Cylindrical Grinding Open Architecture and Feed Rate Control by Power Feedback

Jason Braden and Rogelio Hecker
Oct. 20, 1999
Advisors:
Prof. Tom Kurfess
Prof. Steven Liang
Motivation of Research

- Open architecture of the machine for universal controllers
- Feed rate control of wheel dressing and plunge grinding
- Feed rate control by power feedback of the grinding wheel
- Gap elimination
Open Architecture Interface

- Selection of Controller
 - Amplifiers (added)
 - Sensors (added)
 - Encoders
 - Tachometer
 - Commutators

- Interface
 - 16 BNC voltage connectors
 - 74 I/O digital connectors
 - Isolated
 - 4 encoder connectors

- Manual kill switch box
Open Architecture Wiring

Controller Card
- Computer
- Amplifier
- Frequency Drive
- Tachometer
- Power Meter

Factory Controller
- Amplifier
- Selector
- Table
- Limits

Position
- Motor

Commutation Sensor
- Digital Inputs
General System Characteristics

• Motion
 – Two tables
 – Rotating workpiece
 – Rotating tool

• Friction
 – High static friction
 – Low dynamic friction

• High inertia

• Low speed process
Controller Hardware Choice

• General Controller Boards
 – PID with acceleration and velocity feed forward
 – Limited and defined digital I/O
 – Limited and defined voltage I/O
 – Limited variability

• Dspace
 – Numerous generic digital I/O
 – Numerous generic voltage I/O
 – Simulink based
 – Visual Basic interface
 – Unlimited variability
PID Power Control Feedback

- System modeling
- Parameter identification
- Controller design
- Simulations
- Implementation

\[v = \text{Infeed velocity} \]
\[\omega_H = \text{Workhead velocity} \]
\[\omega_S = \text{Spindle velocity} \]
Servo Dynamics Estimation

\[G(s) = \frac{4200}{s + 17} \left[\frac{mm}{sec} \right] \]
Power Meter Dynamics

\[G(s) = \frac{20}{s + 20} \begin{bmatrix} \text{power measurement} \\ \text{power} \end{bmatrix} \]
Grinding Process Estimation

\[G(s) = \frac{77400}{s + 1.9} \quad \left[\frac{\text{watts}}{\text{mm/} \text{sec}} \right] \]
Controller Design

- **Velocity Control**
 - Kalman filter and state variable feedback
 - Close loop response of 50 msec

- **Power Control**
 - Open loop poles: -20, -20, -1.9
 - PI control: $K_p + K_i/s$
 - Settling time: 2 sec
 - ζ: 0.8
 - W_n: 2.5
 - K_p: 1.1 $\times 10^{-7}$
 - K_i: 3.2 $\times 10^{-7}$
Simulations of Power Controlled System

- Input
 - Commanded power step
 - Perturbation power step
- Output
 - Power
 - Feedrate
Continuing and Future Research

• Implementing feed rate control by power feedback

• Designing and implementing adaptive controllers

• Controller process testing
 – Dressing
 – Gap elimination

• Creating a Visual Basic interface for power control