Integrated Inspection for Precision Part Production

Georgia Tech
Dr. Kurfess

Austin Chen

Y-12 National Security Complex
Bill Barkman
Motivation

• Precision machining
 – Smaller custom jobs
 – Tight tolerance
 – Procedure
 • Cut part, remove part, then inspect
 • Scrap or setup workpiece again

 – Correct before removal
Objective

• **Develop methodology** to improve machine tool (MT) performance
 – cut circular arc (hemishell)
 – on 2-axis lathe

 – **Straightforward** to implement
 • G-code

 – Utilizes commercially available hardware
 • Ball bar, on-machine probe (OMP), tool set station
Cut Circular Trajectory

- Workpiece with circular trajectory
- “Hemishell”
 - “Easy to machine”
 - Incorporates movement of both axes
 - No backlash
2-Axis Vertical Turning Lathe

Repeatability:
- X: 2.5 μm (0.0001 in)
- Z: 5.1 μm (0.0002 in)

Resolution:
- 0.0001 in
- (0.00254 mm)

Okuma & Howa V40R, schematic and photo.
Machining Procedure

- Error Model
- Modify part program
- Inspect On-machine
- Tool set
- Chuck the workpiece
- Run part program
- Remove part
- Inspect

pre-process

process-intermittent
Equipment

• Ball bar (Pre-process)
 – Measures motion only

• OMP (Process-intermittent)
 – Includes motion and cutting effects

• CMM (Post-process)
 – Final inspection
Ball Bar

- Renishaw QC10

- Characterizes circular trajectory

- Particularly relevant
Touch Probe Inspection

- **OMP**
 - Process intermittent inspection
 - Traditionally used for datum location

- **CMM**
 - Post-process inspection
Compensation Strategy

• Based on
 – Ball bar
 – OMP

• Modify part program (G-code)
Generate New Trajectory

- "Given nominal and measured"
Ball Bar Compensation

<table>
<thead>
<tr>
<th>mm</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>original</td>
<td>-0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>standard deviation of error</td>
<td>0.007</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Original Ball Bar Trajectory
Compensated Ball Bar Trajectory
The diagram shows a workpiece with labeled features:
- **Center line**: Horizontal datum
- **Pole, 0°**: Vertical datum
- **Equator, 90°**: Horizontal datum
Ball Bar-Based Compensation

![Graph showing deviation from nominal (mm) vs. angle (degree)]

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>average error</td>
<td>-0.002</td>
</tr>
<tr>
<td>standard deviation of error</td>
<td>0.006</td>
</tr>
</tbody>
</table>
OMP Compensation

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMP of run 1 (uncomp.)</td>
<td>-0.004</td>
</tr>
<tr>
<td>OMP of run 2 (comp.)</td>
<td>0.001</td>
</tr>
<tr>
<td>CMM of run 2</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Average error

- OMP of run 1 (uncomp.): -0.004 mm
- OMP of run 2 (comp.): 0.001 mm
- CMM of run 2: 0.002 mm

Standard deviation of error

- OMP of run 1 (uncomp.): 0.004 mm
- OMP of run 2 (comp.): 0.002 mm
- CMM of run 2: 0.003 mm
OMP Compensation

- Large tool set error

<table>
<thead>
<tr>
<th></th>
<th>OMP of run 1 (uncomp.)</th>
<th>OMP of run 2 (comp.)</th>
<th>CMM of run 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>average error</td>
<td>0.014</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td>standard deviation of error</td>
<td>0.006</td>
<td>0.001</td>
<td>0.004</td>
</tr>
</tbody>
</table>
Conclusions

• Ball Bar-based cutting compensation
 – Current method unsuccessful
 – Different method? Other factors?

• OMP-based cutting compensation
 – Limited by inspection accuracy (machine repeatability)
 – Accounts for errors
Contributions

- Developed a methodology for integrating inspection and machining on a vertical turning lathe

- Developed a strategy for predicting and compensating trajectory errors

- Characterized utility of on-machine probe, ball bar, tool set station, and tool set station for precision machining

- Improved the accuracy of circular tool paths for the Okuma & Howa V40R
Questions