Bore Waviness Recognition
Using an In-Process Gage

Project Update

Kristian Krueger

Industrial Advisory Board Meeting
October 20, 2004
Problem Statement

- Valve tappets can irregularly exhibit waviness after grinding of the bore
- Sample parts are taken from the manufacturing process and tested for waviness
- Currently, if waviness is detected the entire lot is inspected manually
 - Significant costs in terms of time and money
 - Low repeatability of the manual inspection
Research Objectives

- **Objective 1**
 - Develop a prototype machine that is capable of automatic waviness detection. The machine can be used as a post-process machine to sort out parts with waviness.

- **Objective 2**
 - Evaluate the possibilities and limitations to implement the waviness detection directly in the grinding machine.

The prototype machine will be built using the same fixture and the same measurement system already present in the grinding machine.
Key Machine Components

- **Roll-Shoe Centerless Fixture**
 - Prototype of the fixture used in the grinding machine
 - Part position is defined by two rolls and a shoe
 - Hydrostatic bearings for roll spindles
 - Pusher and upper roll actuated by hydraulic cylinders

- **Marposs Thruvar 5 Gage Head**
 - Two diamond tipped fingers that trace the inner diameter of the part
 - Two LVDTs to convert finger displacement into electrical signal
Sources of Inaccuracies

- **Electrical Noise**
 - EMI/RFI, magnetic fields
 - Fluctuation of power supply voltages
 - Ground loops

- **Cutoff Frequency of the Gage Head**
 - -3dB cutoff frequency is 330 Hz
 - To measure waviness up to 300 upr the part rotational speed can be 1 rev/sec
 - To measure waviness up to 300 upr in a grinding machine a cutoff frequency of 4.5 kHz is required
Sources of Inaccuracies

- **Forced Vibrations**
 - Movement between gage and fixture
 - Pulsation of hydraulic fluid
 - Roll motor
 - Environment
 - Grinding wheel (in the grinding machine)

- **Centerless Fixture**
 - Movement between part center and fixture
 - Roundness error of the part outer diameter
 - Roundness error of the rolls

- **Additional Disturbances in the Grinding Machine**
 - Effect of coolant and swarf
Accuracy Improvement

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Prototype Machine</th>
<th>Grinding Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainly random</td>
<td>Electrical Noise</td>
<td>Shielding, grounding and cabling techniques</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Averaging over multiple measurements</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Forced Vibrations</td>
<td>Low vibration motor drive</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibration isolation system</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hydraulic accumulators</td>
<td>✓</td>
</tr>
<tr>
<td></td>
<td>Centerless Fixture</td>
<td>Separation of vibration from part profile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gage Cutoff</td>
<td>Low part rotational speed</td>
<td>✓</td>
</tr>
<tr>
<td>Mainly deterministic</td>
<td></td>
<td>Attenuation Compensation</td>
<td>✓</td>
</tr>
</tbody>
</table>

- = technical method
- = analytical method
✓ = implemented methods
Reduction of Electrical Noise

- Careful grounding to prevent ground loops
- Shielding of signal conditioning card
 - Design of a shielded enclosure for protection against electric fields, magnetic fields and EMI/RFI
- Gain Selection
 - Optimization of the gage and signal conditioning card gains to minimize noise
- Use of double shielded cables
- Results of noise reduction
 - Standard deviations

<table>
<thead>
<tr>
<th></th>
<th>[μinch]</th>
<th>[nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finger A</td>
<td>0.41</td>
<td>10.3</td>
</tr>
<tr>
<td>Finger B</td>
<td>0.25</td>
<td>6.3</td>
</tr>
</tbody>
</table>
Comparison to Roundness Machine

Procedure
- 120 test parts (mixture between good and bad parts)
- 5 measurements per part on a roundness machine at slightly different axial positions (0.25 mm axial spacing)
- 2 measurements per part on the prototype machine

Results

<table>
<thead>
<tr>
<th>Roundness Machine</th>
<th>good</th>
<th>good/bad</th>
<th>bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>good:</td>
<td>36 (100%)</td>
<td>31 (86.1%)</td>
<td>3 (8.3%)</td>
</tr>
<tr>
<td>good/bad:</td>
<td>30 (100%)</td>
<td>2 (6.7%)</td>
<td>3 (10.0%)</td>
</tr>
<tr>
<td>bad:</td>
<td>54 (100%)</td>
<td>0 (0.0%)</td>
<td>54 (100.0%)</td>
</tr>
</tbody>
</table>

- 100% of all bad parts are detected as bad parts
- 86.1% of all good parts are detected as good parts
Roll Eccentricity Filter

- Procedure
 - Least squares fit of a sine wave with the same frequency as the roll revolution to the profile
 - Subtracting the sine wave from the profile yields the filtered profile
 - Sine wave can be fitted to profile of any length
Averaging of Measurements

- **Problem**
 - Data acquisition is triggered by an encoder on the motor spindle
 - Number of data points per workpiece revolution is not constant

- **Method**
 - Compare different segments of the measurement to detect when profile repeats itself
 - Correlation coefficient is used to quantify similarity of segments
 - Profiles are averaged in the frequency domain

- **Assumption**
 - Profile does not change during measurements
Gage Cut-off Compensation

- **Method**
 - Spectrum is multiplied by the inverse of the transfer function to restore original amplitudes and phases
 - Since noise is amplified, spectrum is averaged over multiple measurements

![Transfer function graph](image1)

![Spectrum at 0.9 Rev/s (54 RPM)](image2)

![Spectrum at 5.7 Rev/s (342 RPM)](image3)

![Average of 4 Spectra at 5.7 Rev/s (342 RPM)](image4)
Vibration Separation

- Vibration Separation
 - Two fingers measure the same profile
 - Can redundant information be used to separate vibration from profile information?

- Example: Part with 5 lobes
 - Displacement of both fingers will always be constant
 - Waviness cannot be detected with this configuration
 - With this configuration vibration can only be separated for even lobes

- Literature Review
Vibration Separation

Solution
- Place fingers slightly eccentrically
- Separation theoretically possible for even and odd lobes
- For a certain range of lobes an optimal finger angle can be determined for vibration separation

Requirements
- Effect of vertical vibration on finger signal must be negligible
- Workpiece must not deform
- Finger angle must be known
 - Seek for an analytical method to determine finger angle from measured profiles
Future Work

- New measurement series and comparison to roundness machine
 - New measurement series that reflects the latest technical improvements of the post-process machine

- Development and Refinement of Analytical Methods
 - Refinement of averaging and cutoff compensation
 - Development of analytical methods for vibration separation

- Measurement series on the Grinding Machine
 - Estimation of the achievable accuracy
 - Highest possible rpm for waviness detection
 - Possibility for removal of vibration

- Statistical analysis of the measurement results
 - Estimation of errors and confidence intervals on the measurement
Additional Slides
Part Specifications

- Definition of waviness according to company specification TPS 2100

- Two Definitions
 - Any lobing pattern which occurs 10 to 250 times around the full circumference
 - Any lobing pattern which occurs 2 to 50 times around any 60 degree arc

 or

- Criterion
 - The allowable waviness height for both cases is 50 µinch
Post Process Machine
Post Process Machine
Reduction of Forced Vibrations

- **Low Vibration Roll Motor Drive**
 - With original drive roll motor introduced vibration at 120 Hz
 - New motor drive provides a very smooth rotation and eliminates 120 Hz vibration

- **Vibration Isolation System**
 - Components mounted on a 4 inch thick Honeycomb plate for high stiffness
 - Components and plate are supported by 4 pneumatic isolators which attenuate vibration above 10 Hz

- **Hydraulic accumulators**
 - Two 0.32 liters pulsation dampeners to reduce vibration from hydraulic fluid
Vibration Isolation System

- Frequency response

- Susceptibility of the measurement to vibration

Equivalent 1 DOF-system

Isolators, Base plate, Fixture, Gage

Table

Isolators, Base plate

Fixture

Gage
Comparison to Roundness Machine

 Modiﬁed Procedure

- Only one measurement per part
- But second measurement of the part immediately after the ﬁrst measurement if waviness height falls between 50 and 60 µinch.
- Accept the part if it passes the second test.

Results

<table>
<thead>
<tr>
<th>Roundness Machine</th>
<th>good</th>
<th>good/bad</th>
<th>bad</th>
</tr>
</thead>
<tbody>
<tr>
<td>good: 36 (100%)</td>
<td>34 (94.4%)</td>
<td>0 (0.0%)</td>
<td>2 (5.6%)</td>
</tr>
<tr>
<td>good/bad: 30 (100%)</td>
<td>5 (16.7%)</td>
<td>0 (0.0%)</td>
<td>25 (83.3%)</td>
</tr>
<tr>
<td>bad: 54 (100%)</td>
<td>0 (0.0%)</td>
<td>0 (0.0%)</td>
<td>54 (100.0%)</td>
</tr>
</tbody>
</table>

- Now 94.4% of all good parts are detected as good parts
- Still 100% of bad parts are detected as bad parts
Vibration Separation

- **Input Variables**
 - Profile \(r(\varphi) \)
 - Displacement relative to gage \(d(\varphi) \)

- **Measured Finger Signals**
 - Finger A \(f_A(\varphi) = r(\varphi) + d(\varphi) \)
 - Finger B \(f_B(\varphi) = r(\varphi - \pi) - d(\varphi) \)
 - Sum A+B \(f_A(\varphi) + f_B(\varphi) = r(\varphi) + r(\varphi - \pi) \)

- **Transfer function of A+B**
 \[
 \frac{F_A(j\omega) + F_B(j\omega)}{R(j\omega)} = 1 + e^{-\pi\omega j}
 \]

- **Odd frequencies cannot be separated**
Vibration Separation

- Angle less than 180°
 Finger angle β

- Measured Finger Signals

 \[
 f_A(\varphi) = r(\varphi)\cos(\beta/2) + d(\varphi) \\
 f_B(\varphi) = r(\varphi - \pi + \beta)\cos(\beta/2) - d(\varphi) \\
 f_A(\varphi) + f_B(\varphi) = (r(\varphi) + r(\varphi - \pi + \beta))\cos(\beta/2)
 \]

- Transfer function of A+B

 \[
 \frac{F_A(j\omega) + F_B(j\omega)}{R(j\omega)} = \left(1 + e^{-\pi j \omega} \right) \cos(\beta/2)
 \]

- All frequencies may be separable
Vibration Separation

Optimal finger angle β to filter undulations from 10 to ω_{max}

Limitations/Difficulties

- Exact angle between fingers not known or not repeatable
- Workpiece slipping
- Effect of vertical vibration of the workpiece
- Random noise

Model of the workpiece in the fixture that incorporates these factors and allows statement about the accuracy of the vibration separation method
Experimental Results

Configuration with $\beta = 0^\circ$ (separation for even lobes only)

- Measurement of a part with chatter at 32 UPR
- Machine excited by an impulse during measurement
- Filtering of the vibration