Upper Extremity Robot Therapy for Individuals with Spinal Cord Injury

Bui KT, Sprigle S, Backus D
April 25, 2007
Background: Spinal Cord Injury (SCI)

- SCI annual incidence in the U.S.
 - 11,000 new cases per year
- SCI prevalence in the U.S. 2006
 - 253,000 people
- Statistics
 - Average age at injury: 28 yrs
 - Gender: 77.8% males
 - Etiology: 46.9% from motor vehicle accident
- Impairment or loss of motor/sensory function
 - Tetraplegia – impaired function of arms, trunk, legs, pelvic organs
 - Paraplegia – impaired function of trunk, legs, pelvic organs

http://www.fscip.org/facts.htm
Background: Recovery After SCI

- Functional recovery of some muscles can occur for several years after incomplete SCI
 - Recovery depends on the reorganization of preserved nerve connections and formation of new connections [Beekhuizen 2005]

- Cortical reorganization
 - Reorganization is associated with activity [Beekhuizen 2005, Fasioli 2003, Raintenteau 2001]
 - Cortical reorganization occurs after SCI as it does after stroke [Beekhuizen 2005]

- SCI recovery mechanism is similar to that in stroke subjects
 - Interventions used after stroke have demonstrated potential to improve strength after SCI [Beekhuizen 2005]
Background: Robotic therapy

- Current use: rehabilitation for motor impairment and limb weakness after stroke [Fasioli 2003]

- Therapy modes: passive & active-assisted, active-resisted [Stein 2004]

- Results
 - improved motor coordination and strength in early stroke subjects
 - reduced motor impairment in moderate to chronic stroke subjects [Fasioli 2003]

- Disadvantages: generic treatment protocols, unable to identify specific benefits of each therapy modality [Stein 2004]
Robotic Device: Muscle Tech

- **Background**
 - Designed by Muscle Tech company in Israel

- **Functions**
 - Elbow flexion/extension
 - Forearm pronation/supination

- **Setup**
 - Device stands independently to side of wheelchair
 - Controlled through computer program
Objectives

- **Phase 1**
 - **Assess usability**: safety, comfort, ease of use, fit and exercise protocol in order to optimize the device

- **Phase 2**
 - Investigate effectiveness of robotic exercises for **strengthening** after SCI
Inclusion Criteria

Phase 1
- SCI level C5, C6, or C7
- ASIA impairment B, C, or D
- Male or female
- 18 - 59 years old
- Tolerate sitting upright at 90 degrees for at least one hour
- Demonstrate at least 50% of normal range of motion (ROM) for each joint involved in this therapy
- Palpable contraction (grade 1-3) in the biceps and triceps
- Chronic impairment
Study Protocol

- **Phase 1**: 3 hr session
 - Pre-treatment
 - Clinical Assessment
 - Robotic Evaluation
 - Treatment
 - 1 hr robot exercises
 - Post-study Questionnaire

- **Subjects**

- **Phase 2**: 4 weeks
 - Pre- and Post-treatment
 - Clinical Assessment
 - Robotic Evaluation
 - Treatment
 - 1 hr robot exercises
 - 3 days/wk, 4 wks
 - Post-study Questionnaire

- **Robotic Exercises**
 - Modalities
 - Passive-assisted movement
 - Isometric contraction
 - Therapeutic exercises
 - Strengthening
 - 3 days/wk, 4 wks
 - Subjects
 - Clinicians
 - Muscle strength: kgF

- **Pre-treatment Clinical Assessment**
 - Range of motion: active, passive
 - Manual muscle test: Kendall

- **Post-study Questionnaire**
 - Design optimization
 - Safety
 - Comfort
 - Ease of use
 - Fit
 - Therapeutic usefulness
Results – Phase 1: Pre-treatment

- **Subjects**
 - 3 males, 2 females
 - Ages: 19 – 46 yrs
 - Injury year: 1980-2006

- **IRB approval**
 - Georgia Institute of Technology
 - Shepherd Center
 - Emory University

- **PROM average**

<table>
<thead>
<tr>
<th>Treatment Arm</th>
<th>Clinical</th>
<th>Robot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow Flexion</td>
<td>135°</td>
<td>110°</td>
</tr>
<tr>
<td>Elbow Extension</td>
<td>4°</td>
<td>27°</td>
</tr>
</tbody>
</table>

- **Device limitations**
 - Flexion limit: 110 degrees
 - Extension: subject selected end point
Results – Phase 1: Treatment

- Subject #3
 - Passive-assisted
 - Isometric contraction
 - Active-resisted
Results – Phase 1: Questionnaire

- Safety (9/10)
 - “felt safe with padding and splint”
 - “didn’t feel it squeeze”
 - “ROM limits were good”

- Comfort (8.6/10)
 - “snug fit”
 - “exercising is uncomfortable, not the machine b/c is was padded well”
 - “arm cuff not wide enough for larger arm”
 - “pressure at wrist but with breaks between exercises it was not an issue”

- Design ideas
 - Flexible plastic arm section to expand and conform
 - Modify splint to redistribute pressure at wrist
Results – Phase 1: Questionnaire

- Ease of Use
 - Don (4.2/10)
 - “tetraplegics need assistance or initial set up”
 - “rings on velcro straps”
 - Use (7.6/10)
 - “need instructions for exercises”
 - Doff (6.4/10)
 - “rings on velcro straps”
 - “no buttons”

- Fit
 - Of arm in device (8.4/10)
 - “straps and pads helped the fit”
 - “one-size arm section was tight on larger arm”
 - Security during exercise (9.2/10)

- Design ideas
 - Rings on velcro straps
Results – Phase 1: Questionnaire

- **Therapy**
 - **Challenging (8.4/10)**
 - "triceps exercises were challenging but not biceps"
 - "colored graphs made me try harder on the next set"
 - **Motivating (7.6/10)**
 - "how many more repetitions?"
 - "signals for stop/go not always clear"
 - **Strengthening (7.6/10)**
 - "enough exercise but not exhausting"
 - "may be good for recently injured person"

- **Design ideas**
 - "maintaining strength is more important than building up"
 - "don’t know how much I can build up the muscles I still use"
 - color code all graphs, repetition counter, stop/go signal on computer screen
 - greater range of resistance
Discussion

Future Design Considerations

- Robot exercises vs. hand weights
 - Safety – risk of stretching muscle
 - Independence
 - Measures of improvement
 - Interest in technology

- Home device vs. therapist tool
 - Level of assistance to set-up and operate
 - Portable or permanently fixed
Acknowledgements

- Advisors: Dr. Sprigle, Dr. Backus & Dr. Kong
- Kevin Grogg
- Therapists: Beth Pharo, Amy Brake, Teresa Foy
- Jon Jowers
- Study participants