality in Equation 1 is trivially satisfied by x̂.

Suppose α̂u = 0. Then, since x̂ is a feasible solution, we know that for each u-t path

pu−t ∈ Pu−t there exists at least one arc e ∈ A(pu−t) such that β̂e + γ̂e ≥ 1, which

implies that
∑

e∈A(Pu−t)
β̂e+γ̂e ≥ |Pu−t|. We note that the knapsack constraint implies

that
∑

e∈A(Pu−t)
β̂e ≤ R. Thus, we may conclude that

∑
e∈A(Pu−t)

γ̂e ≥ |Pu−t| − R,

which completes the proof. 2

Theorem 3. Given an instance of CMFNIP on a network N = (V, A) with inter-

diction budget R and a feasible solution x̂ = (α̂ β̂ γ̂) to the corresponding linear

programming relaxation, there exists a polynomial-time algorithm that either (i) as-

serts that x̂ satisfies all of the valid inequalities in Equation 1 or (ii) produces a

violated inequality from Equation 1.

Proof: For a node u ∈ V , we first provide a polynomial-time algorithm to separate

x̂ over all inequalities in Equation 1. This is done by solving a minimum cost flow

problem. Thus, we then separate over all of the node-to-sink inequalities using O(|V |)
minimum cost flow computations, which achieves the desired result.

16

First, we provide intuition to motivate the minimum-cost-flow-based separation rou-

tine. Let u ∈ V and let Pu−t ∈ PR
u−t. Given x̂, we rearrange the corresponding

sub-class of node-to-sink inequalities to read as follows:

(α̂u − 1)|Pu−t|+
∑

e∈A(Pu−t)

γ̂e ≥ (α̂u − 1)R (2)

We want to search over all sets of arc-disjoint u-t paths Pu−t ∈ PR
u−t to find a set that

minimizes the left-hand side of the inequality expressed in Equation 2. To do this,

we can solve a minimum cost flow problem where each arc e in the original network

has a cost of γ̂e and each u-t path costs (α̂u − 1), which is non-positive.

Construct an auxiliary network Na = (V a, Aa) as follows. For each node v ∈ V we

create a corresponding node va ∈ V a. Similarly, for each arc (i, j) ∈ A we create a

corresponding arc (ia, ja) ∈ Aa with a capacity of one unit and a cost per unit flow

of γ̂(i,j). In addition, we create another arc (ta, ua) with a lower bound of R + 1

units, an infinite capacity and a per-unit of flow cost of (α̂u − 1). Note that there is

a bijection between every set of paths Pu−t ∈ PR
u−t to the basic feasible solutions of

the minimum cost flow problem on Na. Moreover, note that the cost of the flow in

Na equals the left-hand side of the inequality expressed in Equation 2.

The unit capacity on each arc in Aa\{(ta, ua)} ensures that the corresponding u-t

paths are indeed arc-disjoint. The lower bound on arc (ta, ua) ensures that the set

of u-t paths obtained from solving the minimum cost flow problem is of cardinality

strictly greater than R. If there is no such set of paths, then the minimum cost flow

problem is infeasible.

We may assume without loss of generality that the optimal solution contains no

zero-cost, non-zero flow circulations. It is well known that a circulation on a network

with m arcs can be decomposed into a cycle flow along at most m directed cycles in

17

O(m2) time. See section 3.5 in Ahuja et al. [3].

If the optimal objective value of the minimum cost flow problem on network Na is

strictly less than R(α̂u − 1), then there is a violated node-to-sink inequality and a

corresponding optimal basic feasible solution gives a set of arc-disjoint paths, which,

along with u, provide the violated inequality. Similarly, if the optimal objective

value of the minimum cost flow problem on network Na is greater than or equal to

R(α̂u − 1), then all inequalities from Equation 1 are satisfied.

Thus, if we repeat this procedure for each node u ∈ V , we obtain a polynomial-time

separation routine. 2

2.3.2 Source-to-Node Path Valid Inequalities

Source-to-node inequalities are very similar in spirit to node-to-sink inequalities. As

before, we first make a structural insight. Consider an arbitrary instance of CMFNIP

on a network N = (V, A) with interdiction budget R. For any node u ∈ V on the sink

side of the s-t cut defined by the α variables and let Ps−u be a set of arc-disjoint s-u

paths in N such that |Ps−u| > R. Then, since at most R paths may be interdicted,

we know that for all of the arcs in a path in Ps−u, at least |Ps−u| − R of these arcs

must have their corresponding γ variable equated to 1.

Thus, employing this idea, we can create the source-to-node valid inequalities :

(R− |Ps−u|)αu +
∑

e∈A(Ps−u)

γe ≥ 0 ∀ u ∈ V ; ∀ Ps−u ∈ PR
s−u (3)

where A(Ps−u) denotes the set of all arcs contained in a s-u path in Ps−u and PR
s−u

denotes the family of all possible sets of arc-disjoint s-u paths that have cardinality

strictly greater than R.

Theorem 4. The source-to-node inequalities are valid for Wood’s ILP for CMFNIP.

18

Proof: As before, we present a combinatorial argument. Consider any node u ∈ V

and any set of paths Ps−u ∈ PR
s−u. Let x̂ = (α̂ β̂ γ̂) be a feasible solution to Wood’s

ILP for CMFNIP. If α̂u = 0, then the inequality in Equation 3 is trivially satisfied

by x̂.

Suppose α̂u = 1. Then, since x̂ is a feasible solution, we know that for each s-u

path ps−u ∈ Ps−u there exists at least one arc e ∈ A(ps−u) such that β̂e + γ̂e ≥
1, which implies that

∑
e∈A(Ps−u) β̂e + γ̂e ≥ |Ps−u|. We note that the knapsack

constraint implies that
∑

e∈A(Ps−u) β̂e ≤ R. Thus, we may conclude that R−|Ps−u|+
∑

e∈A(Ps−u) γ̂e ≥ 0, which completes the proof. 2

Theorem 5. Given an an instance of CMFNIP on a network N = (V, A) with in-

terdiction budget R and a feasible solution x̂ = (α̂ β̂ γ̂) to the corresponding linear

programming relaxation, there exists a polynomial-time algorithm that either (i) as-

serts that x̂ satisfies all of the valid inequalities in Equation 3 or (ii) produces a

violated inequality from Equation 3.

Proof: As in the case of the node-to-sink valid inequalities, for a node u ∈ V , we first

provide a polynomial-time algorithm to separate x̂ over all inequalities in Equation 3.

This is done by solving a minimum cost flow problem. Thus, we then separate over

all of the source-to-node inequalities using O(|V |) minimum cost flow computations.

Since the minimum cost flow problem can be solved in polynomial-time (see Chapter

10 of Ahuja et al. [3]), this achieves the desired result.

As before, we provide intuition to motivate the minimum-cost-flow-based separation

routine. Let u ∈ V and let Ps−u ∈ PR
s−u. Given x̂, we can rearrange the corresponding

sub-class of source-to-node inequalities to read as follows:

−α̂u|Ps−u|+
∑

e∈A(Ps−u)

γ̂e ≥ −α̂uR (4)

19

We want to search over all sets of arc-disjoint u-t paths Pu−t ∈ PR
u−t to find a set that

minimizes the left-hand side of the inequality expressed in Equation 4. To do this,

we can solve a minimum cost flow problem where each arc e in the original network

has a cost of γ̂e and each u-t path costs -α̂u.

More formally, construct an auxiliary network Na = (V a, Aa) as follows. For each

node v ∈ V we create a corresponding node va ∈ V a. Similarly, for each arc (i, j) ∈ A

we create a corresponding arc (ia, ja) ∈ Aa with a capacity of one unit and a cost per

unit flow of γ̂(i,j). In addition, we create another arc (ua, sa) with a lower bound of R

+ 1 units, an infinite capacity and a per-unit of flow cost of -α̂u. We note that there

is a bijection between every set of paths Ps−u ∈ PR
s−u to the basic feasible solutions

of the minimum cost flow problem on Na. Moreover, we note that the cost of the

flow in Na equals the left-hand side of the inequality expressed in Equation 4.

The unit capacity on each arc in Aa\{(ua, sa)} ensures that the corresponding s-u

paths are indeed arc-disjoint. The lower bound on arc (ua, sa) ensures that the set

of s-u paths obtained from solving the minimum cost flow problem is of cardinality

strictly greater than R. If there is no such set of paths, then the minimum cost flow

problem is infeasible.

We may assume without loss of generality that the optimal solution contains no

zero-cost, non-zero flow circulations. It is well known that a circulation on a network

with m arcs can be decomposed into a cycle flow along at most m directed cycles in

O(m2) time. See section 3.5 in Ahuja et al. [3].

If the optimal objective value of the minimum cost flow problem on network Na

is strictly less than -α̂uR, then there is a violated source-to-node inequality and a

corresponding optimal basic feasible solution gives a set of arc-disjoint paths, which,

along with u, provides a violated inequality. Similarly, if the optimal objective value

of the minimum cost flow problem on network Na is greater than or equal to -α̂uR,

20

then all inequalities from Equation 3 are satisfied.

Thus, if we repeat this procedure for each node u ∈ V , we obtain a polynomial-time

separation routine. 2

We shall henceforth refer to the LP relaxation of Wood’s ILP with both the node-

to-sink valid inequalities and the source-to-node inequalities as the strengthened LP.

2.3.3 Strength of Valid Inequalities

In this subsection, we provide an example of an optimal fractional extreme point to

the LP relaxation of Wood’s ILP that violates a source-to-node valid inequalities for

a specific class of instances. A similar example for the node-to-sink valid inequalities

can be easily constructed.

Let κ ≥ 2 be a parameter. we construct a network Nκ = (Vκ, Eκ) where Vκ is

composed of three sets of nodes: ({s, t}, Xκ, Yκ) and Eκ is composed of three sets of

arcs: (Es
κ, E

b
κ, E

t
κ). |Xκ| = κ and |Yκ| = µ−κ, where µ is a parameter and a positive

integer such that µ >> κ.

We now describe the structure and capacity of the arcs in Nκ. For each node v ∈ Xκ,

there exists an arc e = (s, v) ∈ Es
κ that has a capacity of µ units. Similarly, for each

node v ∈ Xκ ∪Yκ, there exists an arc e = (v, t) ∈ Et
κ that has a capacity of one unit.

Finally, for each pair of nodes u ∈ Xκ and v ∈ Yκ, there exists an arc (u, v) ∈ Eb
κ

that has a capacity of µ2 units. Since this is an instance of CMFNIP, all arcs have

an interdiction cost of one unit.

We define the instance of CMFNIP Iw,κ as minimizing the maximum flow on the

network Nκ with an interdiction budget of κ− 1 units. See Figure 2 for an example

of the network for instance Iw,κ.

First, we construct a fractional extreme point solution to the LP relaxation of Wood’s

21

Figure 1: Network for CMFNIP instance Iw,κ with κ = 3 and µ = 11.

ILP.

Lemma 6. There exists a feasible solution to the LP relaxation of Wood’s ILP for

CMFNIP instance Iw,κ that has objective value of µ
κ
.

Proof: It suffices to construct such a solution. Consider the following:

αv = κ−1
κ

∀ v ∈ V \{s, t}
αs = 0

αt = 1

βe :=





κ−1
κ

∀ e ∈ Es
κ

0 otherwise.

γe :=





1
κ
∀ e ∈ Et

κ

0 otherwise.

It can be verified that this solution is feasible and has objective value µ
κ
, since ce =

1 ∀ e ∈ Et
κ. 2

22

Let x̂ be the fractional solution constructed during the proof of Lemma 6.

To illustrate that x̂ needs to be cut away when solving for the integer optimal solution,

we state an integer optimal solution to instance Iw,κ as a fact.

Fact 1. An integer optimal solution to instance Iw,κ may be constructed by arbitrarily

interdicting κ−1 arcs in the set Et
κ. This solution has an objective value of µ−κ+1.

For those interested in a proof of Fact 1, we refer the reader to the proof of Lemma

10 in the next section, which is very similar.

Lemma 7. The fractional solution is cut away by a source-to-node inequality.

Proof: Let u ∈ Yκ and let Ps−u be the set of maximum arc-disjoint s-u paths. Since

|Ps−u| = κ > R, there exists a source-to-node valid inequality for the node u and the

set of paths Ps−u.

Let α̂u denote the value of the decision value αu in x̂ and let γ̂e denote the value of

decision variable γe in x̂ for each arc e ∈ E. Note that by construction of x̂, γ̂e = 0

for each e ∈ A(Ps−u). Moreover, note that the term (R − |Ps−u|)α̂u equals -κ−1
κ

,

which is always strictly less than zero since κ ≥ 2. Thus, as stated in Equation 3,

the source-to-node valid inequality corresponding to node u and arc-disjoint path set

Ps−u is violated. 2

2.3.4 Using the Valid Inequalities in Practice

We tested these valid inequalities using the CPLEX 9.0 MIP solver. First of all, we

note that most instances of CMFNIP, even those with hundreds of nodes, solve very

quickly in practice without any modification to the default CPLEX settings. Thus,

when testing both the source-to-node inequalities and the node-to-sink inequalities,

23

we focused on instances of CMFNIP that had poor integrality gaps when using

Wood’s ILP.

We tested these two valid inequalities on instances Iw,κ for a range of appropri-

ately chosen values for the κ and |V |. Specifically, we added all violated node-to-

sink inequalities and all violated source-to-node inequalities to the root node of the

branch-and-bound tree. We tried adding the violated inequalities using the sub-

routine CPXaddrows() as well as using the subroutine CPXaddusercuts(). We did

not subsequently add any other of these valid inequalities in any other node of the

branch-and-bound tree besides the root node.

Table 1 contains a collection of prototypical results from our experimentation with

these valid inequalities. For this class of deterministically constructed instances,

there are definitely several cases where adding the cuts in some form reduces the

running time needed for CPLEX to terminate with an optimal solution. However,

there are several instances where adding the violated valid inequalities increased the

running time of the MIP solver. Nevertheless, this experimentation suggests that

these valid inequalities can be advantageous and should be considered as a possible

technique to improve the running time for commercial integer programming solvers

for difficult instances of CMFNIP.

2.4 Integrality Gap Result

In this section, we prove that the integrality gap of Wood’s ILP, even with the

strengthened LP relaxation, is contained in the set Ω(|V |1−ε) where ε is any constant

in (0, 1) and V is the set of nodes in the CMFNIP network.

Claim 1. Choose ε ∈ (0, 1). Then there exists an instance I of CMFNIP on a

network N = (V,A) with interdiction budget R where

24

Table 1: Prototypical Results for MFNIP Valid Inequalities
NumNodes Kappa CutScheme TotalTime SeparationTime

200 30 none 27 0
200 30 CPXaddrows 27 2
200 30 CPXaddusercuts 101 3
200 50 none 107 0
200 50 CPXaddrows 192 5
200 50 CPXaddusercuts 87 3
200 75 none 82 0
200 75 CPXaddrows 334 5
200 75 CPXaddusercuts 167 6
250 25 none 36 0
250 25 CPXaddrows 87 4
250 25 CPXaddusercuts 239 4
250 62 none 240 0
250 62 CPXaddrows 643 9
250 62 CPXaddusercuts 192 10
300 30 none 162 0
300 30 CPXaddrows 747 7
300 30 CPXaddusercuts 465 6
300 75 none 905 0
300 75 CPXaddrows 607 20
300 75 CPXaddusercuts > 57000 20
450 112 none 2435 0
450 112 CPXaddrows 2173 88
450 112 CPXaddusercuts 1682 86

z∗ILP (I)

z∗SLP (I)
∈ Ω(|V |1−ε).

Here, z∗ILP (I) and z∗SLP (I) denote the optimal objective value of the ILP and the

strengthened LP relaxation for instance I respectively.

To prove this claim, first we show that given a positive integer constant κ ≥ 2, there

exists an instance of CMFNIP Iκ such that
z∗ILP (Iκ)

z∗SLP (Iκ)
≥ κ. Then we discuss how to

choose an appropriate κ in terms of ε to obtain the desired result.

Given κ ≥ 2, we construct a network Nκ = (Vκ, Eκ). The node set Vκ is partitioned

25

Figure 2: Network for CMFNIP instance Iκ with κ = 3 and µ = 8.

into four sets of nodes Xκ, Yκ, Zκ and {s, t} where Xκ ∪ Yκ ∪ Zκ ∪ {s, t} = Vκ and

Si ∩ Sj = ∅ ∀ Si, Sj ∈ {Xκ, Yκ, Zκ, {s, t}} such that Si 6= Sj. Given the parameter κ,

the sizes of the first three respective node partitions are |Xκ| = κ, |Yκ| = µ− κ and

|Zκ| = µ, where µ is another parameter and a positive integer such that µ >> κ.

The arc set Eκ is partitioned into four sets of arcs Es
κ, Eb

κ, Et
κ and EM

κ where

Es
κ ∪ Eb

κ ∪ Et
κ ∪ EM

κ = Eκ and Ei
κ ∩ Ej

κ = ∅ ∀ i, j ∈ {s, b, t,M} such that i 6= j.

We now describe the structure and capacity of the arcs in Nκ. For each node v ∈ Xκ,

there exists an arc e = (s, v) ∈ Es
κ that has a capacity of µ units. Similarly, for each

node v ∈ Xκ ∪ Yκ, there exists an arc e = (v, t) ∈ Et
κ that has a capacity of one

unit. For each pair of nodes u ∈ Xκ and v ∈ Yκ, there exists an arc (u, v) ∈ Eb
κ

that has a capacity of µ2 units. Finally, for each node v ∈ Zκ there exists both arcs

(s, v), (v, s) ∈ EM
κ where each arc has a capacity of µ2 units. Since this is an instance

of CMFNIP, all arcs have an interdiction cost of one unit.

We define the instance of CMFNIP Iκ as minimizing the maximum flow on the

network Nκ with an interdiction budget of µ + κ − 1 units. See Figure 2 for an

26

example of the network for instance Iκ.

We now prove a few lemmata about the optimal integer and fractional solutions to

CMFNIP when using the ILP with the strengthened LP relaxation.

Lemma 8. When using Wood’s ILP for CMFNIP, there exists an optimal integer

solution to the instance Iκ where βe = γe = 0 ∀ e ∈ Eb
κ.

Proof: Suppose this is not true. Consider any optimal solution x∗0 that serves as a

counterexample to Lemma 8 and let Eb∗
κ ⊆ Eb

κ be the set of arcs where αv = 1 and

either β(u,v) = 1 or γ(u,v) = 1 for all arcs (u, v) ∈ Eb∗
κ . Let Y ∗

κ ⊆ Yκ be the set of

nodes that are entered by at least one arc in Eb∗
κ .

We partition the nodes in Y ∗
κ as follows: let Y β∗

κ = {v ∈ Y ∗
κ | ∃ e ∈ RS(v) : βe = 1}

and let Y γ∗
κ = Y ∗

κ \Y β∗
κ . We define a new solution x∗1 by keeping all of the variable

values expressed in x∗0 except for setting βe = γe = 0 for all arcs e ∈ Eb∗
κ , setting

αv = 0 for all nodes v ∈ Y ∗
κ , setting β(v,t) = 1 for all nodes v ∈ Y β∗

κ and setting

γ(v,t) = 1 for all nodes v ∈ Y γ∗
κ . It should be clear that both the objective value as

well as the interdiction cost of x∗1 are less than or equal to those of x∗0. Thus, x∗1 is

both feasible and optimal. 2

Lemma 9. When using Wood’s ILP for CMFNIP for instance Iκ, then for any

optimal solution, γe = 0 for all arcs e ∈ EM
κ

Proof: First we construct a feasible solution. Then, given the existence of this

feasible solution, we may conclude that γe = 0 for all arcs e ∈ EM
κ , otherwise

the optimal solution has an objective value greater than the feasible solution we

construct.

Choose Etβ
κ ⊂ Et

κ such that |Etβ
κ | = κ− 1. Now consider the following solution:

αv = 0 ∀ v ∈ Vκ\{t}
αt = 1

27

βe :=





1 ∀ e ∈ Etβ
κ ∪ EM

κ ∩RS(t)

0 otherwise.

γe :=





1 ∀ e ∈ Et
κ\Etβ

κ

0 otherwise.

Since our interdiction budget R = µ + κ− 1 and |EM
κ ∩ RS(t)| = µ, this solution is

clearly feasible. Furthermore, note that the objective value of the solution above is

µ− κ + 1.

Since the capacity of each arc in EM
κ is µ2 we see that any feasible solution with

γe = 1 for some arc e ∈ EM
κ must have an objective value of at least µ2 and therefore

cannot be optimal. 2

Lemma 10. When using Wood’s ILP for CMFNIP, the optimal objective value for

instance Iκ is µ− κ + 1.

Proof: Lemma 8 demonstrates that there exists an optimal solution of Wood’s ILP

for CMFNIP that where βe = γe = 0 for all arcs e ∈ Eb
κ. Thus, we may assume

there exists an optimal solution that also has αu = αv for all arcs (u, v) ∈ Eb
κ.

Moreover, Lemma 9 indicates that each of the µ arc-disjoint paths formed by the arcs

in EM
κ must be interdicted, which requires µ units of interdiction resources. Thus,

constructing an optimal solution reduces to deciding how to allocate the remaining

κ− 1 units of interdiction resources between the arcs in Es
κ ∪ Et

κ.

Since αu = αv for all arcs (u, v) ∈ Eb
κ, note that there exists an optimal solution

where either have βe = γe = 0 for all e ∈ Es
κ or βe = γe = 0 for all e ∈ Et

κ. Since

exactly one of these may be true, the s-t cut defined by the α variables is either

equivalent to Es
κ or equivalent to Et

κ.

Since αu = αv for all arcs (u, v) ∈ Eb
κ, we may assume that αu = αv for all nodes u,

28

v ∈ Vκ\{s, t} without loss of generality. If the s-t cut defined by the α variables is

FS(s), then interdicting all arcs in FS(s) ∩ EM
κ and removing any arbitrary subset

of κ− 1 arcs from Es
κ leaves a s-t cut of capacity µ, as there is exactly one arc in Es

κ

which could not be removed. Note that this is equal to the total capacity of all of

the arcs in Et
κ, which is µ.

If the s-t cut defined by the α variables is RS(t), then interdicting all arcs in RS(t)∩
Es

κ and removing any arbitrary subset of κ − 1 arcs from Et
κ leaves a s-t cut of

capacity µ−κ+1, which is also the new minimum capacity s-t cut in the remaining

network. Since all other possible integer solutions have an objective value greater

than or equal to µ−κ+1, we may conclude that interdicting any arbitrary subset of

κ− 1 arcs in the set Et
κ and interdicting all arcs in RS(t)∩EM

κ describes an optimal

solution for CMFNIP instance Iκ. 2

Lemma 11. There exists a feasible solution to the strengthened LP relaxation for

CMFNIP instance Iκ that has an objective value of µ
κ
.

Proof: It suffices to construct such a solution. Consider the following:

αv :=





κ−1
κ

∀ v ∈ Xκ ∪ Yκ

0 ∀ v ∈ {s} ∪ Zκ

1 v = t

βe :=





κ−1
κ

∀ e ∈ Es
κ

1 ∀ e ∈ EM
κ ∩RS(t)

0 otherwise

γe :=





1
κ
∀ e ∈ Et

κ

0 otherwise

It can be verified that this solution is feasible and has objective value µ
κ
, since ce =

29

1 ∀ e ∈ Et
κ. 2

In fact, the constructed solution is an optimal solution for the strengthened LP

relaxation. This can be verified from the complementary slackness conditions after

constructing an appropriate dual feasible solution. However, demonstrating that this

is a feasible solution suffices for our stated purpose.

Theorem 12. Let I be the family of all instances of CMFNIP. For any ε ∈ (0, 1):

supI∈I
z∗ILP (I)

z∗SLP (I)
∈ Ω(|Vκ|1−ε)

Proof: Consider the parameter µ and instance Iκ. From Lemma 11 we know

z∗SLP (Iκ) ≤ µ
κ

and from Lemma 10 we know z∗ILP (Iκ) = µ− κ + 1. Thus,

z∗ILP (Iκ)

z∗SLP (Iκ)
≥ µ− κ + 1

µ
κ

.

What remains to show are sufficient choices for κ, µ and |Vκ|. Recall that ε ∈ (0, 1).

Let κ = b|Vκ|1−εc and let |Vκ| be sufficiently large such that κ ≥ 2. Note that by

construction of Iκ, we have µ = |Vκ|
2
−1. Substituting for µ and κ we get the following

inequality:

z∗ILP (Iκ)

z∗SLP (Iκ)
≥ b|Vκ|1−εc(|Vκ|

2
− 1− b|Vκ|1−εc+ 1)
|Vκ|
2
− 1

.

Using the definition of Ω, we obtain:

z∗ILP (Iκ)

z∗SLP (Iκ)
∈ Ω(

b|Vκ|1−εc(|Vκ|
2
− 1− b|Vκ|1−εc+ 1)
|Vκ|
2
− 1

) = Ω(
b|Vκ|1−εc(|Vκ|

2
− 1)

|Vκ|
2
− 1

).

Continuing with algebra, we obtain:

30

z∗ILP (Iκ)

z∗SLP (Iκ)
∈ Ω(

b|Vκ|1−εc(|Vκ|
2
− 1)

|Vκ|
2
− 1

) = Ω(b|Vκ|1−εc) = Ω(|Vκ|1−ε).

Thus, we may conclude that
z∗ILP (Iκ)

z∗SLP (Iκ)
∈ Ω(|Vκ|1−ε). Since Iκ ∈ I, we may conclude

that supI∈I
z∗ILP (I)

z∗SLP (I)
∈ Ω(|Vκ|1−ε). 2

Corollary 13. The integrality gap of Wood’s ILP (without the strengthened LP

relaxation) for CMFNIP (and therefore MFNIP as well) is in the set Ω(|Vκ|1−ε) for

any ε ∈ (0, 1).

Proof: The proof follows immediately from the fact that the plain LP relaxation

of Wood’s ILP for CMFNIP is a relaxation of the strengthened LP relaxation. Fur-

thermore, since CMFNIP is a special case of MFNIP, this result extends to MFNIP

as well. 2

2.5 Hardness of Approximation of MFNIP

An immediate corollary of Theorem 12 is the following:

Corollary 14. It is NP-hard to obtain an O(|Vκ|1−ε)-factor approximation algorithm

for CMFNIP (and MFNIP) that uses the strengthened LP relaxation as a lower

bound.

Corollary 14 leaves open the question, is it NP-hard to obtain an O(|Vκ|1−ε)-approximate

solution to CMFNIP for any arbitrary lower bound? Although the authors are un-

able to answer this question at the time this has been written, we have offered insight

towards resolving this question for the general case of MFNIP, which we detail in

this section.

Specifically, we present an approximation-factor-preserving reduction from RIC to

MFNIP, meaning that any hardness of approximation result on RIC will immediately

31

extend to MFNIP. First, we define the R-Interdiction Covering Problem (RIC). Then

we prove that RIC is strongly NP-hard. Finally, we give the approximation-factor-

preserving reduction.

R-Interdiction Covering Problem: Given a bipartite graph G = (Vf , Vs, E)

where the vertices in the partition Vf correspond to facilities, the vertices in the

partition Vs correspond to satellites and E is the set of edges in G. A facility u ∈ Vf

serves a satellite v ∈ Vs if and only if (u, v) ∈ E. Given a budget of R units, which

R facilities should an interdictor remove from G so as to maximize the number of

satellites who are not adjacent to any facilities in the resulting graph?

In the problem statement above, we use the term graph to denote a network where

arcs lack orientation. We call an arc with no orientation an edge.

RIC was first stated in [21] and has applications in identifying critical infrastructure

in supply (e.g., food, energy, medicine), domestic service (e.g., police, fire, EMS) or

communication networks [21].

Lemma 15. RIC is strongly NP-hard.

Proof: We present a reduction from the Maximum Clique Problem, which is strongly

NP-hard [34]. We note that our proof is a modification of the proof of Theorem 2

from [77].

Consider an arbitrary instance of the Maximum Clique Problem on a graph Gq =

(V q, Eq). We show that the decision version of this problem: “Does the graph Gq

contain a clique of size K?” is answered in the affirmative if and only if the decision

version of RIC on a corresponding graph GR = (V R
f , V R

s , ER): “Can we remove

R = |Eq| − (
K
2

)
facilities from V R

f to disconnect |V R
s | − K satellites in the graph

GR?” is answered in the affirmative.

First, we discuss how to construct the graph GR from Gq. For each vertex v ∈ V q,

32

we create a satellite sv ∈ V R
s . Similarly, for each edge (u, v) ∈ Eq we create a facility

f(u,v) ∈ V R
f and we add edges (f(u,v), su) and (f(u,v), sv) to ER.

Suppose that there is a clique of size K in Gq, say denoted by subgraph Gq
c = (V q

c , Eq
c).

Then, by removing R facilities from V R
f , we can disconnect |V R

s | − K satellites by

interdicting fe ∀ e ∈ Eq\Eq
c .

Similarly, suppose that we can remove R facilities from GR to disconnect all but K

satellites. Then the
(

K
2

)
facilities that were not interdicted correspond to

(
K
2

)
unique

edges in Eq that are between the K vertices in V q that uniquely correspond to the

K satellites that were not disconnected in GR. Since we have
(

K
2

)
distinct edges

between K vertices in a simple graph, then this must form a clique of size K, which

is contained in Gq. The reduction is complete. 2

Theorem 16. There is an approximation-factor-preserving reduction from RIC to

MFNIP.

Proof: Given an arbitrary instance of RIC If , we construct a corresponding instance

of MFNIP In. Let G = (Vf , Vc, E) be the graph in our instance of RIC. We construct

an instance of MFNIP on the network N = (V,A) as follows: for every vertex v ∈
Vf∪Vc, there is a corresponding node v̄ ∈ V . Similarly, for every edge e = (vf , vc) ∈ E

there is a corresponding arc ē = (v̄f , v̄c) ∈ A that originates from v̄f , terminates in

v̄c, has unit capacity and has interdiction cost R + 1.

Let V̄f be the set of nodes in V corresponding to facilities in Vf and let V̄c be defined

similarly. V also contains a source s and a sink t, either of which does not correspond

with any vertices in Vf ∪ Vc. For each node v̄f ∈ V̄f , there is an arc (s, v̄f) ∈ A with

capacity equal |{c ∈ Vc : (f, c) ∈ E}| and an interdiction cost of one unit. Similarly,

for each node v̄c ∈ V̄c, there is an arc (v̄c, t) ∈ A with a capacity of one unit and

an interdiction cost of R + 1. The interdiction budget for In equals the interdiction

33

Figure 3: Approximation-factor-preserving reduction from an instance of RIC with
|Vf | = 3, |Vc| = 5 and R = 2 to MFNIP.

budget in If , which is R.

It should be clear that RIC instance If has a solution with an objective value of

z if and only if MFNIP instance In has a uniquely corresponding solution with

an objective value of z. Thus, if it is NP-hard to obtain an α-factor approximate

optimal solution for RIC, then it is NP-hard to obtain an α-factor approximate

optimal solution for MFNIP. The reduction is complete. 2

See Figure 3 for an illustration of an example of the approximation-factor-preserving

reduction described above.

2.6 Conclusions and Future Work

In this chapter, we have made several contributions on both CMFNIP and MFNIP.

First, we have discovered two new exponentially large classes of valid inequalities for

CMFNIP and provided polynomial-time separation algorithms for each.

34

Second, we have identified and proved that the integrality gap of Wood’s ILP for

CMFNIP (and therefore MFNIP) is contained in the set Ω(|V |1−ε), even when the

LP relaxation of Wood’s ILP is strengthened with our valid inequalities. We are con-

fident that this offers general problem insight. Specifically, when other researchers

sought to compute the optimal objective value for MFNIP for each possible value for

the interdiction budget (e.g., [11], [67] and [74]), the authors indicated that a small

number of possible values for the interdiction budget were “problematic”. Concep-

tually, a “problematic” budget is one where the corresponding instance of MFNIP

takes an unusually long amount of time to obtain an optimal solution using their

integer programming approach. Given the potential for a rather large integrality

gap, which is a function of the interdiction budget, our result offers an explanation

as to why “problematic” values for the interdiction budget may arise.

In addition, our result implies that it is NP-hard to find a O(|V |1−ε)-approximate

optimal solution of MFNIP when using the strengthened LP relaxation as a lower

bound. We leave the question of if this is true for any arbitrary lower bound as an

open question. We also pose the related open question:

Open Question: Does there exist a polynomial-time, constant factor approximation

algorithm for the Maximum Flow Network Interdiction Problem?

Although we are unable to solve this question, we provide insight towards this en-

deavor. Specifically, we prove that any hardness of approximation result on RIC, an

interdiction problem that is much simpler in problem structure, immediately extends

to MFNIP.

35

CHAPTER III

LOCAL SEARCH IN MAXIMUM FLOW NETWORK

INTERDICTION

In this chapter, we discuss our work on local search in maximum flow network inter-

diction. In the first section, we motivate this work and overview relevant literature.

In the second section, we demonstrate the sensitivity of the computation time on the

interdiction budget. In the third section we detail our neighborhood and our corre-

sponding meta-heuristic search. In the fourth section we present our computational

results for our meta-heuristic. In the final section we draw conclusions and discuss

extensions of this work.

3.1 Introduction

Most of the previous computational work on MFNIP uses integer linear programming

(ILP) techniques. In [77], Wood introduces a new ILP formulation, proves that

it is equivalent to the intuitive “min-max” formulation and provides a new class

of valid inequalities. In [25], Derbes heuristically solves MFNIP using Lagrangian

relaxation combined with a binary search on the Lagrange multipliers. Both [11] and

[74] expand on Derbes by solving MFNIP for all possible interdiction budgets; thus

implicitly constructing the Pareto-efficient frontier. Finally, in [67], Royset and Wood

construct an approximate Pareto-efficient frontier using an implicit enumeration of

all near minimum capacity cuts.

In [24], Dai and Poh conducted a small study of using a simple genetic algorithm to

solve MFNIP. However, the documented study is very limited. Their experiments

36

are briefly summarized at the beginning of our computational results section.

All of the previous work on MFNIP, with the exception of [24], uses Wood’s formu-

lation. All integer programming results in this chapter are with respect to Wood’s

formulation.

In both [11] and [74] the authors indicate that certain values of the interdiction budget

proved to be “problematic” for an otherwise fixed instance of MFNIP, meaning that

the employed Lagrangian approaches failed to obtain an optimal solution for those

budget values. However, there was no further discussion on why these “problematic”

budgets may exist, how often they occur or how one may recognize them in advance.

In this chapter, we demonstrate that the time required to solve a MFNIP instance

is highly sensitive on the interdiction budget. This is an important observation for

several reasons. First, even if standard commercial software can obtain optimal

solutions for most instances in a reasonable amount of time, it does not address the

issue of when a very important instance might be in the minority of instances that

cannot be completely solved in a reasonable amount of time. Second, in the context

of the motivating applications of MFNIP such as intercepting smuggled drugs or

nuclear material, policymakers have the ability to change the available interdiction

budget. Thus, there is value in knowing how varying the interdiction budget will

impact the solution time of one’s algorithm.

In addition to being the first researchers to explicitly document this, we undergo a

theoretical study to explain this behavior. To this end, we observe how both the

number of optimal solutions fluctuates with respect to the interdiction budget for

both Wood’s ILP and a natural LP relaxation. Furthermore, Corollary 13 proves

that the integrality gap of Wood’s ILP is not bounded below by a constant factor

even in the case when all arcs have unit interdiction cost. This is the first known

result on this widely used formulation. If the integrality gap is very large, then this

37

suggests that lower bounds obtained from linear programming relaxations may not

always be very useful.

In this chapter, we present a neighborhood for MFNIP based on evaluating cut-

sets as well as a meta-heuristic framework for computing good heuristic solutions.

Designing the neighborhood was nontrivial because computing the objective value

of a feasible solution, which is a set of arcs to interdict, requires the solution to a

maximum flow problem. Thus, there is no intuitive neighborhood for MFNIP that

is also rapidly searchable in practice.

We demonstrate that our meta-heuristic is robust in three respects. First, the time it

requires to obtain a good solution is relatively insensitive to the interdiction budget,

unlike the time that ILP software requires to obtain a provable optimal solution.

Second, the time required by our meta-heuristic is comparatively unaffected by the

density of the network in the instance of MFNIP. Third, our meta-heuristic can

obtain good quality solutions even when a very poor initial solution happens to be

randomly selected. This is the first extensively documented local search approach to

MFNIP.

Our neighborhood is also very advantageous in its modularity. It can be extended to

more complicated maximum flow interdiction problems, such as the multiple resource

interdiction problem described in [77], as long as a black-box solver is available to

evaluate the subproblems that arise. In the case of multiple resource interdiction, a

rapid heuristic for a multidimensional knapsack problem would be needed. Efficient

computational approaches to this problem are detailed in [64].

To summarize, this chapter offers several contributions. First, we offer empirical

evidence to explain the aforementioned time sensitivity. Second, we present the first

published result on the integrality gap of Wood’s formulation. Third, we present the

first extensive neighborhood search approach to MFNIP. Lastly, we demonstrate a

38

robust meta-heuristic search that is insensitive to the interdiction budget.

3.2 Time Sensitivity on the Interdiction Budget

Through computational testing, we observe that the time ILP software requires to

solve instances of MFNIP, when using Wood’s formulation, is highly sensitive to the

interdiction budget. More formally, given a fixed topology with fixed capacities and

fixed interdiction costs on the arcs, the time such software needs to solve an instance

of MFNIP is highly sensitive on the chosen interdiction budget.

Figure 4 illustrates the computational sensitivity of an instance on its budget. The

abscissa corresponds to the interdiction budget. The ordinate axis corresponds to

the solution time. Note the logarithmic scale on the ordinate axis. The plotted line

is the number of seconds it takes CPLEX to solve this particular 200 node instance of

MFNIP. The instance below was randomly generated where each arc, on the complete

directed graph with 200 nodes had a 50% probability of appearing. Given that an

arc appeared, its flow capacity and interdiction costs were each chosen, uniformly at

random, from the interval [10, 20] with a correlation coefficient of .9.

We introduce a few definitions to clarify the subsequent content.

Definition 1. Given a feasible solution to MFNIP, we say an arc (u, v) is exposed if

αu−αv = 1. Similarly, given a feasible solution to the linear programming relaxation

of Wood’s formulation for MFNIP, we say an arc fractionally exposed if αu−αv > 0.

Analogously, exposed cuts and fractionally exposed cuts are s-t cuts whose arcs are

all either exposed or fractionally exposed respectively. If any (fractionally) exposed

cut appears in an optimal solution, we describe it as an optimal (fractionally) exposed

cut. A fractionally exposed arc that does not contribute to the objective value is

said to be fractionally interdicted.

39

0 1000 2000 3000 4000 5000 6000
10

−1

10
0

10
1

10
2

10
3

Interdiction budget

C
P

LE
X

 s
ol

ut
io

n
tim

e
(s

)

Figure 4: The computational sensitivity of an instance on its interdiction budget.

The number of optimally exposed s-t cuts (and likewise the number of optimal frac-

tionally exposed s-t cuts for the LP relaxation) greatly depends on the interdiction

budget; it is even possible for there to be exponentially many such cuts.

Figure 5 illustrates how the number of optimally exposed cuts depends on the in-

terdiction budget. Suppose that all arcs have unit capacity. When the interdiction

budget is 2, any s-t cut is an optimally exposed cut. When the interdiction budget is

1, there are only half as many. Namely, only the cuts that involve the arc with unit

interdiction cost. We note that in either case, there are O(2n) optimally exposed

cuts in this example.

A problem instance with a large number of optimal fractionally exposed cuts may

require the traversal of a larger branch-and-cut tree as there would be more fractional

extreme point solutions to cut away. Since the number of such cuts greatly varies

40

Figure 5: The number of optimally exposed cuts depends on the interdiction budget.

with the budget, this offers an explanation for the behavior illustrated in Figure 4.

In the next section, we discuss the integrality gap of Wood’s formulation and its

relation to the time sensitivity on the interdiction budget.

3.3 Node-Flip Neighborhood

One of the main goals of this chapter is to design a neighborhood that is computa-

tionally insensitive to the interdiction budget. The neighborhood used is inspired by

viewing MFNIP from the perspective of minimizing the minimum cut and developed

from the following proposition:

Proposition 17. Given an arbitrary instance of MFNIP, there exists an optimal

solution where all of the interdicted arcs are contained in a s-t cut.

Proof: If all of the interdicted arcs cannot be contained in a cut, then there must

exist a vertex v that has at least one interdicted arc in both its forward star and

its reverse star. We note that the throughput of v in the aftermath network equals

41

min{∑u∈RS(v) cuv,
∑

u∈FS(v) cvu}. Without loss of generality, if we assume that the

capacity of the forward star is less, then any arc in the reverse star that is interdicted

may be added to the aftermath network without increasing the maximum flow. 2

3.3.1 Storing and Evaluating Solutions

Since an optimal solution always exists to a combinatorial optimization problem,

Proposition 17 implies that there exists a cut C∗ that contains the optimal set of

arcs to interdict, I∗. We implicitly store feasible solutions by instead storing cuts.

To this end, we prove the following proposition:

Proposition 18. Assume we are given an instance of MFNIP under the restriction

that only arcs in a cut C may be interdicted. Then the optimal solution may be

determined by solving a knapsack problem.

Proof: Given any arbitrary cut C, if we only allow arc interdictions within this cut,

we can determine the best set of arcs to interdict by solving the following knapsack

problem:

z∗C = max

{∑
a∈C

caxa :
∑
a∈C

raxa ≤ R, xa ∈ {0, 1}.
}

(5)

Thus, the capacity of C in the aftermath network is:

value(C) =
∑
a∈C

ca − z∗C . (6)

2

Given a cut C, we let K(·) : C −→ S denote the function that maps a cut C ∈ C
to a feasible solution s ∈ S by optimally solving the knapsack problem 5. Here, C
denotes the set of all cuts in the original network and S denotes the set of all feasible

42

solutions to our instance of MFNIP. This function will hereby be called the knapsack

function.

It is well known that the 0-1 Knapsack Problem is weakly NP-hard [34]. We will

discuss how we evaluate these knapsack problems efficiently later in the chapter.

Given a cut C, we describe the feasible solution K(C) obtained from our knapsack

function as containable. Given a containable feasible solution s, we describe the cut

K−1(s) as its cut representation. Note that not all feasible solutions to an instance

of MFNIP are necessarily containable and therefore lack a cut representation.

3.3.2 Neighborhood Function

In the interest of clarity, we will first discuss what an application of a flip neighbor-

hood would be to MFNIP.

Recall that our feasible solutions are stored as cuts. Given an arbitrary feasible

solution s0 to an instance of MFNIP I, let C(s0) = (S0, T0) be its representation as

a cut. A move for the flip neighborhood would be to:

1. Transfer a non-terminal node from S0 to T0 or vice-versa. This creates a new

cut C1.

2. Obtain a new feasible solution to I from our knapsack function K(C1).

We refer to a move for the flip neighborhood as a flip. It is straightforward to

construct the transition graph for this neighborhood. In the next subsection, we

will refer to a neighborhood transition network. To convert a transition graph into

a transition network, one merely needs to replace every edge (u, v) with two arcs:

(u, v) and (v, u). We are now ready to define our neighborhood:

Definition 2. Let s0 be an arbitrary feasible solution to an instance I of MFNIP

43

and let S denote the set of all feasible solutions to I. Then solution s1 is a neighbor

of s0 with respect to the depth-k flip neighborhood if and only if there exists a path

from the vertex corresponding to solution s0 to the vertex corresponding to solution

s1 of length at most k.

3.3.3 Searching the Neighborhood

Given a parameter k, we employ an inexact neighborhood search technique on the

depth-k neighborhood function. Specifically, for a current solution Si, we will con-

struct a sub-network of the transition network and choose the “best” solution in the

sub-network to be our next solution Si+1. For simplicity of description, we will often

write “Si” instead of “the node in the transition network corresponding to solution

Si”.

While constructing the sub-network, we impose the following restrictions:

1. The sub-network must be a connected tree that is rooted at Si.

2. The sub-network cannot contain more than a pre-specified number of nodes.

3. The length of the path between Si and S̃j must be at most k for all solutions

S̃j in the sub-network. This is called the depth requirement.

4. The number of solutions in the sub-network that are of depth ` cannot exceed

a pre-specified amount. This is called the breadth requirement.

We refer to the sub-network constructed in this fashion as the transition tree.

It remains to be explained how we choose which solutions to insert into the transition

tree. Throughout the construction of the transition tree, we maintain a binary heap

of potential tree solutions. We refer to this heap as our potential solution pool. In

addition, given a solution Si we refer to any adjacent solution S̃j in the original

44

Figure 6: Solution tree that has a depth of 3 and a breadth of 4.

transition graph as a flip-neighbor. We note that this relationship is different from

what a neighbor would be in the k-depth flip neighborhood.

After a solution is added to the transition tree, we add a subset of its flip-neighbors

to the solution pool. In practice, we found it most efficient to select these neighbors

at random. It is straightforward to see that any solution in the transition tree may

not have more children than the maximum breadth requirement for the tree. If w is

the maximum breadth allowed, then we specifically add w flip-neighbors to the pool.

When a flip-neighbor of Si is inserted into the potential solution pool, the correspond-

ing object contains several pieces of information. In addition to the cut representation

of the solution, the object also contains a pointer to the parent node of the solution,

if the solution were to be inserted into the transition tree, that is, a pointer to Si.

In addition, the object contains a key for the solution pool (which is a binary heap).

The key is an estimate on objective value of the MFNIP solution. Using equation

(6), we can compute this value by solving a knapsack problem. However, in practice,

solving a knapsack problem for each potential solution is too time consuming. In

the interest of celerity, we elected to use a rapid 1
2
-approximation algorithm for the

knapsack problem found in [50].

Algorithm 1 provides the pseudocode for inserting flip-neighbors into the solution

45

pool.

Algorithm 1 Put Flip Neighbors In Pool

putRandomNeighborsInPool(feasible solution S, potential tree solution pool
P)

#flips ← 0
while #flips < maxBreadthAllowed do

randomly pick a node i ∈ V \ {s, t}
#flips ← #flips + 1
if i ∈ source(S) then

source(S ′) ← source(S) \ {i}
sink(S ′) ← sink(S) ∪ {i}

else
source(S ′) ← source(S) ∪ {i}
sink(S ′) ← sink(S) \ {i}

end if
key(S ′) ← compute approximate value of S ′

insert S ′ into pool of potential tree solutions P
end while

At each iteration of our local search, we will construct a new transition tree starting

from a solution Si. We continue to construct a transition tree until either we have

reached the maximum number of solutions allowed in the tree or it is not possible

to add another solution to the tree without violating any of the aforementioned

restrictions. Once we finish constructing the transition tree, we choose the best node

as the root for a new transition tree to be constructed during the next iteration.

While the construction of the transition tree is not complete, we remove the solution

from the pool with the lowest heap key, say S̃j. We add S̃j to the transition tree

if it is not already in the tree and adding the node would not violate our breadth

restriction. If S̃j is not at the maximum allowable depth and its addition does not

complete the construction of the tree, then we add a random subset of flip-neighbors

of S̃j to our pool.

After we add a solution to the transition tree, we compute its objective value by

evaluating the knapsack function using the code of Pisinger, detailed in [62].

46

To avoid adding duplicate solution to the tree, we store pointers to all of the solutions

in the tree in an array of linked lists. The objective value of the solution serves as

a hash function from a feasible MFNIP solution to a linked list. Given a solution is

mapped to a non-empty linked list, the list is then traversed to explore for identical

solutions. The overall reduction in computation time from this procedure in practice

is enormous.

Constructing the transition tree is a parameter driven approach. Restricting the

depth of the tree allows for many nodes to be flipped in a single iteration. Allowing

a greater breadth allows for more moves that might initially appear to be undesirable

but may lead to better solutions in the future. Increasing the maximum transition

tree size reduces the number of times a solution is re-examined but at the expense

of requiring more memory.

Algorithm 2 contains our pseudocode for constructing the transition tree, given a

solution Sroot.

Algorithm 2 Construct Transition Tree

constructTree(feasible solution Sroot)

initialize transition tree T with Sroot as root node
initialize pool of potential tree solutions P

putRandomNeighborsInPool(Sroot, P) // start pool with neighbors of the root
node
while size(T) < maxSizeAllowed do

S ← solution with lowest key value in P
if (S is not in T) or (breadth(S, T) ≤ maxBreadthAllowed) then

compute exact value of S
insert S into T
if depth(S, T) < maxDepthAllowed then

putRandomNeighborsInPool(S, P)
end if

end if
end while
Sbest ← best solution in transition tree T
return Sbest

47

We iteratively perform this neighborhood search procedure until the best solution

in a constructed transition tree is its root. Since this is an inexact neighborhood

search, this solution is not necessarily locally optimal with respect to our k-depth flip

neighborhood. We hereby refer to these points as inexact locally optimal solutions.

3.3.4 Meta-Heuristic Search

To discuss our meta-heuristic framework, we must first discuss how to escape from

inexact locally optimal solutions. To do this, we will randomly flip a pre-specified

number of non-terminal nodes. Specifically, let λ denote the percentage of non-

terminal nodes that will be flipped and let n be the number of nodes. Then we

will choose bλ · (n − 2)c nodes uniformly at random to be flipped. We refer to this

function as perturbSolution().

Our overall procedure is as follows. We start with an initial cut, which we use to

construct an initial solution. We then perform our inexact search of the k-depth flip

neighborhood, where k is an user-specified parameter. This terminates with an inex-

act locally optimal solution S ′. If this is the best solution we have seen throughout

the entire search procedure, we record this solution as Sbest. If we have not met a

pre-specified termination criteria, then S ′ is modified using perturbSolution().

We adjust the parameter λ over the course of our meta-heuristic search. Specifically,

if there is no improvement to the best known solution after executing K calls to

performLocalSearch() then λ is multiplied by another user-specified discount factor

ρ, where 0 < ρ < 1. When this occurs, we say that λ has been discounted. The

discounting of our perturbation here is analogous to cooling in simulated annealing.

The meta-heuristic search terminates after we have performed a pre-specified number

of iterations L, including those immediately after λ has been discounted, without

encountering a solution better than Sbest. Algorithm 3 contains pseudocode of our

48

meta-heuristic search for MFNIP.

Algorithm 3 Meta-Heuristic Search for MFNIP

perform preprocessing
construct initial solution Sinit

Sbest ← Sinit

S ← Sinit

discountCounter ← 0
terminationCounter ← 0

while terminationCounter < L do
S ′ ← performLocalSearch(S)
if value(S ′) < value(Sbest) then

Sbest ← S ′

discountCounter ← 0
terminationCounter ← 0

else
discountCounter ← discountCounter + 1
terminationCounter ← terminationCounter + 1

end if
if discountCounter ≥ K then

discountCounter ← 0
λ ← ρ · λ

end if
S ← perturbSolution(S ′, λ)

end while
return Sbest

49

3.4 Computational Experiments

3.4.1 Previous Computational Settings

The only other study on local search in MFNIP can be found in [24]. Here, Dai and

Poh have studied a simple genetic algorithm on two small instances of MFNIP. On a

20-node instance, the genetic algorithm found the optimal solution on four of the ten

runs reported. On a 50-node instance, the genetic algorithm only found the optimal

solution on two of the ten runs reported. For this instance, the optimal objective

value was 5 while the 8 sub-optimal executions of the meta-heuristic terminated with

a best objective value of at least 14.

3.4.2 Experimental Settings

To generate instances, we will often fix a network topology, arc interdiction costs,

arc capacities and generate an instance for each nontrivial budget value over an

appropriate range. Although we are solving instances over a large range of budgets,

our goal is not to compute the Pareto-efficient frontier (PEF). Had we intended

to compute the PEF, we would be exploiting information obtained from previously

solved instances.

In order to evaluate the effectiveness of our meta-heuristic, we compare its perfor-

mance with that of CPLEX, using both solution quality and solution time as perfor-

mance metrics. We conducted our experiments on a large set of randomly generated

instances with a variety of network topologies, capacities, and interdiction costs.

Recall that an instance of MFNIP consists of a network topology, arc capacities, arc

interdiction costs, and an interdiction budget. Each instance in our test set has a

network topology on 200 nodes, randomly generated in one of the five ways listed

below:

50

1. arc - Each arc has a 50% probability of appearing.

2. path1 - A random topology is generated by appending random s-t paths until

each node has in-degree of at least 1 and out-degree of at least 1.

3. path5 - Similar to path1, except each node has in-degree of at least 5 and

out-degree of at least 5.

4. tpath1 - Similar to path1, except all s-t paths follow a fixed topological order.

5. tpath5 - Similar to path5, except all s-t paths follow a fixed topological order.

Given a network topology, we randomly generated arc capacities using uniform dis-

tributions from three possible sets: {10, . . . , 20}, {50, . . . , 100}, {500, . . . , 1000}.

Finally, given a network topology, we randomly generated arc interdiction costs us-

ing twelve possible distributions. Some methods involved correlation with the arc

capacities, and some involved correlation with the distance of the arc to the source

and sink. The first six distributions we used are as follows:

1. Positive correlation with minimum distance from source or sink, as follows:

cij =

[
c +

dij − d

d− d
(c− c) + ε

]
for all (i, j) ∈ A

where [·] is the rounding function,

dij = min





length of shortest

s-i path in N
,

length of shortest

j-t path in N





for all (i, j) ∈ A,

(the length of any i-j path is simply the number of arcs along the path), and

d = min{dij : (i, j) ∈ A}, d = min{dij : (i, j) ∈ A}, c = 11, c = 19,

and ε is uniformly distributed on {−1, 0, 1}. Note that cij ∈ {10, . . . , 20} for

all (i, j) ∈ A.

51

2. Same as item 1, except c = 55, c = 95, and ε is uniformly distributed on

{−5, . . . ,−1, 0, 1, . . . , 5}. Note that cij ∈ {50, . . . , 100} for all (i, j) ∈ A.

3. Same as item 1, except c = 550, c = 950, and ε is uniformly distributed on

{−50, . . . ,−1, 0, 1, . . . , 50}. Note that cij ∈ {500, . . . , 1000} for all (i, j) ∈ A.

4. Negative correlation with minimum distance from source or sink, as follows:

cij =

[
c− dij − d

d− d
(c− c) + ε

]
for all (i, j) ∈ A

where [·], dij for all (i, j) ∈ A, d, and d are all as defined in item 1, c = 11, c =

19, and ε is uniformly distributed on {−1, 0, 1}. Note that cij ∈ {10, . . . , 20}
for all (i, j) ∈ A.

5. Same as item 4, except c = 55, c = 95, and ε is uniformly distributed on

{−5, . . . ,−1, 0, 1, . . . , 5}. Note that cij ∈ {50, . . . , 100} for all (i, j) ∈ A.

6. Same as item 4, except c = 550, c = 950, and ε is uniformly distributed on

{−50, . . . ,−1, 0, 1, . . . , 50}. Note that cij ∈ {500, . . . , 1000} for all (i, j) ∈ A.

We also used three distributions where interdiction costs were uniformly drawn, com-

pletely independent from arc capacities, from the following three sets: {10, . . . , 20},
{50, . . . , 100} and {500, . . . , 1000}. Lastly, we used three distributions where inter-

diction costs were uniformly drawn from the same three sets but the correlation

coefficient between arc capacities and interdiction costs was 0.9.

We generated 10 random draws for every topology-capacity-cost combination. Table

3.4.3 shows the average number of arcs for each topology type in our test set. We

paired each randomly drawn topology-capacity-cost combination with a total of 100

interdiction budgets: 99 budgets uniformly spaced from 1 percent of the minimum

interdiction cost cut to 99 percent of the minimum interdiction cost cut, and one

52

budget equal to 99.99 percent of the minimum interdiction cost cut. As a result,

there are a total of 180,000 randomly generated instances.

Each instance was solved using the variable depth flip neighborhood search algorithm,

with three different initial solutions:

1. random - A random s-t cut.

2. mincost - A cut whose arcs have minimum total interdiction cost.

3. minweightcost - A cut whose arcs have minimum total weighted interdiction

cost; the interdiction costs are weighted by dividing the interdiction costs by

the arc capacities.

Initial experiments indicated that the following parameters for the local search pro-

vided an effective trade-off between solution time and solution quality: maxSizeAllowed =

200, maxDepthAllowed = 10, maxBreadthAllowed = 30, ρ = 0.9, λ = 0.9, K = 3,

and L = 6. In addition, each instance was allowed up to 10 minutes of computation

time with the CPLEX 9.1 callable library. All of the default integer programming

settings were used. All computations were performed on an Intel Dual Xeon CPU

running at 2.4 Ghz with 1GB of RAM, on the Linux operating system.

3.4.3 Experimental Results

The quality of the solutions produced by our meta-heuristic was very good overall.

We compute the quality of a given solution as

quality =
objective value of given solution

objective value of optimal solution
.

For the discussion of experimental results in this section, we discard two types of

instances.

53

1. “Easy” instances. As a preprocessing step, our algorithm declares an instance

“easy” if (i) all the arcs have interdiction cost larger than the interdiction bud-

get, or if (ii) the cost of the minimum interdiction cost cut is less than the

interdiction budget. Both these cases are “easy” since they can be detected

efficiently as a preprocessing step, and the optimal solution is trivial. Although

a number of instances in our test set were detected as “easy” in the first sense,

none were detected as “easy” in the second sense, since we only considered

instances with interdiction budgets equal to a fraction of the minimum inter-

diction cost cut. A considerable number of instances in our test set were solved

quickly using this pre-processing: 10.95 percent of instances were detected as

“easy.” Table 3.4.3 shows the fraction of “easy” instances in our test set by

network topology type.

2. Instances for which CPLEX was not able to find an optimal solution in 10

minutes using default settings. In order to determine the quality of the solu-

tions produced by our meta-heuristic, we solved the instances to optimality

using CPLEX. In our initial trials we observed that for some instances CPLEX

required several hours to obtain an optimal solution. In the interest of expedi-

ency, we terminated CPLEX after ten minutes of running time. This occurred

for only 430 instances in our test set, or 0.24 percent. Although CPLEX was

terminated early for these instances, the quality of the best feasible solution

obtained was comparable to those obtained by our meta-heuristic. Specifically,

the average quality for all of these instances was 1.00 for all three possible

types of initial solutions. However, for all these instances, our meta-heuristic

terminated in under 1 minute.

In Table 3.4.3, we see that when using a minimum interdiction cost cut (mincost) as

an initial solution, on average, our meta-heuristic produced a solution whose objective

54

value is within 2% of the optimal. This performance is rather uniform across topology

types, as shown in Table 3.4.3. Similar results were also achieved by our meta-

heuristic when using a minimum weighted interdiction cost cut (minweightcost)

as an initial solution. In addition, the optimal solution was found by our meta-

heuristic using these two initial solution types for more than 90 percent of instances

in our test set. These types of initial solutions—mincost and minweightcost—were

much more effective than randomly generated (random-type) initial solutions. For

example, the quality of the final solutions for instances with network topology types

tpath1 and tpath5 suffered dramatically when solved using a random-type initial

solution: in Table 3.4.3, we see that the optimal solution was found for only about 15

percent of instances in our test set with these topology types when using a random-

type initial solution. On the other hand, the initial solutions of types mincost and

minweightcost were typically already close to optimal for all topology types. This

is perhaps a key factor in why our algorithm was able to produce high-quality final

solutions when using these types of initial solutions.

Although the quality of the solutions produced by our meta-heuristic was very good,

our method usually did not find a solution faster than CPLEX. In Table 3.4.3, we

see that even when using initial solutions of type mincost or minweightcost, our

algorithm terminated before CPLEX for only about 14 percent of instances in our

test set. On the other hand, for fixed topology, interdiction costs, and capacities, the

solution time of our meta-heuristic was insensitive to the value of the interdiction

budget. This was not true when CPLEX was used. As we can see in Table 3.4.3 and

Table 3.4.3, the variance in solution times is significantly higher for CPLEX than the

meta-heuristic for all initial solution and network topology types. Figure 7 shows

this phenomenon graphically for a fixed edge topology. This behavior was commonly

observed, to varying magnitudes, in many different fixed topologies of types edge,

path1 and path5.

55

In terms of getting good solutions quickly, our experiments indicate that our meta-

heuristic seems to be more effective for dense networks. In our test set, the arc-type

network topologies were densest; on average, they contained approximately 9,938

arcs, significantly higher than the number of arcs for the other topology types. As

seen in Table 3.4.3, the quality of the final solutions produced by our algorithm

for instances with arc-type topologies is on average superb, regardless of the type

of initial solution used. In addition, our meta-heuristic was able to find these high-

quality solutions relatively quickly: the results in Table 3.4.3 indicate that on average,

our meta-heuristic terminated before CPLEX for instances with arc-type network

topologies in our experiment, again, regardless of the type of initial solution used; for

initial solution types mincost and minweightcost, our meta-heuristic used about

half the time used by CPLEX, on average.

Our conjecture for the observed behavior is as follows: the edge topology instances

have a large number of edges relative to the number of nodes. The number of edges

does not affect our meta-heuristic because our neighborhood is based on moving

nodes. The number of crossing arcs in any cut is still small relative to the total

number of edges in the network, so the knapsack problems are still relatively small.

On the other hand, the denseness of these networks affects CPLEX directly, since

there are two variables and one constraint for each edge. More generally, the number

of edges profoundly affects the dimension of the problem for CPLEX, but has little

effect on the dimension of the subproblems solved during the execution of the meta-

heuristic. Furthermore, exploratory experiments also indicate that our algorithm

does not scale well for sparse networks. This further confirms our intuition.

We also note that our meta-heuristic is very powerful in the respect that it is unaf-

fected by a poor initial starting solution. This can be observed in Table 3.4.3 where

even when an initial solution was chosen at random our meta-heuristic was able to

56

0 1000 2000 3000 4000 5000 6000
10

−1

10
0

10
1

10
2

10
3

Interdiction budget

S
ol

ut
io

n
tim

e
(s

)

CPLEX
random
mincost
minweightcost

Figure 7: Solution times of an edge instance over a wide range of interdiction
budgets.

obtain a very good solution for the topologies edge, path1 and path5.

Lastly, we observed that the effect of correlation between arc interdiction costs and

arc capacities, as well as the effect of correlation between arc interdiction costs and

location in network, were both negligible, with respect to both solution quality and

speed.

3.5 Conclusions and Future Work

We demonstrate that the time needed to solve Wood’s formulation of MFNIP is

extremely sensitive to the interdiction budget. This relationship is caused by at

least two factors. First, the integrality gap is not bounded by a constant factor.

At present, no tight asymptotic bound in terms of the input is known. Second, the

57

Table 2: Number of arcs by network topology type. Network topology types are
defined in Section 3.4.2.

Mean number of arcs in the network
Topology type (standard deviation)

arc 9936.90
(72.45)

path1 882.10
(271.17)

path5 2196.70
(223.11)

tpath1 514.70
(39.46)

tpath5 782.40
(33.90)

All instances 2862.56
(3588.39)

Table 3: Percentage of “easy” instances by network topology type. “Easy” instances
are defined in Section 3.4.3; network topology types are defined in Section 3.4.2.

Topology type Easy instances (%)
arc 0.09

path1 9.09
path5 2.77
tpath1 27.17
tpath5 15.63

All instances 10.95

58

Table 4: Meta-heuristic performance by initial solution type. Initial solution types
are defined in Section 3.4.2. Numbers in parentheses are standard deviations. The
quality of a given solution is the ratio between the objective value of the solution and
the objective value of an optimal solution. The results in this table are limited to
instances that were not detected as “easy” by the variable depth neighborhood search
algorithm, and instances for which CPLEX was able to find an optimal solution in
10 minutes. “Easy” instances are defined in Section 3.4.3.

Mean quality optimal Meta-heuristc
Initial of final solution Mean terminates before

solution type solution found (%) solution time (sec) CPLEX (%)
random 1.40 60.77 6.15 8.02

(0.88) (5.12)
mincost 1.02 90.06 3.09 14.09

(0.08) (2.75)
minweightedcost 1.04 93.84 3.47 13.33

(0.18) (3.35)

CPLEX 1.00 100.0 4.27 N/A
(37.84)

Table 5: Mean quality of initial and final meta-heuristic solutions by network topol-
ogy and initial solution type. Network topology and initial solution types are defined
in Section 3.4.2. Numbers in parentheses are standard deviations. The quality of a
given solution is defined as the ratio between the objective value of the solution and
the objective value of an optimal solution. The results in this table are limited to in-
stances that were not detected as “easy” by the variable depth neighborhood search
algorithm, and instances for which CPLEX was able to find an optimal solution in
10 minutes. “Easy” instances are defined in Section 3.4.3.

random mincost minweightcost

Initial Final Initial Final Initial Final
arc 213.651 1.034 1.003 1.001 1.034 1.011

(532.675) (0.163) (0.008) (0.006) (0.129) (0.065)
path1 101.916 1.000 1.028 1.000 1.114 1.000

(89.878) (0.000) (0.068) (0.000) (0.229) (0.000)
path5 134.981 1.000 1.010 1.000 1.061 1.000

(180.397) (0.000) (0.028) (0.000) (0.170) (0.000)
tpath1 121.396 1.905 1.100 1.072 1.340 1.186

(50.397) (0.835) (0.195) (0.164) (0.515) (0.335)
tpath5 131.707 2.268 1.049 1.019 1.152 1.042

(80.585) (1.399) (0.127) (0.087) (0.363) (0.208)

59

Table 6: Percentage of instances in which meta-heuristic finds the optimal solution,
by network topology and initial solution type. Network topology and initial solution
types are defined in Section 3.4.2. The results in this table are limited to instances
that were not detected as “easy” by the variable depth neighborhood search algo-
rithm, and instances for which CPLEX was able to find an optimal solution in 10
minutes. “Easy” instances are defined in Section 3.4.3.

random mincost minweightcost

arc 57.94 86.11 71.52
path1 100.00 100.00 100.00
path5 100.00 100.00 100.00
tpath1 15.91 67.00 50.78
tpath5 15.33 92.42 90.23

Table 7: Mean solution times by network topology and initial solution type. Net-
work topology and initial solution types are defined in Section 3.4.2. The results in
this table are limited to instances that were not detected as “easy” by the variable
depth neighborhood search algorithm, and instances for which CPLEX was able to
find an optimal solution in 10 minutes. “Easy” instances are defined in Section 3.4.3.

random mincost minweightcost CPLEX
arc 14.17 7.44 8.65 16.93

path1 2.86 1.77 1.93 0.30
path5 3.72 2.19 2.36 1.45
tpath1 4.58 1.71 1.81 0.19
tpath5 4.50 1.69 1.79 0.48

Table 8: Standard deviation of solution times by network topology and initial
solution type. Network topology and initial solution types are defined in Section
3.4.2. The results in this table are limited to instances that were not detected as
“easy” by the variable depth neighborhood search algorithm, and instances for which
CPLEX was able to find an optimal solution in 10 minutes. “Easy” instances are
defined in Section 3.4.3.

random mincost minweightcost CPLEX
arc 5.12 3.06 3.91 78.63

path1 0.32 0.29 0.35 0.75
path5 0.69 0.38 0.45 7.03
tpath1 2.11 0.31 0.42 0.34
tpath5 2.11 0.24 0.31 0.89

60

number of optimal exposed cuts depends on the interdiction budget. In some cases,

there can be exponentially many optimally exposed cuts.

As a remedy to this instability, we developed a robust meta-heuristic that obtains

good solutions in a consistent amount of time with respect to the interdiction budget.

These results were demonstrated in multiple different classes of randomly generated

instances. Moreover, our meta-heuristic was unaffected by the quality of the initial

solution, as very good solutions were obtained even when a very poor initial solution

happened to be randomly selected. Furthermore, our meta-heuristic did particularly

well on dense networks. This is intuitive, as increasing the number of arcs in a

network proportionally increases the number of decision variables for Wood’s formu-

lation. However, having more arcs in the network does not substantially increase the

size of the knapsack subproblems faced by our meta-heuristic, which typically were

the bottleneck operation throughout the entire search.

The fact that our neighborhood performs well on dense networks serves as a nice

complement to the research on solving instances of MFNIP using Lagrangian relax-

ation, which includes [67], [11] and [74]. These papers primarily tested instances of

MFNIP on grid networks and road networks, both of which are sparse.

The neighborhood we have designed also extends to the multiple resource interdic-

tion variant of MFNIP presented in [77]. The only impediment to the extension is

evaluating an exposed cut. In the standard MFNIP, this was a knapsack problem,

which is a weakly NP-hard problem that is relatively easy to solve in practice [62].

However, in the case when multiple resources are required for interdiction, this be-

comes a Multidimensional Knapsack Problem (MDKP), which is strongly NP-hard.

However, there is a rich literature on computational approaches to this problem. We

leave the extension to multiple resource interdiction for future research. See, for

example, [64].

61

Our present neighborhood search approach suggests that an inner-primal approach

might also be appropriate. Specifically, one can view a solution to MFNIP as a

partition of the arc set into both interdicted arcs and non-interdicted arcs. Given

such an arc partition, the exact inner-primal objective value may be computed with

a single maximum flow computation. A variable-depth flip neighborhood that is

similar in spirit to Kernighan-Lin search on graph partitioning [49] may be used on

the partition of the arc set.

Unfortunately, after we implemented the inner-primal neighborhood, too many max-

imum flow computations were needed to make this neighborhood viable. However,

this motivates an interesting subproblem, The Maximum Flow Reoptimization Prob-

lem. This problem may be formally stated as: Given a ground network N0 = (V,A0)

and a large sequence of sub-networks N1 = (V,A1), N2 = (V, A2), · · · , Nk = (V, Ak)

that is revealed in an online fashion where Ai ⊆ A0 ∀ i ∈ {1, 2, · · · , k}. In [57], Nagy

and Akl propose the Real Time Maximum Flow Problem, which is similar to spirit

in this problem but different in structure. However, no computational results are

presented. In the next chapter, we address this problem more rigorously and discuss

its applications.

62

CHAPTER IV

SOLVING ONLINE SEQUENCES OF MAXIMUM FLOWS

In this chapter, we discuss reoptimization heuristics for rapidly solving an online

sequence of Maximum Flow Problems (MFPs). In particular, we focus on sequences

of MFPs where the ith MFP in the sequence differs from the (i− 1)st MFP in that

exactly one arc has changed, for each possible i. In the first section, we motivate

this research and survey related literature. In the second section, we formulate the

Maximum Flow Single Arc Reoptimization Problem (MFSAROP) and present a

practical algorithm to solve it. In the third section, we present our computational

results. In the final section, we draw conclusions and discuss future work.

4.1 Introduction

4.1.1 Motivation

The Maximum Flow Problem (MFP) is a fundamental problem in discrete optimiza-

tion. Efficient, network algorithms exist to solve instances with thousands of nodes

in a matter of seconds. However, despite the existence of large sequences of MFPs in

a diverse selection of papers, there does not exist a formalized study of solving a large

sequence of MFPs. Given the existence of rapid and scalable algorithms for MFP, it

seems intuitive that there is no significant cost to iteratively use a black-box max-

imum flow solver as a subroutine when solving a sequence of MFPs. Furthermore,

effective black-box solvers are easily available on the internet (e.g., [36]). The goal

of this chapter, however, is to convince the reader that iteratively using a black-box

maximum flow solver to solve a large sequence of MFPs may lead to an enormous

63

number of unnecessary computations.

Sequences of maximum flow problems arise as part of greater computational rou-

tines in many, vastly different complex problems. We detail a select, but diverse,

set of instances in literature where a sequence of maximum flow computations on

topologically similar networks is required.

• Algorithmic Game Theory In [26], Devanur et al. introduce a polynomial

primal-dual algorithm for computing an equilibrium point for the linear utility

case of Fischer markets, which are described in [12]. Their algorithm requires

over O(|V |4) maximum flow computations on a series of bipartite networks with

node set V . This equilibrium problem has nontrivial applications in transmis-

sion control protocol (TCP) congestion control [48].

• Bicriteria Network Interdiction In [77], Royset and Wood numerically com-

pute the Pareto-efficient frontier of the Bi-objective Maximum Flow Network

Interdiction Problem. In a maximum flow network interdiction problem, an in-

terdictor allocates a finite amount of resources to remove arcs from a network

to minimize the maximum flow in the remaining network. This problem has

numerous military applications. To compute the Pareto-efficient frontier for

this problem requires a sequence of maximum flow computations.

• Computational Biology In [72], Strickland et al. describe an algorithm for

estimating the physical similarity between the tertiary structure of two proteins

that requires the computations of a quadratic number of maximum matching

problems, which are a special case of maximum flow problems.

• Constraint Programming In [66], Régin demonstrates how to satisfy constraints

of difference, which includes the all-different constraint and global cardi-

nality constraints, in Constraint Programming by solving a bipartite matching

64

problem. Thus, to iteratively check if different solutions satisfy a series of

all-different constraints, this would require a sequence of maximum bi-

partite matching problems to be solved, which can be modeled as solving a

sequence of maximum flow problems.

• Fingerprint Biometry Fingerprint matching is a crucial form of universal and

reliable identification used by the various law enforcement agencies in the world.

According to [40], software for matching a set of fingerprints to an entry in a

large database consists of solving a sequence of maximum bipartite match-

ing problems, which can be modeled as solving a sequence of maximum flow

problems.

• Real-Time Process Scheduling In [71], Stone models real-time scheduling of jobs

on a dual-processor computer as an online sequence of minimum s-t capacity

cut problems. This is an important problem given the ubiquity of dual-core

computing in industry and academia.

• Robust Network Programming Robust programming is a method to approach

data uncertainty for optimization problems by creating a paradigm for control-

ling the degree of conservatism of the solution. In Chapter 5, we show that

to compute a robust minimum capacity s-t cut (RobuCut), one can solve a

sequence of maximum flow problems. RobuCut, has applications to several ap-

plications of the Minimum Capacity s-t Cut Problem where arc capacities might

be uncertain. For example, those in open-pit mining [43], project scheduling

[55] and compiler optimization [78] and [79].

• Separating Valid Inequalities In [16], Carr proves that any class of clique-tree

inequalities for the Traveling Salesman Problem may be separated by solving a

polynomial number of maximum flow problems. For example, a comb inequal-

ity with p teeth on a TSP with |V | nodes requires O(|V |2p) maximum flow

65

problems to be (implicitly) evaluated.

• Stochastic Network Programming Computational research in stochastic net-

work optimization also often requires the evaluation of an expected maximum

flow, which requires one maximum flow computation per scenario. In Aneja

and Nair [6] and Carey and Hendrickson [15], computing an expected maximum

flow is explicitly studied. Computing an expected maximum flow is an integral

part of solving stochastic network design problems where the objective is to

maximize an expected maximum flow (e.g., Wollmer [76] and Wallace [75]) as

well as a stochastic network interdiction problem where the goal is to minimize

the expected maximum flow (e.g., Cormican et al. [23]).

We note that in the computational study [20] Cherkassky et al. demonstrate that

first-in-first-out and lowest-level-first implementations of the Goldberg-Tarjan algo-

rithm are very competitive with the best augmenting path algorithms for bipartite

matching problems. On several instance classes, the results of Cherkassky et al. sug-

gest that the aforementioned Goldberg-Tarjan implementations are faster than the

augmenting path algorithms. Thus, even recent studies suggest that using Goldberg-

Tarjan algorithms to solve bipartite matching problems is often very practical and

therefore, the aforementioned applications that require a sequence of bipartite match-

ing problems to be solved can be viably approached as solving a sequence of MFPs.

In the aforementioned applications, the MFPs are typically topologically similar.

That is, the next MFP in the sequence differs from the previous one by adding

or removing a small number of arcs or by predictably changing the capacities of

a localized arc set. Moreover, when solving these instances, the time and space

required to store anything beyond the solution to the previous problem is typically

unwarranted. Thus, we model this property by examining online sequences of MFPs.

66

An effective strategy towards quickly solving an entire online sequence of optimiza-

tion problems is to develop efficient reoptimization heuristics. To this end, we develop

a modified maximum flow algorithm that is designed for efficient “warm starts.” The

motivation behind our choice of algorithm is detailed in the next subsection.

4.1.2 Our Contributions

To allow a study, we formalize the problem at hand into the following:

Maximum Flow Reoptimization Problem (MFROP): Given a ground network

N0 = (V, A0) and a finite, online sequence of k sub-networks N1, N2, · · · , Nk where

Ni = (V,Ai) and Ai ⊆ A0 ∀ i ∈ {1, · · · , k}, find the maximum flow in each of the

sub-networks given that the sequence is revealed in an online fashion.

Since this is an online sequence, the ith maximum flow problem must be solved

before any knowledge of the (i + 1)st maximum flow problem is available beyond

that it will be on a sub-network of the ground network.

We will begin the study of solving an entire sequence of maximum flow problems by

focusing on a simplified version of MFROP, particularly when Ni and Ni+1 differ by

exactly one arc for all possible i. Formally stated, this problem is as follows:

Maximum Flow Single Arc Reoptimization Problem (MFSAROP): Given

a ground network N0 = (V,A0) and a finite, online sequence of k sub-networks

N1, N2, · · · , Nk where Ni = (V,Ai), Ai ⊆ A0 ∀ i ∈ {1, · · · , k} and |Ai−1 ⊕ Ai| =

1 ∀ i ∈ {1, 2, · · · k}, find the maximum flow in each of the sub-networks.

In the problem statement above, ⊕ denotes the symmetric difference between two

sets. That is, Ai−1⊕Ai = (Ai−1\Ai)∪ (Ai\Ai−1). The above problem statement also

implicitly includes both allowing an arc’s capacity to fluctuate, since parallel arcs

can be used, as well as allowing a node to be added or removed, since nodes can be

67

split. This will be detailed later in the manuscript.

Studying the special case of single arc reoptimization is interesting in itself. First,

this case is a logical setting to begin our study as it is a simplified version of MFROP.

Second, this problem has direct application to real-time scheduling of jobs on a dual-

core processor as discussed in [71]. Third, MFSAROP is a subproblem encountered

when computing a robust minimum cut, with respect to a polyhedral uncertainty

set, using the algorithm detailed in the next chapter.

When designing an algorithm for solving MFSAROP, we modified the Goldberg-

Tarjan algorithm. We chose to modify the algorithm of Goldberg and Tarjan for a

few reasons. First, this algorithm is considered the fastest algorithm for computing a

maximum flow in practice [19] and [53], which suggests that this algorithm could be

a good starting point for developing an incremental algorithm. Second, the invariant

of the Goldberg-Tarjan algorithm that requires a pre-flow be maintained at each

iteration can be easily generalized to require that a pseudo-flow be maintain at each

iteration. This is conducive towards efficient reoptimization heuristics after an arc

has been deleted. Third, we experimented with iteratively using a Goldberg-Tarjan

solver as a black-box versus warm starting CPLEX 9.0’s network optimizer for solving

a sequence of MFPs that arose during a local search approach to MFNIP. From this

experimentation, we observed that the code that evaluated the MFPs using the

black-box Goldberg-Tarjan solver ran substantially faster than the code that used

the network optimizer as a subroutine.

We did consider designing a reoptimization algorithm based on the maximum flow

simplex algorithm in Section 11.8 of [3]. However, we decided not to pursue this

further for a few reasons. First, it is well known that network-simplex algorithms

tend to have many degenerate pivots, which slow down the algorithm’s practical per-

formance. Second, we have empirical confirmation that a network-simplex approach

68

does not work well when arcs are added. We implemented and tested a maximum

flow simplex algorithm against our modified Goldberg-Tarjan algorithm for instances

of MFROP where the arc capacities were monotonically increasing throughout the

sequence. Our modified Goldberg-Tarjan algorithm substantially outperformed the

maximum flow simplex solver on these instances. Third, in a network simplex ap-

proach to maximum flow reoptimization, if we delete an arc that was in the optimal

basis for the previous MFP, there is no immediate way to recover a primal basic

feasible solution or a dual basic feasible solution, as defined in the Section 11.9 of

[3], without using parallel arcs. Even with the incorporation of parallel arcs, there is

no getting around the many degenerate pivots.

We list the contributions of this chapter here. First, we offer an algorithm to solve

MFSAROP that exploits information derived from minimum capacity s-t cuts. Sec-

ond, we demonstrate the significant potential savings from using our algorithm as

opposed to using a black-box maximum flow solver for MFSAROP.

4.1.3 Related Work

This section surveys work that is similar in nature to maximum flow reoptimization.

In [31], Frangioni and Manca present a computational study of reoptimizing the

minimum cost flow problem in the context of decomposition algorithms for a mul-

ticommodity minimum cost flow problem. Even though a Maximum Flow Problem

(MFP) is a special case of a Minimum Cost Flow Problem (MCFP), to apply reop-

timization techniques of MCFP to MFP would fail to exploit the special structure

of MFP.

There has also been several papers on the Parametric Maximum Flow Problem

(PMFP), which is similar in spirit but very different in problem structure. In PMFP,

the objective is to compute the maximum flow in a network where arc capacities are

69

a function of a parameter λ. For examples of papers on PMFP, see [33], [69] and

[73].

MFROP is fundamentally different from PFMP. First of all, the sequence of sub-

networks in MFROP will be provided in an online fashion. This is certainly different

from computing the parametric maximum flow when a finite sequence of desired

parameters is known a priori. Secondly, the assumptions on which arcs vary with the

parameter is restrictive. Lastly, all of the cited literature on PFMP involves a single

parameter, which presents a lot of collinearity in the capacities of the “different”

networks that need to be evaluated. This implicit property is also absent in the

more general problem of MFROP.

This is not the first publication to recognize the importance of solving a sequence

of Maximum Flow Problems. In [57], Nagy and Akl have proposed the Real-Time

Maximum Flow Problem (RTMFP), which is essentially the same as MFROP. The

only difference is that RTMFP does not involve a ground network. Thus, any number

of arcs may be arbitrarily added or deleted. Nagy and Akl introduce RTMFP, discuss

a scaling approach for reoptimization and discuss an application to dual-processor

scheduling. No computational results are presented.

In [67], Royset and Wood encounter a sequence of maximum flow problems while

computing the Pareto-efficient frontier for a bi-objective network interdiction prob-

lem. These problems had the special property where the (i+1)st network differs from

the ith network only in that some of the arcs in the ith network had their capacity

increased to form the (i + 1)st network. As a remedy, the authors implemented a

variant of the shortest augmenting path algorithm of Edmonds and Karp [29] that

was designed for reoptimization within this context. Specifically, the maximum flow

in the ith network was always used as a feasible solution for the (i + 1)st network.

70

4.2 The Maximum Flow Single Arc Reoptimization Prob-
lem

In this section, we first discuss the complexity of reoptimizing a maximum flow prob-

lem in both the circumstance when a new arc is added and when a new arc is removed.

Next, we discuss our solution approach to solving MFSAROP, which includes a de-

tailed discussion of our algorithm. Afterwards, we discuss a few extensions of single

arc reoptimization. Finally, we propose an enhancement to our algorithm to further

reduce the running time.

For a background on complexity theory, we recommend Chapter 15 of Papadimitriou

and Steiglitz [60].

4.2.1 Complexity of Reoptimizing a Maximum Flow

We show that the problem of recomputing the maximum flow after a single arc has

been added as well as the problem of recomputing the maximum flow after a single

arc has been removed are each at least as hard as the Maximum Flow Problem. In

addition, we will prove worst-case complexity results on both of these two problems.

First, we formally define these two problems.

New Arc Maximum Flow Reoptimization Problem (NAMFRP): Let N =

(V, A) be a s-t network where each arc e has a non-negative integer capacity ce and

contains a non-negative flow xe. Let x∗ be a maximum flow in N . Let e′ be a new

arc that will be added to N to form N ′ = (V, A ∪ {e′}). Find the maximum flow in

N ′.

The Removed Arc Maximum Flow Reoptimization Problem (RAMFRP)

can be defined analogously, where arc e′ is removed from N to form the new network

N ′ = (V,A\{e′}).

71

Figure 8: Constructed instance for NAMFRP given a MFP with six nodes.

In each of these problems, we will refer to N as the previous network.

4.2.1.1 Hardness Results

Theorem 19. Recomputing the maximum flow after adding a single arc is P-hard.

Proof: The proof will be a polynomial reduction from the Maximum Flow Problem

(MFP), which is shown to be P-hard in [39].

Consider an arbitrary instance of MFP I involving network N = (V, A) with source

s and sink t. We will define an instance of NAMFRP I ′ as follows: Create a new

node s0 and let Vr = V ∪ {s0}. We will define our previous network as Nr = (Vr, A)

with source s0 and sink t. The maximum flow of our previous network is presently

x∗ = 0 as the source is disconnected. Let the new arc be e′ = (s0, s) and let its

capacity be sufficiently large, say ce′ = |V | max {ce | e ∈ A}. Clearly the maximum

flow of I is k if and only if the recomputed maximum flow of I ′ is k. 2

Please see Figure 8 for a sample of this reduction on an acyclic network with six

nodes. The dashed arc is the arc that will be added. Given that a constant number

of arcs are created to form I ′, this is clearly a polynomial reduction.

Theorem 20. Recomputing the maximum flow after removing a single arc is P-hard.

72

Figure 9: Constructed instance for RAMFRP given a MFP with six nodes.

Proof: The proof will be a log space reduction from the Maximum Flow Problem,

which is shown to be P-hard in [39].

Consider an arbitrary instance of MFP I involving network N = (V, A) with source

s and sink t. We will define an instance of RAMFRP I ′ as follows: Create two

new nodes s0, s1 and let Vr = V ∪ {s0, s1}. In addition, create three new arcs:

(s0, s1), (s1, s) and (s1, t) and assign each of them a sufficiently large capacity, say

cM = |V | max {ce | e ∈ A}. Let Ar = A ∪ {(s0, s1), (s1, s), (s1, t)}

We will define our previous network as Nr = (Vr, Ar) with source s0 and sink t.

The maximum flow of the previous network presently takes value cM . Let x∗ be the

vector that defines a maximum flow of cM units along the path s0 − s1 − t. Let the

arc that will be removed be e′ = (s1, t). From inspection, the maximum flow of I is

k if and only if the recomputed maximum flow of I ′ is k. 2

Please see Figure 9 for a sample of this reduction on an acyclic network with six

nodes. The dashed arc is the arc that will be removed. Given that a constant

number of arcs are created to form I ′, this is clearly a polynomial reduction.

Given both of the reductions above, we note that the worst-case complexity bounds

for each of the maximum flow reoptimization cases cannot get any better than solving

73

a new maximum flow problem.

4.2.1.2 Algorithmic Results

The new results in this section use the following algorithmic result of Goldberg and

Rao:

Theorem 21. Consider an instance of the Maximum Flow Problem on a network

N = (V, A) where ce denotes the capacity of arc e for all e ∈ A and cmax =

max{ce|e ∈ A}. There exists an algorithm to solve the Maximum Flow Problem

in O(min(|V | 23 ,
√
|A|) |A| log(|V |

2

|A|) log(cmax)).

Proof: See Goldberg and Rao [37].

Define Gr = min(|V | 23 ,
√
|A|) log(|V |

2

|A|) log(cmax). We now prove algorithmic results

on NAMFRP and RAMFRP.

Theorem 22. There exists an algorithm for NAMFRP that runs in time O(min(ce′ , Gr) |A|).

Proof: This algorithmic result comes from the minimum of two considered algo-

rithms. The first, is to solve the corresponding MFP from scratch, which from

Goldberg and Rao we know can be done in O(Gr|A|).

The second considered algorithm is to warm start an augmenting path algorithm

using the maximum flow in the network before arc e′ was added. An augmenting

path in a residual network with m arcs may be found in O(|A|). Since each identified

augmenting path allows for at least one more unit of flow to be sent from s to t, at

most ce′ augmenting paths must be found and thus an instance of NAMFRP may

be solved in O(ce′|A|) using this algorithm.

Taking the minimum of the two algorithmic results, we may conclude that there

exists an algorithm to solve NAMFRP in O(min(ce′ , Gr) |A|). 2

74

Theorem 23. There exists an algorithm for RAMFRP that runs in time O(min(ce′ , Gr) |A|).

Proof: Let e′ = (u, v) and let xe′ be the flow that was on arc e′. We may assume

that xe′ > 0 since otherwise RAMFRP is trivial. Note that when arc e′ is removed,

node u has a positive excess of xe′ and node v has an excess of −xe′ .

Solving RAMFRP can be viewed as two maximum flow computations. The first is

to compute the maximum amount of the xe′ units of positive excess flow that can be

sent from u to either v or to t in the current residual network. Note that this can be

modeled as a MFP by adding a temporary source s′, a temporary sink t′ and three

temporary arcs (s′, s), (v, t′) and (t, t′), each of which has capacity xe′ . We note that

the maximum flow sent in this problem equals the amount of flow that was on e′

that can be “recovered”.

The second MFP is only necessary if all of the flow could not be recovered. Suppose

that z′ < xe′ units of flow was recovered in the first MFP. Thus, at this point, node

v currently has an excess of z′ − xe′ < 0. We need to push this negative excess into

the sink to remove it from the network. This can be achieved by computing a flow

of z′ − xe′ units from t to v, which can be modeled as a MFP.

Note that exactly xe′ units of flow is sent in both of the two MFPs combined. As

with NAMFRP we can solve each of these MFPs with either the Goldberg-Rao

algorithm from scratch or an augmenting path algorithm, whichever provides the

better algorithmic result. Thus, there exists an algorithm for RAMFRP that runs

in O(min(ce′ , Gr) |A|). 2

Corollary 24. Given an instance of MFSAROP on a ground network N = (V, A)

with an online series of k subnetworks and a maximum capacity of cmax, there exists

an algorithm to solve this instance in O(Gr + min(cmax, Gr)|A|k).

75

Proof: The result follows directly from Theorem 22, 23 and the fact that the se-

quence of subnetworks is of length k. 2

4.2.2 Solution Approach

In this subsection, we detail our algorithm for MFSAROP. In subsection 3.2.1, we

provide an algorithmic overview. In subsection 3.2.2, we introduce a data structure

for storing minimum cuts. Lastly, in subsection 3.2.3, we provide a detailed discussion

of our algorithm.

4.2.2.1 Algorithmic Overview

To solve MFSAROP, we implement a modified version of a Goldberg-Tarjan algo-

rithm that is designed for warm starting. That is, the capability to start with a good

initial solution, which is constructed from the solution of a similar problem. To this

end, we will first examine the different types of reoptimization scenarios that may

be encountered during the course of solving an online sequence of maximum flow

problems. We will then classify all such scenarios into four mutually exclusive and

collectively exhaustive scenarios.

Assume that we have already evaluated the (i− 1)st maximum flow problem, which

is on network Ni−1 = (V,Ai−1), and let arc ei ∈ Ai ⊕ Ai−1 where Ni = (V, Ai) is the

network in the ith maximum flow problem. Let cei
and xei

be the capacity and flow

on arc ei respectively. If ei /∈ Ai−1 then we assume xei
= 0. There are two important

conditions on arc ei that are pertinent to efficient reoptimization. First, is the arc

added or deleted? Second, is ei across any of the minimum cuts in Ni−1? However,

since there could be many minimum cuts in a network, even when the maximum flow

is unique, the second question is non-trivial to answer.

Considering the possible answers to these two questions, we introduce four cases for

76

single arc reoptimization. In the interest of brevity, we will simply describe an added

or deleted arc ei that is across a minimum cut in the (i − 1)st network as being

contained in a minimum cut.

1. An added arc ei is contained in all minimum cuts. The maximum flow will

increase by at least one unit and might increase by at most cei
units. Calling

a modified maximum flow algorithm is necessary in this case.

2. An added arc ei is not contained in all minimum cuts. In this case, the maxi-

mum flow in the network will not change. No further computations are needed.

3. A removed arc ei = (u, v) was not contained in any minimum cut. It is possible

that a new minimum cut was created. The maximum flow value will decrease by

at most xei
units and will at best be unchanged. Running a modified maximum

flow algorithm is necessary in this case.

4. A removed arc ei = (u, v) was contained in at least one minimum cut. The

flow will decrease by exactly cei
units. Since we know that all of the flow on

the removed arc cannot be rerouted, we only need to remove the corresponding

flow paths. This is significantly easier than running a modified maximum flow

algorithm.

We refer two the four cases above as the four actual reoptimization cases. The first

two cases are considered instances of new arc reoptimization. The last two cases are

considered instances of delete arc reoptimization.

Our algorithm for solving an online sequence of maximum flow problems will consist

of iteratively identifying the appropriate reoptimization case and then taking the

appropriate action to recompute the maximum flow. The computational details of

this will be fleshed out in the rest of this section.

77

4.2.3 Storing Minimum Capacity s-t Cuts

In this subsection, we discuss a data structure to identify the appropriate case for

reoptimization after a single arc has been added or deleted. While recognizing the

reoptimization cases 1-3 is not difficult, recognizing the 4th reoptimization case is.

There is no clear method to determine if a removed arc is contained in at least one

minimum cut that would be faster than performing a maximum flow computation.

In light of this, we have created a data structure that allows us to store two important

minimum capacity s-t cuts:

Definition 3. Given a network that is currently at maximum flow, a cut tripartition

is a tripartition (Vs, V \(Vs ∪ Vt), Vt) of the node set V according to the following

schema: Vs is the set of all nodes currently reachable from the source in the optimal

residual network. Vt is the set of all nodes that can currently reach the sink in the

optimal residual network.

A cut tripartition implicitly stores two, not necessarily unique, minimum cuts: Cs =

(Vs, V \Vs) and Ct = (V \Vt, Vt). Thus, we may alternatively denote a cut tripartition

as {Cs, Ct}.

A cut tripartition can indicate, in constant time, if an arc is contained in all minimum

cuts. Specifically, an arc e is contained in all minimum cuts if and only if e ∈ Cs∩Ct.

A cut tripartition is used later in both Chapters 3 and 4 to obtain a good upper

bound on the new maximum flow value in a network after a few arc capacities have

been increased. Altner and Ergun first introduced the cut tripartition in [5].

Note that when using a cut tripartition, we cannot catalogue a reoptimization case

into one of the four actual reoptimization cases. This is because we cannot determine

if a removed arc was in one of the minimum cuts that was not stored. Thus, the four

78

heuristic reoptimization cases, which heuristically approximate the actual four cases

for reoptimization:

1. Unchanged.

2. Unchanged.

3. A removed arc ei = (u, v) was not contained in any stored minimum cut. It

is possible that a new minimum cut was created. The maximum flow value

will decrease by at most xei
units and will at best be unchanged. Running a

modified maximum flow algorithm is necessary in this case.

4. A removed arc ei = (u, v) was contained in at least one stored minimum cut.

The flow will decrease by exactly cei
units. Since we know that all of the flow on

the removed arc cannot be rerouted, we only need to remove the corresponding

flow paths. This is significantly easier than running a modified maximum flow

algorithm.

Our algorithm is still correct if we catalogue our reoptimization scenarios using the

heuristic reoptimization cases as opposed to the actual reoptimization cases. The

advantage of using the heuristic reoptimization cases is that a case can be identified

in constant time when given a properly created cut tripartition. The disadvantage

is that when a removed arc is contained in a minimum cut that was not stored,

then we will undergo unnecessary computations. Since the remove arc was contained

in a minimum cut, the maximum flow value will decrease by the capacity of the

removed arc. However, if we are using the heuristic reoptimization scenarios, the

only information that will be available is that the removed arc was not in either of

the two stored minimum cuts. This misleads the software to attempt to redirect

the flow that was on the removed arc through another path, and hence undergo

unnecessary computations. To reiterate, we ideally would prefer to use the actual

79

reoptimization cases, but the cost of identifying the actual reoptimization case for

removed arcs exceeds the benefit of having the additional information.

4.2.3.1 Reoptimization Algorithm

Since we have not stored all minimum cuts, we evaluate the two deleted arc reopti-

mization cases by checking if the removed arc is in at least one of the cuts that we

have stored, as opposed to all minimum cuts.

When we encounter the ith maximum flow problem, we assume that we have the

following information available:

1. The ground network N0 = (V, A0).

2. The optimal residual network of the (i− 1)st network, Ni−1 = (V,Ai−1).

3. An arc ei that will either be added or removed.

4. A cut tripartition built from the (i− 1)st network.

The main body of the reoptimization algorithm is detailed in Algorithm 4. After

the first network N1 is initialized, we run the Goldberg-Tarjan algorithm to compute

the maximum flow in the first network, x∗1. GoldbergTarjan(N1) is an unmodified

Goldberg-Tarjan subroutine, which returns the maximum flow in the parsed network

N1. The next step is to construct a cut tripartition, as defined in Section 3.3.2. This

is done using two breadth-first searches in an optimal residual network. The first is to

determine all nodes reachable from the source s. The second is to determine all nodes

reachable from the sink t. Given a network N with a current flow x, the method

constructCutTripartition(N,x) constructs a cut tripartition in this fashion.

The next step in Algorithm 4 is to enter a while loop. For each new maximum flow

problem, there is a new arc that is added (or removed). One of four appropriate

80

subroutines is then selected for reoptimization, depending on which of the four cases

detailed above applies. The subroutines for these four heuristic reoptimization cases

are detailed in Algorithms 5, 7, 8 and 9 respectively. Given our cut tripartition

is already stored, we can determine the applicable heuristic case in constant time.

Regardless of which case we are in, we must update the arc set to form the ith

network: Ni = (V, Ai).

Algorithm 4 Maximum Flow Reoptimizer Main

Initialize network N1 ← (V,A1)

x∗1 ← GoldbergTarjan(N1)

constructCutTripartition(N1,x)

while There is another max flow problem do
Switch: Heuristic Reoptimization Case

end while

The subroutine for the case when a new arc (u, v) is added to all minimum cuts is

detailed in Algorithm 5. Given a cut tripartition (Vs, V \{Vs, Vt}, Vt), we are in this

case if and only if u ∈ Vs and v ∈ Vt.

Algorithm 5 Case I: Adding a new arc (u, v) across all min. cuts

Ai ← R(Ai−1, x
∗
i−1) ∪ {(u, v)}

z∗i ← z∗i−1 + modMaxFlow(Ni, x∗i−1, c(u,v)) // Add pre-flow of c(u,v) units.

In this scenario, a new augmenting path is created. The maximum flow will increase

by at least one unit and may increase by at most c(u,v) units. A modified maximum

flow computation is necessary to exactly determine the new maximum flow value.

The subroutine for Case I consists of adding the new arc (u, v) to Ni−1 to create

network Ni and executing a modified maximum flow subroutine, modMaxFlow(Ni,

x, ∆ub). This subroutine requires three arguments:

• Ni, the ith network where we must compute a maximum flow.

81

• x, the current flow that our network will be initialized with.

• ∆ub, the amount of pre-flow that will be added to Ni.

Algorithm 6 modMaxFlow(Ni, x, ∆ub): Modified Goldberg-Tarjan Algorithm

V ← V ∪ {s̄} // Create a new source s̄.
A ← A ∪ {(s̄, s)} // Add a new uncapacitated arc.
Initialize d(v) ∀ v ∈ V using global relabeling
Initialize e(v) ∀ v ∈ V \{s̄} using the existing flow x
e(s̄) ← ∆ub x(s̄,s) ← ∆ub

while There is an active node i do
if the residual network contains an admissible arc (i, j) then

Push δ := min{e(i), c(i,j) − x(i,j)} units of flow from node i to node j
else

d(i) ← min {d(j) + 1 : (i, j) ∈ residual FS(i)}
end if

end while

V ← V \{s̄}
A ← A\{(s̄, s)}
constructCutTripartition(N,x)

The pseudocode for modMaxFlow(N, x, ∆ub) is contained in Algorithm 6. modMaxFlow(N,

x, ∆ub) is similar to the Goldberg-Tarjan algorithm but there are four key differ-

ences. First, it can start from any feasible pre-flow. Second, no additional pre-flow

is added to the network, other than ∆ub. This is not mandatory for correctness but

instead is intended to be a heuristic improvement. For any reoptimization case, we

will have an upper bound zu on the new maximum flow value. Considering this, it

would not be wise to add an amount of pre-flow xp to the network such that xp > zu,

as we know in advance that (xp − zu)
+ units of pre-flow would be returned to the

source, where (x)+ := max{0, x}.

Third, during modMaxFlow(N, x, ∆ub), a temporary new source s̄ is added to the

network and is only incident to the original source s. This is intended to allow the

82

Figure 10: Saturating the “wrong” arc.

original source s to be relabeled, which is not allowed during the standard Goldberg-

Tarjan implementation.

We are only adding a bounded amount of pre-flow ∆ub to Ni. In contrast, the

original Goldberg-Tarjan algorithm begins by saturating all arcs FS(s). Since we

require correctness, we cannot arbitrarily choose which arcs in FS(s) to distribute

the pre-flow on. If we were to do so, it is possible that the “wrong” arcs could

be saturated. That is, one unit of pre-flow might have been placed on an arc in

FS(s) that is not contained in an augmenting path while it could have been placed

on a different arc in FS(s) that is contained in at least one augmenting path s-t

path, assuming all other flow in the network is unchanged. Here, we use the phrase

“augmenting path” to describe a s-t path where all arcs have a non-zero residual

capacity.

Figure 10 illustrates a situation where a “wrong” arc is saturated. Assume that the

dashed arc (u, t) has just been added to the network. In the diagram, the bold arc

(s, v) has been initially saturated when we would prefer to saturate (s, u).

There are pathological examples where it would require less computations to initially

83

saturate all arcs in FS(s) when modMaxFlow(N, x, ∆ub) is used for new arc reop-

timization. However, in practice, it is typically faster to add a bounded amount of

pre-flow to the network initially while simultaneously adding a new source to simulate

relabeling the source.

The fourth and final difference between modMaxFlow(N, x, ∆ub) and the original

Goldberg-Tarjan Algorithm is that upon termination, modMaxFlow(N, x, ∆ub) cre-

ates a new cut tripartition by executing the method constructCutTripartition(N,x).

Algorithm 7 Case II: Adding a new arc (u, v) that is not in all min. cuts

Ai ← R(Ai−1, x
∗
i−1) ∪ {(u, v)}

z∗i ← z∗i−1

newArcTriUpdate(Ni, (u,v)) // Update the cut tripartition.

The subroutine for the case when a newly added arc (u, v) is not in all minimum

cuts is detailed in Algorithm 7. Given a cut tripartition (Vs, V \{Vs, Vt}, Vt), we are

in this case if and only if either u /∈ Vs or v /∈ Vt.

In this case, we know that the maximum flow value will not change. After adding

the new arc, we update our cut tripartition using the method newArcTriUpdate(Ni,

(u,v)). This method checks if either node u or node v has become reachable from

either s or t. For example, if, without loss of generality, v has become reachable from

s and let R(v) be the set of nodes reachable from v in an optimal residual network

of Ni−1 Then we would redefine Vs ← Vs∪{v}∪R(v). By presupposition, each node

in R(v) was already reachable from v and since v is now reachable from s, all nodes

in R(v) are also reachable from s.

The subroutine for the case when an arc (u, v) is deleted that is not in a stored

minimum cut is detailed in Algorithm 8. Given a cut tripartition (Vs, V \{Vs, Vt}, Vt),

we are in this case if and only if the following two booleans are true:

84

Algorithm 8 Case III: Deleting an arc (u, v) that is not in a stored min. cut

Ai ← R(Ai−1, x
∗
i−1)\{(u, v)}

// Adding positive and negative excesses to u, v respectively.
e(u) ← +x(u,v) e(v) ← −x(u,v)

// Identify v and the sink t to create a new sink tv.
tv ← identify(Ni, v, t)

z∗i ← z∗i−1 − x(u,v) + modMaxFlow(Ni, x∗i−1, 0)

expand(Ni, tv)

if e(v) < 0 then

// Remove any remaining ghost flow from the network.
removeGhostFlow(Ni, v, e(v))

end if

1. u /∈ Vs or v /∈ V \{Vs, Vt}.

2. u /∈ V \{Vs, Vt} or v /∈ Vt.

In this case, a modified maximum flow computation is necessary to determine if

the flow can be rerouted. The first step is to remove the appropriate arc and add

corresponding positive and negative excesses to nodes u and v respectively. Recall

that at most x(u,v) units of flow may be lost. To recover this flow, it suffices to either

reroute the excess flow, which is now at node u, to either node v or the sink t.

To this end, we temporarily identify node v and the sink t. That is, we create a new

node tv where FS(tv) = FS(v) and RS(tv) = RS(v) ∪ RS(t) and we temporarily

remove nodes v and t from the network. This is denoted by the method identify(Ni,

v, t). While v is temporarily removed, we store the negative excess in memory.

After this node identification, we set tv as the new sink. In this context, it is possible

for |FS(tv)| > 0, including arcs that both originate and terminate in tv. Such arcs

85

Figure 11: Identifying v2 and t to form a new sink t2; before and after.

are often called loops in graph theory literature. Please see Figure 11 for an example

of node identification.

After v and t are identified, we execute modMaxFlow(N, x, ∆ub) to determine if all

of the excess at node u can be rerouted to the new sink tv. Note that no additional

pre-flow is added to the network when modMaxFlow(N, x, ∆ub) is called in this

situation.

After this subroutine terminates, tv is expanded back into nodes v and t. This is

denoted by the method expand(Ni, tv). If flow was permanently lost through arc

deletion or that flow was redirected to the sink then node v will still have a negative

excess. This ghost flow can be converted into a maximum flow by pushing the

negative excess into the sink analogous to how a pre-flow is converted to a maximum

flow by pushing the positive excess towards the source. This is denoted by the

method removeGhostFlow(Ni, v, e(v)), where e(v) units of ghost flow are pushed

from node v to the sink t. This is accomplished using an application of breadth-first

search and is detailed in Algorithm 10.

The subroutine for the case when a deleted arc (u, v) is in at least one minimum cut

is detailed in Algorithm 9. Given a cut tripartition (Vs, V \{Vs, Vt}, Vt), we are in

this case if and only if at least one of the following two booleans is true:

86

Algorithm 9 Case IV: Deleting an arc (u, v) that is in a stored min cut

Ai ← R(Ai−1, x
∗
i−1)\{(u, v)}

// c(u,v) units of flow are definitely lost.
z∗i ← z∗i−1 − c(u,v)

// Remove any remaining pre-flow from the network.
removePreFlow(Ni, u, c(u,v))

// Remove any remaining ghost flow from the network.
removeGhostFlow(Ni, v, c(u,v))

// Update the cut tripartition.
delArcTriUpdate(Ni, V, Ai)

1. u ∈ Vs and v ∈ {V \VS, Vt}.

2. u ∈ {V \VS, Vt} and v ∈ Vt.

In this case c(u,v) units of flow is definitely lost. All that is needed in this scenario

is to remove the c(u,v) units of pre-flow, remove the c(u,v) units of ghost flow and

then update the cut tripartition accordingly. The pre-flow is removed by the method

removePreFlow(Ni, u, c(u,v)). This method uses breadth-first search and is simi-

lar to removeGhostFlow(Ni, v, c(u,v)), which removes the ghost flow as previously

discussed. delArcTriUpdate(Ni, V, Ai) checks if any additional nodes are now

reachable from either the source or the sink due to the decrease in the maximum

flow.

4.2.4 Extensions of Single Arc Reoptimization

This section details extensions of our algorithm for MFSAROP.

87

Algorithm 10 removeGhostFlow(N, v, e(v)): Remove e(v) units of Ghost Flow
from node v

Initialize queue q ← {v}
while q is not empty do

i ← dequeued element from q

while e(i) < 0 do

Choose j ∈ FS(i) : x(i,j) > 0

∆ ← min {|e(i)|, x(i,j)}

x(i,j) ← x(i,j) −∆

e(i) ← e(i) + ∆

Enqueue j in q
end while

end while

4.2.4.1 Changing an Arc Capacity

Our algorithmic framework also implicitly includes both increasing and decreasing

a single arc’s capacity. To increase the capacity of an arc e = (u, v) by de > 0, add

a parallel arc ē = (u, v) with capacity cē = de. The modified network may then be

reoptimized using Algorithm 4. After reoptimization is complete, the two parallel

arcs are merged into a single arc.

Definition 4. Let e1 and e2 be two parallel arcs with capacities ce1 and ce2 respectively

and flow values xe1 and xe2. These two arcs are said to be merged if we remove arc

e2 from the network and make the following two redefinitions: xe1 ← xe1 + xe2 and

ce1 ← ce1 + ce2.

Analogously, to decrease arc e’s capacity by de, one must first split arc e into two

parallel arcs e1 and e2 with capacities ce1 = ce− de and ce2 = de respectively. If xe is

the original flow on arc e then xe1 = min{xe, ce−de} and xe2 = max{0, xe +de−ce}.

88

Figure 12: Splitting a Node; Before and After.

One may then remove arc e2 and reoptimize accordingly.

4.2.4.2 Adding or Deleting a Node

MFSAROP also implicitly includes adding or deleting a single node. However, to do

so requires the construction of an auxiliary split-node network Na = (Va, Aa). Let

N = (V, A) be our original network. Na will be constructed as follows: for each

non-terminal node v ∈ V , that is, a node that is not the source or the sink, we create

two nodes v+, v− ∈ Va. For each arc (u, v) ∈ A, there exists an arc (u−, v+) ∈ Aa.

Moreover, there is a single arc (v+, v−) ∈ Aa with sufficiently large capacity for each

node v ∈ V . Adding (removing) node v ∈ V is equivalent to adding (removing) arc

(v+, v−) ∈ Aa. Na will also contain a source sa and a sink ta which correspond to

the source and sink of N .

4.2.5 Algorithmic Enhancement

In this subsection, we discuss how to accelerate reoptimization after adding a new

arc across all minimum cuts. Assume that we have a network that is currently at

maximum flow and let (u, v) be an arc that is newly added and is contained in all

minimum cuts. Note that if any additional flow can be pushed from s to t, it must

be pushed through arc (u, v). Thus, this instance of NAMFRP can be decomposed

into the following three step process:

89

1. Compute the maximum flow from s to u. Call this value z∗s−u.

2. Using at most z∗s−u units of pre-flow, compute the maximum flow from v to t.

Call this value z∗v−t.

3. Return z∗s−u − z∗v−t units of flow from u to s.

This procedure will save on distance relabeling computations, as the third step can be

accomplished with a breadth-first search, instead of allowing the modified Goldberg-

Tarjan algorithm to return flow to the source.

4.3 Computational Results

The purpose of these experiments is to demonstrate the computational savings from

using our maximum flow reoptimizer as opposed to using a maximum flow solver as

a black-box subroutine. Specifically, the objective of this research is to determine

what the best algorithmic approach is for solving MFSAROP as opposed to what

the best software package is. Thus, we implemented both of the algorithms tested

in our experiment to ensure that all other aspects of the coding are equal, such as

in the efficiency of the data structures used as well as in efficient memory allocation

techniques.

Since both algorithms are just different approaches to computing a maximum flow,

there will be no discussion of solution quality, as both methods exactly compute the

maximum flow values. Instead, we focus on the reduction in computational time

that is achieved from using our reoptimizer.

For a black-box solver, we implemented our own version of the Goldberg-Tarjan

algorithm employing both the gap and global relabeling heuristics described in [19].

Our motivation for implementing this ourself is to establish a controlled study. We do

90

not want our algorithms advantages to be obfuscated by processor-specific speed-ups

that might exist in a third party software package.

Furthermore, we wish to emphasize that when we ran sequences of maximum flow

problems into our black-box solver, we did not deallocate and reallocate memory for

our data structures. Memory allocation can be a costly process and we do not intend

for the computational savings that stem from reoptimization heuristics to be masked

by the additional time required to repeatedly free and construct discrete structures.

Instead, after each maximum flow computation, we would empty the data structures

to be used for a subsequent computation.

All of these experiments were conducted on a dual Intel Xeon processor each with

2.4 Ghz CPU speed and a cache size of 512 KB. The machine possesses 2.0 GB of

RAM.

4.3.1 Maximum Flow Single Arc Reoptimization Problem

Our first set of computational experiments tested the performance of our maximum

flow reoptimization algorithm versus a series of iterative calls to a black box solver

on randomly generated instances of the Maximum Flow Single Arc Reoptimization

Problem (MFSAROP). Each such instance had two input files:

1. A file containing the ground network structure.

2. A file indicating how each network in the sequence differs from the previous

network.

We created two classes of problem instances. The first are the alt instances and are

intended to be relatively dense. These instances consist of a ground network that

contains a complete, directed network on the transshipment (non-terminal) nodes

along with a single source and a single sink. The arc capacities here are uniformly

91

Figure 13: Cumulative time required for each solver to solve a single instance of
MFSAROP.

selected from the range [10, 100]. The probability that each arc appears in the first

network in the sequence is .7. Then, to construct the sequence of networks, an arc

from the ground network N0 = (V, A0) is selected uniformly at random to be flipped

for the next network. That is, suppose we have network Ni = (V,Ai) and we wish

to construct Ni+1 = (V, Ai+1). Let e ∈ A0 be the arc that was selected uniformly at

random. If e ∈ Ai then we define Ai+1 = Ai\{e}. Analogously, if e /∈ Ai then we

define Ai+1 = Ai ∪ {e}.

In our experiment, we chose the number of nodes for a given alt instance from the

set {100, 250, 500, 750, 1000, 2000}. We also chose the sequence length from the set

{100, 200, 300, 400, 500}. For each possible pair of number of nodes and sequence

lengths, which will henceforth be referred to as a class, we generated 5 instances

of MFSAROP. The naming convention for the alt instances is alt followed by a

hyphen then the number of nodes followed by another hyphen then the length of the

reoptimization sequence. For example, an alt instance on 100 nodes with a sequence

of length 300 would be named alt-100-300.

92

Figure 13 plots the cumulative time required by the black-box maximum flow algo-

rithm (BBMF) versus our maximum flow reoptimization algorithm (MFRO) on an

instance alt-750-500. Although the cumulative time required by both algorithms

grows linearly with respect to the number of MFPs solved over time, the computa-

tional savings from using our reoptimization algorithm becomes more pronounced as

the number of reoptimizations required increases.

Table 9 contains the computational results on these instances. The column Network

contains the class of problem instances. The column MFBBTime contains the

average number of seconds (over the 5 instances) needed to solve the entire instance

of MFSAROP using the maximum flow black-box solver. The column MFROTime

contains the average number of seconds needed by our maximum flow reoptimizer to

solve the entire instance of MFSAROP. The last column, Perc, contains the entry

in MFROTime divided by the entry in MFBBTime, written as a percentage.

Clearly we can see that our maximum flow reoptimizer is an order of magnitude faster

than the black-box solver. Note that although the time required by our maximum

flow reoptimizer does increase relative to the black-box solver as the number of nodes

in the network increases, the average time our code requires is less than 20% of the

average time required by the black-box solver.

Our second class of problem instances are called the spa instances and are intended

to be relatively sparse. These instances also consist of a ground network that contains

a complete, directed s-t network. The arc capacities here are uniformly selected from

the range [10, 100]. The probability that each arc appears in the first network in the

sequence is .4. When constructing the sequence of maximum flow problems, given

the ith network Ni = (V,Ai) we add an arc to Ai to create Ai+1 with probability .5

and we remove an arc from Ai in all other situations. Once we decide whether an arc

will be added or removed, we then choose an appropriate arc uniformly at random.

93

Table 9: Computational Results for alt Instances
Network MFBBTime MFROTime Perc
alt-100-100 0.308 0.036 11.7%
alt-100-200 0.614 0.066 10.7%
alt-100-300 0.898 0.092 10.2%
alt-100-400 1.226 0.124 10.1%
alt-100-500 1.46 0.158 10.8%
alt-250-100 4.396 0.61 13.9%
alt-250-200 8.668 1.154 13.3%
alt-250-300 12.092 1.744 14.4%
alt-250-400 16.07 2.324 14.5%
alt-250-500 20.102 2.876 14.3%
alt-500-100 16.742 2.54 15.2%
alt-500-200 36.166 4.978 13.8%
alt-500-300 51.34 7.322 14.3%
alt-500-400 68.26 9.668 14.2%
alt-500-500 85.654 12.034 14.0%
alt-750-100 33.196 5.734 17.3%
alt-750-200 65.698 10.962 16.7%
alt-750-300 97.14 16.63 17.1%
alt-750-400 129.534 22.17 17.1%
alt-750-500 170.806 27.916 16.3%
alt-1000-100 65.534 10.294 15.7%
alt-1000-200 123.636 19.706 15.9%
alt-1000-300 153.53 29.276 19.1%
alt-1000-400 204.892 38.858 19.0%
alt-1000-500 298.52 48.674 16.3%
alt-2000-100 277.026 54.722 19.8%
alt-2000-200 592.704 100.734 17.0%
alt-2000-300 945.956 146.612 15.5%
alt-2000-400 1453.22 198.13 13.6%
alt-2000-500 1495.416 253.404 16.9%

94

We chose the number of nodes for a given spa instance from the set {100, 250, 500, 750}.
We also chose the sequence length from the set {100, 200, 300, 400, 500}. For each

possible pair of number of nodes and sequence lengths, which will henceforth be

referred to as a class, we generated 9 instances of MFSAROP. The naming conven-

tion for the alt instances is alt followed by a hyphen then the number of nodes

followed by another hyphen then the length of the reoptimization sequence. For ex-

ample, an spa instance on 100 nodes with a sequence of length 300 would be named

spa-100-300.

Table 10 contains the computational results on the spa instances. The columns are

the same as before except the second column is now averaged over 9 instances as

opposed to 5. As before, we can see that our maximum flow reoptimizer is an order

of magnitude faster than the black-box solver. The average time required by our

reoptimization software is consistently under 20% of the time required on average by

the black-box solver.

Although there were exceptions, the percentage of black-box solver time required

when using the maximum flow reoptimizer is lower for the spa instances as opposed

to the alt instances. In randomly generated sparse networks, a removed arc is more

likely to be obtained in a known minimum cut and therefore leading to an easier case

for removed arc reoptimization. Thus, for the spa instances, we expect there to be

less cases of an arc being deleted that is not in a known minimum cut, which is the

most time consuming of the four cases for reoptimization.

4.4 Conclusions and Future Work

We demonstrate that the increased time from using a black-box maximum flow solver

to solve a large sequence of maximum flow problems can be substantial. As a remedy,

we introduced an algorithm designed to solve a large, online sequence of topologically

95

Table 10: Computational Results for spa Instances
Network MFBBTime MFROTime Perc
spa100-100 0.17 0.02 9.2%
spa100-200 0.34 0.03 8.9%
spa100-300 0.50 0.04 8.4%
spa100-400 0.67 0.06 9.0%
spa100-500 0.83 0.07 8.7%
spa250-100 1.73 0.27 15.7%
spa250-200 3.45 0.51 14.9%
spa250-300 5.17 0.76 14.7%
spa250-400 6.88 1.02 14.8%
spa250-500 8.58 1.27 14.8%
spa500-100 8.61 1.21 14.1%
spa500-200 16.95 2.24 13.2%
spa500-300 25.27 3.36 13.3%
spa500-400 35.16 4.48 12.8%
spa500-500 44.12 5.62 12.7%
spa750-100 20.34 2.81 13.8%
spa750-200 40.39 5.34 13.2%
spa750-300 57.73 7.76 13.4%
spa750-400 73.35 10.27 14.0%
spa750-500 91.81 12.68 13.8%

96

similar maximum flow problems that exploits a simple cut decomposition. Our reop-

timization framework typically takes 15% of the time required to solve a randomly

generated online sequence of maximum flow problems, where each network differs

from the previous network by one arc, when compared to a black-box technique.

One area of possible improvement in our algorithm concerns global relabeling. For

MFSAROP, nearly 95% of the computational time is spent on global relabeling,

which is done before every call to modMaxFlow(Ni, x, ∆ub) to reset the distance

labels. To further reduce the running-time required to solve instances of MFSAROP,

we recommend developing heuristics to reduce the time spent resetting all distance

labels.

Another area for improvement concerns the reoptimization case where an arc is

deleted that is not in any of the two cuts that are stored in the cut tripartition.

Since it is possible for a network to have exponentially many minimum cuts, the

design of a low maintenance data structure to store all minimum cuts could be

of great use, possibly an implementation of the cut decomposition of Picard and

Queyranne [61] that would allow the user to determine if an arc is contained in at

least one minimum cut in constant time. Such a structure would allow computational

savings in Algorithm 4 for MFSAROP. With such a structure, we can use Algorithm

9 for many instances of delete arc reoptimization instead of the slower subroutine

Algorithm 8.

We are confident in the potential savings from efficient reoptimization techniques

that may be realized in a diverse range of settings, especially those listed in the in-

troduction. We hope this chapter will help advance understanding and spark interest

in this area of research.

97

CHAPTER V

COMPUTING ROBUST MINIMUM CAPACITY S-T

CUTS

In this chapter, we extend our maximum flow reoptimization heuristics to rapidly

compute robust minimum capacity s-t cuts under a polyhedral model of robustness.

In Chapter 4, we study MFSAROP, which has a structure that allows us to use

minimum capacity s-t cuts to significantly accelerate the time required to reoptimize

a modified MFP. We show that although the Robust Minimum Capacity s-t Cut

Problem can be reduced to solving a sequence of MFPs where more than one arc

changes between them, there still is a definite structure that can be exploited for

problem-specific reoptimization heuristics.

In the first section of this chapter, we motivate this research and discuss relevant

literature. In the second section, we formally introduce the Robust Minimum Ca-

pacity s-t Cut Problem (RobuCut) and present an algorithmic result. In the third

section, we describe our algorithm for RobuCut. In the fourth section, we present

computational results. In the last section, we draw conclusions.

5.1 Introduction

The Minimum Capacity s-t Cut Problem (MinCut) is a fundamental problem in

combinatorial optimization. It has a plethora of nontrivial applications to a wide

selection of real-world problems including, but not limited to, distributed computing

on a two processor machine [71], project scheduling [55], open-pit mining [43] and

path redundancy elimination during compiler optimization [78] and [79]. For an

98

extensive list of applications, please see Ahuja, Magnanti and Orlin [3].

Given the extensive range of real-world applications, it is natural to study MinCut

under data uncertainty. Specifically, we study the problem where arc capacities

are unknown but confined to known intervals. This model is useful for the afore-

mentioned applications as the data that corresponds to the arc capacities may be

uncertain. For example, in open-pit mining, the economic value of the blocks to be

excavated could only be estimated or in distributed computing, the duration of jobs

to be scheduled could be uncertain.

Robust programming allows for conservative planning under data uncertainty. In-

tuitively, robust programming allows a user to maximize his profit or minimize his

costs in the worst possible scenario. Since planning for the worst possible scenario is

often too conservative, robust programming includes a parameter of robustness that

allows the decision maker to specify his desired degree of conservative planning. In

this chapter, we will use the polyhedral model of uncertainty of Bertsimas and Sim

[10].

In [10], Bertsimas and Sim initiated the study of robust combinatorial optimization

and network flows. In addition to providing a modeling framework, the authors

also proved that any robust combinatorial optimization problem (RobuCOP) can be

solved by computing a linear number of nominal combinatorial optimization prob-

lems. Thus, a robust minimum capacity s-t cut (RobuCut) may be obtained by

solving a linear number of minimum capacity s-t cut problems.

A fundamental result of network optimization is that a minimum capacity s-t cut

may be computed by obtaining a maximum s-t flow. Initially, it may seem as if

no further work is needed here, as there are quite effective black-box solvers for

the maximum flow problem that are easily available. For example, see [19] as well

as the corresponding code, which can be found at Goldberg’s Network Optimization

99

Library [36]. However, the purpose of this chapter is to persuade the reader that using

a black-box maximum flow solver in this context can lead to a substantial number of

unnecessary computations. Sometimes, it might require the overall procedure to take

hours when using reoptimization heuristics can reduce the running time to seconds.

RobuCut is also one of several important problems in the burgeoning collection of

research literature on robust network programming. We briefly survey a few pa-

pers in robust network programming here. In [17], Chaerani and Roos show how

to formulate a robust maximum flow problem, using the ellipsoidal model of uncer-

tainty of Ben-Tal and Nemirovski [9], as a conic program. In [8], Atamtürk and

Zhang develop a two-stage robust optimization approach for solving network flow

and design problems with uncertain demand. The authors generalize the approach

to multicommodity flow network and design and given applications to lot-sizing and

location-transportation problems. In [59], Ordóñez and Zhao develop a robust pro-

gramming formulation for the problem of expanding arc capacities in a network

subject to demand and travel uncertainty. The authors also prove that their model

can be reformulated as a conic linear program.

The main contribution of this chapter is providing an efficient algorithm for com-

puting RobuCuts. Specifically, we demonstrate that our algorithm can compute

RobuCuts on instances of hundreds of nodes in seconds whereas a naive algorithm

that uses a black-box maximum flow solver as a subroutine could take hours on those

same instances. Thus, we have turned what would normally take half of a working

day into a near real-time decision.

100

5.2 The Robust Minimum Capacity s-t Cut Problem

In the first subsection in this section, we formally introduce the Robust Minimum

Capacity s-t Cut Problem. In the second subsection, we present a worst-case algo-

rithmic result.

5.2.1 Problem Statement

Robust Minimum Capacity s-t Cut Problem: Let N = (V,A) be a network

with source s and sink t. Assume arc capacities ũe are unknown but are known to

take value in [ue, ue + de] ∀ e ∈ A. Choose a minimum capacity s-t cut C under

the assumption that Γ arc capacities assume capacity ue + de, all other arcs have

capacity ue and the Γ arcs are chosen so as to maximize the capacity of C.

We may assume that the arcs are enumerated A = {e0, e1, · · · , e|A|−1} such that de0 ≥
de1 ≥ · · · ≥ de|A|−1

. For notational convenience, we define de|A| to be 0. In the robust

optimization literature, Γ is referred to as the robust parameter of optimization. The

user assigns Γ an integer value from the interval [0, |A|]. Let ζ be the family of all s-t

cuts in the network N . The Robust Minimum Capacity s-t Cut Problem (RobuCut)

can be formally written as follows:

Minimize
∑
e∈C

ue + max{S|S⊆A,|S|≤Γ}
∑

j∈S∩C

dj

Subject to C ∈ ζ

Theorem 25. RobuCut may be solved by computing |A|+ 1 minimum cuts. Specifi-

cally, by solving the following optimization problem:

Z∗ = min`=0,··· ,|A| G`

101

where for ` = 0, · · · , |A| :

G` := Γde`
+ minC∈ζ {

∑
e∈C

ue +
∑

{ej∈C:j≤`}
(dej

− de`
)}

Proof: Immediate corollary of Theorem 3 in Bertsimas and Sim [10]. 2

Corollary 26. RobuCut may be solved by computing |A|+ 1 maximum flows.

Proof: This follows immediately from the previous theorem and by the Maximum

Flow Minimum Cut Theorem, which was originally proved in [30]. 2

5.2.2 Algorithmic Result

Theorem 27. Consider an instance of RobuCut on a network N = (V, A). This

problem may be solved in O(Gr + |C∗
card| |A| de0) time where

Gr = min(|V | 23 ,
√
|A|) |A| log(|V |

2

|A|) log(umax), C∗
card is a minimum cardinality s-t

cut in N and umax = max{ue|e ∈ A}.

Proof: In [37], Goldberg and Rao demonstrated that a maximum flow in a network

may be computed in O(Gr), where Gr is defined as above. We may assume that

the 0th nominal maximum flow problem is solved by the algorithm of Goldberg and

Rao.

Consider the ith nominal maximum flow problem. Note that this problem differs

from the (i − 1)st nominal maximum flow problem in that in the capacities of arcs

e0, e1, · · · , ei is increased by dei−1
− dei

. Let C∗
card denote a minimum cardinality s-t

cut in N . Then the inequality z∗i − z∗i−1 ≤ |C∗
card|(dei−1

− dei
) holds true, where z∗i

denotes the optimal objective value of the ith nominal maximum flow problem.

Thus, using a maximum flow of the (i− 1)st nominal maximum flow problem as an

initial solution, |C∗
card|(dei−1

− dei
) is an upper bound on the maximum number of

102

augmenting paths that must be found in the corresponding residual network until

a maximum flow is obtained. Since an augmenting path can be found in at most

O(|A|), we conclude that we can compute the maximum flow value of the ith nominal

maximum flow problem in O(|C∗
card|(dei−1

− dei
)|A|) when we are given a maximum

flow in the (i− 1)st nominal maximum flow problem as a starting solution.

Since we must solve |A| nominal maximum flow problems after the 0th, we see that

the total number of computations to compute all of the subsequent maximum flow

values may be bounded above by
∑|A|

i=1 |C∗
card|(dei−1

− dei
)|A| = |C∗

card|de0|A|. The

desired result follows. 2

5.3 Algorithm for RobuCut

This section focuses on our algorithmic approach. In the first subsection, we identify

properties of the sequence of maximum flow problems that stem from Corollary 26.

In the second subsection, we provide a detailed description of our algorithm. In the

third subsection, we prove that our algorithm is no worse, in terms of worst-case

analysis, than iteratively using a black-box highest-label Goldberg-Tarjan algorithm

|A|+ 1 times.

5.3.1 Overview of Algorithm

In this subsection, we discuss properties of the sequence of maximum flow problems

that must be solved. Recall that in [10], Bertsimas and Sim provide a general algo-

rithm for solving any RobuCOP, which they refer to as Algorithm A. Algorithm A

consists of solving a linear number of nominal COPs, which in the case of RobuCut,

the sequence of nominal COPs is a sequence of minimum cut problems. To allow for

the use of maximum flow algorithms, we take the dual of each of these minimum cut

problems.

103

Let N0 = (V,A0), N1 = (V,A1), · · · , N|A| = (V, A|A|) be the sequence of nominal

networks. That is, the networks that underly the |A| + 1 maximum flow problems.

For each possible i, let ui
e be the capacity of arc e in network Ni. All of the networks

have the same set of arcs although their capacities monotonically increase with i. Let

Āi = {e ∈ A : ui−1
e < ui

i}. We make the following observations about this sequence

of maximum flow problems:

1. Ai = Ai+1 ∀ i ∈ {0, · · · , |A| − 1}

2. ui
e ≤ ui+1

e ∀ i ∈ {0, · · · , |A| − 1}, ∀ e ∈ A

3. Āi ⊆ Āi+1 ∀ i ∈ {0, · · · , |A| − 1}

4. | ¯Ai+1\Āi| = 1 ∀ i ∈ {0, · · · , |A| − 1}

5. ui
ej
− ui−1

ej
= dei−1

− dei
∀ ej ∈ Āi, ∀ i ∈ {1, · · · , |A|}

We derive a heuristic speedup from these properties. Suppose we want to compute

the maximum flow in Ni and that we know that xi−1 is a maximum flow in Ni−1.

Note that xi−1 is always a feasible flow in Ni for all possible i. Moreover, suppose

that there exists an s-t path P ⊆ Āi. Then we know a priori that the flow of xi−1

with dei−1
−dei

units of flow augmented along path P always routes at least as much

flow through Ni as xi−1. Furthermore, we know that the flow of xj−1 with dej−1
−dej

units of flow augmented along path P always routes at least as much flow through

Nj as xj−1 for each j ∈ {i + 1, i + 2, · · · |A|}. Further still, we can apply the same

reasoning to any collection of arc-disjoint s-t paths contained in Āi.

This suggests the following heuristic: at each iteration we maintain an auxiliary

network using the arcs in Āi called an incremental network. At each iteration i > 0,

we use the maximum number of arc-disjoint paths in the incremental network along

104

with a maximum flow in Ni−1 to construct a good feasible flow for Ni. We formally

define the incremental network below.

Definition 5. The incremental network for iteration i is the network N̄i = (V, Āi)

where all arcs have unit capacity.

Since ui
ej
−ui−1

ej
= di−1−di ∀ ej ∈ Āi, we may assume without loss of generality that

every arc in the incremental network has unit capacity. In light of this assumption,

each incremental network has a corresponding multiplier λi where λi = di−1−di ∀ i ∈
{1, 2, · · · , |A|}.

5.3.2 Algorithm Details

In this subsection, we describe our algorithm for RobuCut in great detail. At the

beginning of iteration i, we have the following information stored:

• Ni = (V, Ai), the network where we need to compute a maximum flow.

• xi−1, the maximum flow in the (i− 1)st network Ni−1 = (V, Ai−1).

• N̄i = (V, Āi), the incremental network for the ith iteration along with its

corresponding multiplier λi.

• x̄i−1, the maximum flow in the incremental network N̄i−1 = (V, Āi−1).

• A cut tripartition {C̄i−1
s , C̄i−1

t } based on an optimal residual network of N̄i−1.

• A cut tripartition {Ci−1
s , Ci−1

t } based on an optimal residual network of Ni−1.

First we discuss how to use the maximum flow in N̄i−1 to compute the maximum flow

in N̄i. Second, we discuss how to construct an initial feasible solution for the nominal

maximum flow problem on Ni using the maximum flow in N̄i and the maximum flow

in Ni−1. Finally, we discuss computing the maximum flow in Ni.

105

5.3.2.1 Computing a Maximum Flow in the ith Incremental Network

We may assume that i > 0 since computing a maximum flow in the 0th incremen-

tal network is trivial. Let {ei−1} = Āi\Āi−1. ReoptIncNetwork(N̄i, x̄i−1, ei−1,

{C̄i−1
s , C̄i−1

t }) is our subroutine for computing a maximum flow in N̄i. Algorithm 11

contains pseudocode for ReoptIncNetwork(N̄i, x̄i−1, ei−1, {C̄i−1
s , C̄ i−1

t }).

Algorithm 11 ReoptIncNetwork(N̄i, x̄i−1, ei−1, {C̄i−1
s , C̄i−1

t })
x̄i

e ← x̄i−1
e ∀ e ∈ Āi−1

x̄i
ei−1

← 0

if ei−1 ∈ C̄i−1
s ∩ C̄i−1

t then
findAugmentingPath(N̄i, x̄i)

end if

{C̄i
s, C̄

i
t} ← updateCutTripartition(N̄i, x̄i, {C̄i−1

s , C̄i−1
t })

return (x̄i, {C̄i
s, C̄

i
t})

ReoptIncNetwork(N̄i, x̄i−1, ei−1, {C̄i−1
s , C̄ i−1

t }) takes four inputs, which are all

listed in the parenthesis. This subroutine returns two outputs: a maximum flow x̄i

and a new cut tripartition {C̄i
s, C̄

i
t}.

The subroutine findAugmentingPath(N̄i, x̄i) finds an augmenting path in the

residual network of N̄i on flow x̄i using depth first search. Note that since incremen-

tal networks are unit capacity networks, we need to find at most one augmenting

path. Lastly, the subroutine updateCutTripartition(N̄i, x̄i, {C̄i−1
s , C̄i−1

t }) takes

the three inputs listed in the parenthesis and returns a new cut tripartition in the op-

timal residual network of N̄i. A cut tripartition can always be construct from scratch

by using two breadth first search methods, one from the source and the other from

the sink. However, when the maximum flow value in N̄i−1 equals the maximum flow

value in N̄i, it is usually much faster in practice to update the cut tripartition from

an optimal residual network of N̄i−1 to obtain the cut tripartition from an optimal

106

residual network of N̄i. However, the specific details of how this is done is beyond

the scope of this thesis.

5.3.2.2 Constructing a Feasible Flow in the ith Nominal Network

In this section we discuss how we construct a maximum flow in Ni given a maximum

flow in an incremental network N̄i and a maximum flow in the previous network

Ni−1. To this end, we introduce the following merge operation, which is detailed in

Algorithm 12.

Algorithm 12 MergeNetworks(Ni−1, xi−1, N̄i, x̄i, λi)

for each e in Ai do
if e is in Āi then

xi
e ← xi−1

e + λix̄
i
e

ui
e ← ui−1

e + λi

else
xi

e ← xi−1
e

ui
e ← ui−1

e

end if
end for

return xi

Algorithm 12 contains the pseudocode for the subroutine MergeNetworks(Ni−1,

xi−1, N̄i, x̄i, λi) where the five inputs for the subroutine are contained within

the parenthesis. xi−1 denotes a maximum flow in Ni−1 and x̄i denotes a maximum

flow in N̄i. Thus, xi−1
e and x̄i

e denote the amount of flow on arc e in flows xi−1 and

x̄i respectively. MergeNetworks(Ni−1, xi−1, N̄i, x̄i, λi) returns xi a feasible, but

not necessarily optimal, flow in Ni.

5.3.2.3 Adding Pre-Flow to the ith Nominal Network

For the purpose of determining how much pre-flow to add to Ni, we obtain a

quickly computable upper bound on z∗i − zinit
i where z∗i denotes the maximum flow

107

value in Ni and zinit
i denotes the value of the flow constructed by the subroutine

MergeNetworks(Ni−1, xi−1, N̄i, x̄i, λi). The impetus for obtaining such an up-

per bound is that an upper bound indicates how much pre-flow must be added to

Ni. More specifically, if ∆ ≥ z∗i − zinit
i then each unit of pre-flow added to Ni in

excess of ∆ units must inevitably be pushed back to the source and most likely result

in unnecessary computations. Thus, having a quickly computable upper bound on

z∗i − zinit
i allows us to heuristically restrict the amount of pre-flow that we add to Ni.

Let (V i−1
s , V \(V i−1

s ∪ V i−1
t), V i−1

t) be a cut tripartition on the optimal residual net-

work of Ni−1 and let Ār
i be the set of residual arcs in the optimal residual network

of N̄ i. Note that after two networks are merged, it is possible for z∗i − zinit
i > 0, even

if {(u, v) ∈ Ār
i : u ∈ V i−1

s , v ∈ V i−1
t } = ∅. Nevertheless, we can compute an upper

bound on z∗i − zinit
i using our cut tripartition (V i−1

s , V \(V i−1
s ∪ V i−1

t), V i−1
t).

Lemma 28. The following inequality is true:

(dei−1
− dei

) θi ≥ z∗i − zinit
i (7)

where

θi = min
{ |{(u, v) ∈ Ār

i : u ∈ V i−1
s , v /∈ V i−1

s }|, |{(u, v) ∈ Ār
i : v ∈ V i−1

t , u /∈ V i−1
t }| }

Proof: zinit
i is the objective value of the flow xi. Moreover, we note that given the

feasible flow xi, the maximum flow in Ni equals zinit
i plus the maximum flow in the

residual network obtained when xi is routed through Ni.

Let ζr be the set of all s-t cuts in the residual network when xi is routed through Ni

and let ri
e be the residual capacity of arc e when flow xi is sent through Ni. From

108

the Maximum Flow Minimum Cut Theorem, we get:

z∗i − zinit
i = minCr∈ζr

∑
e∈Cr

ri
e.

Let Ar be the set of residual arcs when xi is routed through Ni. Let Cr
s = {(u, v) ∈

Ar : u ∈ V i−1
s , v /∈ V i−1

s } and let Cr
t = {(u, v) ∈ Ar : u /∈ V i−1

t , v ∈ V i−1
t }. Then we

obtain the following inequality:

z∗i − zinit
i ≤ min{

∑
e∈Cr

s

ri
e,

∑
e∈Cr

t

ri
e}.

Since both (V i−1
s , V \V i−1

s) and (V \V i−1
t , V i−1

s) are minimum cuts of Ni−1 we know

that ri
e = dei−1

− dei
∀ e ∈ Cr

s ∪ Cr
t by construction of xi:

z∗i − zinit
i ≤ min{

∑
e∈Cr

s

dei−1
− dei

,
∑
e∈Cr

t

dei−1
− dei

},

which can be simplified to:

z∗i − zinit
i ≤ (dei−1

− dei
)min{|Cr

s |, |Cr
t |}.

By construction of xi and from the topological similarities between N̄i and Ni, we

know that |Cr
s | = |{(u, v) ∈ Ār

i : u ∈ V i−1
s , v /∈ V i−1

s }| and |Cr
t | = |{(u, v) ∈ Ār

i : v ∈
V i−1

t , u /∈ V i−1
t }|, which completes the proof. 2

5.3.2.4 Computing a Maximum Flow in the ith Nominal Network

We may now formally state our algorithm for RobuCut, whose pseudocode may be

found in Algorithm 13.

109

Algorithm 13 Algorithm for RobuCut

(z∗0 , x
0) ← GoldbergTarjan(N0)

{C0
s , C

0
t } ← constructCutTripartition(N0, x0)

x̄0 ← 0
{C̄0

s , C̄
0
t } ← {∅, ∅}

for i = 1, · · · , |A| do

if ei−1 ∈ C̄ i−1
s ∩ C̄i−1

t then

(x̄i, {C̄i
s, C̄

i
t}) ← ReoptIncNetwork(N̄i, x̄i−1, ei−1, {C̄i−1

s , C̄i−1
t })

else

(x̄i, {C̄i
s, C̄

i
t}) ← (x̄i−1, {C̄ i−1

s , C̄i−1
t })

end if

xi ← MergeNetworks(Ni−1, xi−1, N̄i, x̄i, dei−1
− dei

)

θ̂i ← ComputeUB(Ni, xi, dei−1
− dei

, {Ci−1
s , C i−1

t })

z∗i ← modMaxFlow(Ni, xi, θ̂i)

{Ci
s, C

i
t} ← updateCutTripartition(Ni, xi, {Ci−1

s , C i−1
t })

end for

return mini∈{0,1,···|A|}Γdei
+ z∗i

110

Algorithm 13 begins by computing a maximum flow in N0 using the Goldberg-Tarjan

algorithm along with creating a cut tripartition {C0
s , C

0
t } on the optimal residual

network of N0. For notational convenience, we initialize the maximum flow in the

0th incremental network x̄0 to be the trivial flow of 0 units and we initialize two empty

cuts for the cut tripartition for the optimal residual network of the 0th incremental

network {C̄0
s , C̄

0
t }.

The incremental network initially starts with no arcs. Recall that ei−1 ∈ Āi\Āi−1. At

the beginning of iteration i, the algorithm checks if the cut tripartition corresponding

to the (i− 1)st incremental network, {C̄i−1
s , C̄i−1

t }, indicates that the maximum flow

from the in the (i− 1)st incremental network, x̄i−1, is also a maximum flow for the

ith incremental network N̄i. If not, then we compute the new maximum flow in N̄i

using the subroutine ReoptIncNetwork(N̄i, x̄i−1, ei−1, {C̄i−1
s , C̄i−1

t }). Otherwise,

we equate x̄i and {C̄i
s, C̄

i
t} to their respective values from the previous iteration.

Next we construct an initial feasible flow for Ni using the subroutine MergeNetworks(Ni−1,

xi−1, N̄i, x̄i, dei−1
− dei

) and we obtain an upper bound on the difference be-

tween the maximum flow value in Ni and the current value of flow using the subrou-

tine ComputeUB(Ni, xi, dei−1
−dei

, {Ci−1
s , C i−1

t }), which returns the upper bound

proved in Lemma 28.

The penultimate step of an iteration is to compute the maximum flow in Ni us-

ing the subroutine modMaxFlow(Ni, xi, θ̂i), which is very similar to that of Al-

gorithm 6 discussed in Chapter 4. Finally, we update the cut tripartition for the

optimal residual network of Ni using the subroutine updateCutTripartition(Ni,

xi, {Ci−1
s , C i−1

t }). This ends an iteration. After all iterations are complete, the

algorithm returns the optimal solution to the RobuCut problem.

Similar to our algorithm for MFSAROP discussed in Chapter 4, we are only adding

a bounded amount of pre-flow θ̂i to Ni. In contrast, the original Goldberg-Tarjan

111

algorithm begins by saturating all arcs FS(s). Since we arbitrarily choose which

arcs in FS(s) to initially distribute θ̂i units of pre-flow, it is possible that we could

saturate the “wrong” arcs. That is, one unit of pre-flow might have been placed on

an arc in FS(s) where that flow cannot possibly reach the source, even if the network

currently is not at maximum flow.

Recall that figure 10 in Chapter 4 illustrates a situation where a “wrong” arc is

saturated.

5.3.3 Algorithmic Result

In this subsection, we demonstrate that Algorithm 13 is no worse, in terms of worst-

case complexity, than solving |A| maximum flow problems from scratch using the

highest label implementation of the algorithm of Goldberg and Tarjan.

Theorem 29. Consider an instance of RobuCut on a network N = (V, A). Algo-

rithm 13 runs in time O(|V |2|A| 32).

Proof: In [18], Cheriyan and Melhorn proved that the highest label implementation

of the Goldberg-Tarjan Algorithm, which is used in our implementation, runs in time

O(|V |2
√
|A|). A modified version of this algorithm, which has the same worst-case

algorithmic bound, is called O(|A|) times. This leads to the bound O(|V |2|A| 32) for all

modified maximum flow computations, including solving the 0th nominal maximum

flow problem.

What remains to show is a bound on solving the sequence of incremental networks.

Recall that to compute the maximum flow value of the ith incremental network given

a maximum flow in the (i− 1)st incremental network as an initial solution requires

the computation of at most one augmenting path. Since it takes O(|A|) time to find

an augmenting path in a network with |A| arcs, to search for augmenting paths in the

112

sequence of incremental networks takes 1+2+· · ·+|A| = |A|(|A|−1)
2

∈ O(|A|2). Finally,

since for simple networks O(|A|) ⊆ O(|V |2) this implies O(|A|2) ⊆ O(|V |2|A|) ⊆
O(|V |2|A| 32). The result follows. 2

5.4 Computational Results

This section describes our computational experiments, which compared the perfor-

mance of Algorithm 13 versus a “naive” implementation of the algorithm of Bertsimas

and Sim on randomly generated instances of the Robust Minimum Capacity s-t Cut

Problem. The latter algorithm uses a black box maximum flow solver to solve each

of the necessary nominal minimum capacity s-t cut problems from scratch. The

Bertsimas and Sim algorithm for RobuCOPs is labeled as Algorithm A in [10]. We

specifically implemented this algorithm for computing RobuCuts, which we hereby

refer to as the black-box approach.

It should be noted that Bertsimas and Sim did not specifically study computing

robust minimum capacity s-t cuts. In addition, we are unaware of any other studies

on robust minimum capacity s-t cuts that uses a polyhedral model of uncertainty.

For the black-box approach, we implemented the following intuitive speedup: During

iteration i, if the weight of the incremental network di−1 − di = 0 then do not

recompute the maximum flow, it is the same as in the previous network. This

substantially reduces the number of calls to the black box maximum flow solver.

All of the networks we generated are acyclic. When randomly generating a network,

we included each possible arc independently with probability p, where p is selected

from the set {.1, .2, · · · , .8}. We often refer to p as the arc density parameter. We

chose the number of nodes in the network from the set {100, 150, 200, 300, 400, 500}.
The parameter of robustness Γ was arbitrarily chosen from the appropriate range

[1, |A|]. We note that both the size and the number of maximum flow computations

113

required to compute a robust minimum capacity s-t cut is independent of Γ. Thus, we

believe choosing a single value for Γ is sufficient to test the reduction in computation

time when our algorithm is used as opposed to a black-box solver.

Recall how in an instance of RobuCut every arc e has an uncertain capacity ũe that

takes value in the range [ue, ue + de] For each arc e, we selected the value for ue

uniformly at random from the interval [10, 50] and we chose de uniformly at random

from the interval [5, 20].

For each possible value of the arc density parameter p, for each possible number

of nodes and for each possible value of the robust parameter Γ, we generated an

instance. The naming convention for these instances is acyclic-nN-d(100p).net

where N is the number of nodes. For example, an instance on 100 nodes with arc

density .5 would be named acyclic-n100-d50.net.

Table 11 contains a few select results for our first experiment. The column labeled

File Name contains the name of the RobuCut instance. The column labeled MF-

BBTime contains the number of seconds required to solve the instance using our

black-box solver. The column labeled MFROtime contains the number of seconds

required to solve the instance using our reoptimization code for RobuCut. Please

note that the computational savings from using our reoptimization algorithm is enor-

mous. In the largest instances in Table 9, the comparison is between over four hours

to under thirty seconds. Thus, the advantageousness of algorithm scales well as the

number of nodes in the network increases.

5.4.1 Testing the Effectiveness of Incremental Networks

We also conducted an experiment to demonstrate the advantage of using incremen-

tal networks during Algorithm 13. To this end, we implemented an algorithm for

RobuCut that is essentially the same as Algorithm 13 except that no incremental

114

Figure 14: Grid topology with three rows and four columns.

networks are ever used. Thus, in this alternate algorithm, the maximum flow in jth

nominal network is computed by using our implementation of the Goldberg-Tarjan

algorithm with the bounded pre-flow that uses the maximum flow in the (j − 1)st

nominal network as an initial solution.

5.4.1.1 Instance Generation

For most RobuCut instances on networks on the order of a few hundred nodes,

the difference between our algorithm and our algorithm without using incremental

networks was not very pronounced. Thus, we limited our comparison of these two

algorithms on grid topology networks with at least 100 rows of nodes.

We randomly generate instances of RobuCut on networks with grid topologies. Fig-

ure 14 illustrates a sample grid topology with three rows and four columns of nodes.

We obtain the idea for these topologies as well as the image from [67].

• The number of rows of nodes is deterministically selected, as a parameter, from

the set {100, 150, 200, 250}. The number of columns of nodes is always twice

the number of rows of nodes.

• The lowest possible capacity for each arc e, ue, is drawn uniformly at random

from the interval [10, 50].

115

• The largest possible increase in an arc’s capacity for each arc e, de, is drawn

uniformly at random from the interval [5, 20].

• The parameter of robustness Γ is arbitrarily chosen to be 20.

For each possible number of rows of nodes r, we generated an instance. The nam-

ing convention for these instances is grid-rx(2r).net. For example, the class of

instances generated with 300 rows of nodes is named grid-300x600.net.

Table 12 contains the results of this experiment. The column labeled File Name

contains the name of the class of RobuCut instances. The columns MFROtime

and noINCtime contain the average number of seconds to solve each of the 10

RobuCut instances for our algorithm and the version of our algorithm without using

incremental networks respectively. The column PerAdv? contains the percentage of

instances for this class where the algorithm using the incremental networks is faster.

These results demonstrate that although using incremental networks is not always

superior, it is superior on average. Moreover, these results suggest that the savings

that stem from using the incremental networks increases along with the size of the

RobuCut instances. This second result is intuitive, since if an s-t path in the incre-

mental is discovered during iteration i, it not only allows one to construct an initial

feasible solution for the maximum flow problem on the ith nominal network with

a greater objective value than had the incremental network not been used, it also

allows us to do the same for each iteration j for all j > i. Thus, as the size of the

RobuCut instance gets larger, the more iterations required for our algorithm, which

in turn means the greater the potential for savings using the incremental network

heuristic.

116

5.5 Conclusions

In this chapter, we studied how to take a conservative approach to the Minimum

Capacity s-t Cut Problem in light of data uncertainty on the arc capacities. Us-

ing the polyhedral model of robustness of Bertsimas and Sim, we define the Robust

Minimum Capacity s-t Cut Problem (RobuCut). To this end, we provide a pow-

erful algorithm for computing robust minimum capacity s-t cuts that builds off of

the algorithm of Bertsimas and Sim for general robust combinatorial optimization

problems (RobuCOPs). In terms of worst-case complexity, our algorithm is no worse

than solving |A| maximum flow problems from scratch.

Furthermore, we demonstrate that our algorithm is very efficient in practice. Our

experiments demonstrate the substantial computational savings of maximum flow

reoptimization in the context of computing RobuCuts. In particular, our algorithm

can solve the largest instances tested in under thirty seconds, while using a black-box

solver can take over four hours.

We believe these savings stem from the topological similarities between the O(|A|)
maximum flow computations. A lot of information on how the networks differ can

be captured by the incremental network. We attribute much of the success of our

Algorithm 13 to the utilization of the incremental network.

More broadly, we hope that this chapter offers a persuasive argument for employing

reoptimization heuristics for even intensively studied and highly structured network

flow problems.

117

Table 11: Computational Results for Robust Minimum Cut
File Name MFBBTime MFROtime

acyclic-n150-d20.net 1 0
acyclic-n150-d30.net 1 0
acyclic-n200-d10.net 1 0
acyclic-n100-d60.net 2 0
acyclic-n100-d80.net 2 0
acyclic-n200-d20.net 2 0
acyclic-n300-d10.net 2 0
acyclic-n150-d40.net 3 0
acyclic-n150-d50.net 5 0
acyclic-n200-d30.net 5 0
acyclic-n150-d60.net 9 0
acyclic-n400-d10.net 11 1
acyclic-n150-d70.net 13 0
acyclic-n200-d40.net 14 1
acyclic-n300-d20.net 20 1
acyclic-n150-d80.net 25 1
acyclic-n200-d50.net 32 0
acyclic-n500-d10.net 48 1
acyclic-n200-d60.net 66 1
acyclic-n300-d30.net 89 1
acyclic-n200-d70.net 123 1
acyclic-n400-d20.net 125 1
acyclic-n200-d80.net 183 1
acyclic-n300-d40.net 222 1
acyclic-n300-d50.net 385 3
acyclic-n500-d20.net 407 2
acyclic-n400-d30.net 414 3
acyclic-n300-d60.net 654 3
acyclic-n400-d40.net 882 4
acyclic-n300-d70.net 975 5
acyclic-n500-d30.net 1183 6
acyclic-n300-d80.net 1369 5
acyclic-n400-d50.net 1537 6
acyclic-n500-d40.net 2457 8
acyclic-n400-d60.net 2480 8
acyclic-n400-d70.net 3713 12
acyclic-n500-d50.net 4375 12
acyclic-n400-d80.net 5283 14
acyclic-n500-d60.net 7081 17
acyclic-n500-d70.net 10588 22
acyclic-n500-d80.net 15002 27

118

Table 12: Advantage of Using Incremental Networks
File Name MFROtime noINCtime PerAdv?

grid-100x200.net 50.4 54.8 100%
grid-150x300.net 265.8 276.4 70%
grid-200x400.net 765.7 833.1 90%
grid-250x500.net 1493.2 1673.8 60%

119

CHAPTER VI

STOCHASTIC MAXIMUM FLOWS

In this chapter, we discuss extending our maximum flow reoptimization heuristics to

rapidly compute a two-stage stochastic maximum flow. The objective of the work

summarized in this chapter is to use maximum flow reoptimization heuristics to

rapidly compute an expected maximum flow. Unlike the Chapters 4 and 5, there

is no special structure to exploit when solving a sequence of MFPs to compute an

expected maximum flow if we are not given any overly restrictive information on the

distribution for arc failures. Nevertheless, we still can develop useful reoptimization

heuristics in light of these new challenges.

In the first section of this chapter, we motivate this work and discuss relevant lit-

erature. In the second section, we formally describe the problem as a two-stage

stochastic program. In the third section, we present a Benders’ reformulation of the

problem and design a cutting plane algorithm for its solution. In the fourth sec-

tion, we present an algorithm to solve a sequence of MFPs when more than one arc

changes between each MFP in the sequence. In the fifth section, we describe a variety

of tested approaches for incorporating maximum flow reoptimization heuristics into

the cutting plane algorithm designed for two-stage stochastic maximum flow. In the

final section, we draw conclusions and discuss future work.

6.1 Introduction

The motivation of the research detailed in this chapter is to see if maximum flow

reoptimization heuristics can be used to accelerate the computation of a maximum

120

expected maximum flow in the context of two-stage stochastic programming. In

many real-world situations, one is compelled to allocate resources towards network

design under uncertainty. This chapter investigates how one would commit resources

towards expanding the capacities of a network design problem, with the objective of

maximizing the expected maximum flow in the network.

We speculate two-stage stochastic maximum flows are applicable in transporting pa-

tients to urgent care facilities during an emergency. Consider the following scenario.

A central planner, such as the Federal Emergency Management Agency (FEMA),

needs to setup multiple urgent care facilities in response to a disaster. There are

a finite number of possible locations for these facilities and each potential facility

possesses a capacity that corresponds to the number of patients who may be treated

at that facility. Furthermore, each urgent care facility has an installation cost and

FEMA has a finite budget for installing these facilities.

We assume that the exact number of patients from each location who will need treat-

ment is unknown but can be modeled by a probability mass function. Moreover, due

to geographic restrictions, we assume that patients can only be treated at potential

urgent care facilities that are within a certain distance of the patients.

The objective of this decision problem is for FEMA to install a subset of urgent care

facilities so as to maximize the expected maximum number of patients that can be

treated without violating FEMA’s budget constraint. Note that this problem can

be modeled as a two-stage stochastic maximum flow problem on a bipartite flow

network.

There has been a decent number of other papers on stochastic maximum flows. Two-

stage stochastic programs with the objective of maximizing the expected maximum

flow have been studied in [6], [75] and [76]. In addition, bounds on maximum flows

with uncertain arc capacities have been studied in [6], [15], [75] and Chapter 6 of

121

Kall and Wallace [46].

6.2 Problem Description and Formulation

In this section, we detail the two-stage stochastic maximum flow problem that we

investigate.

Two-Stage Stochastic Maximum Flow Problem (2SMFP) Let N = (V, A)

be a network with a source s and a sink t. Each arc e ∈ A has a potential capacity

ue ≥ 0 and a per-unit investment cost re ≥ 0 for each unit of the arc’s potential

capacity that is actually installed. We also assume that the decision maker is given

an investment budget B > 0 for first stage arc investments.

For each arc e ∈ A, let xe be the fraction of potential capacity ue that is actually

installed during the first stage. Let Ω be a set of known scenarios for arc failures.

Given a scenario ω ∈ Ω, we say that arc e is fully operational under scenario ω if and

only if that arc has capacity xe in the second stage in this scenario. If an arc has a

capacity of 0 in the second stage, then we say that the arc is not operational. Let ξω
e

be a parameter which takes a value of 1 if arc e is fully operational under scenario

ω ∈ Ω and takes value 0 if the arc is not operational. We assume that each scenario

in Ω is equally likely and that the number of scenarios is a polynomial function of

|V | and |A|.

The objective of 2SMFP is to invest in arc capacities in the first stage so as to

maximize the expected maximum integer flow from s to t subject to the budget

constraint. For each arc e, let xe be the fraction of potential capacity ue that is

actually installed in the first stage. Mathematically, this problem can be written as:

max

{
E[F (x, ξ)] :

∑
e∈A

rexe ≤ B, 1 ≥ xe ≥ 0 ∀ e ∈ A

}
(8)

122

where E[F (x, ξ)] = 1
|Ω|

∑
ω∈Ω F (x, ω) and F (x, ω) is the maximum flow from s to t

in the network where the capacity of arc e is ξω
e uexe.

6.3 Benders’ Decomposition Approach

In this section, we first present a reformulation of Problem 8 using Benders’ decom-

position. We then discuss a second reformulation that aggregates the optimality cuts

for the different scenarios. This allows for a cutting plane algorithm that will only

add one cut per iteration as opposed to up to |Ω| cuts per iteration. Our overall

approach is modeled after that of Santoso et al. [68].

6.3.1 Benders’ Reformulation

Let zω denote the maximum flow in the network under scenario ω. We use these

variables in Benders’ reformulation LP1.

Formulation (LP1)

Maximize 1
|Ω|

∑
ω∈Ω zω

Subject to

∑
e∈A rexe ≤ B

zω −
∑

e∈C ξω
e uexe ≤ 0 ∀C ∈ ζ ∀ω ∈ Ω

0 ≤ xe ≤ 1 ∀e ∈ A

The objective function is equivalent to maximizing the expected maximum flow since

each scenario is equally likely. The first constraint is the budget constraint on the

first stage arc investments. The second set of constraints are the optimality cuts. In

123

this row, C denotes a s-t cut in the network and ζ denotes the set of all possible s-t

cuts in this network. The last set of constraints are the bounds on the xe variables.

We show how the optimality cuts are obtained in the next lemma.

Lemma 30. Let ω ∈ Ω be a scenario for an instance of 2SMFP. Then the following

is an optimality cut:

zω ≤
∑
e∈C

ξω
e uexe. (9)

Proof:

Let fω
e denote the flow on arc e during scenario ω for each arc e ∈ A. Moreover, let

x̂e be the value assumed by the variable xe for each arc e ∈ A. We write the second

stage subproblem as the following:

z∗ω(x̂) = max





∑

e∈RS(t)

fω
e :

∑

e∈FS(v)

fω
e −

∑

e∈RS(v)

fω
e = 0 ∀ v ∈ V \{s, t}; 0 ≤ fω

e ≤ ξω
e uex̂e



 .

(10)

Using the widely known Maximum Flow Minimum Cut Theorem [30], we obtain the

following equivalence:

z∗ω(x̂) = min

{∑
e∈C

ξω
e uex̂e : C ∈ ζ

}
. (11)

This equation suggests the intended upper bound on zω. The result follows. 2

We note that no feasibility cuts are needed for LP1 since every second stage subprob-

lem is feasible for all feasible values of x. This is because the subproblem for each

scenario is a Maximum Flow Problem and the trivial solution of setting the flow on

124

each arc to zero is always a feasible solution to a Maximum Flow Problem when the

flow on each arc can take value 0.

6.3.1.1 Cutting Plane Algorithm

Formulation LP1 contains an exponential number of optimality cuts, which are too

many to explicitly add to the LP a priori. Thus, we propose solving this LP using

a standard constraint generation approach. Algorithm 14 contains pseudocode for a

generic cutting plane algorithm for 2SMFP.

Algorithm 14 Generic Cutting Plane Algorithm for LP1
LB ← 0
UB ← ∑

e∈FS(s) ue

Pmast ← {(x, z) ∈ R|A|+|Ω| : rx ≤ B; 0 ≤ x ≤ 1}
Pcuts ← {(x, z) ∈ R|A|+|Ω|}

repeat
lpopt(Pmast ∩ Pcuts)
(x̂, ẑ) ← getx(Pmast ∩ Pcuts)
UB ← getobjval(Pmast ∩ Pcuts)
LB ← getexpmfval(x̂)

if UB > LB then
Qcuts ← gencuts(x̂, ẑ)
Pcuts ← Pcuts ∩Qcuts

end if

until UB == LB

return x̂

In Algorithm 14, Pmast is the polytope defined by the starting constraints in the

relaxed master problem; that is, LP1 minus the optimality cuts. Pcuts is the polyhe-

dron defined by the intersection of all optimality cuts that have been added to the

relaxed master problem. The method lpopt(P) maximizes the function
∑

ω∈Ω zω

over the polytope P . An optimal solution and the optimal objective value to the LP

125

solved in lpopt(P) are obtained with the methods getx(P) and getobjval(P) re-

spectively. Given an assignment x̂ to the first stage decision variables x, the method

getexpmfval(x̂) returns the expected maximum flow value over all scenarios in Ω.

Finally, given x̂, the method gencuts(x̂) returns a polyhedron defined by the in-

tersection of the optimality cut obtained from each second stage subproblem. Let

z∗ω(x̂) denote the value of the maximum flow in the second stage subproblem defined

by (11) and let ẑω denote the value that the variable zω assumed in the first stage.

Then the method gencuts(x̂) generates an optimality cut (9) for the scenario ω if

and only if z∗ω(x̂) < ẑω.

6.3.2 Aggregating the Optimality Cuts

The disadvantage of the above Benders’ reformulation is that a large number of

optimality cuts could be added at each iteration during a standard cutting plane

algorithm. More constraints means a larger constraint matrix, which requires more

running time from any LP-solver that heavily relies on matrix inversion. Since such

a solver may need to be iteratively used during Algorithm 14, formulation LP1 may

not be desirable.

A potential remedy is to instead aggregate the optimality cuts over all scenarios.

Specifically, instead of introducing a decision variable zω to correspond to the maxi-

mum flow in scenario ω, we will introduce a variable θ to correspond to the value of

the expected maximum flow. We can then reformulate (8) as follows:

Formulation (LP2)

126

Maximize θ

Subject to

∑
e∈A rexe ≤ B

θ − 1
|Ω|

∑
ω∈Ω

∑
e∈Cω ξω

e uexe ≤ 0 ∀C ∈ ζ |Ω|

0 ≤ xe ≤ 1 ∀e ∈ A

In the second row of LP2, C denotes an |Ω|-dimensional vector of s-t cuts in the

network and where Cω corresponds to the ωth s-t cut in vector C. We refer to

this row as the aggregated optimality cut. We omit the proof of correctness of this

optimality cut since it is essentially the same as that for the optimality cuts for LP1,

which are listed in (9). Furthermore, we omit the generic cutting plane algorithm to

solve LP2, since it is essentially the same as Algorithm 14.

6.4 Combining Maximum Flow Reoptimization and the Cut-
ting Plane Method

In this section, we discuss a variety of issues concerning the implementation of Algo-

rithm 14 for solving instances of 2SMFP. In all of our testing, unless otherwise stated,

we use formulation LP2. First, we discuss the two possible schemes for maximum

flow reoptimization. Second, we discuss the modified Goldberg-Tarjan algorithm

that we use for computing maximum flows during Algorithm 14. Third, we discuss

reordering the scenarios, as a preprocessing technique, to attempt to reduce the over-

all time required to solve all of the MFPs using our maximum flow algorithm. Lastly,

we discuss our management of the optimality cuts.

127

6.4.1 Two Schemes for Maximum Flow Reoptimization

Given the structure of Algorithm 14, we note that there are two possible opportuni-

ties for usage of maximum flow reoptimization heuristics. The first is reoptimizing

within a single iteration of the cutting plane algorithm. That is, using reoptimiza-

tion heuristics during the subroutine getexpmfval(x̂). This method requires |Ω|
maximum flow problems to be solved. To employ reoptimization heuristics during

this subroutine, we use the optimal solution from the ith maximum flow problem

to construct a pseudoflow to warm start the (i + 1)st maximum flow problem. We

hereby refer to this scheme for maximum flow reoptimization as the horizontal reop-

timization scheme. The actual maximum flow algorithm used to compute the new

maximum flow is discussed in the next subsection.

The second opportunity for maximum flow reoptimization is between each iteration

of the repeat loop in Algorithm 14. In this scheme, if we are entering iteration

i > 1 of the repeat loop, then we use the maximum flow from the ωth scenario

from the (i − 1)st iteration to construct a pseudoflow to warm start the maximum

flow problem corresponding to the ωth scenario during iteration i. We refer to this

scheme as the vertical reoptimization scheme.

Unlike the horizontal reoptimization scheme, which only requires that we store the

maximum flow from the previous scenario, the vertical reoptimization scheme re-

quires that we store |Ω| maximum flows, one for each scenario in the previous itera-

tion. This is an obvious disadvantage with respect to storage requirements. However,

the potential advantage of the vertical reoptimization scheme is that we might warm

start each maximum flow problem with a better solution than in the horizontal re-

optimization scheme.

Cutting plane methods are known to wildly oscillate over the feasible region during

128

the early iterations of the algorithm [42]. This suggests that the vertical reoptimiza-

tion scheme may not be advantageous during the early iterations of the cutting plane

algorithm. However, it is possible for the vertical reoptimization scheme to be sub-

stantially faster than the horizontal reoptimization scheme in the later iterations of

the cutting plane algorithm. Thus, the savings gained at the end of the cutting plane

algorithm when the vertical reoptimization scheme is utilized might compensate for

the disadvantage incurred during the early iterations.

6.4.2 Modified Goldberg-Tarjan Algorithm

In this subsection, we detail the modified Goldberg-Tarjan algorithm that we used

during this study. Our algorithm is a natural extension of Algorithm 6. We note

that each consecutive pair of MFPs that arise during Algorithm 14 will almost surely

change by more than one arc, so the algorithm developed for the MFSAROP cannot

be directly applied.

Suppose that we have found the maximum flow in the ith subnetwork Ni = (V,Ai),

which we hereby denote as xi∗, and that we want to use this information to compute

the maximum flow in the (i + 1)st subnetwork Ni+1 = (V, Ai+1). To this end, we use

Algorithm 15 to construct an initial pseudoflow xi+1 for the MFP on network Ni+1:

The method addPreflow(xi+1) increases the excess at the source s by a cleverly

chosen upper bound ∆ub, where we define ∆ub below. Let Ci∗
` and Ci∗

r be the two

cuts in the cut tripartition corresponding to an optimal residual network of Ni. Then,

by the Maximum Flow Minimum Cut Theorem

zi+1
ub = min{

∑

e∈Ci∗
`

ci+1
e ,

∑

e∈Ci∗
r

ci+1
e }

is an upper bound on the maximum flow in Ni+1. Let zi∗ denote the value of the

129

Algorithm 15 constructPseudoflow(Ni+1, xi∗): Use xi∗ to construct a pseud-
oflow in the network Ni+1

e(v) ← 0 ∀ v ∈ V
for (u, v) ∈ Ai+1 do

if xi∗ ≤ ci+1
(u,v) then

xi+1
(u,v) ← xi∗

else
xi+1

(u,v) ← ci+1
(u,v)

e(u) ← e(u) + xi∗ − ci+1
(u,v)

e(v) ← e(v)− xi∗ + ci+1
(u,v)

end if
end for

xi+1 ← addPreflow(xi+1)

maximum flow in Ni. Thus, considering all of the nodes that already have a positive

excess, we need only add the following amount of additional units of pre-flow into

the network:

∆ub = max{zi+1
ub − zi∗ −

∑

v∈V :e(v)>0

e(v), 0}.

For the reasons already articulated in Section 4.2.2.3, we do not wish to add any

pre-flow to the source beyond ∆ub as we know that every unit of pre-flow added to

the network in excess of ∆ub must eventually be pushed back into the source, and

therefore may lead to unnecessary computations.

Let V − := {v ∈ V : e(v) < 0} and let dist(u, V −, Ni+1, x
i+1) denote the shortest

path, where each arc has a distance of 1 unit, from node u to any of the nodes in V −

in the residual network of when pseudoflow xi+1 is assigned in network Ni+1. We use

Algorithm 16 to start with pseudoflow xi+1 and terminate with a maximum flow in

Ni+1.

The first line of the pseudocode constructs an initial pseudoflow for Ni+1, hereby

denoted as xi+1, using the method constructPseudoflow(Ni+1, xi∗). The second

130

Algorithm 16 Pseudoflow Goldberg-Tarjan Algorithm

xi+1 ← constructPseudoflow(Ni+1, xi∗)
d(v) ← dist(u, V −, Ni+1, x

i+1) ∀ v ∈ V
V ← V ∪ {ŝ}
E ← E ∪ {(ŝ, s)}
xi+1

(ŝ,s) ←
∑

e∈FS(s) xi+1
e

while There is a node i ∈ V \{ŝ} with positive excess do
if the residual network contains an admissible arc (i, j) then

Push δ := min{e(i), ci+1
(i,j) − xi+1

(i,j)} units of flow from node i to node j
else

d(i) ← min {d(j) + 1 : (i, j) ∈ residual FS(i)}
end if

end while

V ← V \{ŝ}
E ← E\{(ŝ, s)}

while There is a node i ∈ V \{t} with negative excess do
for j ∈ V such that (i, j) ∈ FS(i) do

Push δ := min{e(i), ci+1
(i,j) − xi+1

(i,j)} units of flow from node i to node j
end for

end while

131

line of pseudocode initializes all distance labels in the current residual network. In

the actual code we used, the distance labels are initialized with the global relabel-

ing heuristic of Cherkassky and Goldberg [19], except where instead of measuring

each node’s distance to the sink, we temporarily contracted all nodes in V − into a

temporary sink.

The third, fourth and fifth lines create an artificial source ŝ, so that the original

source may be relabeled during the algorithm, for the occasion that flow needs to be

redirected through it. Such a circumstance is similar to that discussed in Figure 10.

The first while loop in the pseudocode is essentially the unmodified pseudocode of

the Goldberg-Tarjan algorithm. However, please note that there might exist nodes

with negative excess that may not become active, even if they have flow pushed into

them. After the first while loop terminates, the temporary source ŝ is removed from

the network.

The second while loop removes all ghost flow from the network. In our actual code,

this is done with a breadth-first search routine.

6.4.3 Computational Results

In this subsection, we described our observations when experimenting with our im-

plementation of the cutting plane algorithm listed in Algorithm 14, along with our

implementation of the maximum flow solver delineated in Algorithm 16, to solve

instances of 2SMFP formulated as stated in LP2.

All computational experiments were conducted on a dual Intel Xeon processor each

with 2.4 Ghz CPU speed and a cache size of 512 KB. The machine possesses 2.0 GB of

RAM. The Goldberg-Tarjan-based reoptimization algorithm detailed in Algorithm 16

was used to solve all encountered maximum flow problems. All linear programming

problems were solved using CPLEX 9.0 under the default settings. All optimality

132

cuts were added to the master LP problem using the method CPXaddrows().

After experimentation, we conclude that using Algorithm 16 to solve the MFPs that

are encountered during the course of the cutting plane algorithm does save a little

bit of time compared to using a black-box Goldberg-Tarjan maximum flow solver

when the horizontal reoptimization scheme was used. The cutting plane algorithm

using the vertical reoptimization scheme was usually faster than using a black-box

solver for instances that required over a few hundred iterations of the cutting plane

algorithm. However, it was not necessarily always faster for instances that required

less iterations.

For either reoptimization scheme, the time saved is not substantial. To illustrate, we

provide a table of computational results for two prototypical instances.

Table 13: Prototypical Results for Two-Stage Stochastic Maximum Flow
InstanceName ReoptScheme TotalTime MaxFlowTime LPTime

acyclic-n50-p7.net horizontal 403.82 129.38 269.41
acyclic-n50-p7.net vertical 404.01 133.47 265.89
acyclic-n50-p7.net black-box 441.76 161.67 275.28
acyclic-n50-p6.net horizontal 409.85 131.56 273.54
acyclic-n50-p6.net vertical 405.59 132.81 268.04
acyclic-n50-p6.net black-box 440.68 162.21 273.56
acyclic-n40-p6.net horizontal 113.53 65.25 46.59
acyclic-n40-p6.net vertical 94.99 57.83 35.71
acyclic-n40-p6.net black-box 107.84 59.45 46.81
acyclic-n30-p6.net horizontal 17.68 13.48 3.92
acyclic-n30-p6.net vertical 27.84 21.14 6.24
acyclic-n30-p6.net black-box 22.32 18.47 3.58

In Table 13, the column labeled as InstanceName contains the name of the instance.

The column labeled as ReoptScheme indicates whether we used a black-box maxi-

mum flow solver, Algorithm 16 in the horizontal reoptimization scheme or Algorithm

16 in the vertical reoptimization scheme. The column labeled as TotalTime records

the total time, in seconds, for our code to terminate. The columns MaxFlowTime

133

and LPTime indicate how much of this time was spent on solving MFPs and LPs

respectively.

acyclic-n50-p7.net is on a randomly generated acyclic network with 50 nodes,

roughly 70% of the possible arcs and 100 randomly generated scenarios where each

arc has a probability of .9 of failing in any given scenario. The arc capacities are

randomly generated integers, drawn uniformly at random, from the interval [1, 50]

and the per-unit installation costs are randomly generated, uniformly at random,

from the interval [1, 3]. The budget for installing arcs is 150.

acyclic-n50-p6.net is similar to acyclic-n50-p7.net, except that it has roughly

60% of the possible arcs. acyclic-n40-p6.net differs from acyclic-n50-p7.net in

that it has roughly 60% of the possible arcs, it only has 40 nodes and each arc has

the probability of .6 of failing in any given scenario. Similarly, acyclic-n30-p6.net

differs from acyclic-n50-p7.net in that it has roughly 60% of the possible arcs and

it only has 30 nodes.

We terminated both acyclic-n50-p7.net and acyclic-n50-p6.net after 1,000 it-

erations of the cutting plane algorithm. The algorithm was unable to obtain a

provably optimal solution in this amount of time. The algorithm terminated with

provably optimal solutions for acyclic-n40-p6.net and acyclic-n30-p6.net after

971 and 286 iterations respectively.

6.4.3.1 Sorting the Scenarios

This subsection explores the possibility of reducing the running time when the hori-

zontal reoptimization scheme is used by reordering the scenarios.

The horizontal reoptimization scheme currently processes the MFPs in the order

that the scenarios are indexed. When using our implementation of Algorithm 16

iteratively to solve a sequence of MFPs, the total running time will be a function of

134

the order in which the MFPs are processed. This suggests that one might be able

to reduce the overall running time by re-indexing the scenarios in a sequence that is

more conducive to our maximum flow reoptimization algorithm.

Unfortunately, heuristically reordering the scenarios in advance did not reduce the

overall computation time required for the cutting plane algorithm. First, we note that

optimally reordering the scenarios is essentially as difficult as solving an Asymmetric

Traveling Salesman Problem. Specifically, each scenario corresponds to a city and

the weight on each arc (i, j) corresponds to the estimated time required to compute

the maximum flow under scenario j when warm starting from the maximum flow

under scenario i.

There are several explanations for why sorting the scenarios a priori is an effort of

questionable advantage. First of all, if we assume that the time to reoptimize between

any two scenarios is positively correlated with the Hamming distance between the

characteristic vectors of the two scenarios, then to compute the distance matrix for

each pair of scenarios requires O(|A||Ω|2) computations, which is time consuming.

More importantly, it is doubtful that we have an accurate method to estimate the

time required to recompute the maximum flow after transitioning from one scenario

to another. Let Fω ⊆ A be the set of arcs that are not operational under scenario ω.

One metric we tried using to estimate the time to reoptimize from scenario ωi to ωj is

the Hamming distance of the two characteristic vectors of the scenarios, which equals

|(Fωi
\Fωj

) ∪ (Fωj
\Fωi

)|. We also tried using |Fωj
\Fωi

|. However, neither allowed us

to heuristically reorder the scenarios to reduce the running time of the cutting plane

algorithm. Moreover, even if we assume that our reordering heuristic requires 0

seconds to run, the time required for the cutting plane algorithm to terminate on an

instance with reordered scenarios is not substantially different from the time required

on that same instance with the scenarios in their original order. Simply put, from

135

what we have seen, reordering the scenarios is not a worthwhile pursuit.

6.4.3.2 Management of Optimality Cuts

As the number of iterations of the cutting plane algorithm becomes large, the number

of generated optimality cuts increases in turn. A larger constraint matrix increases

the time required to solve the relaxed master problem. In many respects, this in-

creased time might be unnecessary, as the optimality cuts added several iterations

ago may never become active again.

As a remedy, we heuristically removed optimality cuts that have not been active for

an extensive number of iterations from the constraint matrix. Specifically, for each

constraint, we maintain a counter for the number of consecutive iterations that the

constraint has been inactive at an optimal solution to the relaxed master problem.

If this counter exceeds a pre-specified parameter, then this constraint is deleted.

Through initial empirical testing, we found this method to be effective at reducing

the overall time required to converge to an optimal solution. We also observed that

the cutting plane algorithm ran in less time if we deleted constraints as opposed to

removing them from the constraint matrix and re-added them as lazy constraints.

6.5 Conclusions and Future Work

We have tried a number of approaches to incorporate maximum flow reoptimization

heuristics with the objective of reducing the running time a generic cutting plane

algorithm requires for solving a two-stage stochastic maximum flow problem. Al-

though a few of these approaches demonstrated to save a modest amount of time

during computational testing, the savings were never substantial.

For future work, we recommend a more intense focus on the best approach towards

solving a sequence of MFPs when there is no deterministic structure between the

136

MFPs that is known a priori. We note that this setting is in contrast to the previous

settings explored in this thesis. Both MFSAROP and RobuCut have special structure

that can be exploited for developing efficient reoptimization heuristics.

137

APPENDIX A

PRELIMINARIES

For background in network optimization, we refer the reader to [3]. For a quick

overview of linear and integer linear programming, we recommend [58]. For a back-

ground in local search, we refer the reader to [1].

A.1 Network Flow Preliminaries

In this thesis, we denote a network as N = (V, A) where V is the set of nodes and

A is the set of arcs. We assume without loss of generality that all of our networks

have a unique source and a unique sink denoted as s and t respectively, which are

terminals. All other nodes are non-terminals. An arc that originates from node u

and terminates in node v is denoted as (u, v). For a node v we denote the set of all

arcs entering node v as FS(v) and we denote the set of all arcs leaving node v as

RS(v). Given a node v, we denote the in-degree and the out-degree of v as δ−(v)

and δ+(v) respectively.

We refer to a s-t cut as either a set of arcs that disconnect s from t upon their

removal or alternatively as a bipartition of the nodes that separates s from t. Since

the only cuts of interest in this thesis are s-t cuts, we often refer to them as cuts.

Every network mentioned in this thesis is a single commodity flow network and has

a unique source s ∈ V and a unique sink t ∈ V . We assume that there are no arcs

entering s and that there are no arcs leaving t. All networks discussed in this thesis

are assumed to be s-t connected; that is, there exists a directed path from node s to

138

node t unless otherwise stated. If it is possible to send at least one unit of flow from

a node u to a node v then we say that node v is reachable from node u.

We refer to a (primal infeasible) solution to a maximum flow problem that obeys the

capacity constraints but not the flow balance constraints as a pseudoflow.

A.1.1 Maximum Flow Minimum Cut Theorem

The reader should be familiar with the Maximum Flow Minimum Cut Theorem,

which states that the maximum flow in a s-t network equals the minimum capacity

cut. This theorem was originally proved in [30]. For simplicity, we will describe a

maximum s-t flow as a maximum flow and a minimum capacity s-t cut as a minimum

cut.

A.1.2 Residual Networks

Given a feasible flow x in a network N = (V,A), we can construct the residual

network as follows. For each node v ∈ V we create a corresponding node in the

residual network. For each arc e = (u, v) ∈ A such that ce − xe > 0 we create a

corresponding arc ef = (u, v) in the residual network with capacity cef
= ce − xe.

Similarly, for each arc e = (u, v) ∈ A such that xe > 0 we create a corresponding arc

eb = (v, u) in the residual network with capacity ceb
= xe. The source and sink in

the residual network correspond to the source and sink respectively of the original

network. The following result is well known:

Theorem 31. A feasible flow is a maximum flow in a network N if and only if the

corresponding residual network has a maximum flow of 0.

139

A.1.3 Goldberg-Tarjan Algorithm

We refer to the well known maximum flow algorithm of Goldberg and Tarjan [38] as

the Goldberg-Tarjan Algorithm. This algorithm is also known as the pre-flow push

algorithm or the push-relabel algorithm.

At any point during the Goldberg-Tarjan algorithm, every node v has an associated

distance label d(v) and an excess e(v). The distance label is a lower bound on the

shortest distance, in terms of the number of arcs, from v to t. Upon initiation,

we set d(s) = |V | and d(t) = 0. The excess of a node v is defined as e(v) =

∑
i∈RS(v) x(i,v) −

∑
j∈FS(v) x(v,j). Any node, that is not the source or sink, with a

positive excess is said to be an active node.

We say that a residual arc (u, v) is admissible if and only if d(u) = d(v)+1. Through-

out the course of the Goldberg-Tarjan algorithm, admissible arcs are the only arcs

that have their current value of flow adjusted.

A pseudoflow is a flow that satisfies arc bounds but does not necessarily satisfy the

flow balance constraints. A pre-flow is a pseudoflow where the flow entering a node is

always greater than or equal to the flow leaving a node. We will refer to the quantity

∑
i∈V :e(v)>0 e(v) as the amount of pre-flow in a network.

The pseudocode for the Goldberg-Tarjan Algorithm is contained in Algorithm 17.

The Goldberg-Tarjan algorithm maintains a pre-flow as an invariant and strives to

convert it into a maximum flow. At the beginning of each iteration, we find an

active node i. If there is no active node, then we terminate with a maximum flow.

Otherwise, we find an admissible arc in FS(i) in the residual network and augment

its flow. If no such admissible arc exists, then we relabel node i. The step: d(i) ←
min {d(j) + 1 : (i, j) ∈ residual FS(i)} denotes relabeling.

140

Algorithm 17 Goldberg-Tarjan Algorithm

Initialize d(v) and e(v) ∀ v ∈ V
xe ← ce ∀ e ∈ FS(s)
xe ← 0 ∀ e /∈ FS(s)

while There is an active node i do
if the residual network contains an admissible arc (i, j) then

Push δ := min{e(i), c(i,j) − x(i,j)} units of flow from node i to node j
else

d(i) ← min {d(j) + 1 : (i, j) ∈ residual FS(i)}
end if

end while

The success of the Goldberg-Tarjan algorithm was partly attributed to the imple-

mentation of both gap relabeling and global relabeling heuristics. These heuristics

are detailed in [19] and their discussion is beyond the scope of this thesis.

In terms of implementation, we implemented the Highest-Label Goldberg-Tarjan

algorithm. That is, we always choose the active node with the highest distance

label for the discharge operation. This is regarded as the fastest implementation in

practice [19]. We also implemented both the global and the gap relabeling heuristics.

A.2 Integer Programming Preliminaries

Given an instance I of a minimization integer linear program with optimal objective

value z∗IP (I) and a corresponding linear programming relaxation with optimal objec-

tive value z∗LP (I), we define the
z∗IP (I)

z∗LP (I)
as the integrality gap of the instance I with

respect to both the ILP formulation and LP relaxation. We define supI∈I
z∗IP (I)

z∗LP (I)
as

the integrality gap of the problem with respect to both the ILP formulation and LP

relaxation. Here, I denotes the set of all problem instances.

141

A.3 Neighborhood Search Preliminaries

A combinatorial optimization problem can generally be denoted as a pair (S, f)

where S is the set of all feasible solutions and f is the objective function. Typically,

a combinatorial optimization problem is stated as Mins∈S f(s). We define a neigh-

borhood N as a function N : S → 2S , that maps a solution to a set of neighboring

solutions. Typically, we will just denote the neighborhood of a solution s ∈ S by

N (s).

Given a neighborhood, we can construct a transition graph. That is, a directed graph

where each node corresponds to a solution s ∈ S and there exists an arc (i, j) if and

only if j ∈ N (i).

142

REFERENCES

[1] E. Aarts and J. K. Lenstra, Local Search in Combinatorial Optimization, Prince-
ton University Press, 1997.

[2] R. Ahuja, C. Cunha and G. Sahin, “Network Models in Railroad Planning and
Scheduling,” INFORMS Tutorials in Operations Research, 2005.

[3] R. Ahuja, T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms and
Applications, Prentice Hall, 1993.

[4] R. Ahuja and J. Orlin, “A Fast and Simple Algorithm for the Maximum Flow
Problem,” Operations Research 37, 748-759, 1989.

[5] D. Altner and Ö. Ergun, “Rapidly Solving an Online Sequence of Maximum
Flow Problems with Extensions to Computing Robust Minimum Cuts,” Inte-
gration of AI and OR Techniques in Constraint Programming for Combinatorial
Optimization Problems, Lecture Notes in Computer Science 5015, 283-287, 2008.

[6] Y. P. Aneja and K. P. K. Nair, “Maximal Expected Flow in a Network Subject
to Arc Failures,” Networks 10, 45-57, 1980.

[7] N. Assimakopoulos, “A network interdiction model for hospital infection con-
trol,” Computers in Biology and Medicine 17, 413-422, 1987.

[8] A. Atamtürk and M. Zhang, “Two-Stage Robust Network Flow and Design
Under Demand Uncertainty,” Operations Research 55, 662-673, 2007.

[9] A. Ben-Tal and A. Nemirovski, “Robust Convex Optimization,” Mathematics
of Operations Research 23, 769-805, 1998.

[10] D. Bertsimas and M. Sim, “Robust Discrete Optimization and Network Flows,”
Mathematical Programming 98, 49-71, 2003.

[11] L. Bingol, “A Lagrangian Heuristic for Solving a Network Interdiction Problem,”
Master’s Thesis, Naval Postgraduate School, 2001.

[12] W. C. Brainard and H. E. Scarf, “How to Compute Equilibrium Prices in 1891,”
Cowles Foundation Discussion Paper, 2000.

[13] G. Brown, M. Carlyle, J. Salmeron and R. K. Wood, “Defending Critical In-
frastructure,” Interfaces 36, 530-544, 2006.

143

[14] C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips and E. Sundberg, “A
Decomposition-Based Pseudoapproximation Algorithm for Network Flow Inhi-
bition,” Network Interdiction and Stochastic Integer Programming, Springer US,
51-68, 2003.

[15] M. Carey and C. Hendrickson, “Bounds of Expected Performance of Networks
with Links Subject to Failure,” Networks 14, 439-456, 1984.

[16] R. Carr, “Separating Clique Trees and Bipartition Inequalities Having a Fixed
Number of Handles and Teeth in Polynomial Time,” Mathematics of Operations
Research 22, 257-265, 1997.

[17] D. Chaerani and C. Roos, “Modelling Some Robust Design Problems via Conic
Optimization,” Operations Research Proceedings Vol. 2006(VI), 209-214, 2006.

[18] J. Cheriyan and K. Melhorn, “An Analysis of the Highest-Level Selection Rule
in the Preflow-Push Max-Flow Algorithm,” Information Processing Letters 69,
239-242, 1999.

[19] B. Cherkassky and A. Goldberg, “On Implementing Push-Relabel Method for
the Maximum Flow Problem,” Algorithmica 19, 390-410, 1994.

[20] B. Cherkassky, A. Goldberg, P. Martin, J. Setubal and J. Stolfi, “Augment or
Push: A Computational Study of Bipartite Matching and Unit-Capacity Flow
Algorithms,” Journal of Experimental Algorithms 3, 1998.

[21] R. Church, M. Scaparra and R. Middleton, “Identifying Critical Infrastruc-
ture: The Median and Covering Facility Interdiction Problems,” Annals of the
Association of American Geographers 94, 491-502, 2004.

[22] W. Cook, W. Cunningham, W. Pulleyblank and A. Schrijver, Combinatorial
Optimization, Wiley Interscience, 1998.

[23] K. Cormican, D. Morton and R. K. Wood, “Stochastic Network Interdiction,”
Operations Research 46, 184-197, 1998.

[24] Y. Dai and K. L. Poh, “Solving the Network Interdiction Problem with Genetic
Algorithms,” Proceedings of the Fourth Asia-Pacific Conference on Industrial
Engineering and Management Systems, Taipei, 2002.

[25] H. Derbes, “Efficiently Interdicting a Time-Expanded Transshipment Network,”
Master’s Thesis, Naval Postgraduate School, 1997.

[26] N. Devanur, C. Papadimitrou, A. Saberi and V. Vazirani “Market Equilibrium
via a Primal-Dual Algorithm for a Convex Program,” Proceedings of the 43rd
Annual Symposium on Foundations of Computer Science (FOCS), 2002.

[27] E. A. Dinic, “Algorithm for Solution of a Problem of Maximal Flow in a Network
with Power Estimation,” Soviet Mathematics Doklady 11, 1277-1280, 1970.

144

[28] D. Du and R. Chandrasekaran, “The Maximum Residual Flow Problem: NP-
hardness with Two-arc Destruction,” Networks, to appear, 2007.

[29] J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithm Effi-
ciency for Network Flow Problems,” Journal of the ACM 19, 248-264, 1972.

[30] L. R. Ford and D. R. Fulkerson, “Maximal Flow Through a Network,” Canadian
Journal of Mathematics 8, 399-404, 1956.

[31] A. Frangioni and A. Manca, “A Computational Study of Cost Reoptimization
for Min-Cost Flow Problems,” INFORMS Journal on Computing 18, 61-70,
2006.

[32] S. Fujishige, “A Maximum Flow Algorithm Using MA Orderings,” Operations
Research Letters 31, 176-178, 2003.

[33] G. Gallo, M. Grigoriadis and R. Tarjan, “A Fast Parametric Maximum Flow
Algorithm and Applications,” SIAM Journal of Computing 18, 30-55, 1989.

[34] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W.H. Freeman and Company, 1979.

[35] A. Goldberg, “Recent Developments in Maximum Flow Algorithms,” Scandana-
vian Workshop of Algorithm Theory (SWAT), 1998.

[36] A. Goldberg, “Andrew Goldberg’s Network Optimization Library,”
http://avglab.com/andrew/soft.html.

[37] A. Goldberg and S. Rao, “Beyond the Flow Decomposition Barrier,” Proceed-
ings of the 38th IEEE Annual Symposium on Foundations of Computer Science
(FOCS), 2-11, 1997.

[38] A. Goldberg and R. Tarjan, “A New Approach to the Maximum Flow Problem,”
Journal of Associated Computing Machinery 35, 1988.

[39] L. M. Goldschlager, R. A. Shaw and J. Staples, “The Maximum Flow Problem
is Log Space Complete for P,” Theoretical Computer Science 21, 105-111, 1982.

[40] V. Govindaraju, personal communication with, Professor, Department of Com-
puter Science and Engineering, University at Buffalo, 2008.

[41] T. E. Harris and F. S. Ross, “Fundamentals of a Method for Evaluating Rail
Network Capacities,” Research Memorandum RM-1573, The RAND Corpora-
tion, 1955.

[42] J. B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization
Algorithms II, Springer-Verlag, Berlin, 1996.

145

[43] D. Hochbaum and A. Chen, “Performance Analysis and Best Implementations
of Old and New Algorithms for the Open-Pit Mining Problem,” Operations
Research 48, 894-914, 2000.

[44] E. Israeli and R. K. Wood, “Shortest-path Network Interdiction,” Networks 40,
97-111, 2002.

[45] U. Janjarassuk and J. Linderoth, “Reformulation and Sampling to Solve a
Stochastic Network Interdiction Problem”, to appear in Networks, 2007.

[46] P. Kall and S. Wallace, Stochastic Programming, John Wiley and Sons, Inc.,
New York, 1994.

[47] A. V. Karzanov, “Determining the Maximal Flow in a Network with the Method
of Preflows,” Soviet Mathematics Doklady 15, 434-437, 1974.

[48] F. P. Kelly, “Charging and Rate Control for Elastic Traffic,” European Trans-
actions on Telecommunications 8, 33-37, 1997.

[49] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partitioning
Graphs,” Bell System Technical Journal 49, 291-307, 1970.

[50] B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms,
Volume 21 of Algorithms and Combinatorics, Springer, Berlin, Second Edition,
2002.

[51] C. Lim and J. C. Smith, “Algorithms for Discrete and Continuous Multicom-
modity Flow Network Interdiction Problems,”IIE Transactions 39, 15-26, 2007.

[52] V. M. Malhotra, M. P. Kumar and S. N. Maheshwari, “An O(|V |3) Algorithm
for Finding Maximum Flows in Networks,” Information Processing Letters 7,
277-278, 1978.

[53] Y. Matsuoka and S. Fujishige, “Practical Efficiency of Maximum Flow Algo-
rithms Using MA Orderings,” Technical Report METR 2004-27, University of
Tokyo, 2004.

[54] A. W. McMasters and T. M. Mustin, “Optimal Interdiction of a Supply Net-
work,” Naval Research Logistics Quarterly 17, 261-268, 1970.

[55] R. H. Möhring, A. S. Schulz, F. Stork and M. Uetz, “Solving Project Scheduling
Problems by Minimum Cut Computations,” Management Science 49, 330-350,
2003.

[56] H. Nagamochi and T. Ibaraki, “Computing Edge-Connectivity in Multigraphs
and Capacitated Graphs,” SIAM Journal of Discrete Mathematics 5, 54-66,
1992.

[57] N. Nagy and S. Akl, “The Maximum Flow Problem: A Real-Time Approach,”
Parallel Computing 29, 767-794, 2003.

146

[58] G. Nemhauser and L. Wolsey, Integer and Combinatorial Optimization, John
Wiley and Sons Inc., 1988.

[59] F. Ordóñez and J. Zhao, “Robust Capacity Expansion of Network Flows,”
Networks 50, 136-145, 2007.

[60] C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms
and Complexity, Dover, 1982.

[61] J. C. Picard and M. Queyranne, “On the Structure of All Minimum Cuts in a
Network and Applications,” Mathematical Programming Study 13, 8-16, 1980.

[62] D. Pisinger, “A Minimal Algorithm for the 0-1 Knapsack Problem,” Operations
Research 45, 758-767, 1997.

[63] C. Phillips, “The Network Inhibition Problem,” Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing (STOC) 776-785, 1993.

[64] J. Puchinger, G. Raidl and U. Pferschy, “The Multidimensional Knapsack
Problem: Structure and Algorithms,” Technical Report, Institute of Computer
Graphics and Algorithms, Vienna University of Technology, 2007.

[65] H. D. Ratliff, G. T. Sicilia and S. H. Lubore, “Finding the n Most Vital Links
in Flow Networks,” Management Science 21, 531-539, 1975.

[66] J. C. Régin, “A Filtering Algorithm for Constraints of Difference in Constraint
Satisfaction Problems,” In the Proceedings of the Twelfth National Conference
on Artificial Intelligence 1, 362-367, 1994.

[67] J. Royset and R. K. Wood, “Solving the Bi-objective Maximum-Flow Network-
Interdiction Problem,” INFORMS Journal on Computing 19, 175-184, 2007.

[68] T. Santoso, S. Ahmed, M. Goetschalckx and A. Shapiro, “A Stochastic Pro-
gramming Approach for Supply Chain Network Design Under Uncertainty,”
European Journal of Operations Research 167, 96-115, 2005.

[69] M. G. Scutellá, “A Note on the Parametric Maximum Flow Problem and Some
Related Reoptimization Issues,” to appear in Annals of Operations Research,
2005.

[70] M. S. Sodhi, “What about the ’O’ in O.R.?” OR/MS Today, p. 12, December
2007.

[71] H. S. Stone, “Multiprocessor Scheduling with the Aid of Network Flow Algo-
rithms,” IEEE Transactions on Software Engineering 3, 85-93, 1997.

[72] D. Strickland, E. Barnes and J. Sokol, “Optimal Protein Structure Alignment
Using Maximum Cliques,” to appear in Operations Research, 2008.

147

[73] R. Tarjan, J. Ward, B. Zhang, Y. Zhou and J. Mao, “Balancing Applied to
Maximum Network Flow Problems,” Lecture Notes in Computer Science 4168,
612-623, 2006.

[74] A. Uygun, “Network Interdiction by Lagrangian Relaxation and Branch-and-
Bound,” Master’s Thesis, Naval Postgraduate School, 2002.

[75] S. Wallace, “Investing in Arcs in a Network to Maximize the Expected Max
Flow,” Networks 17, 87-103, 1987.

[76] R. Wollmer, “Investments in Stochastic Maximum Flow Networks,” Annals of
Operations Research 31, 457-467, 1991.

[77] R. K. Wood, “Deterministic Network Interdiction,” Mathematical Computa-
tional Modeling 17, 1-18, 1993.

[78] J. Xue and Q. Cai, “Profile-Guided Partial Redundancy Elimination Using
Control Speculation: A Lifetime Optimal Algorithm and an Experimental Eval-
uation,” Technical Report UNSW-CSE-TR-0420, School of Computer Science
and Engineering, University of New South Wales, 2004.

[79] J. Xue and J. Knoop, “A Fresh Look at Partial Redundancy Elimination as a
Maximum Flow Problem,” In the Proceedings of the International Conference
on Compiler Construction, 139-154, 2006.

148

VITA

Doug Altner received a Bachelor’s of Science in mathematics with a concentration

in operations research from Carnegie Mellon University in 2003. After graduating

with college and university honors, he immediately enrolled at the H. Milton Stewart

School of Industrial and Systems Engineering at the Georgia Institute of Technology

to pursue a doctorate in industrial and systems engineering. He has worked under

the supervision of Dr. Özlem Ergun on a wide variety of problems in network flows

and neighborhood search, most of which has culminated into this dissertation.

Doug’s research interests are in the algorithmic and computational aspects of combi-

natorial optimization, network flows, network interdiction and very large-scale neigh-

borhood search. His research has been presented at several different scholarly con-

ferences, including the International Symposium on Mathematical Programming,

CPAIOR: The International Conference on Integration of Artificial Intelligence and

Operations Research Techniques in Constraint Programming for Combinatorial Op-

timization Problems, the INFORMS Optimization Society Annual Meeting and the

INFORMS Annual Meeting. In August of 2008, He will be joining the Department

of Mathematics at the United States Naval Academy.

149

