PROCESS CONTROL AND CALIBRATION FOR PRECISION PART PRODUCTION

Presented by Austin Chen
Advisor: Dr. Thomas Kurfess
October 20, 2004
Overview

- Introduction
 - Problem Statement
 - Research Objective
 - Task and Equipment

- Current Methods in Machine Tool Metrology

- Research

- Expected Contributions
Problem

- Precision production environment
 - low yield
 - E.g. part demanded ~1 per month

- Machine the part accurately the first time?
 - Previously
 - Error mapped
 - Successful part program
 - What about this time?
There are many techniques for machine tool error characterization:
- Provide information on current and expected machine tool performance
- Thermal mapping, detection of geometric errors, etc.
- Error compensation can be applied
- How does all this research fit together?

These methods require:
- Specialized equipment
 - Expensive
 - Calibration
- Operation
 - Time consuming (testing can span days)
 - May require meticulous setup
Research Objective

- To develop a simple and effective methodology, performed prior to machining, to evaluate the machine tool’s ability to machine a circular arc profile to tolerance
 - Apply error correction if necessary and possible
 - Integrate existing research
Task

- “Object of Interest”
 - Turn “hemishell”
 - Radius: 50-100 mm (2 – 4 in), within 5 µm
 - Wall thickness: 13-20 mm (<1 in), within 10 µm
 - Center to center within 10 µm
 - Material: Al, then 304 SS
Equipment

- Okuma & Howa V40R
 - KGK International
- 2-axis Vertical turning center
- Fanuc 18i-T CNC
Machine Tool Metrology

- Interferometer
- Reversal
- Ball bar
- Touch Probe
Interferometer

- HeNe Heterodyne
- Accuracy dependent on alignment
- Careful alignment
- Expensive

Operating principle
- Uses dual frequency laser
- Uses beat frequency for distance detection
Ballbar

- Telescoping Ballbar
 - LVDT inside telescoping arm
 - Characterize ability to move in circular arc
 - Also measure squareness, backlash, servo motor effects...

Photo from Renishaw website.
Touch Probe

- Similar to CMM probe
- Physically contact part
 - Tip location registered

- On-machine probing
 - Same errors affect measurement
 - Calibration with artifacts
Current Procedures

- Error mapping, characterization, and compensation
 - May not be practical or accessible
 - Expensive equipment
 - Involved setup and operation
Potentially...

- Potential events or occurrences between machining operations
 - Machine used for another design/part/operation
 - Recalibrated
 - Machine crash
 - Change of/in environment
 - Different tool/turret
 - Different shutdown/warmup procedure
Research

- Develop an easy to apply methodology for assessing the machine tool’s readiness to machine a hemispherical profile
 - Determine if there have been significant changes in the environment or machine tool.
 - If so, quantify these changes and adjust the tool traj. (G-code) to compensate
 - Identify limitations
Research Tasks

- Error map machine tool
 - Build error budget
- Develop methodology focusing on ballbar, on-machine probing and practice
- Investigate compensation via traj. planning
- Characterize relationship between machine tool and part
- Characterize limitations
Contributions

- Development of a practical methodology for evaluating the ability of a machine tool to machine a specified part
- Development of a simple method for assessing machine tool performance that integrates the characterization of different sources of error
 - Integrates work done in analyzing various specific error sources
- Development of a methodology to characterize tool wear indirectly via an on machine touch probe
- Development of a simplified compensation strategy using modified G code