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A method for determining rotor hlade flutter in forwerd
flight is presented, developed, and applied in this thesis.
The unsteady effects of the layers of the helical wake below the
rotor are accounted for. Since the blade tangential welocity
and, consequently, the aerodynamic damping vary with azimuth,
the vorticity shed due te blade oscilletions incipient to flutter
will be contained within a reglon on either side of & critieal
azimuth position. Assuming this region to be small allows the
wake system to be two-dimenslonalized. The 1ift deficiency function
developed from the new theory is simplified for limiting cases
and compared with earlier tesults obtained for fixed winga and
. hellcopters in hover. It is found to be conslstent with earlier
results when simplified. The theory is then applied to bending-
torsion flutier for the tip segment of a rotor blade. The pre-
viougly shed wakes are found tc be destabilizing., The flutter
velocity becomes constant at higher advance ratiocs.
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a generalized amplitude function used in Appendix B,

non-dimensional distance from midchord to elastie axis,
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number of blades

Theodorsen's 1ift deficiency function, given in equation (2)
Jones' lift deficiency function

Loewy's 1lift deficiency function, given in equation (3)
present lift deficiency function, defined in equation {35)

drag coefficient

lift coefficient

*
b

thrust coefficient (T/'rrpQEzR'
weight coefficient (W/an?R‘ )
semi-chord length

drag of fuselage

decay function centered about y = 0

first and second derivatives of decay function
defined in equation (28)

(4F, = 4F, - AF)

3 terms arising

defined in equation (23) due to the decay
function

defined in equation (32)

defined in equation (38)

a denominator common to many equations, defined in
equation (22)
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m = w/Q (Loewy)

pressure
pressure difference across the airfoil
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non-dimensional blade radius (R'/ct)
abbreviation for "real part of"
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SUMMARY

A method for determining rotor blade flutter in forward flight is
presented in this thesis, Incompressible unsteady aerodynamic theory is
applied where shed vorticity both in and below the plane of the rotor is
accounted for. This is made possible by noting that the aerodynamic
damping acting on the blade varies with wvelocity. Since the tangential
velocity of any blade segment varies with azimuth, so will the aero-
dynamic damping. Thus it is assumed at the cnset of flutter that coseil-
lations will begin to build up prior to the blade reaching a critical
azimuth position, then decay as the blade moves heyond this point, This
buildup and decay means that the veorticity shed due to the oscillations
will be contained within a double azimuth region on either side of the
critical azimuth position, Assuming this region to be small allows thé
wake system to be two-dimensionalized.

The 1ift deficiency function resulting from the two-dimensional
wake model is compared with earlier results obtained for a helicopter in
hover and fixed wings. It is shown that in limiting cases the present
work is consistent with earlier flutter theories.

The theory is applied to bhending-torsion flutter for the tip seg-
ment of a rotor blade., The results followed the normal trends of having
the flutter veloecity decrease as the center of gravity was moved aft and
of having the flutter velocity increase as blade stiffness increased.
The previously shed wakes are destabilizing so that they reduce the

flutter velocity, The buildup and decay produces wakes that are
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essentially centers of vorticity., Thus their position with respect to
the reference hlade will be sensitive tc the advance ratio which deter-
mines their horizontal spacing and to the inflow ratio which determines
the vertical spacing. The variation of flutter speed with advance ratio
and inflow ratio was tested and it was found to change according to the
geometry of the wake system. As the wakes were brought closer by reduc-
ing the advance ratio and/or inflow ratio, the flutter speed decreased.
With buildup and decay of the wakes the tlutter wvelocity will not change
when the advance ratio goes above a certain point (an advance ratio of
about 0.3 in the cases considered here) since the previously shed wakes
become too far removed to have any effect any longer.

& possible application for design considerations is presented.
If the pilot is allowed to change the T©lade speed, as in the case of
compound helicopters in which auxiliary wings could provide 1lift at
higher airspeeds, then the chart that is obtained by this method shows
the stable regioh in which the combination of the helicopter's airspeed

and rotor tip speed does not exceed the flutter speed.



CHAPTER 1
INTRODUCTION

This thesis is directed at improving forward flight blade flutter
analysis., The method presented is based upon extending Loewy's (1)
theory for a hovering rotor to forward flight. If the magnitude of rotor
downwash velocities is such that wakes shed from preceding blades remain
relatively near the rotor disk, then neither fixed-wing quasi-steady nor
unsteady aerodynamics can be reliably used for predicting blade flutter.
This influence of the layers of shed vorticity was accounted for by
Loewy (1) and J. P. Jones {(2) who considered the rotor to be operating
in hover or vertical flight. By applying Loewy's (l) lift deficiency
function to & flutter analysis for a hovering rotor, Hammond (3) found
that the effect of reducing the spacing of the wake layers, thus bring-
ing them closer to the rotor, was destabilizing., That is, the most
critical flutter condition appeared to be at very low Inflow values,

In this thesis a method is given which accounts for the unsteady
contribution of a simplified wake model for the forward flight condition.,
Currently to meet forward flight blade flutter requirements the rotor-
craft manufacturer must rely on: (l) the fixed-wing unsteady aerodynamic
flutter analysis of Theodorsen (h), which does not account for the
unsteady contribution of the wake below the rotor; and (2) rotor whirl
tests at normal and overspeed conditions which, while providing informa-

tion in regard to blade flutter, do nol accurately simulate either hlade




dynamics or unsteady aerodynemics in forward flight. Accounting for the
contribution of the rolor's wake in forward flight could be especially
important for the case of a compound helicopter. Here, in hlgh-speed
flight the rotor may be partially or fully unloaded and set at zero angle
of attack. This would result in wekes near the rotor due to very low or
zero induced flow with no Iinflow contribution from the forward flight
velocity component.,

Rotor blade harmonic airloads in forward flight have been enalyzed
by Miller (5) and Ichikawa (6). Miller (5) used lifting surface theory
for the wakes shed near the blade and lifting line theory for the more
distant wakes. The lifting surface eguations for forward flight were
reduced to lifting line equations by Ichikawa (6). The flow was assumed
to be incompressible by both Miller (5) and Ichikawa (6).

Previous approaches to the problem of determining flutter for a
helicopter in forward flight have relied on quasi-steady'aerodynamics or
Tixed-wing flutter coefficients for their determination of aerodynamic
loads. A discussiocon of the assumptions underlying the use of steady-
state aerodynamics in aeroelastic rotor studies is given by Drees (7).

Brooks and Sylvester (8) tested the effect of forward speed on
the flutter of a dynamically scaled medel rotor., Qualitative agreement
between theory and experiment with respect to major parameters was found
by Gates, Pizisli, and DuWaldt (9). The calculations made for a model
rotor set on a small rotorcraft test apparatus were conservative.

Using the Myklestad method of structural yibrations along with
oscillatory aerodynamic forces derived ffom Theodorsents (%) work,

Leone (10) obtained graphical results for forced modes in high speed




level flight, Daughaday, DuWaldt, and Gates (ll) obtained aerodynamic
damping factors which were derived from hoth {oreced response and decay
data and compared these factors with those computed using guasistatic
and non-stationary aerodynamic coefficients. Improved agreement was
obtained by empirical reducticns of the bound vorticity.

Stammers (12,13) developed a method for determining bending-
torsion flutter with particular reference to the case of forward flight
where the equations of motion contain periodic coefficients, Quasi-
steady aerodynamics were assumed. Under normal conditions, flutter was
heavily damped and forward flight had a beneficial effect on the stabil-
ity. Niebanck {(14) tested a dynamical.y scaled articulated rotor model
with the center of gravity located at the 25%, 30%, and 35% chord posi-
tions, Simulated advance ratios of 0.29 to 1.91 were run and classical
flutter was encountered by the advancing blade, Discrete azimuth theor-
ies were used to calculate the onset of flutter and they showed good
qualitative agreement with the test data., Fixed wing two-dimensional
compressible-flow flutter coefficients such as those obtained by
Garrick (15) were used for the aerodynamic forces.

Extension of the work of Theodorsen {(4) and Loewy (1)} to forward
flight for a rotor blade in the general case presents a formidable
mathematical problem, Here, the effect of a shed skewed helical wake
would have to be considered and the cortribution of each element of
that wake on each segment of the blade at each arzimuth position accounted
for. However, closer examination of this problem reveals that it is
possible to make several rational assurptions that make the problem

tractable, Based upon these assumptions a wake mathematical model is




defined. The problem then is to determine the pressure difference
across the agirfoil due to the vorticity shed in the wakes, and conse-
quently to determine the unsteady 1ift and moment acting on the airfoil,

By relating to the earlier works of Theodorsen {4) and Loewy (1)
it is shown that the theory presented is consistent with their work for
limiting conditions. For example, when forward flight speed is made to
approach zero (hover) and the build-up and decay of the wakes is reduced
to zero (constant strength vorticity), then the 1lift deficiency function
becomes that of Loewy (1). Further, if wake spacing below the rotor is
made very large and constant strength vorticity is maintained as before,
then the resulis are shown to approach those of the fixed-wing theory of
Theodorsen (4},

The forward flight theory is applied to a simplified numerical
example which considers bending-torsion flutter for the tip segment of a
rotor blade, Numerical results are presented and discussed. The influ-
ence of several parameters on flutter speed is explored, including wake
build-up and decay, advance ratio, and chordwlse location of the blade

center of gravity.




CHAPTER II
THEORETICAL ANALYSIS

This chapter begins with a background which includes the wake
models used in the unsteady aerodynemic theory for a fixed wing and for
a helicopter rotor in hover, The lift deficiency functions obtained from
these models are briefly presented. The second section describes the
approach used for setting up the wake model used for the work done 1n
this thesis. The last section presents the mathematical development for
the unsteady lift and moment that were used in the flutter analysis that

wag run.

Background
The classical solution for fixed wing flutter is that of Theodor-
sen (h) who considered a wing oscillating in simple harmonic motion as
shown in Figure 1. The wake, &s shown in Figure 2, was of sinusoidal
strength with constant amplitude and lay in the plane of the airfoil.

For a wing oscillating at a fregquency of w, the 1lift 1Is given by

i o 3y n (l ) -
L= mpwec! iLh e + [Lb— 5 + a th?f (l)
where ¢' is the semi-chord length and ac' is the location of the elastic
axis, measured from the midchord, If the elastic axis is at the guarter
chord then a = - 1/2 and so the non-dinmensional 1ift due to deflection in

equation (1) would be




Figure 1., Bending-Torsion Flutter Model Showing Notation Used
in Flutter Analysis.




Figure 2, Wake with Constant Strength Amplitude Shed
From Wing.




L, =1 -——C(k)

and the non-dimensional 1lift due to rozation would he

L, =2 - 21 L1 - 1/}:)0(1{)]

where k = we'/V is the reduced frequency.

Theodorsen's (4) 1lift deficiency function, C{k), is expressed as

2
2y + 1 Ho(e)(k) )

(k) =

where Hn(e)(k) is the Hankel function ¢f the second kind and is given in

terms of Bessel functiicns as

Hn(2)(k) = Jn(k) -1 Yn(k)

The lift relation of Equation (1) was confirmed by Schwarz (16)
in 19L0. Schwarz applied S6hngen's (l‘?) inversion formula and was able
to determine the vorticity, and hence the pressure distribution and 1lift
on an girfoll, in terms of general motion.

W. P. Jones (18) later extended this concept by allowing the
strength of the airfoil's motion to grow or decay exponentially. This

meant that the amplitude of moticn could be written as

A =23 ept elwt .

With p positive, the motion will grow with time and the distribution of

shed vortiecity would be as shown in Figure 3(&). For decaying motion,




that is p negative, the vorticity distribution would appear as shown in
Figure 3(b).

The 1ift deficiency function determined by Jones (18) is expressed
as

Kl(p+ik)
Ko(p+1k) + Kl(p+1k)

C{pHix) =

where Ko and Kl are modified Hankel functions. As the build-up

approached zero Jones (18) found that

lim O(p+ik) = c(k) ,
P+

where C(k) is Theodorsen’'s lift deficiency function. In contrast, when

the decay approached =zero,

Hl(l)(k) + 27 (%)

lim_ C(p+ik) = ) —D) ' .

p~0 HY(k) + 10 (k) + 2[5 (k) + 19 (k)]

Loewy {1) accounted for vortex sheets below the blade which had
been shed bj previous blade passes and obtained a lift deficiency func-
tion for a hovering rotor. This vortex strength model is shown in
Figure &, With a vibratory frequency of @ and a blade rotaticnal fre-

guency of , Loewy's (l) lift deficiency function is given by

Hl(z)(k) + 2Jl(k)ﬁ(kh,m)

Cr(k,m,n) = (3)

Hlle)(k) + iHO(e)(k) + eﬁ(kh,m)[Jl(k) + iJo(k)]

where the effect of the wakes shed below the plane of the rotor appears
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Figure 3a. Wake with Increasing Strength Amplitude Shed fram Wing.

Flgure 3b., Wake with Decreasing Strength Amplitude Shed from Wing.
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Figure 4, Wake Vortex System for Rotor Blade in Hover.




in the weighting function

ﬁ(kh,m) = l/(ekheienm/b—l) (4)

in which b is the number of blades and where the frequency ratio and

non-dimensional wake spacing are given by

w/Q

=
]

A 2TR' /bet

=
H

and R' is the radius of the blade,

Method of Approach

The basic assumptions incorporated are as follows:

1. Two-dimensional, incompressible potential flow,

2, Respective layers of the wake are two-dimensionalized and
treated as parallel horizontal sheetsd,

3. In forward flight, each blade of the rotor will respond in
the same manner as every other blade.

L. The most critical azimuth positions of the blade in forward
flight for the onset of flutter are at ¢ = 90° and ¢ = 270°. This thesis
1s concerned with the 90O azimuth position, but extension of this work
to the 2700 case is straight Torward.

5. At the onset of blade flutter oscillations will begin to
build up prior to the blade reaching the critical azimuth position, and
these oscillations will decay as the blade moves beyond the critical
azimuth position. IXach blade, then, behaves the same during its travel

through the critical azimuth position.
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A typical plot of the varistion of asrodynamic dsmping with
velocity, as might be obtained from firxed-wing flutter analysis, is
shown in Pigure 5. At a specified radial location r' on a rotor blade,

the local tangential velocily is given by

Vt(r') = (r' + V sin § .

If the flutter speed for this blade segment is such that

<
VFL r' +V

then, as the blade passes through the 90O azimuth position, the blade
segment at r' will experience velocities which will increase to the
flutter speed and beyond, then return through the flutter boundary to
lower airspeeds, If Figure 5 represents an effective flutter plot for
the blade station at r', then one hlade revolution would correspond tc a
point moving on the diagram as indicated by the arrows in Figure 5.

The blade tangential velocity will exceed the flutter speed when-

ever the rotor azimuth and radius positions are such that

i >
V sin ¢ + vFL .

An example of this region is shown in Figure 6. All of the points
within the shaded region of Pigure 6 will experience negative damping.
This negative damping will tend to cauce blade motion to grow. In the
region ¥ > /2 + ﬂwFL’ damping will be positive and will increase so
that a blade instabhility would tend to die out.

The effect of this wvariation in damping on an outboard portion of




1

U= +V sin ¢

Damping (g)

il

Aerodynamic

Figure 5, Typical Veloecity-Damping Flot.

Figure 6. Unstable Region Encountered by Advancing Blades.
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the advancing blade is such that as damping decreases with the blade
approaching | = 900, the amplitude of oscillations will build up. Con-
versely as the blade advances beyond the {§ = 900 + AWFL position, damp-
ing will increase and there will be a corresponding decrease in blade
vibratory amplitude. This build-up anc decay of blade amplitude will
result in a distribution of shed vorticity as shown in Figure 7. Here,
the timewise variations in amplitude of blade wvibrations have resulted
in spacewise variations of shed vorticiliy.

Based on the foregoing, the bound vorticity on the airfoil c¢an be
expressed as the product of a function of chordwise position, a decay
function, and a harmonic function of time, The bound vorticity is writ-

ten as

Yy = Ya(x) £ §o)ei(wt + ) (5)
where f(go) is an assumed decay function centered about § = 0. The
limiting case of constant-strength shed vorticity, such as considered by
Theodorsen (4) and Loewy (1) for their analyses, is simply achieved by
taking f(go) - 1.

The downwash which is induced by an element of vorticity which is
located a distance s, behind asnd s

1 2
from the Biot-Savart law which states that

below the point of interest is found

y(sl,t) s, ds;

(6)

dva(x,t) =

2 2
2“( Sl + ug)

When the Inflow velocity through the rotor is small, the shed




Figure 7. Proposed Model for the Shed Vorticity Distribution.



vorticity remaiuns close Lo the rotor so that S5 is small., In this case,
as can be seen from equation (6) the wakes shed from each blade during
several previous passes as well as the present pass must be considered.
The vorticity shed by each blade as it passed ¢ = 900 will be contained
within a small double azimuth angle certered about 900 + A¢FL and this
is shown by the solid lines in PFigure &, 1In this region the azimuth
angle between a shed vortex filament and the reference blade may be
ignored. Also, the tip does not move very far from the vertical plane
shown in Figure 8 and so the tip path way be assumed to lie in this
plane. The two-dimensionalized model resuliing from the simplifications
achieved by these restrictions is shown in Figure 9.

With the mathematical model Qefined, the problem is to determine
the pressure difference across the airfoil due to the wvorticity shed in

the wakes, and consequently to determine the unsteady 1ift and moment

acting on the ajirfoil.

Anelytical Development

From the geometry shown in Figure 2 it can be seen that the verti-
cal downwash produced at some point x on the blade by a vortex element at
some point §n in the nth wake is found, by the Bioct-Savart law, to be

yn(gn,t)(gn + nu2mk/b + Ut - x)dgn

d.Va (X,t) = ) 2] (T)
n 2n[(§n + np2mR/b + Ut - x)° + (nk2nR/b)“]

where the following nondimensional quantities have been used:

W=V cosaT/OB' R = R'/er




\
\
i
!
p = gr A '
4 A/ !
\ /
N ’
~ -
-
\"h
- — vertical
plane
oo

Figure 8. Skewed Helical Shape of the Wake Shed
from & Helicopter in Forward Flight.

T




1 M-\ v=% oY
- - z Ft.
A:'ﬂ' s-
| .
8 wane 2" T R o
T :““511 /\\,53 s
na ZRR 2 ‘I.'R . M .{
[ b {Z.-._| ]
2" wake l !_ﬁ"Z! AN -
g“-n- b
% A . ™ wae
el 27 R
nrl Y

Figure 9., Two Dimensional Wake Model for Forward Flight
As Described by Nondimensional Coordinates,

6T




20

(v sing,

=
"

+ vi)_/CBR’

and

R'(1 + p)/er .

i
1

Since the total downwash, va(x,t), is the sumnation of the effect
of the vorticity on the airfoil, Ya.’ in the reference wake, Yo’ and all
of the previous wakes, Yn’ it is apparent that
1 oy (5,t)a8 = v (8,t)ag

-1 g-x * Il - &-x

—

2nva(x,t) =

=)
3

Yn(ﬁn,t)(gn +ns + Ut - x)d§

+5 ] (8)
nél e (En + ns + Ut - x)2 + n2h2
where
s = uenR/b
and
h = A2mR/b .

In forward flight the blade will enter flutter only at ¢ = 90‘0 -
&IIJFL, if at all. Bince conditions will be different at all of the other
azimuth stations we can assume that each blade will behave the same.
This means that the strength of the shed vorticity will have the same

variation in each wake with respect to the origin of that wake, That is,
v.(5) = ¥.(5) -

With each change of total circulation, l“é, vorticity is shed at
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the trailing edge of the airfeil. This shed vorticity is given by

ar!

. P
v (e, t)ag < dt

Recalling the bound vorticity relation given in eguation (5) and

noting that go = £ - Ut gives

Ct
Té j‘—c' Ya(xT,t)dx'

. 1
ot p(-ut)etlet + @) j‘l ¥, (x)ax . (9)

It has been assumed here that the decay function, f{& - Ut), does
not vary much over the chord and so can be taken constant with respect
to space, §, with its value being that which it has at the midchord

(€ = 0).

Now, let

1
= ¢ I] ?a(x)dx . {10)

7 '
a

Substituting equation (10) into equation (9) yields

[ ow Pre(-us)el(et + @)
a a

With this definition 1t is obvious that

1 = T ag ; i((.l.lt+cp) at
Yo(c ,t) = - Fa(- U dgo + 1uf)e g

But d€'/dt = Uc' and so
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r
Eg (if U oary 1(mb+¢)

w a§_ ag /¢
L aL F 1 af N i wtaep-k)
- ik l"a(f - Ik EE'; € (ll)
where
- a ik
Fa "oy € (12)
and
k = we' /(CR' + Veos aT) = w/U . (13)

S8ince the shed vorticity does not change in strength with time,
the vorticity which is a distance &' behind the midchord at time t will
have the strength of the vorticity whiclk was shed at the trailing edge

at an earlier time t - At, It is obvious then that
v (et -~ at) = v (§,t)
where

§ - o0 | £l
Uct U o

h

At

Thus, substituting t - At for © in eguation (ll) yields

YD(E;t) - -1k fé(f IE dg ) 1wt + o - kg) (1k)

If we note that wt - k€ = -k§o then it is apparent from the sim-

ilarity of all wake elements that
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v (g,0) = kL [0(g) - &= —je“‘" - K&y (15)

Substituting equations (14) and (15) as the shed vorticity rela-

tions into the downwash equation (8) yields

1 v (§)(x-Ut) ;
2n v (x,t) = [ 2 ag » el(u¢+m)
a -1 &-x
- i { 2 {:—ik_g
- ax  eHete) RECEDR = (foo Se g (16)

[f(é ) - ilk cf—gi -1kSn(g s tUt-x)
52 ds

(§n+ns+Ut-x)2 + n"h n

-]
n=1
Due to forward motion, and conseguently to the decay function,
time remains as an explicit variable in the downwash equation (16). It
has been assumed Tfrom the start that the motion is strongest at § = 90D
+ A$FL. In terms of stability this means that the airfoil is least

stable at time t = 0 and this will be the only time to be considered.

If & coordinate change of
§n + ns + Ut - x = nhy

is applied to the integral in the last term of egquation (16) then the

summation becomes
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. e - -iknhy
4 luwt Z, Jllms -ikx p [f(nhy—ns+x) oL af] ye 7 ay
ik dy 2+l
n=1 J
ﬂ . _-
2 am el IRE ryey soh) + AW . (17)

The function W(k,s,h) + AW just defined represents the effect of the
previously shed wakes upon the downwash and is a function of reduced
freguency, advance ratio, and inflow retio. The variation of the decsay
function with x, as shown in the last equation, is eliminated by noting
that x can vary only from -1 to 1. This means that x is small so that
the decay function does not vary significantly with x. With the depend-
ency on x thereby removed, the portion of the wake weighting function for

no decay is found to be (see Appendix C)

1_/( Ekhe-lks

W(k,s,h) = - 1)

The segment of the wake weighting function due to the introduction of the

decay funetion 1s

=iknhy

eikns [f(nhy—ns) l-;k dyJ 3;———————dy . (18)

-iﬂﬂw =

o] .
;;L\wa

For time near zero the decay function f(x-Ut) is very near one

since -1 € x £ 1, Letting va(x,t) = Ea(x)el(um+¢) then makes the down-

wash eguation (16) become

1 8f 7 -1kE
) 1Y, (8)as MECREE. E 3
2Trva(x) = J’_l —Fx - 1k I, j‘l g ag
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- me T e [y(k,s,h) + &W] (19)

for time t = Q,
Through investigations for the solutions to certain integral

equations Carleman {19) found thet the unique solution of the equation
1 A
A h =
a0 B -8 s (850,
-1
within the class of continuous functions having an integrable singularity

at the left-hand end of the segment [-1,1] and bounded at the other end,

can be written as

ﬁ(}{) = %E)Q—e g(x) + _.Be.ﬂ)_.__ ! e-w(x)g(g) élg
a (x)+mB dgg(x)+n232 -1 Jée(x)+ﬂ232 -

where

cu()-—J’ —(—)-dg, 2mi 8(x) = 4n E2%%(0<9(X)<1)-

Ira(x) =0 and B = %, so that 6(x) =% and
o Aix
wfx) =

7%’

we obtaih

2 Tox o (17
f(x) = 1+§J' «/—égg(ﬁdg’
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which is SGhngen's (17) solution to the integral equation

1
g(x):-%_—hr ﬁ'(s')'dg.

.y §%

The case under consideration in equation {19) is that A(x) =-i'fa(x).
The bound vorticity, Qa(x), will be finite st the trailing edge and have
an integrable singularity at the leading edge of the airfoil., These
conditions are met by the above assumptions on the function ﬂ(x).

Applying S8hngen's {17) inversion to equation {19) ylelds the

formala for the bound vorticity as a function of downwash:

_ - 1 ~ v (§)
o0 -2 (B B

ik 1 —= ™ -iky
_a 48 1 af] e~
Yo ] Ji x—gf [t - 5 &) S av

+ —= (W+AW) j J%E ex.g dg}

Now the totel downwash can be found by noting from the relations

shown in equations (10) and {12) that

1
T‘é/c' = f‘a e 1K o I-]_ '?a(x) ax .

Thus, by integrating equation (20} over the chord, reversing the order




a7

of integration and noting that
L 1+ -ik§
FooJaE e e s () - 13 (0)]
-1 1-§ o) 1

the total bound vorticity may be expressed as

= _ 4{k,s,h 1 [1+E -
Fa J:T.E‘I'l;—‘lsrﬂl 3:% Va(g)dg (21)

where

&{k,s,h) l/[HgE)(k) + i Hgg)(k) + &F3(k)

-+

2i(W + aw)[JO(k) - iJl(k)]} . (22)
The function G(k,s,h) is introduced here for notational convenience and

it involves Hankel funetions, Bessel functions and the integral

S22 T 1 ar) [yl -iky
ary(i) = = ] [f) -1 - Sy e Y ay (23)

In order to determine the pressure difference across the airfoil

in terms of the vorticity given in equation (20) we begin with Bernoulli's

gegquation for unsteady motion using non-4imensiconal lengths

3¢ .99 b
5t U 5 * 5 F(t) .

The difference in velocity between the upper and lower surfaces

of the airfoil is Ya(x,t). Thus,

i TR CS)
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and so

CPU - (PL = 2t J-l 'Ya(g,t)dg .

Applying these relations between the velocity potential and the

bound vorticity we get

X
a = T w1 _a- g ]
Dy - Py £ = - pluey (x,t) +e f_l > Y (8, 1)ag | .

Recalling the vorticity relation from equation (5) and the fact

that go = § - Ut makes this pressure ecuation become
- &p _ ;- eyl (wte)
oTc Ya(x)f(x Ut)e
1(u¢+w) 3
e j‘ NETECAR 7.(8)

For time t near zero this can be reduced, by letting

bp = a5(x) XWHP)

to

- AD - * o * df
pTc‘? 27,00 + 1k | ) v,(§)ag - j aE Y v,(g)ag .

The slope of the decay function will be very near zero over the
chord of the airfoil. Thus the second integral in the previous pressure

eguation will by negligible. So,
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- X
“ o) - 5,60+ ac [ RACLE (24)

The local bound vorticity is given by equation (20). Substitu-
ting equation (20) into equation (24) and performing the necessary

cperations, as shown in Appendix &, yields

Ap(x) m_ o T fix [I3€ 1 . -
- - J-l L Trx v 1-§ x-E ~ 1kﬂl(x,§)]‘va(§)d§

- l P
+ G(k,s,h)[nge) + AR+ 21 (WHaH) T flfﬁj J%E. v (9)ag
-1
1
o0k, mE (o) [ /478 ¥ (9)ag (25)
1

which is the pressure in terms of the downwash. Equation (25) involves

the integrals

@ 2
- 2 Faf 1 4 £ -iky
Fk,x) = - 2 .rl I_E';} EET 5 Q(x,¥)e ay (26)
where
- -1 [ 1-x% /z+l7 _
%(K:Y) 2 ta‘n ,\‘ l+x y"l_J m (27)
and
© -~ _=iky
R [y 1oL
oF (k) = = j'l o(y) -1 - % & - dy (28)
/s
y -1

and the function
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Ql<X)§)=é{n[_ -X§+ lg -X
l—x§—./l§ .f‘l-

The 1ift acting on the airfeoil is obtained by integrating the

(29)

pressure over the chord, That is,

1
L=ct f Ap(x)dx . {(30)

Integrating by parts and noting that

aQ (xJ b) 1+K
V l+ Vl.x l+< -x)

then it follows that

1
Il%&gmx=wfg : (31)

With a function AFh(k) defined as
2o 2 ik
ARy (k) = = [ (r-e/ik)(y - A1) ay (32)
1

it can be shown that

1

) X F(kx)ax = 3 7 8 (k) . (33)

If the pressure eguation (25) is substituted into the 1lift equa-

tion (30) and equations (31) and (33) are applied to the result, then




1
L 5 = ik I_l /1—x2 Ga(x) dx

Zplc!
1 {1+x -
+ Cl(k)u) l'-) J 1 " 'i"_"; v&(x) ax (314')

where Cl(k,u,k) ie defined to be

¢, (k1) = G(k,5,n) {2 (k) + AR, (k) + aF(X)

+ 25 (x)[W(k,s,h) + &W1} (35)
where

&Fé(k) = ﬂFB(k) - aFl(k) .

The moment about the midchord is

1

2 - .
My = ¢ f Ap(x)x dx . (36)
5 -1

Integration by parts yields
1 1 2
[oo(x,8)x ax = 5 g /18" . (37)
-1
Pefining QFS(k) to be

wr () = £ [ e/ (v - AP-)e ™ gy (38)
L

gives the relation
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1 2
f ) Fl(k,x)x dx = %? AF5(k) . (39)

By substituting the pressure equation (25) into the moment

equation (36) and applying equations (37) and (39), it can be shown that

M
1
= 1
23-=-J“ (z-ikx)/l-xex'r(x)ax
p Ue? -1 2
1 14x =

- Cl(k,u,h) I-l / T va(x) dx (40)
_ 1
l 1 - i fl+x -

+ {G(k,s,h)LﬂFu(k) t35 AFs(k)J + 1.1-.[’-1,\!. T va(x) ax .

The moment about the quarter chord is

- 1
Ml = Ml + 5 c'L

L 2

Thus, adding the 1ift equation (34) to the midchord moment equation (L0)

yields

L .
. - [ (2-1k-1kx) S v, (x) ax
(1)

1 M= -
'jf—' (X) dx .

+ LG(k,s h), AFh(k) + 2AF5(};) 1+ lj.f
Now consider a strip of a two-dimensional airfoil having a bending

and a pitching freedom as shown in Figure 1. The bending h' is measured

positive down at the elastic axis and the piteh « is measured positive
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for nose-up rotation.
For an element of mass dm situated a distance xct aft of the

midchord, the inertia force is
~dmLh' + (x-a)e'&] .

S0 the total inertia forece is
‘.1 L2 ‘E
-1 _ - :
e m[gr + (xcg a)arJ
The inertia force exerts a moment about the elastic axis which is
I
J

- I(x-a)cr[ﬁr + (x-a)eryldm = -clgma(xcg-a) g% + (I—2axcg+a2)&i

2
where Imct! is the sectiion's mass moment of inertia ahout the midchord.

Now let

X = X -8,
(o4 cg
and
z
r =1 - 2ax + 32
o cg

With these definitions it 1s apparent that xamc' is the static mass
unbalance abcut the elastic axis and rimc‘2 is the mass moment of inertia
about the elastic axis,

With the displacements being resisted by springs of stiffness Kh
and Ka and enforced by the aerodynamic 1ift and moment aboqt the elastic

axls, the equations of motion for the section are




3k

fﬁ‘ QI.‘
1 —— . I = o
me kc’ + x Q‘)+K]1'.l L

/ - .
mc'ekx E% + reﬁ) +Ko =M . (42)
o C o o e.a.

The square of the uncoupled natural frequency in bending is

i = K/

and in rotation is
2 2 ‘2
u:a K 0/ ramc .

Thus, in terms of natural frequencies of the system, the equations of

motion {42) can be written as

. g :
ht/ct - x &+ h'/e' = -L/me

11

. 27 2 2
' 1 + ' . i
x, b Jer + ra(a uhg) Mea/mc (43)
It has been observed that the ensrgy dissipated by structural
deamping varies with the square of the amplitude of oscillations, The
effect of damping is therefore represented by a shift of the phase sangle
of the elastic restoring force., That is, the restoring force h'Kh can
he replaced by'hﬂﬁ£l+dgh) where g 1is the damping coefficient for bend-
2 2 o 2
ing. Thus, o, 1s replaced by‘uh(l+igh) and similarly W, is replaced by
2 .
+ .
u (1+ig )

If simple harmonic motion is assumed so that




and

iwt
¥ = w
o]
and if the 1ift is expressed as
L= - npw et kLh 01 + L« ) {bl)

and the moment about the elastic axis as

hl

A
M, T npw e \th—,+Mc'r o, (45)

then the equations of motion (43) become
o h)
i - - ! - t -
[(“h/w) (l+1gh) 1 - nly J (xL' + ;{a)% 0

(x + th) -2 4 [r - (wﬂ/w)g(lﬂga’)ri + nM&]ao = 0 (46)

where u 15 the mass ratio defined as » = mpe '2/m.

If

g-&h=ga,
and

2 .
= (w/w)” (1+ig) (47)
then a nontrivial solution to equation (46) is possible only if

|2 - (o) /0] [-(atps ) /6)7]

[ 2 2 (h8)
~(x,, + ) /r ] [2-1-a4} /27 ]

1
=}
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k P R + * = F 1 1 t

In order to find the expressions for Lh’ L&, Mﬁ and M&, the
relation for the local downwash along the airfoil must be known so that
it can be used in the lift equation (34) and moment equation {(41). For

small oscillations the displacement along the chord of the airfoil is
z' = ht +e{x - a)o .

The downwash on the airfoil must be

va(x,t) = Uc' dz'/dx' + 3z'/dt

Since va(x,t) = {'ra(:«:)elmt the relation for the displacement z' immedi-

ately yields

h \
Ga(x) = ile'k [Eg + (x—a-i/k)aoj . (49}

Substituting the downwash eguation {(49) into the lift equation (34) yields

-L = npcr3u?{[1+2cl(k,u,A)/ik]héfcr
+ {C (k,n,M)/ik - (a+i/k)(1+201/ik)]ab} . (50)
So, comparing the lift equations {(50) and (44), shows that
Lﬁ =L 1+ QCl(k,u,A)/ik (51)

and
R A (52)

where




Lo« d

o - _1£_L+;_>cl(k,p,x) 1/k - 201_(k,u,k)/k2 . (53)

Substituting Lhe dowawash equation (49) into the quarter chord

momentt cquaiion (i) yiclds

M, = I' l_—+1=~1-h—‘l3+*l 2 -i-+(a—i+1‘m-; + (54)
%‘”"C“’IL adc 872k 2t Mot O

where the term appearing due to the decay function is

Moo= T G(k s,h) lth(k) +5 = 4F, (k)_] (55)
If we let
M, =5, (56)
and
= 3/8 - i/k + (2a + i/k) M, (57)

then the quarter chord moment eguation {54) becomes
M. = mpet T { 5+[M~/i+a):|nf‘ (58)
1 P w 1yh ct o KE Mh of :
T
The moment about the elastic axis is

Moo= M+ (% + a)c'L ) (59)
I

It has been shown that
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> 3 h! . 1 . .

o /1
L= - mpw c! {PE_ET FLo-ig* a)Lh:]aoj . (60)
Substituting the lift equation (60) and the guarter chord moment equa-

tion (58) intothe elastic axis moment equation (59) shows, by compari-

son with the elastic axis moment equation {45), that

s M- (e, (61)
and
Y \.2
ML= M, - (% + a)(La + Mh) + (% + a) Ly - (62)
Bxpanding the Tlutter determinant given in equation {(48) yields
2
2° -20Z2+7=0 (63)
where
2 = (1 + ay) (g /w)% + 1L end /e (6%)
and
M= [G2aet) (1) - (Lo )0omi) u /o )?/rs . (65)

The roots of egquation (63) are
—
z=L+ JE =M.

From equation (47) it is obvious that the two values obtained from each

of the rocots are

w/w = /Re{Z] (66)

and




g = In{Z}/Re{Z} . {67)

For a given advance ratio and its associated inflow ratioc, the
flutter boundary is determined by varying the reduced fregquency until
the flutter determinant is zero with zero damping coefficient. A flut-
ter analysis then is carried out as fo lows:

1. Given k, i, and i, compute the modified lift deficiency from
equation (35). The methods for evaluating the terms due to the decay
function are given in Appendix B.

2, Compute the lift coefficients from equations {51), (52) and
(53) and the moment coefficients from equations (61) and (62), where M
and.h%{are obtained from equations {55), (56), and (57).

3, The blade characteristics such as mass ratio, # = npc‘g/m,
natural torsional to bending frequency ratio, u&/uh, and mass unhalance,
Xa’ are known., Thus step (2) completes the information necessary to
calculate the binomial coefficients {, equation {64), and 1), eguation
(65), for equation (63).

L. The roots for Z yield the dsmping coefficient from equation
(67) and the oscillatory frequency from equation (66). The latter term
yields the velocity for the velocity-damping plot from the relation

VHOR 1
wc' - k(l+u)(ua/w) ’

(68)

If flutter can exist then it will be found by decreasing the reduced
frequency which is assumed in step {1) until the damping coefficient

from step (4) goes to zero.




CHAPTER III

DIBCUSSION OF RESULTS

This chapter begins with comparisons between results obtalned here
and in earlier works, OSome of the major parameters effecting the flutter

velocity were varied and the results are presented here.

Comparison of Lift Deficiency Functions

With a decay function of

pa
£(y) = 1 - &P/

an exact evaluation of the integrals given in the definitions for AFl,

o ﬁFM’ and ﬁF5 is possible, Plots cf this decay function for various
decay rates are given in Figure 10. The method of soclution of these
integrals is given in Appendix D, A numerical method for evaluating the
integrals 1s described in Appendix B. The numerical method allows for
complete flexibility in the choice of the decay function. All of these
integrals are functions of reduced frequency alone.

Agreement to five significant fipures was achieved between the
exact and numerical results for the reduced frequency in the range from
0.008 to #.0. For k between 0,008 and 2.02 the numerical method was
good to four significant figures for the imaginary part of aFS. This
accuracy is quite adeguate for the determination of the modified 1lift

deficiency function for helicopter flutter. If a decay function is found

that better fits the motion of the system, it can be applied to this
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numerical methed, and accurate results can be expected.

The calculations in the exact method for values of the reduced
frequency greater than 4.0 lost precision when nine significant digits
were carried. However, only values of k less than one are of interest
in a lifting surface flutter analysis. This is evident from the fact

that
k = w' /(R (1+) .

Thus, a high flutter speed requires small reduced frequency.

The effect of all of the previously shed wakes appears in the
wake weighting function W(k,s,h) + AW. This term is evaluated as shown
in Appendix C. FEach term in the relation for the modified lift defici-
ency function given in equation (35) can now be evaluated. Figure 11
shows a compariscn between the 1ift deficiency functions obtained with

and without decay. The decay rate was 4.0 so that

e
£(y) = 1 - MY

and the advance ratio was taken to be 0.1.

High and low inflow was considered. With A = 0,16 for high
inflow, the curves for the real and imaginary part of the lift defici-
ency function are fairly smooth since the previously shed wakes are too
far away to have much effect., TFor a low inflow ratio of A = 0.02 the
wakes have a strong effect on the lift deficiency function if there is
no decay. With decay, the wakes lose some of their effect and so the
variation of the lift deficiency function with reduced frequency is

smoother., The reason for this loss of effect becomes apparent by
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Figure 11. Lift Deficiency Function with and without Decay.
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examining Figure 9@ which shows that the wake sections that lie direcily
below the blade lose strength due to decay,
The wakes cause a lift loss and phase shift even at zero reduced

freguency. With no decay it can be shown that

L €y ) - T (69)
where
5 = WeTR' /be!
and
h = A2mR!/bet

In hover, s = O so that equation (69) reduces to the value found
by Leewy (1) for zero k and integer Trequeney ratio, w/Q.

In Figure 12 it is evident that a significant difference exists
between the 1ift deficiency functions found from fixed wing theory
{(Theodorsen)} and the present theory. This difference is greatest at the
low values of k where flutter would occur. This difference remains even
with infinite wake spacing due to the decay in the reference wake,

The terms that appear due to decay are aFl, AF,, AFh, ﬂFS, and AW,

With the decay function
2
Hy) = 1- &PV

these terms will go 1o zero as p approaches infinity. Figures 13, 1b,
and 15 show plots of these funcliions versus reduced freguency for various

decay rates.
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Theodorsen: c(k) = P(k) + iG(k)
Present Theory: Cl(k,u.,l) = Fl(k,u.,l) + iGl(k,u.,k)

o.8L ———— = = Theodorsen
A= 0.02
- Present
\ ————— A= 0.08 Theory
0.7 ‘' e A=
F)
F
G,
Gl

Figure 12. Comparison with Theodorsen,
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With no decay, the present lift deficiency function given in

equation (35) reduces to
. (2)
C,(k,1,8) = G(k,5,h) {0 "/ (x)+2W(k, 5,h)3, (k) ] (70)
where now equation (22) reduces to

G(k,s,h) = 1/{Hl(2)(k)+iﬁo(2)(k) + EW(k,s,h)[Jl(k)+iJD(k)]] .

By comparison with equation (3), it is evident that the present lift
deficiency functicn yields the same results as Loewy's (1) 1ift defici-

ency function if
w(k,s,h) = W(kh,m)

where m is the frequency ratio, uVQ. Since

W(k,s,h) = 1/(efP o738 | 1)

[}

I:}(kh,m) l/(ekh eiem - 1)

for an equivalent single bladed rotor, it is clear that equality will
exist between the two wake weighting functions if

e-iks eiEnm ]

=

Since

k= et /OR(1+H)

and
s = WonR'/ct
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for b = 1, this condition can be expressed as
p/(1+u) = N/m - 1 (71)

where N is an integer. In hover, eguation (Tl) regquires that the fre-
quency ratic in Loewy's (1) model be an integer. This is to be expected
since an integral ratio would make the blade hehave in the same way each
time it passes ¢ = 900, as has been assumed here, Equation (71) shows
equality for particular non-integral frequency ratios in forward flight.
Forward flight in the present model effectively shifts the wakes down-
stream. The result is a phase difference between wakes that is similar
to Loewy's (1) model with non-integral frequency ratio.

If there is no decay and the wake spacing is infinite, then

W(k,s,o) = O and, as is evident by comparing equations (70) and (2),
Cl(k, s,) = C(k)
so that the present lift deficiency function reduces to Theodorsen's (4),

Sample Flutter Analyses

The characteristics of the blade considered in the following
cases are given in Table 1 helow,

Trends Observed

The velocity-damping plot obtained for a helicopter moving with
an advance ratio of 0.3 is shown in Figure 16. This velocity-damping
plot is the result of the two-dimensional flutter analysis described in
Chapter II applied to the blade segment at the tip of the blade. The

damping (g) required for neutral stabllity is plotted versus total
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Figure 16, Velocity-Damping Plot.
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Table 1. Characteristics of Sample Blade

Parameter Value

" 0.016
e 0.051
a - 0.50
x, 0.02, 0,04, 0.08

wh/u& 0.312
b >

21R' /oot 51.4

airspeed (fIU+V). Plots are shown for the unstable mode for two c.g.
locations. As would be expected, the flutter speed decreases as the c¢.g.
is moved aft.

Figure 16 also shows the influence of torsicnal stiffness. If
the torsional freguency was changed due to stiffness so that uh/ua was
0.357 or 0.278, then a new family of curves would result, Indicated on
Figure 16 are portions of these curves where they cross the flutter
boundary, It can be seen that the flutter speed increases as the fre-
quency ratio increases,

Figure 17 depicts the influence on flutter speed of the build-up
and decay of shed vorticity for several c.g. positions. The influence
of advance ratio on the flutter speed decreases as the advance ratio gets
larger hecause the distance between the blade and the center of strength

for each shed wake increases with advance ratio. This increased
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separation can be seen from Figure 9, and it reduces the effect that the
wakes have on the flutter speed. With build-up and decay, changes in
Tlutter speed due to advance ratio disappear for advance ratios in ex-
cess of 0.3.

Also plotted in Figure 17 is the case where no huild-up or decay
is introduced. Bince the wakes, without this effect, extend infinitely
forward and behind the rotor, the vorticity near the rotor will remain
at full strength even at very high advance ratios, Thus the advance
ratio will only affect phase, and so the flutter speed continues to
change with advance ratio.

From the families of curves shown in Figure 17, it can be seen
that the flutter is most sensitive to the distance between the elastic
axis and the center of gravity. For a given center of gravity location
the flutter velocity varies with decay rate as well &s advance ratio.
The most conservative decay rates will be those that yield the lowest
flutter veloclity at various advance raszios.

Inflow Variation

If fuselage drag and/or auxiliary 1ift is included for an analysis
of a helicopter then the inflow will vary with advance ratio. The fuse-

lage drag may be given as
1 Bri2.20 g
b 5 pfFR' M) CD“ﬁ
where Sﬁ is the frontal areca of the fuselage and CD is its drag coeffici-

ent. The suxilisry 1lift may bhe glven as

1 22,
L= 5 pﬂER' M CLu'




where S' is the area of the lifting surface. Both 1lift and drag will
now vary with advance ratio. The amount of tilt necessary from the

rotor to overcome drag is given by'aT where

1 L -T

a‘“‘ (72)

- ten U eyTT

%p
where Taux is any auxiliary thrust applied to attain high forward speeds
and W is the weight of the aircraft. No auxiliary thrust was considered
here, but this thrust would be necessary in order to keep the rotor tilt
within bounds when drag increases and the 1ift approaches the weight of
the aircraft as forward speed is increased.

The thrust that is reguired from the rotor is

T = (W - L)/cos Lo

Wheatley (20) showed that the inflow tkrough the rctor can be found from

the relaticn

(73)

A= s8in ot +

CT/E
(f . “2)_1/2

where the thrust coefficient is given by
Cp = T/anzR'h .
If a weight coefficient is defined as
Cy = w/anER'h

and no auxiliary thrust is applied, then the tilt of the tip path plane,




from equation {72), will be

2
) _ CDSFp
Q’T = ftan T ”"‘—'é'
2CW - CLb b
where
Sg = Sﬁ/ﬂﬁ'e
and
2
S = 8'/mRr

Figure 18 shows the variation of the inflow ratio with advance
ratio as obtained from eguation (73) for several values of the weight
coefficient and no auxiliary lifting surface. A plot of flutier speed
versus advance ratio, allowing inflow to vary with forward speed.and
omitting eauxiliary 1ift, is given in PFigure 19.

When auxiliary 1ift is included the thrust required from the rotor
at higher speeds will be decreased. This means thet the inflow may
decrease with larger advance ratios. This decrease will bring the wakes
closer to the rotor vertically while inereased forward flight puts their
centers of strength further tc the rear and the net effect is unpredic-
table, Without decay no alleviation of the effect of closer wake spacing
will ocecur so that sharp differences will exist between results gained
with end without decay. A sample variation of flutter speed with advance
ratio with and without decay when drag and auxiliary lift are included is
shown in Figure 20. PFor a given 1ift coefficient the 1ift supplied by

the auxiliary surfaces could exceed the weight of the aircraft at high

advance ratics. The auxiliary lift for Figure 20 was kept below 80% of
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Figure 18. Variation of Inflow with Forward Speed.
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the weight of the aircraft. Actually, design criteria would produce an
upper bound for advance ratio.

Effect of ¢.g. Locaticn

The relationship of (1) the present theory with tuild-up and decay
of vorticity; (2) the present theory without this effect; and (3) fixed-
wing unsteady aerodynamic theory is shown in Figure 21, Plotted is
blade segment c.g. position versus flutter speed ({R' + V) for a design
advance ratio, @ = 0.3. For the case shown there is a crossover of the
curves, When the blade c.g. is sufficiently removed from the elastic
axis, the case with no decay gives the most conservative results, where-
as when the c¢.g. is near the guarter-chord the most conservative results
are those given by the present theory.

If the elastic axis and center of gravity are coincident then
Xa = 0, and the bending and torsion mod=s are decoupled. When the elas-
tic axis is at the guarter chord, the bending and torsion terms of the
aerodynamic 1ift and moment coefficients, as shown by eguations (52),
(1), ana (62), are uncoupled. For these conditions flutter does not
occur when decay of vorticity is neglected and the elastic axis and c.g.
are at the qQuarter-chord. However, the introduction of the decay func-
tion will yield flutter for this case, as shown by Figure 22. It should
be noted, however, that with the blade characteristics given in Table 1
and Xa = 0, the flutter speed obtained is too high to be of significance
in practice., Incompressible potential flow has been used here and so
any flutter speeds that exceed a Mach number of about 0.6 should be

regarded with caution since Hammond (21) and Jones and Rao (22) found

significant differences between compressible and incompressible theory
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Figure 21, Influence of ¢.g. Position on Flutter Speed.
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at these higher Mach nunbers.
Application to Design

Results of a forward flight flutter analysis can be summarized
In a design chart such as given by Figure 23. Plotted is the airspeed
of the aircraft versus percent rotor speed

Figure 23 is constructed by first drawing in the lines of con-
stant advance ratio. Then, with the flutter speed determned for a
given advance ratio, the rotor speed which puts the tip at flutter speed

is found from

VEL = "FLIAL Y ox) .

The percent rotor speed for flutter is conputed from

"A V

Q " R(I +u)
The point for this percent rotor speed is now marked on the appropriate
advance ratio line, and connecting these points for various advance
ratios defines the flutter boundary.

For a conmpound helicopter in which rotor load and rotor speeds
can be reduced at higher advance ratios, the tip speed can be kept bel ow
the flutter speed by decreasing rotor speed as airspeed increases. The
chart shows the safe operating region for the helicopter. Wth such a
chart the pilot can readily determ ne what the naxi nrum al |l owabl e rotor
speed is for a given airspeed, or what airspeed can be attained with a
gi ven rotor speed

The lower part of the flutter boundary curves in Figure 23



