Chapter 1: The Old Civil Engineering Building and Its Place in the Early History of the Georgia Institute of Technology

Toward the end of the nineteenth century, two confederate veterans of the Civil War initiated the drive to open a technical school in Georgia. These two men were Major J.F. Hanson, publisher and manufacturer who later became president of a railroad, and Colonel Nathaniel E. Harris, a Macon attorney who eventually became Governor of Georgia. During the summer session of the Georgia Legislature in 1882, Harris introduced a bill to establish a School of Technology as part of the state’s university system. A bill was passed in the summer of 1885, and $65,000 was appropriated to establish the school. Harris became the first President of the Board of Trustees; and in April 1888 the board elected Dr. Isaac Hopkins, at that time President of Emory College in Oxford, Georgia, as the first President of the school.

Under the tutelage of Hopkins, the first two buildings of the campus were erected in 1888, paid for with state funds. They were the Main or Academic Building with its now famous tower, designed by Thomas H. Morgan of the architectural firm Bruce & Morgan, and the Shop Building, which had a similar design. With their prominent twin towers these buildings reflected the philosophy of Tech’s educational system in the early years – equality between the shop and academic curricula. The Shop Building was badly damaged by fire in 1892, but was rebuilt the same year. However, the building was shortened on the south end, eliminating the tower. This building remained in use at least into the 1960s, when it was demolished.

The second President of Georgia Tech was Dr. Lyman Hall, Professor of Mathematics, who remained in that office until his death in August 1905. Dr. Hall’s presidency was marked by a rapid growth in enrollment, and a remarkable growth in buildings and equipment. During his presidency, Hall added two temporary dormitory buildings and the first permanent dormitory, Knowles Hall, to the campus. Next came the French Textile Building, which was jointly financed by the State of Georgia, several textile manufacturers from Georgia and Aaron French, a textile manufacturer from Pennsylvania. By 1901 the Swann Dormitory and the Electrical Building had been added to the campus. The Electrical Building was the last structure built during Hall’s tenure. After Dr. Hall’s death, Dr. Kenneth G. Matheson became Chairman of the Faculty on August 23, 1905 and was named President less than a year later. The new President’s first move was toward construction of a library building. On March 12, 1906 Andrew Carnegie donated $20,000 for the building, provided that the school appropriate annual funding of $2,000 for maintenance of the library. This goal was achieved and the library opened in September 1907. The next building constructed was the Whitehead Memorial Hospital. A YMCA building, designed by Morgan & Dillon, successor firm to Bruce & Morgan, was dedicated in June 1912.

In August 1910, the Legislature approved $35,000 for a Mechanical Engineering Building under the provision that $15,000 was to be raised by the school. Through the aid of the Atlanta Chamber of Commerce, $22,000 was raised within two months. The first two units of this building were completed in 1912. Replacing the Old Shop Building, the new structure was called the Mechanical Engineering Building or the New Shop Building. It was officially named the Coon Building, in honor of Dr. Coon, the first head of the Mechanical Engineering Department, after his death in 1938.
The school purchased an additional three acres of land north of the campus in October 1910. In 1911, Charles W. Leavitt was commissioned to design a campus landscape plan. Leavitt was a nationally known civil and landscape engineer with a business in New York City established in 1897. His commissions varied from eclectic private estates for New York millionaires, to public spaces, to campus plans. Leavitt’s Georgia Tech campus plan was completed in April 1912, and included all the land bounded by Techwood Drive, Third Street, Cherry Street and North Avenue. The plan established a system for drives and regular tree plantings on the existing campus. It recommended the demolition of the old shop building and the two temporary dormitories. The sites for unassigned future buildings (the D. M. Smith building was eventually built on one of these spaces) had a uniform setback from all major streets. Leavitt also attempted to use the topography by creating a series of small terraces in the area between the Hospital and Third Street. However, the improvement of the site and location of buildings for the football/baseball field was considered the strongest point of his plan.

In its first 25 years the school had grown rapidly in both physical size and enrollment. An inventory published in a booklet entitled “A Quarter Century Of Progress” states the initial enrollment of 95 men had grown to 857 by 1913. From its beginning in 1888, with five acres and two buildings, the school had grown to 25 acres and 15 buildings. When Georgia Tech was founded there was only one department, known today as the Mechanical Engineering Department. Academic curriculum and shop classes were given equal importance. The students and faculty worked under a contract system, participating in local competitions with other contractors. This method was one of the main sources of revenue for the school, and gave the students a chance to compete with other manufacturers. The iron columns for the Grant Theater and the gates for Oakland Cemetery were both manufactured under contract in the Georgia Tech foundry. After disputes arose with local Labor Unions, this system was abandoned. A quarter century after it was founded, the school had departments for Mechanical, Electrical, Civil and Textile Engineering, Engineering Chemistry, Chemistry and Architecture.

The next few years saw continuous growth for the university. Phinehas V. Stephens designed a power plant in 1913. His design was greatly enhanced by Francis P. Smith, head of the Department of Architecture, and this second scheme was erected in the years between 1915 and 1918. When the nation became involved in World War I, a new mission was instituted at Georgia Tech, as the Ground Flight Training School became part of the school. In a six-week program pilots were trained in a number of technical disciplines. The Ground School was replaced in 1918 by a training school for supply officers.

After World War I, an increase in both student and faculty populations was inevitable as Tech added a new mission of rehabilitating wounded soldiers for technical civilian jobs. In 1920, major changes occurred. Faced with an increase in student body numbers, President Matheson pressed for completion of phase three of the Coon Building. A movement also began in 1920 to transform Georgia Tech from a trade school into a research institute, and Matheson believed the fundraising necessary to accomplish that change could not be achieved without at least a tentative master plan. Professors Warren Laird and Paul Cret of the University of Pennsylvania and Francis P. Smith of Tech were commissioned to survey the existing campus and other possible locations in Atlanta for a new campus design. Warren Laird was considered to be the
leading American educator in the Architectural discipline. Under his care and with the help of Paul Cret, an Ecole des Beaux-Arts graduate, the University of Pennsylvania’s Architecture program became one of the best in the nation. Smith was a graduate of this program, and had studied under both professors before he came to Tech.

The study developed by Laird, Cret and Smith finally recommended keeping the school at its present site and enlarging the campus with purchases of surrounding properties. In 1921 they followed up with a master plan, which identified Collegiate Gothic as the desired campus architecture. The plan recommended that all campus buildings, with the exception of the Mechanical Engineering Building, the Power Plant and the YMCA, be demolished because they did not comply with this style!

In 1921 Lawrence Wood (Chip) Robert, Jr., at that time a member of both the Board of Trustees and the Athletic Association, lobbied for the appointment of Robert and Company as Supervising Engineers and Architects. He was successful in his efforts, and his firm entered into a contract with Georgia Tech as official campus architects. The contract specified their fees (six percent of a building’s cost) and gave them responsibility for all campus building and planning. Also, as part of this agreement, Professors Laird and Cret would be employed as consulting architects with their fees paid by Robert and Company. This agreement fell under official scrutiny, and a decision by the Attorney General of the State of Georgia declared “such dealings between a Trustee of the Georgia School of Technology, and a corporation in which he is a stockholder and officer” were illegal. The agreement was voided, but remained in effect for the duration of construction work on the D. M. Smith Building. Instead of Laird and Cret, Francis P. Smith was hired as associate architect.

The D.M. Smith Building was completed in 1923; and at that time was known as the Carnegie Physics Building. In the history of the Georgia Tech this building plays an important role for two reasons. The building was the first on campus to be constructed in the Collegiate Gothic style, according to the new campus master plan. Second, almost the entire funding for the building came from the Carnegie Foundation. During the financially strained times of the early 1920s, the Carnegie Foundation offered $150,000 for a campus building. Two proposals by Smith were rejected, but the third, a Physics Laboratory, was accepted as a fitting use for the Foundation’s proposed donation. In order to assure they would have the most up-to-date facility possible, Chip Robert, Jr. and Francis P. Smith went on a tour of modern physics laboratories in the eastern United States to collect information for the design of this building.

In 1923, shortly before Smith left Georgia Tech, he started a nationwide search for his replacement. Smith contacted Professor Laird at the University of Pennsylvania, and subsequently suggested four men who had been trained at the University of Pennsylvania, two of whom were his classmates. None of these men were hired; instead James L. Skinner was appointed to this position in the summer of 1923. Skimmer had received a Bachelor of Science degree from the University of Toronto, and his Masters in Architecture from Harvard. While at Harvard he became friends with Harold Busch-Brown. Under Skinner, with Bush-Brown as assistant director, the architectural program maintained the same curriculum approach as developed by Smith. This highly competitive program was consistently recognized in nationwide design competitions, and in 1925 the Tech architectural program was elected to the
Association of Collegiate Schools of Architecture. Tech was the only southern member and was admitted because of its “well balanced curriculum and through professional course and high order of student attainment.” In 1924 Tech’s architectural school was ranked first in the south and fifth in the nation.

Under the direction of the fourth president of the school, Dr. M. L. Brittain, several new buildings were constructed on the Georgia Tech campus. Between 1924 and 1929 a Ceramics Building, an addition to the Layman Hall Chemistry Laboratory and concrete stands for Grant Field were built. In 1924 the architectural team of Skinner, Bush-Brown and Stopple designed the Julius Brown Dormitory. This apartment building housed students and faculty members, and was built from funds secured from the estate of Julius L. Brown, Governor of Georgia and a generous supporter of the University. A second dormitory, the N. E. Harris Dormitory was designed by Professors Bush-Brown and Stopple, with James Herbert Gaily as associate.

The increase in student population of twenty percent between 1922 and 1925 resulted in the establishment of several fraternities to house a portion of the student body. As his last campus design, Director Skinner designed the Beta Theta Pi Fraternity House. In June of 1925 Skinner resigned his position to go into private practice. Bush-Brown replaced Skinner in the fall of 1925, and served as the Architecture School Director until his retirement in 1956. James Herbert Gailey became Assistant Director. Several new professors with excellent records were hired from all over the country.

Many of the older faculty members remained committed to the Ecole de Beaux-Arts method of design, which had been in use for many years by the major architecture schools in the United States. However, in the 1930s the Association of Collegiate Schools of Architecture criticized the design of a sophomore year project, which used the classical order, as unrelated to the functional problems of the day. The influence of the Bauhaus and European modernists was being felt, although the Gothic style remained popular for campus architecture. The national trend towards modernism was not yet felt on the Georgia Tech Campus, as indicated by the Dining Hall extension of 1928 (Brittain Dining Hall).

Following a national trend, the Architecture Department continued to assist in campus designs. Professors were encouraged to practice architecture and keep current on architectural movements, as long as teaching was their first priority. In addition, the student body profited from participation in actual design projects. The architectural firm Bush-Brown and Gailey designed Brittain Hall, but most of all this building was a showcase for many Georgia Tech departments working together. For example, the Ceramic Department designed floor tiles and the Textile Department designed the curtains and tapestry for the President’s Dining Room. The cost of Brittain Dining Hall was $125,000, and the financing came from the Greater Georgia Tech Fund, with a substantial contribution from the Athletic Association.

As the economy slowed and faltered with the onset of the Great Depression, it became more and more difficult for Brittain to raise money from private or State funds to continue his ambitious building program. He then searched for public funding and grants, and Georgia Tech was one of six Universities in the nation to receive a Guggenheim Grant. The school received $300,000 to establish a course in aeronautics and to construct a building.
The plans were drawn by professors Bush-Brown and Gailey, with their design in the Collegiate Gothic style echoing the earlier buildings on campus. The contractors for this project were Brazel, Miller and Newbanks at a cost of $100,000. The building was completed in 1930.

Also in 1930 the school received $80,000 from the estate of Mr. Joseph Cloudman, for construction of a dormitory. The firm Bush-Brown, Gailey and Associates designed an L-shape building, again featuring the Collegiate Gothic style.

After 1934 several buildings were erected on campus using funds obtained from programs under Roosevelt’s “New Deal.” The money for construction came from outright grants, with the remainder being loaned at a moderate rate of interest. Tech’s eligibility for these funds allowed the building program on campus to escalate. The first building built under the Public Works Administration was the Naval Armory. Again the building was designed by Bush-Brown and Gailey and was completed in 1935.

Brittain was concerned with the quality of living accommodation for students and the presence of a slum area (Techwood) adjacent to the campus on the south. A committee to study the need for housing was formed, and described the Techwood area as “a retched district, crowded with run-down, unsanitary frame shanties and an eye sore.” The committee successfully convinced the housing division of the Public Works Administration (PWA) to sponsor an extensive urban renewal and low-rent housing program for the Techwood area. The architectural firm of Burge and Stevens (both Tech alumni) was selected to design forty-three units plus a dormitory. The entire Techwood Project was dedicated November 19, 1935, by President Franklin D. Roosevelt. Tech rented the dormitory from 1935 until 1956, when they purchased it from the government.

The federally funded work on campus continued in 1936 with the construction of the Auditorium/Gym on Third Street under the auspices of the Works Progress Administration (WPA). Jorgenson, also a faculty member, was the primary architect with Bush-Brown and Gailey again overseeing the project. Also in 1936, the WPA sponsored a three-story L-shaped addition to the Lyman Hall Chemistry Building.

In 1937 the federal government continued its support of Tech by assisting the Board of Regents with the construction of the Mechanical Engineering Building and the Civil Engineering building. The plans for these buildings were prepared by various members of the Architecture department.
Chapter 2. The New Deal Era and Federal Government Funding in the 1930s

The Civil Engineering Building was constructed in 1938 during the height of the Great Depression, using Public Works Administration (PWA) money. The Depression was a time of great suffering, and at its worst left a quarter of the entire workforce unemployed. The PWA was created by the National Industrial Recovery Act on June 16, 1933. It’s initial budget was several billion dollars to be spent in the construction of public works as a means of providing employment, stabilizing purchasing power, improving public welfare, and contributing to a revival of American industry. The PWA was headed by Secretary of the Interior Harold L. Ickes. It was part of Roosevelt’s first New Deal act and epitomized his notion of “priming the pump”. Between July 1933 and March 1939 PWA-funded construction of more than 34,000 projects included airports, electricity-generating dams, aircraft carriers, 70% of new school buildings, 33% of new hospitals and 10% of the roads, streets and bridges. Some of the most famous PWA projects on a national level are the Triborough Bridge and the Lincoln Tunnel in New York City, the Grand Coulee Dam in Washington and the Key West highway in Florida. The PWA also electrified the Pennsylvania Railroad between New York and Washington DC. From 1933 to 1939 the PWA spent six billion dollars on construction. The South alone received over $500 million between 1933 and 1938.

In 1935 Congress passed the Emergency Relief Appropriation Act and created the Works Progress Administration (WPA), the largest and most comprehensive New Deal agency. This program was similar, but more powerful than the PWA, which continued as a separate entity. In addition to hiring people from traditionally working class backgrounds, the WPA also created programs for academics, actors and artists. The Federal Writers Project hired people to compile histories of communities across the United States. The Federal Actors Project hired actors and directors to bring live theater to towns and cities throughout the United States. A Federal Artists program hired painters to create murals on public buildings, and sculptors to create park and battlefield monuments. Both the PWA and the WPA co-existed and could be used at the same time.

The PWA and WPA were only two of several programs created. Others were the Civil Works Administration, the Civilian Conservation Corps, and the National Recovery Administration. The effectiveness of all the New Deal acts was, and is still today, highly argued and debated. Funding for the programs was cut in 1939 and the Public Works Administration was shut down. Once the United States involvement in World War II began, unemployment figures fell fast, and the WPA was shut down December 4, 1943.

Both the PWA and the WPA were administered in a similar fashion. All of the agencies’ administrators, whether assigned to Washington or to the state or local district offices, were employees of the Federal Government. The agencies prepared a guide to determine eligibility of projects, which was made available to the states. Nineteen types of projects were identified. The agencies had their own, fairly lean, staff of administrators, but all construction work was done by private contractors, who were encouraged to hire the unemployed and to give African Americans a fair share of the work. All workers’ wages were distributed directly from the U.S. Treasury.
Roosevelt proposed that compensation be based on a “security” wage, which would be an hourly amount greater than the typical relief payment, but less than that offered by private employers. This meant wages differed widely from region to region and state to state, which created many arguments. Senator Richard Russell from Georgia explained, “In the State of Tennessee the man who is working with a pick and a shovel at 18 cents an hour is limited to $26 a month and must work 144 hours to earn $26. Whereas a man who is working in Pennsylvania has to work only 30 hours to earn $94, out of funds which are being paid out of the common Treasury of the United States.” After many complaints wages were changed to closer reflect the cost of living in the state. The PWA created a three-zone labor scale, which placed the South in the lowest wage zone, paying a minimum of $.40 per hour for unskilled labor and $1.00 for skilled workers.

The distribution of money to the individual states was not uniform and was probably guided by political motivation. The money was appropriated as a grant with matching funds to come from the states. The percentage of matching funds versus grant money varied from state to state. Senator Russell of Georgia entered the amount of sponsor contributions from each state into the Congressional Record. Citizens in relatively poor Tennessee were forced to contribute 33.2 percent towards their projects, while citizens in relatively rich Pennsylvania were required to contribute only 10.1 percent.

Almost every community in the United States had a park, bridge or school constructed by one of the agencies. Because of Roosevelt’s connection to Atlanta and his frequent stays in Warm Springs, he was said to have favored Georgia in financing many of the public programs. After all, Techwood Homes was the first Public Housing Project in the nation. Roosevelt approved Techwood Homes for whites and University Homes for blacks in October 1933. In Atlanta the PWA employed thousands of workers. By 1936, 7,500 WPA workers were reported in Atlanta, a reduction from the year before since an upturn in the local job market had begun. The largest project in the entire south at that time was the Atlanta sewer system. The PWA worked with the WPA to construct the system, although the agencies disagreed over the amount of money the city should contribute. Since PWA projects cost the city much more money in matching funds, the WPA constructed most of the system. WPA made up the city’s shortage which occurred after the PWA parts of the project were completed. This reduced Atlanta’s share of the nearly $6,000,000 WPA sewer work from 23 percent to only 14 percent. In 1935, the citizens of Atlanta approved a bond issue to finance the needed matching funds for the sewer work, since a possible epidemic of typhoid fever was feared if a complete sewer overhaul was not undertaken. Other projects in Atlanta were the new City Jail, accommodating 430 prisoners, which received approval in 1933.

On the Georgia Tech campus, Brittain took advantage of many of Roosevelt’s New Deal programs to continue his ambitious building program. Over his 22 year career he was responsible for 22 new buildings - a building a year. During the New Deal era he was able to escalate this rate. The fact that Robert MacDougall, a Georgia Tech educated engineer directed construction projects as head of the WPA Operations Division in Georgia probably helped Brittain’s case. During this period several building projects
were ongoing at the same time, which caused quite a strain on the architecture department. The paperwork needed to secure approval of the federal funds was overwhelming. The school had to submit a complete set of drawings and an estimated cost for each project. The money from the agencies was given as a grant, and the matching funds had to be secured through the Board of Regents or financed through private companies and bond sales. The PWA was responsible for the Civil Engineering Building and the Mechanical Engineering Drawing Building, the Howell and Harris Dormitories, the Daniels Chemical Building addition and the Engineering Experiment Station Building. The grant that financed the last four buildings was $144,000. Made in 1938, it was the largest ever given by the PWA to any division of the University System of Georgia. The WPA, not to be outdone, financed the Auditorium/Gym Building, the Athletic Association Building, the Chemical Engineering Building and the addition to the Lyman Hall Chemistry Building. Under the Civil Works Administration the Armory, and Techwood Dormitory (McDaniel’s) were constructed.

This seems to be a relatively unknown and under-appreciated part of the history of the Georgia Tech campus. All in all, ten new buildings and major additions to two others were financed in large part by these federal programs. Brittain’s ability to find funding, and the Architecture Department’s ability to rise to the occasion by providing appropriate designs, resulted in a major growth period for the school, much of which still exists today.
Chapter 4: The Old Civil Engineering Building

The Department of Civil Engineering was founded in 1896 shortly after Lyman Hall became President of Georgia Tech. The new department focused on sanitary engineering and facilities and included laboratories, bacterial analysis and the study of purification methods. Until the new building was dedicated in December 1938 the Department shared a building with other departments. In 1938 the teaching staff of the Civil Engineering Department consisted of F.C. Snow, the Department Head, Professor J.M. Smith, two Associates Professors J H. Lucas and R. P. Black and Kenneth Thrash, an Assistant Professor. Snow stated in a letter to Brittain in March 1938 that after the completion of the new building a laboratory mechanic at an annual cost of $1500 would be needed. He also predicted the moving costs and new equipment for the hydraulic lab and the classrooms to be $4850.

The original drawings for the building indicated both hydraulic and highway labs, but a letter from the Regents of the University System of Georgia stated that there was “not a cent” available for the proper equipment of the labs. The building was to be dedicated and a request to the General Assembly for $150,000 would be made in 1939. Since Carl Edward Kindsvater (1913 – 2002), who arrived at Georgia Tech in 1945, was credited as the founder of the Georgia Tech Hydraulics Laboratory, it is entirely possible that the installation of the lab equipment was not completed until after his arrival. It is also not clear whether the highway lab was ever located in this building. By the 1950s, both lab spaces shown in the original plans were used for hydraulics. Kindsvater graduated from the University of Kansas and received his M.S. from the University of Iowa. At Georgia Tech his positions ranged from Associate Professor in the Civil Engineering Department to a Regents Professor Emeritus. He also worked for the Tennessee Valley Authority for six years and the Army Corps of Engineers for two years before arriving at Georgia Tech. At Tech he created the graduate program in hydraulics and water resources. Kindsvater also initiated and led the Water Resource Center, a viable research facility that continues to this day according to the principles he established. He authored several books and published papers on fluid mechanics and hydraulic engineering, and was the winner of numerous awards from the American Society of Civil Engineers.

The building’s name was always the Civil Engineering or CE Building. In October 1938 Brittain received a letter from John G. Kennedy, a member of Board of Regents, stating that Georgia Tech had several unnamed buildings on their campus and suggesting they form a Committee to select names. He reminded Brittain that under an agreement between the Government and the Board of Regents, they were not permitted to name a building for a living person. Brittain replied the same day, stating that such buildings as the Naval Armory, the Gymnasium/Auditorium, the Civil Engineering and Mechanical Engineering Drawing Buildings would serve their purpose better if they were allowed to be called just what they were instead of naming them after anyone. In the 1960s the name was changed to the Old CE Building, after a new Civil Engineering Building was constructed on campus.
The Civil Engineering Building is located on Third Street. The building was designed by Bush-Brown, Gailey and Morenius as indicated by the Georgia State architect registration numbers on the original drawings. A fourth number could not be identified but probably belonged to Jorgenson. Both Morenius and Jorgenson were Associate Professors in the Architecture Department. The building was constructed in one phase at a cost of $130,000 by Mion Construction Company. Whereas the style was simplified due to financial constraints, the quality of construction was excellent. Some of the building materials that were used were considered high-end for this time period (especially the ceiling tiles). PWA and WPA projects always featured high quality construction. The land was acquired from Peters Land Company in 1937. The building represents one of the last to be built in the Collegiate Gothic style on campus. With the appointment of Paul Malcolm Heffernan to the Architecture Department in 1938, the design of future campus buildings came under the influence of the American Modernist Movement.

The building site along Third Street sloped off to the north and east, providing an opportunity to allow daylight and a direct entrance into the basement, which was used as laboratory space. In addition to the basement, the reinforced concrete main structure has three upper floors. The third floor is located under the roof and had several unused attic spaces. The original drawings also provided a set of alternate drawings for the omission of the third floor. The hydraulic laboratory has two stories and sits perpendicular to the classroom building. The footprint of the building is generally U-shaped with appendages. The exterior has red brick curtain walls and gabled roofs, covered with slate tiles. Limestone trims the windows, doors and gables. As in all of the Collegiate Gothic Public Works Administration buildings on campus, the amount of ornamentation has been minimalized.

All windows in the building seem to be original. They are multi-light metal hopper windows. Generally two different types and groupings of this basic window appear on the building. On the east, south and west elevations windows are generally smaller. Here they have between six and nine lights and appear in groups of one, two or three windows. Each window in a group is set in separately and has an individual limestone surround. A higher glass to wall ratio was needed for maximum daylight in the classrooms, where four twelve-light windows are grouped without dividers between them, creating a considerably larger window and almost giving the appearance of a mill type window.

The south (Third Street) elevation is very symmetrical with a gabled end on either side of the central section. The main entrance into the building is reached from a large patio accessible by concrete stairs from either side of Third Street. The patio has a continuous red brick balustrade with rectangular openings and a limestone cap. It is covered with sandstone tiles. The entrance rises five stairs with a stone buttress on either side above the patio and has an arched opening trimmed with limestone. The door is recessed quite deeply into the opening, creating an entrance loggia. The entrance consists of three non-historic metal frame doors with glass paneling and a transom above each door. Fenestration on the central section is highly symmetrical and, with the exception of a group of windows above the entrance, identical on both floors. On the second floor three windows are grouped above the entrance, each lined with limestone. This window group
has the same width as the entrance arch. A limestone drip cap runs along the entire building between the basement and first floor. Each gabled end has three windows grouped on the first and second floors. These windows are centrally located and are trimmed with limestone and have decorative limestone spandrels and quoins on the outside of the group. This limestone and window plate gives the gabled end a vertical thrust. Above the group a small single window is located on the third floor. Unfortunately some of the windows have air-conditioning units in them.

The east façade has three distinct sections, each protruding a little further out. The central section, also the smallest, houses a secondary entrance, which leads directly into the basement level. The entrance doors are non-historic double metal doors with glass panels. This entrance also has a non-historic metal awning. Each floor has a group of two windows centrally located above the entrance. The section to the left has two windows grouped on each floor. The section two the right is gabled and has an entrance at the basement level. The entrance has two double metal doors with multiple glass panels. The first and second floors have a grouping of three windows, and a grouping of two windows is located in the gable.

The north (rear façade) of the main building consists largely of windows. Here four groups of the twelve-light windows are located on the basement level and the first and second floor. The third floor has the same large windows, but only in the center section.

The west façade of the main building has a gabled center section which houses another entrance, leading directly into one of the two main staircases. A metal ramp allows wheelchair access to this door. The door opening has a simple limestone surround. The doors are non-historic metal double doors with glass panels and metal and glass transoms above. The section on the left has three two-window groupings and the section on the right has two two-window groupings on the first and second floors each. Due to level changes the basement windows on this floor are only half size.

The hydraulic laboratory is located perpendicular and adjacent to the main building. It is a story and a half high and has a gabled roof with the roofline running north-south. The interior is one wide open space with a cat walk or balcony along the perimeter walls. Almost industrial in style the building has no ornamentation. The exterior has red brick walls. The windows are large multi-light metal hopper windows with a center mullion. Only the window sills have limestone. The east façade has a central entrance. The doors are metal double doors with glass panels. A smaller window sits above the doors and a large tall window is located on either side. The north and west façades have three of the tall windows evenly spaced across.

The grounds on the front of the building are heavily landscaped with a combination of lawn, shrubbery and mature trees. Either side of the building has a paved alley to allow access to the paved two level parking lot. The two levels are connected by a concrete ramp for cars and a set of stairs for pedestrians.
On the interior the first and second floor have a central corridor running in an east-west direction and ending on either end in a stairwell. These two staircases connect all three floors and the basement. The main entrance leads into the center of the corridor. All rooms are entered either through this corridor or directly from the staircase. Originally the first floor housed two drafting rooms, a lecture hall, a library, an instrument room, a small classroom and two offices and bathrooms. The second floor had a large geology laboratory, a small laboratory, a lecture hall, a library, two equal-sized classrooms and again two offices and bathrooms. The third floor had a drafting room, an acoustical and illumination lab, a cast room, a recording room, a shop and several unfinished attic storage spaces. The original spaces on these floors have been divided and further subdivided to fit the changing needs of the department, and after a new CE building was constructed, this building has also been used by other departments. Only one or two large classrooms still exist on the first and second floor that give a better picture of the original size and layout of the lecture halls and classrooms. The basement level originally housed laboratories, the biggest being the highway laboratory. A direct connection to the hydraulic laboratory also exists in the basement. The former highway lab has been subdivided into several small research labs used mainly by graduate students.

The finishes inside the building have not been changed greatly. All corridor floors and stairs and all the baseboards in these areas are terrazzo. The floors in the classrooms are now covered with wall to wall carpeting. The original drawings specified hardwood floors with metal baseboards. The hardwood floors still exist underneath the carpeting. Some of the areas on the third floor (attic) were finished in rough cement. These areas were probably not used initially. The bathroom floors still have the original and typical black and white square tiles. The stall dividers are marble. The original walls and partitions are plastered and painted. Some of the newer partitions are painted sheetrock. The ceilings have Celotex ceiling tiles. Whereas in some rooms anachronistic 18 by 18 suspended acoustic tiles were installed, the original 12 by 12 Celotex tiles still exist in most areas. This type of fibrous board or insulation board was first brought onto the market by Celotex in the mid 1920s and eventually became a generic term. A border of rectangular tiles was installed around the perimeter of the room. Then the 12 by 12 acoustic (or insulation tiles) were added in a diamond pattern into the remaining space. These were removed in some areas when the suspended ceilings were installed. The light fixtures are not original. Entry doors all have been replaced with new metal and glass doors. Many of the original wood interior doors still exist. Some even have the original brass hardware. The door surrounds are wood, which is painted grey to look like metal. Several of the original built-ins like a blackboard in the classroom on the first floor, display cases in the former smaller corridor on the first floor and tack boards on the third floor still exist. Several of the existing radiators still exist.

Changes to the Building

The changes to the building seem minimal and are largely confined to different usage and subdividing of interior spaces. Almost all original interior walls are still intact. The two
identical staircases were closed off from the corridors probably in the mid-1940s, when stricter fire codes did not allow open staircases in public buildings.

A recent walk-through with William A. (Bill) Miller, a Georgia Tech who took all of his undergraduate classes in the Old CE Building between 1959 and 1962 revealed several changes in the use of the building. He remembers the building as a vibrant place alive with students busily scurrying around. At that time only twelve students out of 6000 were women, and as far as he remembers none were in the Civil Engineering Department. Only one small bathroom, which could be used by women was located on the second floor; all other bathrooms were for males. On the first floor the small corridor perpendicular to the main corridor had been walled of and was used as a student lounge. Here tables and chairs were placed for students to study and relax. During that time students were allowed to smoke anywhere and anytime in the building as long as they brought an ashtray. Bill remembers the instrument room on the first floor very well. Also the lecture halls and classrooms still had wooden floors and were furnished with one armed desks. The drafting room had drafting tables. On the second floor the area originally designated as the geology lab was a classroom. The geology lab was on the third floor in one of the smaller attic areas. He is not sure what else was on the third floor, but does not think he took any classes other than the geology lab up there. The stairs that now lead to the roof top where not there in 1962. They were added when the building was used by the Atmospheric Science Department, which operated a wind lab on the roof.

The marvel of the department was the hydraulic lab in the basement. By the time Bill was a student in this building the highway lab had already been moved to the new Highway Laboratory Building and was replaced with a larger and newer hydraulic lab. At this time the world-renowned professor Dr. Kindvater of German descent was the head of hydraulic research. The large open space was filled with channel troughs with plastic sides where researchers could observe quantified water releases and the effect on sediments down stream. The Department worked closely with the Tennessee Valley Authority and similar government organizations, which utilized this type of research for water management and dam construction. After the new CE Building was completed, a lot of the lab equipment was moved there. Today this area is subdivided into several smaller research labs for graduate students. The original hydraulic lab still exists, but is in the process of being dismantled as this report is written.

In 1964 and 1965 repairs were done to the exterior of the building, mostly dealing with broken limestone pieces. Also in some areas the brick was buckling away from the concrete and was pinned to the concrete columns.

Character Defining Elements
The elements that define this classroom and lab building as historic and typical for its period of construction are identified as follows and should be treated with great care during the rehabilitation of the building. To stay in compliance with the Standard of Interior’s “Standards for Rehabilitation,” we recommend retaining and repairing these features.

Corridors and Main Stairs
The corridors and stairs should be left intact and not be further subdivided. The non-historic corridors on the basement level can be removed. Depending on the new use of the building this area could become a wide open space again or be subdivided differently.

Ceilings
Celotex ceiling tiles became main-stream in the mid-1920s. Before that scientific study of fiber board tiles started as early as 1895. By 1925 Celotex used a felted sugar cane fiberboard that generally had insulation value and, additionally, by perforating the same tile, they created a tile with acoustic value. Unlike earlier versions made by other manufacturers, these acoustic tiles could be painted. They were used to dampen noise inside a space and reduce noise traveling between rooms. By 1935 Celotex offered two versions of the tiles. One was made from cane fiber, the other was made with mineral fiber. Several forms of installation were possible. The tile could be glued or nailed to furring strips. It is not known which type was used in the Old CE Building but both insulating (no holes) and acoustic (perforated) were used. In the original drawings the acoustic version was specified for the classrooms and lecture halls. The remainder of the building was specified as insulation board. Tiles were glued directly to the concrete ceiling. The ceiling is almost completely intact on the first floor and in some areas on the second and third floors. It has been removed in areas where non-historic suspended ceiling tiles have been installed. Ceilings in this area should be returned to their original height, and replacement tiles, where necessary should resemble the original in design.

Terrazzo Floors and Stairs
Terrazzo is defined as small pieces of marble or other hard stones embedded in a Portland cement matrix. After sufficient time for it to cure it is ground and then polished to a smooth finish. Terrazzo is derived directly from Venice and was known as “pavemente alla Venice,” or pavement from Venice. There it became popular as early as the 1890s and was used instead of mosaic floors. It was not until the mid-1920s that terrazzo became popular in the United States. The invention of electric sanders and installation of divider strips to keep floors from cracking or buckling made installation easier. The brass divider strips were used for the first time in 1919. These strips minimized cracking due to shrinkage, subdivided areas for color changes and provided guides for construction. The ratio is normally 70% stone to 30% Portland cement. The stone is graded by size and coloring, and pigments can be added to obtain desired shades. Terrazzo is not just limited to floors, but could also be pre-cast into a form for cove moldings, wainscoting and either pre-cast or cast-in-place treads for stairs. In the Old CE Building the floors are divided into large fields by divider strips and bordered by a darker colored terrazzo, which leads seamlessly into the baseboard. The stair treads are also
terrazzo. With the exception of a few areas the floors are in great condition and should be carefully cleaned and retained.

Wood Floors
The original hardwood floors still exist underneath the carpeting. They should be retained if their condition is reasonably good. Restoring them would be desirable, but they could be covered with other materials as long as this process is reversible.

Interior Wood Doors
Many of the original wood doors exist in the building. They should be retained where possible if they are compliant with current building codes. New doors should be replaced in kind.

Windows
All windows in the building are original and are in varying condition. They should be retained if conditions allow. Glazing can be replaced to achieve better energy or other options like interior storm windows could be explored.

Hydraulic Laboratory Wing
Since most of the original equipment will be removed from this area it would be desirable to display mounted historic photos and drawings with explanatory captions. If possible, the entrance and the balcony should be retained in addition to the windows.
Bibliography

Atlanta City Directories 1907-1955. On file at the Atlanta History Center

Blueprint, 1922. On file at the Georgia Tech Archives.

Blueprint, 1940. On file at the Georgia Tech Archives

‘Charles A Mion, Jr. Dies of Injuries”. Technique, October 9, 1936, Atlanta, Georgia.

City Builder, October 1924, page 11.

Drury, Warren. “A Walk Through History : A Look at Georgia Tech’s Architectural Heritage.” On file at the Georgia Tech Archives

Georgia Tech Archives, Board of Regents Records, UA017

Georgia Tech Archives, Buildings and Grounds File.

Georgia Tech Archives, Carl Kindsvater Papers (MS #028)

Georgia Tech Archives, Early Presidents Collection, VA 004

Georgia Tech Archives, VA989.JPG

Georgia Tech Archives, VAC 19, 1949.

Georgia Tech Archives, VAC 20, 1949.

http://eh.net/encyclopedia/article.couch.works.progress.administration

Miller, William A. Personal interview and walkthrough August 3, 2006.

Minutes of the Board of Trustees November and December 1927

Mion, Charles, III. Telephone interview and personal photo collection.

“Prof. J. H. Gailey Of Tech Dies at 79.” *Atlanta Constitution*, June 1, 1966

Sanborn Fire Insurance maps. On file at the Atlanta History Center.

Who’s Who in the South, 1927.

www.ellisisland.org/search/matchmore.asp?kind=exact&FNM=&LNM=Mion

www.icycyclopedia/w/wo/works_progress_administration.html

www.ohiohistorycentral.org/entry.php?rec=1011

www.fastcase.com
Attachments

1.) Sanborn Fire Insurance map, 1892. On file at the Atlanta History Center.
2.) Sanborn Fire Insurance map, 1899. On file at the Atlanta History Center.
3.) Sanborn Fire Insurance map, 1911. On file at the Atlanta History Center.
4.) Campus picture with students, 1888. City Builder, 1911.
5.) Rendering, ca.1920
6.) Photo showing first faculty at Georgia Tech, dating from 1890. From Images and Memories.
7.) Photo from the George Woodruff School of Mechanical Engineering Photo Archives.
8.) Charles W. Leavitt landscape plan, April 1912.
9.) Preliminary architectural master plan by Professors Laird, Cret and Smith, 1921.
Attachment 1.10: Undated photo of the Guggenheim School of Aeronautics. Georgia Tech was one of six schools in the nation to win the Guggenheim Grant.
Attachment 1.11: Rendering of Cloudman Dormitory
Attachment 1.12: Undated photo of the Old Naval Armory. This was the first building erected on campus under the Public Works Administration.
Attachment 1.13: Photo of Techwood Homes Dormitory construction dated 1935.
Attachment 1.14: Undated photo of the Old Gymnasium and Auditorium, one of two WPA project started in 1936.
Attachment 2.1: 1936 Newspaper article from the Technique stating that Georgia Tech will receive a grant of $144,000 for new buildings from the Public Works Administration. This was the largest grant made by PWA to any division of the University System of Georgia.
Report on Building Projects for Summer and Autumn of 1938

Under Public Works Administration

<table>
<thead>
<tr>
<th>Project Details</th>
<th>Sponsor/Contributor</th>
<th>Total Cost (est)</th>
<th>Status of Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. P.W.A. #1367 Engineering Drawing Building</td>
<td>Board of Regents Georgia Tech Archives, Library and Information Center</td>
<td>$132,500.00</td>
<td>Under construction, including structural frame and external walls of addition. Completion date September 9, 1938.</td>
</tr>
<tr>
<td>To complete addition</td>
<td></td>
<td>$21,000.00</td>
<td>Not authorized; funds not available, unless they can be transferred from surplus on PWA 1404 D</td>
</tr>
<tr>
<td>11. P.W.A. #1404 C. E. Class Room Building</td>
<td>Board of Regents</td>
<td>$131,500.00</td>
<td>Under construction; Completion date Aug. 21, 1938; $152,600 set up for this project, leaving surplus of $21,000.</td>
</tr>
</tbody>
</table>

Under Works in Progress Administration

<table>
<thead>
<tr>
<th>Project Details</th>
<th>Sponsor/Contributor</th>
<th>Total Cost (est)</th>
<th>Status of Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4. Swimming Pool (addition to above)</td>
<td>Board of Regents</td>
<td>$77,505.70</td>
<td>Project has been set up and WPA ready to begin, but actual work delayed due to uncertainty in financing. 10 months to complete.</td>
</tr>
</tbody>
</table>

Under School Direction

<table>
<thead>
<tr>
<th>Project Details</th>
<th>Sponsor/Contributor</th>
<th>Total Cost (est)</th>
<th>Status of Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>V. General Tech Projects: 1. Dining Hall addition</td>
<td>Georgia Tech Including: 2. Ceramics Addition O.D.K. $5,000</td>
<td>$40,027.73</td>
<td>Estimates and application signed by Dr. Brittain, June 10th and being forwarded to Washington by WPA the week June 20th; approval expected in 4 weeks; The earliest date anticipated for beginning of construction, Aug. 1, 1938.</td>
</tr>
<tr>
<td>3. Underground Cogdulits etc. to new bldgs.</td>
<td>Special Fund $5,000</td>
<td>115,227.58</td>
<td></td>
</tr>
<tr>
<td>4. Rewiring M. E. Bldgs.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attachment 2.3: Letter showing interest by a company specializing in Municipal Bonds to issue bonds for the financing of the schools share for a P.W.A. project.

WIDMANN & HOLZMAN
MUNICIPAL BONDS
MERCANTILE LIBRARY BUILDING
CINCINNATI

SEPTEMBER 19TH, 1938.

GEORGIA SCHOOL OF TECHNOLOGY,
ATLANTA, GEORGIA.

GENTLEMEN:

ATT: MR. M. L. BRITAIN.

WE HAVE BEEN OFFICIALLY ADVISED THAT YOUR GRANT IN CONNECTION WITH P. W. A. DOCKET NO. 1577, HAS BEEN FORMALLY APPROVED.

AS WE ARE VERY MUCH INTERESTED IN THE FINANCING OF THE SCHOOL'S SHARE OF THIS PROJECT AND PRESUME THAT YOU WILL ISSUE BONDS THEREFOR, WE WOULD APPRECIATE YOUR ADVISING APPROXIMATELY WHEN THESE BONDS WILL BE READY FOR SALE. WE WOULD ALSO APPRECIATE YOUR ADVISING WHAT SOURCES OF REVENUE WILL BE PLEDGED TO THE PAYMENT OF THE BONDS.

A SELF-ADDRESSED RETURN ENVELOPE IS ENCLOSED FOR YOUR CONVENIENCE IN REPLYING.

AWAITING YOUR RESPONSE WITH INTEREST, WE ARE, WITH BEST REGARDS

Yours Very Truly,

WIDMANN & HOLZMAN
Attachment 3.1: Photo of President Brittain, Blueprint 1932. On file at the Georgia Tech Archives.

Attachment 3.2: Photos of Dean Bush-Brown and several of his faculty members. Blueprint 1949. On file at the Georgia Tech Archives.

Attachment 3.4: Letter to Mion Construction Company confirming a change order for project Ga.1404, the Old CE Building.

September 9, 1939

Re: P. W. A. Project
Ga. 1404 D. S.

Mion Construction Co.
Sona Allen Building
Atlanta, Georgia.

Gentlemen:

This is to inform you that we have just received a copy of contract change No. 9-1-8 from the Public Works Administration signed by Mr. Cole, Regional Director on August 27th, confirming authorization of this change order amounting to $4,686.86. This conforms with our previous letter to you stating that this change order had been approved by the Board of Regents.

This change order includes top floor corridor, lighting, completion of the interior of the acoustical laboratory, shelving in east room, cement walks, and acoustical laboratory pumps. While the contract is complete and has been accepted except for this change order, you are allowed on this change 40 days additional.

You are requested to proceed with this work as expeditiously as possible.

Yours very truly,

DEPARTMENT OF ARCHITECTURE, ARCHITECTS

Harold Bush-Brown
Head of Department.

HBB/bn
Cyo. Dr. Brittain
Mr. Siebert
Mr. Kollock
Attachment 3.5: Advertisement from the 1907 Atlanta City Directory for Mion Brothers Contractors.
Attachment 3.6: Mion family photo showing Charles and Eleonor with Catherine and Charles A. Mion Jr. Judging by the age of the children the photo was probably taken around 1915.
Attachment 3.7: Newspaper article published in the Technique October 9, 1936 after Charles A Mion Jr. dies in a tragic accident.
Attachment 3.1: Photo of President Brittain, *Blueprint* 1932. On file at the Georgia Tech Archives

Attachment 3.2: Photos of Dean Bush-Brown and several of his faculty members. *Blueprint* 1949. On file at the Georgia Tech Archives

Attachment 3.3: Photos of James Herbert Gailey. *Blueprint* 1940. On file at the Georgia Tech Archives.
Attachment 3.4: Letter to Mion Construction Company confirming a change order for project Ga.1404, the Old CE Building.

September 9, 1939

Re: P.W.A. Project
Ga. 1404 D.S.

Mion Construction Co.,
Bona Allen Building
Atlanta, Georgia.

Gentlemen:

This is to inform you that we have just received a copy of contract change No. 9-1-8 from the Public Works Administration signed by Mr. Cole, Regional Director on August 27th, confirming authorization of this change order amounting to $4,685.86. This conforms with our previous letter to you stating that this change order had been approved by the Board of Regents.

This change order includes top floor corridor, lighting, completion of the interior of the acoustical laboratory; shelving in east room; cement walks; and acoustical laboratory pumps. While the contract is complete and has been accepted except for this change order, you are allowed on this change 40 days additional.

You are requested to proceed with this work as expeditiously as possible.

Yours very truly,

DEPARTMENT OF ARCHITECTURE, ARCHITECTS

Harold Bush-Brown
Head of Department.

Ms. Brittain
Mr. Siebert
Mr. Kollock
Attachment 3.5: Advertisement from the 1907 Atlanta City Directory for Mion Brothers Contractors.
Attachment 3.6: Mion family photo showing Charles and Eleonor with Catherine and Charles A. Mion Jr. Judging by the age of the children the photo was probably taken around 1915.
Attachment 3.7: Newspaper article published in the *Technique* October 9, 1936 after Charles A Mion Jr. dies in a tragic accident.

Tech

Legalized in the second century.
Paying so poorly was illegal under Georgia law. The bangles in the den were passed on.

Prospered his 1905 undefeated once. He was among the best.

Chas. A. Mion, Jr.

Dies of Injuries

Charles A. Mion, Jr., 19, died Friday morning at the Piedmont Hospital as a result of injuries received in an accident following the Tech-Presbyterian football game.

Mion was a Sophomore at Tech and a member of the Sigma Chi fraternity. He attended Riverside and graduated from the Georgia Military Academy.

His father, Charles A. Mion, Sr., is a prominent business man of Atlanta. He is survived by his father, a brother, John Mion, and two sisters, Mrs. C. L. Faun, Jr., and Mrs. L. W. Robert III.

Funeral services were held at the Sacred Heart Catholic Church with members of Sigma Chi fraternity acting as pall-bearer.
Attachment 4.1: The Civil Engineering Department at Georgia Tech was founded in 1896 and focused mainly on Sanitary Engineering. In this undated photo four seniors survey for water and sewage systems in Kirkwood, Georgia.
Attachment 4.2: Professor Carl E Kindsvater, an internationally renown scientist, was credited as founder of the Georgia Tech Hydraulics Laboratory and the Water Resource Center. He authored several books and published papers on fluid mechanics and hydraulic engineering.
November 17, 1937

Dr. A.L. Britain, President
Georgia School of Technology
Campus.

Dear Dr. Britain:

The Board of Regents has set Thursday, December 2nd at 1:00 P.M. and 2:00 P.M. for the opening of bids on the two Class Room Buildings for which we have prepared plans and specifications. These buildings are as follows:

Engineering Drawing Bldg., P.W.A. #1367 - estimated cost $115,500.00
C.E. Class Room Bldg., P.W.A. #1404 - estimated cost $140,000.00

Our specifications state that the owner will remove existing buildings from the site before the beginning of construction operations. Assuming that the bids are satisfactory and that there is no delay in awarding and signing a contract, the actual construction work should begin by December 9th. We understand there will be no difficulty in having all occupants out of the buildings and the buildings torn down before this date.

I am enclosing herewith prints of a perspective on both buildings. We are also supplying a set of blue prints and specifications set #1 for each building.

Respectfully yours,

Harold Bush-Brown
Head of Department
October 25, 1938.

Honorable John G. Kennedy
Seventh Floor, Realty Building
Savannah, Georgia.

Dear Mr. Kennedy:

Your letter of October 25 has just been received, and I take pleasure in answering.

You are correct that we have not named any of the new buildings. It is my belief that such buildings as the Naval Armory, Gymnasium-Auditorium, Civil Engineering, and the Mechanical Engineering Drawing Buildings will serve the purpose better if we let them be called just what they are instead of naming them after any one. However, this opinion is subject to modification if any good reason should develop.

We have always named our dormitories after some benefactor of the school, and it is my wish — concurred in by the Executive Committee of the Faculty — that the two new dormitories should be named in honor of Clark Howell, Senior, who gave us our Radio Station, WGST, and the other for George W. Harrison, Jr., who left us $20,000 a year or two ago. In fact, we purchased some additional land needed with the aid of the Harrison funds.

Further, that it would be logical and right to name the new EXPERIMENT STATION BUILDING after the first President, Isaac J. Hopkins. Some such tribute should have been paid him long ago.

I hope that you, gentlemen, will agree with these conclusions, and Chairman Smith tells me that he is in hearty accord.

I think the action of the Board is wise, and I shall appreciate the favor if you will write me about your feeling concerning these recommendations of mine.

Cordially yours,

President.
Attachment 4.5: Letter from Brittain to the Board of Regents discussing the lack of funds available for the labs in the CE Building.

August 25, 1938

Chancellor S.V. Sanford
University System of Georgia
Room 331, State Capitol
Atlanta, Georgia.

Dear Chancellor Sanford:

In reply to your letter of August 15 — particularly to paragraph 5:

Our three buildings, which are nearly completed, namely, Gymnasium-Auditorium, Civil Engineering, and Mechanical Drawing Buildings, will be equipped by us as best we can under the circumstances. Our Athletic Association will aid us with the seating arrangements in our Auditorium-Gymnasium since the Regents cannot aid at this point. As for the other two buildings, we shall use the old equipment now on hand, and wherever the Government permits, we shall put in equipment as a part of the building structure.

Since we have no dormitories under construction as yet, that part of your letter referring to these buildings do not, of course, apply to us.

With best wishes, I am,

Cordially yours,

President.
Attachment 4.6: Letter from Brittain to the Board of Regents announcing, with the exception of the pumps and sluice gates, the satisfactory completion of the building by the Mion Construction Company.

October 7, 1938.

Chancellor S. W. Sanford
University System of Georgia
Room 331, State Capitol
Atlanta, Georgia.

Dear Chancellor Sanford:

In response to the request from the Secretary of the Board of Regents, under date of October 8, I take pleasure in recommending that the P.W.A. Project, GA.1404 D.S., Civil Engineering Class Room Building, with the exception of the delivery and installation of pumps and sluice gates under recent change orders, be accepted. With this exception the contract with the Mion Construction Company has been completely carried out in a satisfactory manner.

Very truly yours,

President.
Attachment 4.7: Program announcing the dedication of the CE Building.

Exercises in Gymnasium - Auditorium 11:30 A.M. Thursday, December 15, 1938

Programme
Honorable Clark Howell
Presiding

Music.................. Georgia Tech Band
Invocation............. Dr. Louise D. Newton

Welcome and Presentation of Guests
President M. L. British

Address
Honorable E. D. Rivers
Governor of Georgia

Presentation of Keys to Regents
H. T. Cole, Regional Director PWA

Acceptance for Regents
Chancellor S. V. Sanford

Acceptance for Georgia School of Technology
Honorable L. W. Robert, Jr.

Benediction............. Dr. Louise D. Newton
Recessional.............. Georgia Tech Band

The following buildings have been completed within recent months and will be dedicated at the exercises:

Civil Engineering
Mechanical Engineering
Auditorium = Gymnasium

Inspection of new buildings will be made before and after the Exercises. Faculty members will serve as guides.
Attachment 4.8: 1932, updated 1951 Sanborn Fire Insurance map, showing the CE Building.
Attachment 4.9: Photo of the new CE Building appeared in the *Technique*, October 7, 1937.
Attachment 4.11: Letter, dated November 17, 1939, from Harold Bush-Brown to the Board of Regents confirming the total completion including the hydraulic laboratory of the CE Building.

November 17, 1939

Re: F. W. A. Project
Ga. 1404 D. 3.

Mr. L. H. Siebert, Secretary
Board of Regents
State Capitol
Atlanta, Georgia.

Dear Mr. Siebert:

We are writing at your request to record the completion of all matters pertaining to the contract under F. W. A. Docket Ga. 1404 D. 3. This covers the contract with the Mion Construction Company for the erection of a Class Room Building (The C. E. Building) at the Georgia School of Technology. All terms of the contract providing for the construction of the building according to plans and specifications and all change orders, including hydraulic laboratory equipment, have been satisfactorily fulfilled.

Yours very truly,

Harold Bush-Brown
Department of Architecture,
Architects
Attachment 4.12: Photo titled Civil Engineering, Hydraulic Laboratory, 1949. Courtesy of the Georgia Tech Archives. VAC 6-19