Bimetallic Machining

Precision Manufacturing Research Consortium
Industrial Advisory Board
Georgia Institute of Technology
29 October 1997

Scott Billington
Marc Crudele
Advisor: Dr. Tom Kurfess
Goal and Motivation

- To examine the process of milling bimetals and vary experimental parameters in order to determine statistically significance factors in achieving a superior surface finish.
Examples of Bimetallic Machining

- Steel sleeves in aluminum engine blocks
- Machining over welds
- Aluminum space frames with steel joints
- Composite space frames with metallic joints
- Interrupted cutting (air and metal)
5-Axis Mill
Milling Configurations

Top View

Edge View
Feed out of paper

Feed

Samples Flush
1st Sample High
1st Sample Low
Items of Investigation

- Up-milling versus Down-milling
- Impact order
- Variation of material removal effects
- Vibrational characteristics
RMS Surface Measurements

Surface finish for machining

- Al/Al
- 4142/4142
- 1018/1018
- 1018/4142
- 4142/1018
- Al/4142
- 4142/Al

RMS (microns)
Present Conclusions

- The softer the first material, the better the surface finish of the second
- The more material removed from a harder first material the worse finish there is on a softer second material
- A larger magnitude in vibration does not necessarily produce a worse surface finish
Future Work

- More vibrational measurements of process
- Cutting force measurements
- Effects of tool parameters (rake, edge radius, etc.)
- More advanced analysis of surface finish (microscopic analysis)
- Three dimensional metrology of surface