FOCUS

Technique - Friday, September 1, 2006

WHAT TO DO ON GAMEDAY

Excitement is building for ESPN GameDay, which is set for the opening game against Notre Dame on Tech's campus this weekend. Page 32

JOUSTING THROUGH TIME

A new Medieval Times dinner theater opened at Discover Mills, featuring a live show complete with jousting and period costumes. Page 17

SETTING THE TABLE WITH SOLUTIONS

New study coauthored by Tech professor weighs in with new insight on eating issues

By Christina McMillan Contributing Writer

In an America with alarming rates of obesity, the motherly mantra “clean your plate” takes on a whole new meaning. A recent study published by Koert Ittersum of Tech’s College of Management, Brian Wansink of Cornell University and James Painter of Eastern Illinois University suggests that larger bowls and plates, eating utensils can greatly contribute to overeating. For those Tech students who are desperately trying to avoid the “freshman 15,” weight gain, the solution is simple: use smaller plates and bowls.

Both Woodruff and Brittain dining halls have standard plate and utensil sizes, but Ittersum indicated that further studies involving buffet lines may prove beneficial. This year’s theme was “Preserving, Protecting and Enhancing the Environment,” which challenged students to use technology to better their natural surroundings.

Tech first became involved in the competition through Kishore, who was in his graduating year and wanted to prepare a final project that would both boost his grade and garner prestige. He found that the contest was a positive reinforcement and motivation for his goals, and contact with other tech students to join him in his efforts.

With his guidance, the group quickly began brainstorming ideas and researching embedded computer.

Initially, the group focused on the environmental problems and financial difficulties caused by household consumption. Through an embedded system, the group discovered that computers could automatically adjust devices in the house according to research, future predictions and cost.

This was the basis for their “e-house,” which was comprised of a home automation system, a mobile control unit and an in-home control unit. The system used sensors, the internet, and “real-feel” technology to create a comfortable house that does not significantly damage the environment. Furthermore, the large spoons are 14.5 percent more than people with smaller spoons. In a similar study, participants were made aware of their bias, but that knowledge proved to have little effect. “What is critical to note, however, is that people, even nutrition experts, are generally unaware of having served themselves more. This attests to the ubiquitous nature of these environmental cues,” Ittersum said.

A recent study published in the American Journal of Preventative Medicine, “these illusions are much more powerful than our vigilance.” Apparently, being attentive is not enough.

The ice cream was weighed, and the bowl and spoon size for each person was recorded. The participants in the study then answered questions relating to the research. The results of the study stated that bowl and spoon size play influential roles as cues that trigger eating behavior.

People getting food in these lines are generally not aware of the effects plate size can have on portions. Larger plates result in larger portions, which in turn means more calories. These calories are often unnecessary and excessive, thereby contributing to America’s obesity problem.

Ittersum proposed that the different plate sizes in buffets create two dilemmas. The first is that if the plate is too large, people will pile on food and stuff themselves with unnecessary calories. The second is that if the plate size is too small, people might feel underfed and could continuously revisit the buffet for more food.

Students wishing to dodge the weight issue, be warned. The next time you eat, check out how big your plate and spoon are.

Students win high tech honors

By Salma Abdelaziz Contributing Writer

This year at Microsoft’s international Embedded Student Challenge, Tech was well represented by four of its most innovative computer engineers.

Ayan Kishore, David Liu, Vikram Sivakumar and Herman Wong participated in the 2006 competition with an original project that received praise and attention from fellow competitors and judges.

This year’s theme was “Preserving, Protecting and Enhancing the Environment,” which challenged students to use technology to better their natural surroundings.

Tech first became involved in the competition through Kishore, who was in his graduating year and wanted to prepare a final project that would both boost his grade and garner prestige. He found that the contest was a positive reinforcement and motivation for his goals, and contact with other tech students to join him in his efforts.

James Hamblen, an Electrical and Computer Engineering professor, served as the team’s advisor.

Tech minority recruitment and retention remain strong

By Anjali Desai Contributing Writer

Over the past few years, organizations at Tech have made great efforts to increase minority enrollment and retention. According to the Diversity, Issues in Higher Education magazine, their efforts are paying off.

A recent college ranking report by the magazine lists Tech as the number one producer of African American engineers at the master’s level.

The college ranking report looks at the percentage of minority students awarded engineering bachelors degrees to all categories of minority students. It ranked first in awarding engineering doctoral degrees to Hispanic students.

“The Minority Recruitment Team (MRT) that is run out of Admissions... has been a great success.”

Gordon Moore OMED Director

See Recruits, page 14
Getting involved: Students pick up information and free stuff on Skiles Walkway, Aug. 22. Skiles has been a hub for gathering information about programs the school offers; it also hosted the Student Involvement Fair where all organizations had a chance to promote themselves this week.

Congratulations to Alpha Gamma Delta’s
2006 New Member Class

Nikki Bauer
Annie Bidgood
Willie Blair
Audrey Bloomer
Stephanie Box
Emily Bradley
Lindsay Brandino
Ashley Brooks
Krystal Burrow
Chandler Case
Emily Chambers
Maria Cleveland
Rachel Douglas
Dhanya Edoo
Shea Eveker
Robin Forrest
Marianna Furman
Lis Geiger
Savannah Gowdy
Ashleigh Griffin
Jordan Hartley
Carleigh High
Casey Hill
Sarah Hooper
Andrea Jester
Sophia Kassam
Veronca Kersten
Kit Ledford
Kelli Lindstrom
Stephanie Lohr
Ava Madigan
Emily Martin
Mary Katherine McClanahan
Kathy Nagel
Elise Norton
Emily Odisio
Emerald Pabros
Chetsi Patel
Emily Pecar
Leah Randall
Kate Rowley
Karen Scarborough
Rachel Schwartz
Elizabeth Stead
Katherine Taylor
Michelle Vela
Jes Violetta
Mary Kate Waldron
Noelle Wilkinson
Suzannah Yates

Award

From page 11

consumer can adjust the functions of the “e-house” from any location with the mobile control unit or at home from the in-home control unit.

The result, if implemented, is $11.5 billion in savings in American household consumption, a remarkable improvement. The protection of health through air purifiers and an alert system to warn consumers of blackouts or outages are additional benefits of the system.

An excellent presentation, thoughtful advice from Professor Hamblen and a cooperative team effort caught the eye of the Microsoft panelists. The judges were both industry professionals and Microsoft employees.

During the first round, the judges picked 30 teams from among a diverse pool of different schools and nations. Tech was invited to the finals and flown to Microsoft’s Redmond site in Seattle. For two weeks, the group members dedicated themselves to creating a presentation that would enhance the appeal of their project and give them a chance at winning.

Kishore, Liu, Sivakumar and Wong placed in the top ten. Last year Tech participated in the challenge for the first time and placed 30th. This year, Tech jumped up to ninth place, and expectations for next year are rising.

The experience lasted several months and its impact on each student was significant. All the students agreed that the competition was one of the most important events they had ever participated in at Tech. Liu provided further insight. “The competition was an amazing and enjoyable learning experience. I highly recommend students enter. It gave me a chance to really think about real world problems and how I could use my skills to help solve these problems. Being able to participate in a team and apply ourselves was the most fun I’ve had as a student at Tech,” he said.

sliver

www.nique.net/sliver

Let the conspiracy theories begin!

Last week, they travelled in packs, while this week they all disappeared. What gives?

Dear student selling their ticket for over $100, You are a douchebag. The end.

Why does facebook have a ‘Myspace’ section?

Mr. Reliable strikes again. Everyone to the shire 2.0 for some great fun.

I still want you.

Damn kids and their Ruckus the sound quality sucks and the player is ugly.

President Clough offers maximum protection fashion fashion fashion

Insert sliver here.

You are truly loved.

EVERYONE WANTS TO GET NAKED!

Submit some freaking slivers!

—SliverGirl

Moo.

Forget Notre Dame...I’ll be at Dragon*Con getting my nerd on.

...In the ghetto (in the ghetto)!

Ha Ha! Son yucks!

Make them go away!!!

Blergh.

Submit a Sliver!

Be witty.
Be angry.
Be opinionated.
Be random.

Your sliver here.

www.nique.net
Undergraduate advising supports students

Elizabeth Miller, an academic advisor in the Ivan Allen College and president of the Georgia Tech Academic Advisors Network (GTANN), assists a student with registration and other academic issues.

By Sarah Turner
Contributing Writer

Did you know that there is a free resource available to all students that can help increase their academic success at Tech? This highly recommended process is otherwise known as academic advising.

The purpose of academic advising is to guide students through the academic process and make recommendations about which courses students should enroll in based upon their major and professional goals.

"Academic advisors are students' personal guides through college," said Dana Hartley, director of undergraduate advising.

"They help with everything, whether it is working out courses, planning for study abroad, considering internships, getting connected with faculty to do research, or even getting pointed in the right direction for other campus resources," Hartley said.

In addition to academic scheduling, advisors help students strategize about a career or major. Academic advisors can even help students deal with a variety of issues from financial aid to the impact of dropping a class.

"Academic advising is so much more than providing guidance about scheduling. Some advisors even see themselves as student advocates," said Elizabeth Miller, president of the Georgia Tech Academic Advisors Network (GTANN).

"We have a very strong advisors’ network (GTANN)," Miller said. "They hold monthly workshops that keep advisors informed of key changes and new programs on campus," Hartley said.

Another major change to the program is the addition of "Undecided Advisement" for students who have not yet declared a major. Academic advisors are available to work with these students every Wednesday in the Library Resource Center.

In addition, the Student Government Association has developed a committee dedicated to improving the academic advising process.

The Undergraduate Academic Advising Program is also in the process of hiring a campus-wide pre-health advisor.

"Students should be realistic about what to do, [asking] your advisor is a good place to start," Miller said.

"If you have any problem at all and are unsure about what to do, your advisor is a good place to start to ask for help," Miller said.

"Every student is assigned an academic advisor depending on his or her declared major. These advisors are first broken down by college and then by school."

"We also now have a campus-wide appointment scheduler for advising. At www.advising.gatech.edu a student can find their major advisor or an advisor in many other areas that can help them," Miller said.

The website allows students to search for an advisor based on personal criteria. Major and/or minor, certificates, undeclared majors, pre-professional tracks and participation in other programs (such as joint enrollment or International Plan) are all considered to find the correct academic advisor.

"After finding the appropriate advisor, students can schedule an appointment online. The website also lists walk-in hours for academic advisors. The advising process is crucial to student success and is constantly being revamped to improve the resources available to Tech students," Miller said.

"We have a very strong advisors’ network (GTANN). [They hold] monthly workshops that keep students a day through email, by telephone or by personal visitation. Therefore, the time a student has with his or her personal advisor must be well spent.

"Students should be realistic about the time he or she has to spend with the advisor. Plan ahead by coming with questions prepared about the curriculum," Miller said.

The advisor also has a responsibility...

See Advisors, page 14
Recruits from page 11

ing with minority retention and performance. They have developed many services and programs in order to help minorities after they have been admitted, including transition programs like Challenge, development workshops and mentoring programs.

The Office of Admissions is also undertaking many initiatives to draw in minority students and improve minority enrollment at Tech.

“The Minority Recruitment Team (MRT) that is run out of Admissions by Keith Jordan has been a great success. We often hear parents and students speak highly about the students that make up that team,” said Gordon Moore, director of OMED.

Some of Tech’s most successful minority recruitment programs include Welcome Weekend, which allows accepted students to experience life at Tech through an overnight stay, and Family Affair, an event that allows high school students interested in attending Tech to visit campus with their parents. Both of these programs are run by the MRT.

One of Tech’s most beneficial programs aimed at recruiting minority graduate students is Focus. As part of the Focus program, prospective graduate students are invited to visit Tech’s campus every January and learn about the graduate and Ph.D. degrees offered.

According to Moore, part of this program’s success is due to the fact that it allows undergraduate students to communicate with faculty, graduate coordinators, current graduate students and graduate alumni about the importance of graduate work and careers.

This event also coincides with the city of Atlanta’s annual celebration in honor of Dr. Martin Luther King Jr. Students who attend Focus are able to learn about all that Tech has to offer as well as have the opportunity to participate in the King Day celebrations.

Another factor that plays an important role in the retention of minority students at Tech is the various resources available to minority students. These organizations include the African American Student Union, the National Society of Black Engineers and the Society of Hispanic Professional Engineers. Organizations like these provide valuable support and information to minority students.

Scholarships from the government, organizations and corporations also contribute to attracting minority students. However, these are often difficult to obtain.

“The competition for these funds is at an all-time high…there are alternative opportunities via work study, internships and cooperative education programs…” [Students] have to investigate them all and be diligent in [their] pursuit of any funds,” Moore said.

OMED and the MRT will still face some challenges with recruitment in the future.

“The legal climate surrounding affirmative action programs has changed the way institutions of higher education can recruit. Universities across the nation are much more limited on what they can do to recruit minorities,” Moore said.

Another issue Tech is dealing with is funding.

Top minority students are often pursued by many colleges, a situation that allows them to pick and choose which school they go to. When presented with a range of good college options, students’ decisions are often affected by the financial package that each school offers. Limited funding can make it difficult to attract these top students.

Tech continues to find ways around these problems, however. “Tech’s admissions department has worked diligently to make sure all recruitment programming is balanced and representative. The admissions personnel have done a great job of working within the legal guidelines to maintain diverse student body,” Moore said.

Tech continues to work to improve minority enrollment and retention as part of its efforts to assemble a talented and diverse student body. In the Institute’s track record thus far, any indication, the future remains bright for minority students.

Advisor from page 13

ity to be prepared. Advisors should be knowledgeable on the subject or major in which they offer their professional guidance.

Academic advisors must also be up-to-date on any new programs within the college or school they work in so as to better serve their students.

Most importantly, a student should also expect his or her academic advisor to truly listen throughout the session and offer the best advice and options that will contribute to the student’s academic success.

‘As director of academic advising on campus, it is my job to make sure students are getting what they need from advising,’ Hartley said.

Melissa Watkins, a second-year Electrical Engineering major, spoke positively about her advising experience.

‘I found that my advisor was very helpful. I emailed her beforehand and was able to see her within just a day or two. I spoke to her about mapping out my course schedule and other academic concerns,’ Watkins said.

Watkins said that she would probably visit her advisor again soon. ‘I’m planning on studying overseas, so I’ll be going in to see my advisor to figure out what classes I should take abroad that will fit with my major and fulfill requirements,’ she said.

Students may contact Hartley or Watkins for more information on advising sessions or academic advisors.

Tech consistently ranks well in minority recruitment and retention. In the 2004-2005 year, it awarded more engineering master’s degrees to African-Americans than did any other university in the country.

Students may contact Hartley at dana.hartley@carnegie.gatech. edu with their concerns if they are dissatisfied with their advising session or academic advisor.

Number of 2004-2005 master’s degrees in Engineering awarded to African-American students

Tech continues to find ways around these problems, however. “Tech’s admissions department has worked diligently to make sure all recruitment programming is balanced and representative. The admissions personnel have done a great job of working within the legal guidelines to maintain diverse student body,” Moore said.

Tech continues to work to improve minority enrollment and retention as part of its efforts to assemble a talented and diverse student body. In the Institute’s track record thus far, any indication, the future remains bright for minority students.

Tech consistently ranks well in minority recruitment and retention. In the 2004-2005 year, it awarded more engineering master’s degrees to African-Americans than did any other university in the country.
‘Cool’ CHIP CLAIMS SPEED RECORDS

By Gopika Suraj
Contributing Writer

At the Georgia Electronic Design Center (GEDC), tucked in between the buildings of Tech Square, a Tech research team has worked with IBM to break the so-called “silicon speed limit.” Many of the gains in computing speed since the invention of the silicon transistor have come as a result of the miniaturization of these transistors, but this effort has become increasingly more difficult in recent years. This new research represents one approach that makes speed improvements possible.

“Most electronic devices, if you cool them at those low temperatures, don’t work anymore. These devices do.”

John Cressler
ECE Professor

Ramkumar Krithivasan, a Ph.D. student and researcher at GEDC, worked on the chip. “My role was taking devices that IBM made and then cooling them down to very low temperatures and measuring their speed performance at low temperatures,” Krithivasan said.

“The team overcame several issues in the process of cooling the transistor. “When you go down in temperature, you’re removing thermal energy from the system, so at some point, when it gets cold enough, the device cannot operate normally. So when we come in and do atomic scale engineering on the devices, we’re able to...get them to work at very low temperatures,” Cressler said.

“Most electronic devices, if you cool them at those low temperatures, don’t work anymore. These devices do,” Krithivasan said.

Krithivasan, Ramkumar
Ph.D. student and researcher at GEDC

Byers Professor of Electrical and Computer Engineering

Cressler’s team approached the problem by freezing a silicon-germanium transistor to a temperature of 4.5 degrees Fahrenheit, allowing it to operate at speeds of over 500 gigahertz (GHz). This is a more than twofold improvement over previous industry research results, and up to 10 times the switching speed of common silicon transistors. The transistor was also able to operate at 350 GHz at room temperature.

The direct application of this research is in space technology. “My team] actually has projects...with NASA to develop electronic systems for lunar exploration. The moon, while it may seem like a friendly environment, is actually exceptionally harsh,” Cressler said. The improved transistor chip can withstand extreme temperatures and do atomic scale engineering inside a学生 and researcher at GEDC, spoke about the project.

“My team at Tech works on next-generation electronics, so we take conventional silicon based technologies and try to make them better—typically faster, lower power and [able] to enable all sorts of new applications. One of the ways (to make better electronics) that is very hot these days is using bang-up engineering techniques and mixing up two different semiconductors...in this case, silicon, which forms the core of electronics today, and germanium. So we’re going to do atomic scale engineering inside a traditional silicon based transistor to dramatically improve performance,” Cressler said.

Cressler’s team approached the problem by freezing a silicon-germanium transistor to a temperature of 4.5 degrees Fahrenheit, allowing it to operate at speeds of over 500 gigahertz (GHz). This is a more than twofold improvement over previous industry research results, and up to 10 times the switching speed of common silicon transistors. The transistor was also able to operate at 350 GHz at room temperature.

The direct application of this research is in space technology. “My team actually has projects...with NASA to develop electronic systems for lunar exploration. The moon, while it may seem like a friendly environment, is actually exceptionally harsh,” Cressler said. The improved transistor chip can withstand extreme temperature swings like those on the moon for optimum performance.

Ramkumar Krithivasan, a graduate student researcher inspects the silicon germanium chip he helped cool to break the speed record.

The team overcame several issues in the process of cooling the transistor. “When you go down in temperature, you’re removing thermal energy from the system, so at some point, when it gets cold enough, the device cannot operate normally. So when we come in and do atomic scale engineering on the devices, we’re able to...get them to work at very low temperatures,” Cressler said.

“Most electronic devices, if you cool them at those low temperatures, don’t work anymore. These devices do,” Krithivasan said.

Krithivasan, Ramkumar
Ph.D. student and researcher at GEDC

Byers Professor of Electrical and Computer Engineering

Cressler’s team approached the problem by freezing a silicon-germanium transistor to a temperature of 4.5 degrees Fahrenheit, allowing it to operate at speeds of over 500 gigahertz (GHz). This is a more than twofold improvement over previous industry research results, and up to 10 times the switching speed of common silicon transistors. The transistor was also able to operate at 350 GHz at room temperature.

The direct application of this research is in space technology. “My team actually has projects...with NASA to develop electronic systems for lunar exploration. The moon, while it may seem like a friendly environment, is actually exceptionally harsh,” Cressler said. The improved transistor chip can withstand extreme temperature swings like those on the moon for optimum performance.

Ramkumar Krithivasan, a graduate student researcher inspects the silicon germanium chip he helped cool to break the speed record.
Tech Up Close

WHERE WAS THIS WEEK’S PHOTO TAKEN?

Email focus@technique.gatech.edu if you think you know the answer. The first correct response will win a free Technique T-shirt.

Answer to previous Tech Up Close: Handrail of the Student Center stairs.

Last time’s winner: Michael Nolan

Friday Night Lights

September 8, 2006 at the CRC

Free Food!!

FREE!

10 pm OUTDOOR MOVIE on CRC Turf Fields

FREE!

LASER TAG PRIZES!

AMAZING HUMAN MAZE

10PM - 1AM