It is a pleasure to be here with my fellow Rotarians in the high-tech capital of Alabama. We like to think that we are on our way to making Atlanta the southeastern center of high tech activity, but you are already one of the hot spots with 12 of your largest 20 employers in high tech areas. You also have two other important ingredients that are known to attract high tech companies – 1. A ready supply of talent and a source for research collaboration in the University of Alabama, Huntsville; and 2. A high quality of life.

Still, no high tech community stands as an island, I don’t think I am being too forward in saying that Georgia Tech is contributing to the success of your new economic base. We have 220 Alabama students at Georgia Tech this year, and many of them will come back to Huntsville like others before them. In fact, there are over 900 Tech alumni in and around Huntsville and northern Alabama, one of the largest concentrations of our alumni outside of Georgia. I think many of you also know that Georgia Tech is one of your high tech employers through the Huntsville Research Operations of our Georgia Tech Research Institute. We have about 50 people in this office working with the Redstone Arsenal under the direction of Dr. Barry Bullard.

Our states, Georgia and Alabama, have more in common than either would probably like to admit. They are next-door neighbors a region of the country experiencing positive change. Sixty years ago, President Franklin Roosevelt called the South the nation’s number one economic problem. Today, the respected British magazine *The Economist* calls the South “the locomotive powering the American economy.” I was born in south Georgia, and my lifetime spans this remarkable period. Unless we completely mess things up, we are on our way towards escaping the evils of poverty and backwardness that characterized the south when I was a child.

The South has been the nation’s fastest growing region during the 1990s. Notably, we have about a third of the nation’s colleges and universities, but over the past decade, we have accounted for more than half of the nation’s enrollment growth.

During this decade, OVER HALF of the new jobs in the nation were created here in the South. Job growth in both Georgia and Alabama outstripped the national rate. Per capita income in both of our states has grown faster than the national average.

Keep in mind too that the nation’s and this region’s recent economic growth has been fueled by information/telecommunications technology, with almost half the jobs created in the past five years coming in this area. These high tech jobs also paid on average twice that of those in other sectors.

We approach the new millennium with our national economy riding high. And while we’ve been enjoying economic vigor, our primary international competitors – Japan, the Pacific Rim and Germany – have been slowed by economic difficulties. So who is going to stop us?

Well, in the words of that great American philosopher Pogo, “We have met the enemy and the enemy is us.” It is my belief that the greatest threat to our ongoing success and prosperity is our
own complacency and lack of interest in investing in our future in the way those who went before. I would like to explain what I mean by this and hopefully leave the message with you that this issue needs our urgent attention.

In recent times, the United States has been the innovator while the rest of the world was the imitator. We made new discoveries, thought up new ideas, explored new fields; and the rest of the world copied us.

Many of our inventions were driven by the Cold War. The Space Race that spawned NASA, the Marshall Space Flight Center and the Redstone Arsenal was part of this picture. The Department of Defense funded basic research with the purpose of producing military innovations. And it did. But it also gave us weather and communications satellites, passenger jets, robotics, remote sensing technologies, supercomputing and the Internet, to name a few. Where would our job creation today be without the investments made by the federal government 30 years ago?

For 40 years following World War II, Defense Department research drove a wide variety of innovations in fields like aerospace, electronics and communications. Did you know that even today, DOD research activities pay for over 50% of the research done in this country by electrical engineers at universities. And, it is the knowledge accumulated from the previous research still drives our success and prosperity today.

But it is about to run out. Spending for defense-related research has been declining since the end of the Cold War, and in the process we are losing the innovation it brought to important commercial fields. Federal spending for other kinds of research is also on the decline, squeezed like a lemon at a country fair by budget reform. Between 1993 and 1995, federal research spending fell by 12 percent. As a percentage of the federal budget, spending for R&D is at a 30 year low.

The outlook for the next five years is more of the same. Overall federal spending for research and development is projected to decline by 13.4 percent in real dollars, with defense spending expected to drop by 14.3 percent, while other research funds decline by 12.4 percent. NASA is projected to take a 14.8 percent cut, adjusted for inflation. Sadly these reductions are not even part of our national debate about how to use the surplus, which is striking given the rapidly growing dependency of world markets on technology.

Added to this are the hard economic facts that are driving our industry away from investments in long term research and towards what is needed for short term gain.

In the meantime, other nations are beginning to make the transition from imitators of American discoveries to innovators in their own right. Research and development have begun to follow manufacturing overseas. Believe it or not, countries like Ireland, Israel and even India are the latest sites for software investment and are steadily ramping up their investment in research.

This whole process of other countries emerging to compete with the United States as innovators, has been escalated by the speed with which technology is changing. IBM has recently begun to measure the life of its products in “web months.” One web month is equal to three calendar
months. That's four potential product cycles just in the course of one year. A measure of this is found at Hewlitt Packard, where 60% of their sales come from products developed in the last two years.

When technology changes this quickly, there are a lot more openings for something new or somebody new to get a foot in the door. Innovation becomes very competitive. We are cutting federal research dollars at the very time we need to be faster about innovating than we were in the past and faster than everybody else around the world. These cuts have an insidious side effect of reducing the numbers of U.S. citizens who are attending graduate school, because research funding not only supports research, but also the salaries of graduate students.

Let me give you an example of the kind research that could be critical for the future, but which will be harder to fund if present trends continue. Now you may find it odd that I am going to talk about leeches. That's right, leeches, a lowly species with a bad reputation for their place in medical history and film epics like the African Queen. But this story revolves around what they can do when combined with the ideas of a very bright physicist and biotechnology faculty member at Georgia Tech named Bill Ditto, who works in an unusual interface area between biology, engineering and mathematics. He is a specialist in using chaos theory and already has a number of patents for developments for medical devices that help head off heart attacks and epileptic seizures. He has been working for about four years now on the concept of biological computers. As you may know, silicon semiconductors are rapidly approaching limits, and hence the search for alternatives. Professor Ditto's latest work connects living nerve cells of leeches to silicon computer circuits, then uses chaos theory to sort through the chatterbox of electronic traffic that results. Now what company is going to sponsor research like that?

But what he has discovered is that the leech nerve cells can do arithmetic when prompted by the computer circuits and they can do it faster than existing machines. It's a discovery with potential in both directions. On the computing side of the equation, it contributes to the creation of a "bio-computer" that lives up to its historic hype as a machine that can actually think.

On the biological side, it contributes to the use of artificial nerve cells to bridge spinal cord injuries and control nervous disorders. If you are thinking with me, you can see we may be about to give leeches a boost up from their reputational quagmire, particularly in medical science.

Next Bill wants to hook up leech nerve cells to video cameras and microphones to explore ways that technology can help people whose senses are impaired. So you can see that a basic research idea that might sound kind of off the wall, can turn out to have a huge potential. The magazine *Business Week* was impressed enough with the idea and the results to date to make it a lead story in an edition about three weeks ago.

This is just one example of the many connections between technology and science that basic research is exploring today. And some of them are turning out to be economically productive, even creating vast new markets like the internet has. The rapid pace of innovation has shortened the time it takes a research discovery to be commercialized in the form of a marketable product, and research has become a driving engine for economic development. Just look at the places in
the southeast with the most vibrant economies – Austin, Atlanta, Raleigh/Durham and Huntsville. In every case, you find at the core of it all, a major research university that is willing to reach out and work with government and industry.

The challenge is figure out how this nation and its research universities can sustain the needed research agenda at a time when federal and industry investments are dwindling. I think the answer is that we have to look to greater use of collaborations between industry, federal government, and universities and that it is time for state governments to become a partner as well. Georgia is one state that has stepped forward, and to date has invested $240 million in the Georgia Research Alliance. The Alliance promotes and coordinates research among six research universities, including Georgia Tech. It focuses on three cutting edge fields – biotechnology, environmental technology and telecommunications. All research projects have to be designed as partnerships between two or more of the six GRA schools, and while it is conducted at the universities, it is coordinated through an industrial advisory board. GRA funds are expected to leverage additional support from industrial and federal government sources.

To help speed job creation from the research, the GRA is linked with the ATDC, Georgia’s high tech business incubator that is operated by Georgia Tech. The GRA also works in close collaboration with the state’s economic development entities to help in moving industry to Georgia.

In addition to investing in research, Georgia has taken another major step to address the growing talent gap in high technology. We are now in what some call a “talent war,” and the signs are everywhere. Even the nation’s premier technology community, Silicon Valley, has sounded a warning that it cannot get enough engineers and scientists and companies are moving to places where there is talent.

In Georgia, our new Governor, Roy Barnes, is taking on this with a commitment to invest $70 million over the next five years to add 85 new faculty to our University System in the areas related to optical networks, broadband technology and signal conditioning. We in the University System have agreed to annually produce 2000 more design engineers and computer scientists by the year 2005.

This is targeted at industry that develops devices like the one I am holding in my hand. It is about the size of a half-dollar, but it holds 350 megabytes of data and allows for super fast storage and retrieval. A newer version will be out shortly that will hold a gigabyte. It was just five years ago that IBM first came out with a PC that had a one-gigabyte drive. It weighed 22 pounds. You will soon be plugging these little storage devices into computers, palm pilots, digital cameras and all kinds of other products that have microchips.

These research and educational initiatives reflect our belief that higher education has become the most important economic development infrastructure a state can have. And that the best results come through collaborations between universities, state and federal government and industry.
But even with all Georgia is doing to support innovation, no state fill the gaps being left as the federal and industry support for long term research declines. If we are going to continue to develop devices like this one, or biotechnological computers, we are going to have to increase the support this nation gives to university research. If we are going to have an economy to support the aspirations of our children and grandchildren, we need to bring this issue to the forefront. It is simply not fair for us to enjoy the benefits of investments made by previous generations and to turn our backs on what needs to be done for those who follow. I would urge you to become informed on the issues and let your congressman know you are concerned.

It has been a pleasure to speak with you and I thank you for this opportunity.
It is a pleasure to be here with my fellow Rotarians in the high-tech capital of Alabama. We like to think that we are on our way to making Atlanta the southeastern center of high tech activity, but you are already one of the hot spots with 12 of your largest 20 employers in high tech areas. You also have two other important ingredients that are known to attract high tech companies – 1. A ready supply of talent and a source for research collaboration in the University of Alabama, Huntsville; and 2. A high quality of life.

Still, no high tech community stands as an island, I don’t think I am being too forward in saying that Georgia Tech is contributing to the success of your new economic base. We have 220 Alabama students at Georgia Tech this year, and many of them will come back to Huntsville like others before them. In fact, there are over 900 Tech alumni in and around Huntsville and northern Alabama, one of the largest concentrations of our alumni outside of Georgia. I think many of you also know that Georgia Tech is one of your high tech employers through the Huntsville Research Operations of our Georgia Tech Research Institute. We have about 50 people in this office working with the Redstone Arsenal under the direction of Dr. Barry Bullard.

Our states, Georgia and Alabama, have more in common than either would probably like to admit. They are next-door neighbors a region of the country experiencing positive change. Sixty years ago, President Franklin Roosevelt called the South the nation’s number one economic problem. Today, the respected British magazine *The Economist* calls the South “the locomotive powering the American economy.” I was born in south Georgia, and my lifetime spans this remarkable period. Unless we completely mess things up, we are on our way towards escaping the evils of poverty and backwardness that characterized the south when I was a child.

The South has been the nation’s fastest growing region during the 1990s. Notably, we have about a third of the nation’s colleges and universities, but over the past decade, we have accounted for more than half of the nation’s enrollment growth.

During this decade, OVER HALF of the new jobs in the nation were created here in the South. Job growth in both Georgia and Alabama outstripped the national rate. Per capita income in both of our states has grown faster than the national average.

Keep in mind too that the nation’s and this region’s recent economic growth has been fueled by information/telecommunications technology, with almost half the jobs created in the past five years coming in this area. These high tech jobs also paid on average twice that of those in other sectors.

We approach the new millennium with our national economy riding high. And while we’ve been enjoying economic vigor, our primary international competitors – Japan, the Pacific Rim and Germany – have been slowed by economic difficulties. So who is going to stop us?

Well, in the words of that great American philosopher Pogo, “We have met the enemy and the enemy is us.” It is my belief that the greatest threat to our ongoing success and prosperity is our
own complacency and lack of interest in investing in our future in the way those who went before. I would like to explain what I mean by this and hopefully leave the message with you that this issue needs our urgent attention.

In recent times, the United States has been the innovator while the rest of the world was the imitator. We made new discoveries, thought up new ideas, explored new fields; and the rest of the world copied us.

Many of our inventions were driven by the Cold War. The Space Race that spawned NASA, the Marshall Space Flight Center and the Redstone Arsenal was part of this picture. The Department of Defense funded basic research with the purpose of producing military innovations. And it did. But it also gave us weather and communications satellites, passenger jets, robotics, remote sensing technologies, supercomputing and the Internet, to name a few. Where would our job creation today be without the investments made by the federal government 30 years ago?

For 40 years following World War II, Defense Department research drove a wide variety of innovations in fields like aerospace, electronics and communications. Did you know that even today, DOD research activities pay for over 50% of the research done in this country by electrical engineers at universities. And, it is the knowledge accumulated from the previous research still drives our success and prosperity today.

But it is about to run out. Spending for defense-related research has been declining since the end of the Cold War, and in the process we are losing the innovation it brought to important commercial fields. Federal spending for other kinds of research is also on the decline, squeezed like a lemon at a country fair by budget reform. Between 1993 and 1995, federal research spending fell by 12 percent. As a percentage of the federal budget, spending for R&D is at a 30 year low.

The outlook for the next five years is more of the same. Overall federal spending for research and development is projected to decline by 13.4 percent in real dollars, with defense spending expected to drop by 14.3 percent, while other research funds decline by 12.4 percent. NASA is projected to take a 14.8 percent cut, adjusted for inflation. Sadly these reductions are not even part of our national debate about how to use the surplus, which is striking given the rapidly growing dependency of world markets on technology.

Added to this are the hard economic facts that are driving our industry away from investments in long term research and towards what is needed for short term gain.

In the meantime, other nations are beginning to make the transition from imitators of American discoveries to innovators in their own right. Research and development have begun to follow manufacturing overseas. Believe it or not, countries like Ireland, Israel and even India are the latest sites for software investment and are steadily ramping up their investment in research.

This whole process of other countries emerging to compete with the United States as innovators, has been escalated by the speed with which technology is changing. IBM has recently begun to measure the life of its products in “web months.” One web month is equal to three calendar
months. That’s four potential product cycles just in the course of one year. A measure of this is found at Hewlitt Packard, where 60% of their sales come from products developed in the last two years.

When technology changes this quickly, there are a lot more openings for something new or somebody new to get a foot in the door. Innovation becomes very competitive. We are cutting federal research dollars at the very time we need to be faster about innovating than we were in the past and faster than everybody else around the world. These cuts have an insidious side effect of reducing the numbers of U.S. citizens who are attending graduate school, because research funding not only supports research, but also the salaries of graduate students.

Let me give you an example of the kind research that could be critical for the future, but which will be harder to fund if present trends continue. Now you may find it odd that I am going to talk about leeches. That’s right, leeches, a lowly species with a bad reputation for their place in medical history and film epics like the African Queen. But this story revolves around what they can do when combined with the ideas of a very bright physicist and biotechnology faculty member at Georgia Tech named Bill Ditto, who works in an unusual interface area between biology, engineering and mathematics. He is a specialist in using chaos theory and already has a number of patents for developments for medical devices that help head off heart attacks and epileptic seizures. He has been working for about four years now on the concept of biological computers. As you may know, silicon semiconductors are rapidly approaching limits, and hence the search for alternatives. Professor Ditto’s latest work connects living nerve cells of leeches to silicon computer circuits, then uses chaos theory to sort through the chatterbox of electronic traffic that results. Now what company is going to sponsor research like that?

But what he has discovered is that the leech nerve cells can do arithmetic when prompted by the computer circuits and they can do it faster than existing machines. It’s a discovery with potential in both directions. On the computing side of the equation, it contributes to the creation of a “bio-computer” that lives up to its historic hype as a machine that can actually think.

On the biological side, it contributes to the use of artificial nerve cells to bridge spinal cord injuries and control nervous disorders. If you are thinking with me, you can see we may be about to give leeches a boost up from their reputational quagmire, particularly in medical science.

Next Bill wants to hook up leech nerve cells to video cameras and microphones to explore ways that technology can help people whose senses are impaired. So you can see that a basic research idea that might sound kind of off the wall, can turn out to have a huge potential. The magazine Business Week was impressed enough with the idea and the results to date to make it a lead story in an edition about three weeks ago.

This is just one example of the many connections between technology and science that basic research is exploring today. And some of them are turning out to be economically productive, even creating vast new markets like the internet has. The rapid pace of innovation has shortened the time it takes a research discovery to be commercialized in the form of a marketable product, and research has become a driving engine for economic development. Just look at the places in
the southeast with the most vibrant economies – Austin, Atlanta, Raleigh/Durham and Huntsville. In every case, you find at the core of it all, a major research university that is willing to reach out and work with government and industry.

The challenge is figure out how this nation and its research universities can sustain the needed research agenda at a time when federal and industry investments are dwindling. I think the answer is that we have to look to greater use of collaborations between industry, federal government, and universities and that it is time for state governments to become a partner as well. Georgia is one state that has stepped forward, and to date has invested $240 million in the Georgia Research Alliance. The Alliance promotes and coordinates research among six research universities, including Georgia Tech. It focuses on three cutting edge fields – biotechnology, environmental technology and telecommunications. All research projects have to be designed as partnerships between two or more of the six GRA schools, and while it is conducted at the universities, it is coordinated through an industrial advisory board. GRA funds are expected to leverage additional support from industrial and federal government sources.

To help speed job creation from the research, the GRA is linked with the ATDC, Georgia’s high tech business incubator that is operated by Georgia Tech. The GRA also works in close collaboration with the state’s economic development entities to help in moving industry to Georgia.

In addition to investing in research, Georgia has taken another major step to address the growing talent gap in high technology. We are now in what some call a “talent war,” and the signs are everywhere. Even the nation’s premier technology community, Silicon Valley, has sounded a warning that it cannot get enough engineers and scientists and companies are moving to places where there is talent.

In Georgia, our new Governor, Roy Barnes, is taking on this with a commitment to invest $70 million over the next five years to add 85 new faculty to our University System in the areas related to optical networks, broadband technology and signal conditioning. We in the University System have agreed to annually produce 2000 more design engineers and computer scientists by the year 2005.

This is targeted at industry that develops devices like the one I am holding in my hand. It is about the size of a half-dollar, but it holds 350 megabytes of data and allows for super fast storage and retrieval. A newer version will be out shortly that will hold a gigabyte. It was just five years ago that IBM first came out with a PC that had a one-gigabyte drive. It weighed 22 pounds. You will soon be plugging these little storage devices into computers, palm pilots, digital cameras and all kinds of other products that have microchips.

These research and educational initiatives reflect our belief that higher education has become the most important economic development infrastructure a state can have. And that the best results come through collaborations between universities, state and federal government and industry.
But even with all Georgia is doing to support innovation, no state fills the gaps being left as the federal and industry support for long-term research declines. If we are going to continue to develop devices like this one, or biotechnological computers, we are going to have to increase the support this nation gives to university research. If we are going to have an economy to support the aspirations of our children and grandchildren, we need to bring this issue to the forefront. It is simply not fair for us to enjoy the benefits of investments made by previous generations and to turn our backs on what needs to be done for those who follow. I would urge you to become informed on the issues and let your congressman know you are concerned.

It has been a pleasure to speak with you and I thank you for this opportunity.