Creating and Managing Digital Archives: The Role of an Institutional Repository in a University Archives

Society of Georgia Archivists 2005 Annual Meeting
Augusta, Georgia ♦ November 2-4, 2005
• History
• Background
• Archivists’ involvements
• Archivists’ concerns
• Conclusion
What is SMARTech?

- A set of services for the management and dissemination of the institution’s digital materials.

- An organizational commitment to the stewardship of these materials, long-term preservation if warranted, organization, access, distribution.

A Brief History of SMARTech

- Digital Initiatives formed in January 2003
- ETD pilot Fall 2003 – Required June 2004
- SMARTech launch August 1, 2004
 - Concentration on early adopters’ gray literature
 - Self-submittal a low priority
Preparation

• Informal survey of campus digital output and interested parties
• Software survey and study
• Personnel changes
• Creation of partnerships
• Production
• Upgrades, refinements, enhancements
Policies

- Permanent
- Clear copyright / Produced by Georgia Tech community
- Sustainable formats
- “Typical” library and archives materials
- Materials not always catalogued
- Metadata
- Library inputs as much as needed
Populating SMARTech

- Began with the idea of self-submission of faculty work
- Evolved into library submission of digital output of campus units and…
- Harvesting from other repositories and…
- Will include library submission of faculty work and hopefully…
- Self-submission of faculty work
Plan of Attack

Library involvement
- Campus ePublications
- Other campus output
- Other campus DSpace implementations

- Individual Faculty Participation
What can be found in SMARTech?

- Technical Reports
- Project Reports
- Newsletters
- Annual Reports
- Working Papers
- Fact Sheets and Reference Guides
- Web Pages

- Learning Objects
- Data Sets
- Pre-/Post-Prints
- White Papers
- Conference Papers
- Simulations
- ETDs
- ?????
The Library as Aggregator

- SMARTech
 - Repository of record for campus
 - Serendipitous discovery across disciplines
 - Long term access and dissemination
 - Portal to other campus repositories
Archivists’ Involvement in SMARTech:

• Repository policies
• Campus outreach
• Publicity
Archivists' Involvement in SMARTech:

- Repository policies
 - Collection policies
 - Self-submission vs. archivist submission
 - Preservation strategies
 - Access
Archivists’ Involvement in SMARTech:

- Repository policies
 - Collection policies
 - Born-digital materials
 - Traditional archival materials (digital conversion)
 - Future materials
Archivists’ Involvement in SMARTech:

- Repository policies
 - Collection policies
 - Born-digital materials
 - E-publications
 - Electronic Theses and Dissertations (ETDs)
 - Technical and Research Reports
 - Finding aids
 - Acceptable formats
Browsing Georgia Tech E-Publications by Title

Jump to: O-Z ABCDEFGHIJKLMNOPQRSTUVWXYZ
or enter first few letters:

Showing items 1-21 of 285.

<table>
<thead>
<tr>
<th>Date of Issue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999</td>
<td>1998 - 1999 Annual Report</td>
<td>School of Electrical and Computer Engineering</td>
</tr>
<tr>
<td>2000</td>
<td>1999 - 2000 Annual Report</td>
<td>School of Electrical and Computer Engineering</td>
</tr>
<tr>
<td>2000</td>
<td>1999 Georgia Tech Fact Book</td>
<td>Office of Institutional Research and Planning (IRP)</td>
</tr>
<tr>
<td>2001</td>
<td>2000 - 2001 Annual Report</td>
<td>School of Electrical and Computer Engineering</td>
</tr>
<tr>
<td>2002</td>
<td>2001 - 2002 Annual Report</td>
<td>School of Electrical and Computer Engineering</td>
</tr>
<tr>
<td>2001</td>
<td>2001 Georgia Tech Fact Book</td>
<td>Office of Institutional Research and Planning (IRP)</td>
</tr>
<tr>
<td>2002</td>
<td>2002 Georgia Tech Fact Book</td>
<td>Office of Institutional Research and Planning (IRP)</td>
</tr>
</tbody>
</table>
Please use this identifier to cite or link to this item: http://hdl.handle.net/1853/3797

Title: The Whistle [Volume 24, Number 29]
Authors: Institute Communications and Public Affairs (ICPA)
Issue Date: 2-Oct-2000
Publisher: Georgia Institute of Technology
URI: http://hdl.handle.net/1853/3797
Appears in Collections: The Whistle
Georgia Tech E-Publications

Files in This Item:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Size</th>
<th>Format</th>
<th>View/Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>oct2.pdf</td>
<td></td>
<td>213kb</td>
<td>Adobe PDF</td>
<td>View/Open</td>
</tr>
</tbody>
</table>

Show full item record

All items in SMARTech are protected by copyright, with all rights reserved.
Inside:
Spotlight 2
In Brief 3
Campus Events 4

THE WHISTLE

Faculty/Staff Newspaper Volume 29, Number 28 • September 6, 2004 The Georgia Institute of Technology

For the record, Library's new digital archival system open to all

Sean Selman
Institute Communications and Public Affairs

A new system available through Georgia Tech’s Library and Information Center seeks to preserve the vast quantity of digital files and intellectual output produced daily at the Institute.

The Scholarly Materials And Research at Georgia Tech (SMARTech) system stores faculty, staff, and student presentations are vulnerable to loss if not archived properly.

"Materials in the digital format are quickly produced and easy to lose, and we have to take measures to include and save them," said Tyler Waters, the Library’s associate director for digital and technical services. SMARTech seeks to corral important files and reduce the loss of data. It also seeks to aid faculty, staff and students in their collaborative research efforts. What's more, it’s

Cragger's delight
Biology undergraduate student Kim Baldesore climbs the newly-installed rock wall that
Aquatic plants help to remove contaminants from wetlands

Researchers have found that a common aquatic plant removes many persistent organic compounds that are discharged into natural waters and engineered wetlands. Environmental engineers at Georgia Tech have found that various chlorinated, fluorinated, and mixed-organic compounds are taken up and sequestered in the plant tissue of their model plant species — duckweed (Lemma minor), a floating aquatic plant. These organic compounds are representative of the pool of pollutants discharged into the nation’s waters. Sources include agrochemicals, such as pesticides, and pharmaceutical residues, such as those from anti-depressants, which are excreted in human waste. Though the compounds are sequestered in the plant, there is concern about their ultimate fate in the ecosystem as the plants are eaten by animals, or die and decay in wetland sediments, researchers noted. “The compounds go into the plant, and the plant has no choice about the uptake,” explained Professor Michael Saunders of the School of Civil and Environmental Engineering. “Our plants take up this large class of compounds quickly, at rates faster than bacteria would degrade the contaminants.”

These findings have implications for both water monitoring regulations and wastewater treatment practices. Saunders’ Ph.D. student, Dow Reinhold, presented their research last month at the national meeting of the American Chemical Society. Reinhold conducted the research, in part, with former doctoral student, Jacqueline Trout, who graduated in May 2004, and Angela Wrona, also a recent graduate. This study built upon previous research in Saunders’ lab, funded by the U.S. Department of Energy.

Plants continued, page 3
Archivists’ Involvement in SMARTech:

• Repository policies
 – Collection policies
 • Born-digital materials
 – E-publications
 – Electronic Theses and Dissertations (ETDs)
 – Technical and research reports
 – Finding aids
 • Acceptable formats
Acceptable formats:

- **Text**
 - PDF (.pdf)
 - HTML
 - XML
- **Images**
 - PDF (.pdf)
 - JPEG (.jpg)
 - GIF (.gif)
 - TIFF (.tif)
 - Adobe Photoshop (.ppd)
- **Video**
 - MPEG (.mpg)
 - QuickTime (.mov)
 - Streaming video applications
- **Audio**
 - MPEG-2
 - MP3
 - CD-ROM/XA
 - WAV (.wav)
Archivists’ Involvement in SMARTech:

• Repository policies
 – Collection policies
 • Traditional archival materials (digital conversion)
 – Institutional archives, personal papers, organizational records
 – Visual materials
 – Theses and dissertations
A Photographic Atlas of Selected Regions of The Milky Way

Edward Emerson Barnard

INTRO SEARCH GLOSSARY ABOUT CREDITS LINKS
Plate 1

Region of the Double Cluster in Perseus

α (2000) 2h 19m 24.3, δ (2000) +57° 42'

α (1975) 2h 12m 50.6, δ (1975) +57° 00'

Area
Region of the Double Cluster in Perseus

Galactic Coordinates
102°, -3°

Scale
1 cm = 25'.6 or 1 in = 54'.9

Chart
Plate & Chart
Table
Text

Printable PDF
Archivists’ Involvement in SMARTech:

- Repository policies
 - Collection policies
 - Traditional archival materials (digital conversion)
 - Institutional archives, personal papers, organizational records
 - Visual materials
 - Theses and dissertations
Archivists’ Involvement in SMARTech:

• Repository policies
 – Collection policies
 • Future materials
 – E-portfolios
 – Finding aids
Archivists’ Involvement in SMARTech:

- Repository policies
 - Self-submission
 - Archivist submission
Archivists’ Involvement in SMARTech:

• Repository policies
 – Preservation strategies
 • Back-ups
 • Migration
 • Metadata
 • Participation in research grants
 – Access
 • 24 hours
Archivists’ Involvement in SMARTech:

• Campus outreach
 – Meet the campus
 – Brown Bag/Lunch and Learn programs
 – Archivists and subject librarians
Archivists’ Involvement in SMARTech:

• Publicity for users and submission
 – Articles
 – Brochures/flyers
 – Word-of-mouth
 – Brown Bag/Lunch and Learn programs
 – Education
 – Web site
A Guide to Donating
Your Student Organizational Records
to the Georgia Tech Archives

The mission of the Archives and Records Management Department at the Georgia Institute of Technology is to collect and preserve the history of the campus, faculty, alumni, and students for future generations.

What Can the Georgia Tech Archives Offer Your Student Organization?

The Georgia Tech Archives employs archivists trained in the care and preservation of historical materials. The Archives offers a safe, controlled storage and access to the materials they collect and provides a permanent record of your student organization for future officers and students.

What Documents Should Be Placed in the Georgia Tech Archives?

Items donated to the Archives should not be those continuously used in the daily operation of the organization. It is important in archival work to preserve the original organization of records so it is always a good idea to have the archivist visit the records you wish to donate prior to boxing them and sending them to the archives. The archivist will talk with you about the papers and which the archives wishes to collect. Some of the types of items the archives may be interested in are:

- Architectural records
- Articles of incorporation, bylaws, charters,
- Minutes of meetings
- Membership lists
- Budgets and financial statements
- Correspondence
- Photographs
- VHS tapes
Architectural records
Articles of incorporation, bylaws, charters, constitutions, etc.
Audio and visual records
Clippings
Correspondence of officers
Directories
Financial records
Handbooks
Legal documents

Minutes of meetings
Membership lists
Organizational charts
Photographs and scrapbooks
Printed Materials (newsletters, brochures, fliers, etc.)
Press releases
Reports (annual, committee, etc.)
Speeches
Subject files

In some cases, the materials you wish to donate may be better suited for Georgia Tech’s digital repository, SMARTech. In that instance, the archivist will make a recommendation and put you in touch with the appropriate person to discuss adding the records to SMARTech.

How to Donate

When donating a collection, it’s best to contact the Archives. The archivist will meet with the organizations’ officers and go over how to prepare a collection for donation. Access to a collection will be determined by discussion between the archivists and the officers.

Contact the Archives

If your organization is interested in donating collections to the Archives, please contact Jody Thompson (jody.thompson@library.gatech.edu; 404-894-9626), Head of Archives and Records Management.
Archivists’ Involvement in SMARTech:

- Publicity for users and submission
 - Articles
 - Brochures/flyers
 - Word-of-mouth
 - Brown Bag/Lunch and Learn programs
 - Education
 - Web site
Archivists’ concerns:

- Repository agenda is no different than traditional archival practices:
 - Collection
 - Preservation
 - Access
Archivists’ concerns:

• Collection
 – Scope and research value
 – Users
 – Rights issues
Archivists’ concerns:

- Preservation and access
 - Paper-based materials
 - Digital materials
October 3, 2005
Tuesday Talks: Georgia Tech Faculty Speaker Series
The Georgia Tech Library is sponsoring a lecture series featuring research by Georgia Tech faculty presented for the rest of us. The aim of the series is to make research understandable to all of us in the Georgia Tech community. [more info & schedule >]

August 25, 2005
Borrow Laptops, Digital Camcorders and Cameras
The Library now has 10 Laptops, 24 Digital Camcorders and 4 Digital Cameras available for loan. [learn more>]

Accessibility | Legal & Privacy Information
© 2003 Georgia Institute of Technology
Welcome to SMARTech

If you would like to know more about SMARTech or would like to become an adopter, contact Catherine Janriik.

Search

Enter some text in the box below to search SMARTech.

Communities in SMARTech

Select a community to browse its collections.

- Archives and Records Management
- Center for Assistive Technology and Environmental Access (CATEA)
- Center for Experimental Research in Computer Systems (CERCS)
- Center for the Enhancement of Teaching and Learning (CETL)
- College of Architecture (CoA)
- College of Computing (CoC)
- College of Engineering (CoE)
- College of Liberal Arts (IAC)
- College of Management (CoM)
- College of Sciences (CoS)
- Georgia Tech Student Publications
- Georgia Tech Theses and Dissertations
- Graphics, Visualization, and Usability Center (GVU Center)
- Institute for Communications and Public Affairs (ICPA)
Communities and Collections

Shown below is a list of communities and the collections and sub-communities within them. Click on a name to view the associated items.

- **Archives and Records Management**
 - Georgia Tech E-Publications

- **Center for Assistive Technology and Environmental Access (CATEA)**
 - CATEA Fact Sheets and Reference Guides

- **Center for Experimental Research in Computer Systems (CERCS)**
 - CERCS Technical Reports

- **Center for the Enhancement of Teaching and Learning (CETL)**
 - The Classroom

- **College of Architecture (CoA)**
 - College of Architecture Electronic Theses and Dissertations
 - College of Architecture Newsletters

- **College of Computing (CoC)**
 - College of Computing Technical Reports
 - College of Computing Theses and Dissertations

- **College of Engineering (CoE)**
 - Georgia Tech/Emory Dept. of Biomedical Engineering (BME)
 - Biomedical Engineering (BME) Electronic Theses and Dissertations
• College of Engineering (CoE)
 ◦ Georgia Tech/Emory Dept. of Biomedical Engineering (BME)
 ■ Biomedical Engineering (BME) Electronic Theses and Dissertations
 ◦ School of Electrical and Computer Engineering (ECE)
 ■ ECE Annual Reports
 ■ ECE Newsletters
 ■ School of Electrical and Computer Engineering Electronic Theses and Dissertations
 ◦ School of Aerospace Engineering
 ■ School of Aerospace Engineering Theses and Dissertations
 ■ Aerospace Systems Design Lab (ASDL)
 ■ ASDL Publications
 ◦ School of Chemical and Biomolecular Engineering (ChBE)
 ■ School of Chemical and Biomolecular Engineering Electronic Theses and Dissertations
 ◦ School of Civil and Environmental Engineering (CEE)
 ■ School of Civil and Environmental Engineering Electronic Theses and Dissertations
 ◦ School of Industrial and Systems Engineering (ISyE)
 ■ Engineering Enterprise
 ■ IE Connections
 ■ School of Industrial and Systems Engineering Electronic Theses and Dissertations
 ◦ School of Materials Science and Engineering (MSE)
 ■ School of Materials Science and Engineering Electronic Theses and Dissertations
 ◦ School of Mechanical Engineering (ME)
 ■ School of Mechanical Engineering Electronic Theses and Dissertations
 ◦ School of Polymer, Fiber and Textile Products (PFTP)
 ■ School of Polymer, Fiber and Textile Products (PFTP) Electronic Theses and Dissertations

• College of Liberal Arts (IAC)
 ◦ School of Economics
• **College of Liberal Arts (IAC)**
 - School of Economics
 - School of Economics Electronic Theses and Dissertations
 - **School of History, Technology, and Society (HTS)**
 - School of History, Technology, and Society (HTS) Electronic Theses and Dissertations
 - **School of International Affairs**
 - School of International Affairs Electronic Theses and Dissertations
 - **School of Literature, Communication, and Culture (LCC)**
 - School of Literature, Communication, and Culture Electronic Theses and Dissertations
 - **School of Public Policy**
 - School of Public Policy Electronic Theses and Dissertations

• **College of Management (CoM)**
 - College of Management Electronic Theses and Dissertations
 - Operations Management

• **College of Sciences (CoS)**
 - **School of Biology**
 - School of Biology Electronic Theses and Dissertations
 - **School of Chemistry and Biochemistry**
 - School of Chemistry and Biochemistry Electronic Theses and Dissertations
 - **School of Earth and Atmospheric Sciences (EAS)**
 - School of Earth and Atmospheric Sciences (EAS) Electronic Theses and Dissertations
 - **School of Mathematics**
 - School of Mathematics Electronic Theses and Dissertations
 - **School of Physics (SoP)**
 - School of Physics Electronic Theses and Dissertations

 School of Psychology
School of Physics (SoP)
- School of Physics Electronic Theses and Dissertations

School of Psychology
- School of Psychology Electronic Theses and Dissertations

Georgia Tech Student Publications
- North Avenue Review

Georgia Tech Theses and Dissertations
- Electronic Theses and Dissertations

Graphics, Visualization, and Usability Center (GVU Center)
- GVU Technical Reports

Institute Communications and Public Affairs (ICPA)
- The Whistle

Institute of Paper Science and Technology (IPST)
- IPST Electronic Theses and Dissertations
- IPST PAC Reports
- IPST Project Reports
- IPST Technical Paper Series

Institutional Research and Planning (IRP)
- Georgia Tech Fact Book

Library and Information Center
- ConneXus
- Library and Information Center Annual Reports
- Library and Information Center Fact Sheets
- Library and Information Center Professional Publications and Presentations
- Library and Information Center Strategic Plans

President’s Scholarship Program (PS Program)
- President’s Scholarship Program Newsletters
Search Results

Search

<table>
<thead>
<tr>
<th>Search</th>
<th>All of SMARTech</th>
<th>for robot</th>
<th>Go</th>
</tr>
</thead>
</table>

Results 1-10 of 49.

Item hits:

<table>
<thead>
<tr>
<th>Date of Issue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Planning of joint trajectories for humanoid robots using B-spline wavelets</td>
<td>Ude, Ales; Atkeson, Christopher G.; Riley, Marcia</td>
</tr>
<tr>
<td>2000</td>
<td>Methods for Motion Generation and Interaction with a Humanoid Robot: Case Studies of Dancing and Catching</td>
<td>Riley, Marcia; Ude, Ales; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2002</td>
<td>Skills Impact Study for Tactical Mobile Robot Operational Units</td>
<td>Arkin, Ronald C.; Collins, Thomas Riley</td>
</tr>
<tr>
<td>1998</td>
<td>Behavioral Diversity in Learning Robot Teams</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>10-Aug-2004</td>
<td>Design of a low-cost, high speed robot for poultry processing</td>
<td>Anderson, Eric William; Mechanical Engineering</td>
</tr>
<tr>
<td>1997</td>
<td>Clay: Integrating Motor Schemas and Reinforcement Learning</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>1-Dec-2004</td>
<td>Disturbance Robustness Measures and Wrench-Feasible Workspace Generation Techniques for Cable-Driven Robots</td>
<td>Bosscher, Paul Michael; Mechanical Engineering</td>
</tr>
<tr>
<td>2000</td>
<td>Automatic Generation of Kinematic Models for the Conversion of Human Motion Capture Data into Humanoid Robot Motion</td>
<td>Ude, Ales; Man, Curtis; Riley, Marcia; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>12-Apr-2004</td>
<td>Force-Feasible Workspace Analysis and Motor Mount Disturbance Compensation for Point-Mass Cable Robots</td>
<td>Riechel, Andrew T.; Mechanical Engineering</td>
</tr>
<tr>
<td>2001</td>
<td>Robot Behavioral Selection Using Q-learning</td>
<td>Martinson, Eric; Stoytchev, Alexander; Arkin, Ronald C.</td>
</tr>
<tr>
<td>Date of Issue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2000</td>
<td>Planning of joint trajectories for humanoid robots using B-spline wavelets</td>
<td>Ude, Ales; Atkeson, Christopher G.; Riley, Marcia</td>
</tr>
<tr>
<td>2000</td>
<td>Methods for Motion Generation and Interaction with a Humanoid Robot: Case Studies of Dancing and Catching</td>
<td>Riley, Marcia; Ude, Ales; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2002</td>
<td>Skills Impact Study for Tactical Mobile Robot Operational Units</td>
<td>Arkin, Ronald C.; Collins, Thomas Riley</td>
</tr>
<tr>
<td>1998</td>
<td>Behavioral Diversity in Learning Robot Teams</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>2004-10-Aug</td>
<td>Design of a low cost, high speed robot for poultry processing</td>
<td>Anderson, Eric William; Mechanical Engineering</td>
</tr>
<tr>
<td>1997</td>
<td>Clay: Integrating Motor Schemas and Reinforcement Learning</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>2004-1-Dec</td>
<td>Disturbance Robustness Measures and Wrench-Feasible Workspace Generation Techniques for Cable-Driven Robots</td>
<td>Bosscher, Paul Michael; Mechanical Engineering</td>
</tr>
<tr>
<td>2000</td>
<td>Automatic Generation of Kinematic Models for the Conversion of Human Motion Capture Data into Humanoid Robot Motion</td>
<td>Ude, Ales; Man, Curtis; Riley, Marcia; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2004-12-Apr</td>
<td>Force-Feasible Workspace Analysis and Motor Mount Disturbance Compensation for Point-Mass Cable Robots</td>
<td>Riechel, Andrew T.; Mechanical Engineering</td>
</tr>
<tr>
<td>2001</td>
<td>Robot Behavioral Selection Using Q-learning</td>
<td>Martinson, Eric; Stoytchev, Alexander; Arkin, Ronald C.</td>
</tr>
<tr>
<td>Date of Issue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2000</td>
<td>Planning of joint trajectories for humanoid robots using B-spline wavelets</td>
<td>Ude, Ales; Atkeson, Christopher G.; Riley, Marcia</td>
</tr>
<tr>
<td>2000</td>
<td>Methods for Motion Generation and Interaction with a Humanoid Robot: Case Studies of Dancing and Catching</td>
<td>Riley, Marcia; Ude, Ales; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2002</td>
<td>Skills Impact Study for Tactical Mobile Robot Operational Units</td>
<td>Arkin, Ronald C.; Collins, Thomas R.</td>
</tr>
<tr>
<td>1998</td>
<td>Behavioral Diversity in Learning Robot Teams</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>10-Aug-2004</td>
<td>Design of a low cost, high speed robot for poultry processing</td>
<td>Anderson, Eric William; Mechanical Engineering</td>
</tr>
<tr>
<td>1997</td>
<td>Clay: Integrating Motor Schemas and Reinforcement Learning</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>1-Dec-2004</td>
<td>Disturbance Robustness Measures and Wrench-Feasible Workspace Generation Techniques for Cable-Driven Robots</td>
<td>Bosscher, Paul Michael; Mechanical Engineering</td>
</tr>
<tr>
<td>2000</td>
<td>Automatic Generation of Kinematic Models for the Conversion of Human Motion Capture Data into Humanoid Robot Motion</td>
<td>Ude, Ales; Man, Curtis; Riley, Marcia; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>12-Apr-2004</td>
<td>Force-Feasible Workspace Analysis and Motor Mount Disturbance Compensation for Point-Mass Cable Robots</td>
<td>Riechel, Andrew T.; Mechanical Engineering</td>
</tr>
<tr>
<td>2001</td>
<td>Robot Behavioral Selection Using Q-learning</td>
<td>Martinson, Eric; Stoytchev, Alexander; Arkin, Ronald C.</td>
</tr>
<tr>
<td>Date of Issue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2000</td>
<td>Planning of joint trajectories for humanoid robots using B-spline wavelets</td>
<td>Ude, Ales; Atkeson, Christopher G.; Riley, Marcia</td>
</tr>
<tr>
<td>2000</td>
<td>Methods for Motion Generation and Interaction with a Humanoid Robot: Case Studies of Dancing and Catching</td>
<td>Riley, Marcia; Ude, Ales; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2002</td>
<td>Skills Impact Study for Tactical Mobile Robot Operational Units</td>
<td>Arkin, Ronald C.; Collins, Thomas Riley</td>
</tr>
<tr>
<td>1998</td>
<td>Behavioral Diversity in Learning Robot Teams</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>2004</td>
<td>Design of a low cost, high speed robot for poultry processing</td>
<td>Anderson, Eric William; Mechanical Engineering</td>
</tr>
<tr>
<td>1997</td>
<td>Clay: Integrating Motor Schemas and Reinforcement Learning</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>2004</td>
<td>Disturbance Robustness Measures and Wrench-Feasible Workspace Generation Techniques for Cable-Driven Robots</td>
<td>Bosscher, Paul Michael; Mechanical Engineering</td>
</tr>
<tr>
<td>2000</td>
<td>Automatic Generation of Kinematic Models for the Conversion of Human Motion Capture Data into Humanoid Robot Motion</td>
<td>Ude, Ales; Man, Curtis; Riley, Marcia; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2004</td>
<td>Force-Feasible Workspace Analysis and Motor Mount Disturbance Compensation for Point-Mass Cable Robots</td>
<td>Riechel, Andrew T.; Mechanical Engineering</td>
</tr>
<tr>
<td>2001</td>
<td>Robot Behavioral Selection Using Q-learning</td>
<td>Martinson, Eric; Stoytchev, Alexander; Arkin, Ronald C.</td>
</tr>
</tbody>
</table>
Search Results

Results 1-10 of 49.

Item hits:

<table>
<thead>
<tr>
<th>Date of Issue</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>Planning of joint trajectories for humanoid robots using B-spline wavelets</td>
<td>Ude, Ales; Atkeson, Christopher G.; Riley, Marcia</td>
</tr>
<tr>
<td>2000</td>
<td>Methods for Motion Generation and Interaction with a Humanoid Robot: Case Studies of Dancing and Catching</td>
<td>Riley, Marcia; Ude, Ales; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2002</td>
<td>Skills Impact Study for Tactical Mobile Robot Operational Units</td>
<td>Arkin, Ronald C.; Collins, Thomas Riley</td>
</tr>
<tr>
<td>1998</td>
<td>Behavioral Diversity in Learning Robot Teams</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>10-Aug-2004</td>
<td>Design of a low cost, high speed robot for poultry processing</td>
<td>Anderson, Eric William; Mechanical Engineering</td>
</tr>
<tr>
<td>1997</td>
<td>Clay: Integrating Motor Schemas and Reinforcement Learning</td>
<td>Balch, Tucker</td>
</tr>
<tr>
<td>2004</td>
<td>Disturbance Robustness Measures and Wrench-Feasible Workspace Generation Techniques for Cable-Driven Robots</td>
<td>Bosscher, Paul Michael; Mechanical Engineering</td>
</tr>
<tr>
<td>2000</td>
<td>Automatic Generation of Kinematic Models for the Conversion of Human Motion Capture Data into Humanoid Robot Motion</td>
<td>Ude, Ales; Man, Curtis; Riley, Marcia; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>2004</td>
<td>Force-Feasible Workspace Analysis and Motor Mount Disturbance Compensation for Point-Mass Cable Robots</td>
<td>Riechel, Andrew T.; Mechanical Engineering</td>
</tr>
<tr>
<td>2001</td>
<td>Robot Behavioral Selection Using Q-learning</td>
<td>Martinson, Eric; Stoytchev, Alexander; Arkin, Ronald C.</td>
</tr>
<tr>
<td>Date</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2004</td>
<td>Learning from Observation Using Primitives</td>
<td>Bentivegna, Darrin Charles; Computing</td>
</tr>
<tr>
<td>1999</td>
<td>Robust Tracking of People by a Mobile Robotic Agent</td>
<td>Tanawongsuwan, Rawesak; Stoytchev, Alexander; Essa, Irfan A.</td>
</tr>
<tr>
<td>2003</td>
<td>Computational Model for an Extendable Robot Body Schema</td>
<td>Stoytchev, Alexander</td>
</tr>
<tr>
<td>2000</td>
<td>Robot Catching</td>
<td>Riley, Marcia; Atkeson, Christopher G.</td>
</tr>
<tr>
<td>1993</td>
<td>Dynamic Scheduling for Obstacle Avoidance in Mobile Robots</td>
<td>Batch, Tucker; Forbes, Harold; Schwan, Karsten</td>
</tr>
<tr>
<td>1994</td>
<td>Motor Schema-based Formation Control for Multiagent Robot Teams</td>
<td>Batch, Tucker; Arkin, Ronald C.</td>
</tr>
<tr>
<td>1997</td>
<td>Learning Roles: Behavioral Diversity in Robot Teams</td>
<td>Batch, Tucker</td>
</tr>
<tr>
<td>2003</td>
<td>Compact Encoding of Robot-generated 3D Maps for Efficient Wireless Transmission</td>
<td>Kaess, Michael; Arkin, Ronald C.; Rossignac, Jaroslaw R.</td>
</tr>
<tr>
<td>2004</td>
<td>Dirichlet Process based Bayesian Partition Models for Robot Topological Mapping</td>
<td>Rangathan, Ananth; Delaert, Frank</td>
</tr>
<tr>
<td>Date of Issue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>13-Jul-2004</td>
<td>Learning from Observation Using Primitives</td>
<td>Bentivegna, Darrin Charles; Computing</td>
</tr>
<tr>
<td>1999</td>
<td>Robust Tracking of People by a Mobile Robotic Agent</td>
<td>Tanawongsuwan, Rawesak; Stoytchev, Alexander; Essa, Irfan A.</td>
</tr>
<tr>
<td>2003</td>
<td>Computational Model for an Extendable Robot Body Schema</td>
<td>Stoytchev, Alexander</td>
</tr>
<tr>
<td>2000</td>
<td>Robot Catching</td>
<td>Riley, Marcia; Atkeson, Christopher C.</td>
</tr>
<tr>
<td>1993</td>
<td>Dynamic Scheduling for Obstacle Avoidance in Mobile Robots</td>
<td>Batch, Tucker; Forbes, Harold; Schwan, Karsten</td>
</tr>
<tr>
<td>1994</td>
<td>Motor Schema-based Formation Control for Multiagent Robot Teams</td>
<td>Batch, Tucker; Arkin, Ronald C.</td>
</tr>
<tr>
<td>1997</td>
<td>Learning Roles: Behavioral Diversity in Robot Teams</td>
<td>Batch, Tucker</td>
</tr>
<tr>
<td>2003</td>
<td>Compact Encoding of Robot-generated 3D Maps for Efficient Wireless Transmission</td>
<td>Kaess, Michael; Arkin, Ronald C.; Rossignac, Jaroslaw R.</td>
</tr>
<tr>
<td>2004</td>
<td>Dirichlet Process based Bayesian Partition Models for Robot Topological Mapping</td>
<td>Ranganathan, Ananth; Dellaert, Frank</td>
</tr>
<tr>
<td>Date of Issue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>13-Jul-2004</td>
<td>Learning from Observation Using Primitives</td>
<td>Bentivegna, Darrin Charles; Computing</td>
</tr>
<tr>
<td>1999</td>
<td>Robust Tracking of People by a Mobile Robotic Agent</td>
<td>Tanawongsuwan, Rawesak; Stoytchev, Alexander; Essa, Irfan A.</td>
</tr>
<tr>
<td>2003</td>
<td>Computational Model for an Extendable Robot Body Schema</td>
<td>Stoytchev, Alexander</td>
</tr>
<tr>
<td>2000</td>
<td>Robot Catching</td>
<td></td>
</tr>
<tr>
<td>Sep-1988</td>
<td>Using a robot based instrument to measure the in-plane ultrasonic velocities of paper; C.C. Habeger, M.L. Van Zummeren, W.A. Wink, B.M. Pankonin, and R. Goodlin.</td>
<td>Habeger, Charles C., Jr.; Van Zummeren, M.; Wink, W. A. (Wilmer A.); Pankonin, B. M.; Goodlin, R.; Institute of Paper Chemistry (Appleton, Wis.)</td>
</tr>
<tr>
<td>1993</td>
<td>Dynamic Scheduling for Obstacle Avoidance in Mobile Robots</td>
<td>Batch, Tucker; Forbes, Harold; Schwan, Karsten</td>
</tr>
<tr>
<td>1994</td>
<td>Motor Schema-based Formation Control for Multiagent Robot Teams</td>
<td>Batch, Tucker; Arkin, Ronald C.</td>
</tr>
<tr>
<td>1997</td>
<td>Learning Roles: Behavioral Diversity in Robot Teams</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Compact Encoding of Robot-generated 3D Maps for Efficient Wireless Transmission</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>Dirichlet Process based Bayesian Partition Models for Robot Topological Mapping</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date of Issue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>13-Jul-2004</td>
<td>Learning from Observation Using Primitives</td>
<td>Bentivegna, Darrin Charles; Computing</td>
</tr>
<tr>
<td>1999</td>
<td>Robust Tracking of People by a Mobile Robotic Agent</td>
<td>Tanawongsuwan, Rawesak; Stoytchev, Alexander; Essa, Irfan A.</td>
</tr>
<tr>
<td>2003</td>
<td>Computational Model for an Extendable Robot Body Schema</td>
<td>Stoytchev, Alexander</td>
</tr>
<tr>
<td>2000</td>
<td>Robot Catching</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>Dynamic Scheduling for Obstacle Avoidance in Mobile Robots</td>
<td>Batch, Tucker; Forbes, Harold; Schwan, Karsten</td>
</tr>
<tr>
<td>1994</td>
<td>Motor Schema-based Formation Control for Multiagent Robot Teams</td>
<td>Batch, Tucker; Arkin, Ronald C.</td>
</tr>
<tr>
<td>1997</td>
<td>Learning Roles: Behavioral Diversity in Robot Teams</td>
<td>Batch, Tucker</td>
</tr>
<tr>
<td>2003</td>
<td>Compact Encoding of Robot-generated 3D Maps for Efficient Wireless Transmission</td>
<td>Kaess, Michael; Arkin, Ronald C.; Rognignac, Jaroslaw R.</td>
</tr>
<tr>
<td>2004</td>
<td>Dirichlet Process based Bayesian Partition Models for Robot Topological Mapping</td>
<td>Renganathan, Ananth; Dellaert, Frank</td>
</tr>
<tr>
<td>Date of Issue</td>
<td>Title</td>
<td>Authors</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>13-Jul-2004</td>
<td>Learning from Observation Using Primitives</td>
<td>Bentivegna, Darrin Charles; Computing</td>
</tr>
<tr>
<td>1999</td>
<td>Robust Tracking of People by a Mobile Robotic Agent</td>
<td>Tanawongsuwan, Rawesak; Stoytchev, Alexander; Essa, Irfan A.</td>
</tr>
<tr>
<td>2003</td>
<td>Computational Model for an Extendable Robot Body Schema</td>
<td>Stoytchev, Alexander</td>
</tr>
<tr>
<td>2000</td>
<td>Robot Catching</td>
<td>Riley, Marcia; Atkeson, Christopher G</td>
</tr>
<tr>
<td>1993</td>
<td>Dynamic Scheduling for Obstacle Avoidance in Mobile Robots</td>
<td>Batch, Tucker; Forbes, Harold; Schwan, Karsten</td>
</tr>
<tr>
<td>1994</td>
<td>Motor Schema-based Formation Control for Multiagent Robot Teams</td>
<td>Batch, Tucker; Arkin, Ronald C.</td>
</tr>
<tr>
<td>1997</td>
<td>Learning Roles: Behavioral Diversity in Robot Teams</td>
<td>Batch, Tucker</td>
</tr>
<tr>
<td>2003</td>
<td>Compact Encoding of Robot-generated 3D Maps for Efficient Wireless Transmission</td>
<td>Kaess, Michael; Arkin, Ronald C.; Rossignac, Jaroslaw R.</td>
</tr>
<tr>
<td>2004</td>
<td>Dirichlet Process based Bayesian Partition Models for Robot Topological Mapping</td>
<td>Randenganath, Ananth; Dellaert, Frank</td>
</tr>
</tbody>
</table>
Title: Learning from Observation Using Primitives
Authors: Bentivegna, Darrin Charles Computing
Keywords: Imitation, Locally weighted learning, Reinforcement learning
Issue Date: 13-Jul-2004
Publisher: Georgia Institute of Technology
Abstract: Learning without any prior knowledge in environments that contain large or continuous state spaces is a daunting task. For robots that operate in the real world, learning must occur in a reasonable amount of time. Providing a robot with domain knowledge and also with the ability to learn from watching others can greatly increase its learning rate. This research explores learning algorithms that can learn quickly and make the most use of information obtained from observing others. Domain knowledge is encoded in the form of primitives, small parts of a task that are executed many times while a task is being performed. This thesis explores and presents many challenges involved in programming robots to learn and adapt to environments that humans operate in. A "Learning from Observation Using Primitives" framework has been created that provides the means to observe primitives as they are performed by others. This information is used by the robot in a three level process as it performs...

URI: http://hdl.handle.net/1853/5100
Appears in Collections: College of Computing Theses and Dissertations
Electronic Theses and Dissertations

Files in This Item:

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
<th>Size</th>
<th>Format</th>
<th>View/Open</th>
</tr>
</thead>
<tbody>
<tr>
<td>bentivegna_darrin_c_200407_meze.avi</td>
<td></td>
<td>45109Kb</td>
<td>Unknown</td>
<td>View/Open</td>
</tr>
<tr>
<td>bentivegna_darrin_c_200407_phd.pdf</td>
<td></td>
<td>7188Kb</td>
<td>Adobe PDF</td>
<td>View/Open</td>
</tr>
<tr>
<td>bentivegna_darrin_c_200407_airsoccer_1.avi</td>
<td></td>
<td>39398Kb</td>
<td>Unknown</td>
<td>View/Open</td>
</tr>
<tr>
<td>bentivegna_darrin_c_200407_airsoccer_2.avi</td>
<td></td>
<td>90116Kb</td>
<td>Unknown</td>
<td>View/Open</td>
</tr>
</tbody>
</table>
Archives and Records Management

Community home page

The mission of the Archives and Records Management Division of the Library and Information Center at the Georgia Institute of Technology is:

• to collect and preserve the history of the campus;
• to promote research and scholarship through collections relating to the academic curriculum;
• to provide a research experience for students in the use of primary sources;
• and to preserve the legal and administrative documents of the institute.

Collections in this community

• Georgia Tech E-Publications

Periodicals produced by the Georgia Institute of Technology, maintained and preserved by the Archives.

This information is available for educational purposes.
Thank you!

Jody L. Thompson
Department Head, Archives and Records Management
jody.thompson@library.gatech.edu

Catherine M. Jannik
Digital Initiatives Manager
catherine.jannik@library.gatech.edu