Design and Analysis of Machining Fixtures

Precision Manufacturing Research Consortium
Georgia Institute of Technology

Presented by: José Hurtado
Advisor: Dr. Shreyes N. Melkote
Sponsors: Ford Motor Company, NSF/MTAMRI, NIST ATP/Lamb Technicon, The Timken Company
Workpiece-fixture contact forces and layout play an important role in determining the final part quality.
Research on Machining Fixtures

• **Overall Goal:**
 Develop models for analysis and optimal synthesis of fixtures under quasi-static and dynamic conditions.

• **Dedicated Fixtures:** for parts of specific shape and size.
 – Quasi-Static Modeling and Analysis
 – Dynamic Modeling and Analysis
 – Optimal Synthesis

• **Flexible Fixtures:** for families of parts with a variety of shapes and sizes.
 – Design Methodology
 – Optimal Synthesis
 – Modeling and Analysis of Magnetic Chucks
Dedicated Fixtures

Quasi-Static Modeling and Analysis

Objectives:
- Prediction of workpiece-fixture contact forces due to clamping loads.
- Prediction of workpiece rigid body motion due to contact region deformation and its impact on part location accuracy.

Approach:

![Discretized Contact Model](image1)

![Closed-Form Contact Elasticity Model](image2)
Quasi-Static Modeling and Analysis

Measured and Predicted Normal Force Results

Good agreement between measured and predicted contact forces during clamping. The model is inadequate under dynamic (machining) conditions.
Dynamic Model Overview

Objectives:
- Predict contact forces and deformation at each workpiece-fixture contact under dynamic conditions.
- Investigate the workpiece rigid body motion in the fixture and its impact on location accuracy during machining.

Approach:

- **Newton-Euler equations of motion**
- **Machining forces $F(t)$**
- **Complementary contact** ($P \geq 0$, $h \geq 0$, $hP=0$)
- **Stick/slip (Coulomb friction)**
- **Workpiece rigid body motion $q(t)$**
- **Damping effects** (Structural and Frictional)
Dynamic Modeling and Analysis

Experimental Set-Up for Frictional Damping Validation

Dynamic Friction Tester
Oscillatory Normal and Tangential Forces
Dynamic Modeling and Analysis
Validation of Dynamic Fixture-Workpiece Model

<table>
<thead>
<tr>
<th>#</th>
<th>Sample Material</th>
<th>Normal Force (N)</th>
<th>Tangential Force (N)</th>
<th>Freq. (Hz)</th>
<th>Measured (µm)</th>
<th>Predicted (µm)</th>
<th>Abs. Error (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Al 2017T-4</td>
<td>269.7</td>
<td>13.9</td>
<td>11.4</td>
<td>3.7</td>
<td>3.9</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>Al 2017T-4</td>
<td>267.1</td>
<td>13.0</td>
<td>50.0</td>
<td>3.1</td>
<td>3.7</td>
<td>0.6</td>
</tr>
<tr>
<td>3</td>
<td>Al 2017T-4</td>
<td>302.7</td>
<td>44.7</td>
<td>11.7</td>
<td>10.2</td>
<td>12.6</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>Al 2017T-4</td>
<td>301.7</td>
<td>41.5</td>
<td>52.3</td>
<td>8.8</td>
<td>11.7</td>
<td>2.9</td>
</tr>
<tr>
<td>5</td>
<td>AISI 302</td>
<td>189.1</td>
<td>15.1</td>
<td>11.4</td>
<td>3.8</td>
<td>4.2</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>AISI 302</td>
<td>188.4</td>
<td>14.4</td>
<td>50.0</td>
<td>3.8</td>
<td>4.2</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>AISI 302</td>
<td>229.7</td>
<td>55.4</td>
<td>11.5</td>
<td>11.4</td>
<td>15.0</td>
<td>3.6</td>
</tr>
<tr>
<td>8</td>
<td>AISI 302</td>
<td>231.1</td>
<td>54.0</td>
<td>50.9</td>
<td>12.7</td>
<td>15.8</td>
<td>3.1</td>
</tr>
</tbody>
</table>
Optimal Synthesis

Objectives:
- Minimize workpiece location error at the machining point by optimizing both fixture layout and clamping forces under quasi-static and dynamic conditions.

Approach:
Optimal Synthesis

Quasi-Static and Dynamic Loading:

Effect of the Optimization Procedure on Fixture Layout
Clamping Force Optimization

Objectives:
- Search for the minimum clamping forces to restrain the workpiece and minimize workpiece deformation.

Approach:

\[
\text{Optimum clamping forces}
\]

\[
\text{Min } f = \left\{ \left\| P^R_w \right\| \right\}
\]

Contact constraints

No slip (Coulomb friction)

Static equilibrium constraint
Clamping Force Optimization
Experimental Validation

- Workpiece
- L2, L3, L4, L5, L6
- O, Xg, Zg, Yg
- Sampling #
- Displacement Reading (µm)
- 486.8N, 509.6N, 537.4N, 593.3N
- Graph showing displacement readings vs. sampling number.
Clamping Force Optimization

Experimental Validation

<table>
<thead>
<tr>
<th>#</th>
<th>Minimal Clamping Force (N)</th>
<th>Applied Clamping Force (N)</th>
<th>Workpiece Displacement</th>
<th>Relative Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>512.3</td>
<td>593.3</td>
<td>No slip</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>537.4</td>
<td></td>
<td>No slip</td>
<td></td>
</tr>
<tr>
<td></td>
<td>509.6</td>
<td></td>
<td>Slip</td>
<td></td>
</tr>
<tr>
<td></td>
<td>486.8</td>
<td></td>
<td>Slip</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>638.4</td>
<td>775.8</td>
<td>No slip</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>699.8</td>
<td></td>
<td>No slip</td>
<td></td>
</tr>
<tr>
<td></td>
<td>676.9</td>
<td></td>
<td>Slip</td>
<td></td>
</tr>
<tr>
<td></td>
<td>646.5</td>
<td></td>
<td>Slip</td>
<td></td>
</tr>
</tbody>
</table>

There is good agreement between the predicted and measured optimum clamping forces (relative error is less than 9%).
Flexible Fixtures

Objectives:

- Design and prototyping of a flexible machining fixture capable of holding a family of parts providing maximum conformability and stiffness.
- Design optimization of a flexible fixture to maximize stiffness, conformability and bound the surface error.
Matrix® X-Clamps

Fixed X-Clamp

Sliding X-Clamp

Air Lines

Locking Pin

Pins

Pusher

Small Bolts

Bolt

Air Pressure
Objectives:

- Measure the maximum force required to overcome the frictional pin locking force, \(W_{\text{max}} \).
- Measure pin bending stiffness, \(F/d \).
- Study the effect of workpiece geometry on workpiece-fixture static stiffness.
Objective:

- Finds the optimal BON fixture stiffness in terms of pin diameter, pitch, number of columns and rows to limit the workpiece surface error to a desired value.
Stiffness Optimization Algorithm

Inverse Bed-of-Nails Design Problem:

Given:
Desired workpiece feature error due to fixture elastic deformation (ε_F)

Output:
Optimal Fixture Stiffness

Output:
Optimal pin diameter, pitch, number of columns and rows to achieve ε_F

General approach that can also be used to optimize the stiffness of dedicated fixtures.
Summary

- Both quasi-static and dynamic models for dedicated machining fixtures were developed to predict workpiece rigid body motion and to optimize fixture layout and clamping forces.

- A stiffness optimization design algorithm for the bed-of-nails fixture was developed to limit the resulting workpiece surface error.

- Experiments have been conducted to characterize a commercially available bed-of-nails fixture.
Future Work

- Finite Element modeling and verification of fixture-workpiece contacts.

- Development of a design optimization algorithm for the bed-of-nails fixture which incorporates the effect of workpiece geometry on the overall normal and tangential stiffness.

- Investigate high-friction material pairs to maximize the frictional restraint provided by the bed-of-nails fixture.

- Construction of a prototype bed-of-nails fixture for experimental validation of the models developed.
Discussion