A Nano Coordinate Machine for Optical Dimensional Metrology

October 29, 2002

Eric Kirkland
Advisor : Dr. Steven Liang
Project Objectives

- Develop a non-contact, high precision sensor based upon a DVD auto-focusing probe.

- Integrate said probe with high precision stage with software interface to create a functional nano-cmm system.

- Validate both the probe and the system through testing.
Auto-Focusing Probe Theory

- Laser is directed towards surface through objective lens
- Reflected signal passes through beam splitter and on to Photodiode Array
- Object surface must be near perpendicular to beam

Figure 1: Structure of a DVD pickup head

Measurement Science and Technology, K.C. Fan Nov 2001
Auto-Focusing Probe Theory

- Reflected spot shape is detected by photodiode array and error signal is generated
- Error signal is used to reposition objective lens to maintain focus

Figure 3: The variation of spot shapes with S-Curve

Measurement Science and Technology, K.C. Fan Nov 2001
Nano-CMM System

- Fibermax 6-axis stage with 10 nanometer resolution in x-y directions, 2 nm in z direction
- Invar frame for minimum flex and expansion
- Sony KHS-220 optical pickup
- NI 12-bit analog DAQ card
- VB User Interface
Gear Cross Section

Gear Cross Section Profile Measurement
Edge Detection

- Cross-section of 1.22 mm diameter microball
- Circle fit to acquired data

Dimensions in mm
Repeatability

- 50 Data points at one location
- All points within 200 nm range
CD Surface Measurement

- CD tracks can be seen as raised red lines
- Nominal track pitch is 1.6 um
- Nominal track width is 0.6 um
Three Hole Gear Surface

Photograph, Raw Data, and Processed Data from Three Hole Gear