the blue print
1935
the blue print
1935
published by
the students of
the georgia school
of technology
atlanta georgia
dedication

to

William Vernon Skiles

Dean of the Georgia School of Technology,

who by reason of his unfailing courtesy, his sympathetic understanding, and his ever present sense of right and fair play, has won the confidence of the students and made them his admirers and friends, the

1935 blue print

is respectfully dedicated
a feeling of relief and yet of regret prevails as the final pages of the 1935 blue print are assembled---the production of this volume has reached its termination. the editor realizes more than ever that the work of producing such a book is not that of a few but of many, each an indispensible part of the whole. each and every member of the staff may be assured that his efforts have been more than appreciated. we sincerely hope our purpose to present something new and different has been achieved. this hope will be realized, if, in the years to come, this volume brings you memories of friends---and of life at georgia tech.
contents

BOOK ONE
COLLEGE

BOOK TWO
CLASSES

BOOK THREE
FRATERNITIES

BOOK FOUR
ACTIVITIES

BOOK FIVE
FEATURES

BOOK SIX
ATHLETICS

BOOK SEVEN
ESQUIRE JR.
the staff has attempted something new in themes. in our effort to make this book a real living memory --- a reminder of the happy days left behind, we have used as an introduction to the various books the artists' conception of student life. a theme of real campus life has been our objective. we hope you like it.
"Yet all experience is an arch wherethro'
Gleams that untravelled world. . . "
"But let my due feet never fail
To walk the studious cloister's pale,
And love the high embowèd roof,
With antique pillars massy proof."
"Saw the heavens filled with commerce, argosies of magic sails,  
Pilots of the purple twilight, dropping down with costly bales . . ."
"... Most blest
He who has found our hid security."
"And storied windows richly dight,
Casting a dim religious light."
"Turrets and pinnacles in answering files,
Extended high above a dusky grove."
"This is the wey to al good aventure."
ADMINISTRATION
President of Georgia Tech for the past thirteen years, Dr. Marion Luther Brittain has become renowned as a leading educator. He received his A.B. degree from Emory University, his LL.D. from Mercer University, University of Georgia, and Emory University.
WILLIAM VERNON SKILES

Kindly, learned, austere, possessed of the dignified reserve of a scholar and the sympathetic geniality of a gentleman, Dean William Vernon Skiles has achieved the highest of rewards, the love and admiration of both student body and faculty. He received his B.S. at the University of Chicago, his A.M. at Harvard University, and his Sc.D at the University of Georgia.

THE DEAN OF THE GEORGIA SCHOOL OF TECHNOLOGY
OFFICERS
OF THE
ADMINISTRATION

MARION LUTHER BRITTAiN,
A.B., L.L.D.
President

WILLIAM VERNON SKILES.
B.S., A.M., Sc.D.
Dean

FLOYD FIELD,
A.B., A.M.
Dean of Men

JAMES ERSKINE McDaniel,
M.A., A.B., LL.B.
Director of the Co-Operative Department

FRANK K. HOUSTON,
C.P.A.
Treasurer
In March, 1930, the Guggenheim Fund for the Promotion of Aeronautics awarded the Georgia School of Technology the sum of $300,000, for the establishment of an aeronautical center of learning and research in the South.

The Aeronautical Engineering curriculum offers opportunities for both undergraduate and graduate study. Courses are offered in Aerodynamics, Theory of Flight, Airplane Design, and Aeronautic Laboratory (Wind Tunnel Practice). The curriculum in addition contains a background of general studies which are essential to the engineer no matter what his specialty.

The Department is well equipped for its work having in addition to classrooms and offices, two wind tunnels, a model shop, a large drafting room, a branch library, and it has also recently acquired a 300 horsepower autogiro for flight testing.

As this is the only Guggenheim School in the South, much is expected of it from the standpoint of aeronautical research and the present program places particular emphasis on the problems of safety in flight and streamlining of high speed vehicles both of which are subjects of vital importance in this new and rapidly growing branch of engineering.

MONTGOMERY KNIGHT
Director, Daniel Guggenheim School of Aeronautics
In 1901, with the growth of the Georgia School of Technology, a course in Engineering Chemistry was established. Purposely it was not called Chemical Engineering as it is now because of the lack of facilities to offer studies recognized as essential to that degree. In recent years department expansion has made it possible to change the title of the course to Chemical Engineering.

In 1906 there was first offered a four-year course in Chemistry for those more interested in Chemistry as a pure science than its industrial applications. However the engineering course has always been the more popular.

In normal times industries absorb our Chemical engineers who enter their profession in chemical manufacturing plants with the hope of becoming managers, control men, or operators, while others take up the design of machinery. Chemists are usually inclined toward laboratory and research, while many continue their studies in various graduate schools.

It is our belief that the growth of industrial activities in the South will offer an attractive field for our graduate holding either degree.

GILBERT HILLHOUSE BOGGS
Head of Department

GILBERT HILLHOUSE BOGGS,
B.S., Ph.D.
B.S., University of Georgia; Ph.D., University of Pennsylvania.
Phi Kappa Phi, Omicron Delta Kappa, Phi Beta Kappa, Sigma Xi, Phi Kappa Tau, Alpha Chi Sigma, Scabbard and Blade, Georgia Academy of Science.
Obviously the main objective of the course in Architecture is to train men to become architects. As designers and supervisors of construction, architects are called upon to take a leading position in the building industry, and must possess a wide variety of knowledge and capabilities. The school course is necessarily of considerable breadth and duration. In addition there is a secondary objective based on a recognition of the fact that an architectural education may serve as a good preparation for certain occupations outside the profession of architecture.

Architecture is a creative field and combines the imaginative and the practical. Those who have a leaning towards both the artistic and the scientific find this an absorbing course of study.

The problem method used in design, by which each student works out his own solution of a given problem, parallels certain phases of actual practice and serves as the best possible preparation for the all-important role of designer in an architect’s organization.

HAROLD BUSH-BROWN
Head of Department
The General Science course leading to the degree, Bachelor of Science, was established in 1923. It was designed for three classes of students: (1) for students who wish a broad training in general scientific subjects, (2) for students who have the time and means to secure a general education before taking up professional curricula, and (3) for students who plan to go into business or industrial activities that do not require highly specialized training. In this course science predominates, but provision is made, however, for a wide choice of electives in business, engineering, and general studies. It is the only course offered by the institution in which this wide choice of electives is permitted.

The General Science course will be discontinued with the class graduating June, 1937. To replace this course have been established courses in General Engineering and Industrial Management.

DEAN W. VERNON SKILES
Director
Civil Engineering is the profession of construction. Its story needs no writing for it is engraved on the earth itself. Modern canals, dams, highways, water systems, bridges, and skyscrapers picture civil engineering achievement as likewise do the pyramids of Egypt, the aqueducts of Rome, and the centuries of intervening construction. As long as construction work is required to further civilization, so long will there be a field of endeavor for these builders who will serve for the most part, as they have in the past, unknown and unrecorded.

The early engineers did not have the advantages of an engineering education for engineering colleges have been developed, with few exceptions, in the last two generations, and, even now, the science of how to build cannot be taught permanently since methods change rapidly as research increases knowledge.

The Civil Engineer needs a thorough understanding of fundamental data which he can use on each project rather than specialized information of extremely limited application, therefore the Civil Engineering students at Tech are drilled thoroughly in basic subjects.
MECHANICAL ENGINEERING

Mechanical Engineering was the first course to be established at the Georgia School of Technology. This course was given several years before any other course or degree was offered. The purpose of the Mechanical Engineering curriculum is to teach the student the fundamentals of engineering so as to best fit him for entering the profession. No attempt is made at specialization, although a graduate year is offered for those who wish to specialize in some particular field. The opportunities for graduates are many. They may enter the field of management, manufacturing, transportation, power production, research, and many other fields of like nature. The “New Deal” specifically contemplates the removal of several million acres of land production in the South—this means that the industrial development of the South will be pushed, and the opportunities for graduates in Mechanical Engineering are therefore greatly increased. Out of the class of ’34, 48 men of 56 are already placed in engineering work, which is unusually good for a depression year.

ROY S. KING
Head of Department

ROY STEVENSON KING,
M.E., M.Sc., Sc.D.

M.E., Ohio State University; M.Sc., University of Minnesota; Sc.D., University of Georgia.
Sigma Xi, Phi Kappa Phi, Pi Tau Sigma.
Funds for the Electrical building were provided in 1900, at which time the Department was founded, although degrees in Electrical Engineering had been given in 1898.

The curriculum is planned to give one who pursues it an excellent foundation in chemistry, physics, mathematics, economics, English, and public speaking, as well as the fundamentals of radio, hydro-electric, steam power, and electrical engineering in general. Parallel with the theoretical work are carefully planned laboratory courses, beginning with the first year in Chemistry and continuing throughout the four years in the various engineering branches studied. The laboratory work is so conducted as to enable the student to verify theory by performing fundamental experiments. The engineering subjects together with the others give an excellent mental training as well as a first-class ground work for the graduate, so that, even though he does not follow electrical engineering, his college education is found to be as good as any he could have taken for general purposes.

THOMAS W. FITZGERALD
Head of Department
Organized in 1923, the Department of Ceramic Engineering is the oldest in the South and one of the relatively few in American universities. The courses of instruction are designed to give a basic theoretical and practical knowledge of the mineral and clay-working industries, with emphasis placed upon the development of our native resources.

Favored with advantages in raw materials, labor fuel, and climate the South has logically encouraged ceramic industrial growth. Many branches of the industry are represented in satisfactory numbers, and these are turning to technical guidance for better control of cost and quality. Other ceramic industries such as those producing dinnerware, electrical porcelain, sanitary ware, and fire brick are either not represented or are not in the numbers the market or industrial advantages justify. In this direction the future is promising. Through its graduates, research, and facilities the Department of Ceramic Engineering is taking a leading part in southern clay-working progress.

ARTHUR VAN HENRY
Head of Department
The Textile Department gave the first instruction in textile education in the South in February, 1899. In December, 1897, the Legislature made an appropriation for the establishment of the Textile Department, provided that the friends of the school contribute a like amount. Largely through the gifts of Mr. Aaron French, of Pittsburgh, it was possible to raise these funds. In commemoration of his generosity, the Textile Department is known as the A. French Textile School.

The course of instruction leads to the degree of Bachelor of Science in Textile Engineering, and includes a sound foundation in engineering subjects, in addition to the purely textile branches. The work of the first three years is uniform, but during the senior year, the student may have the choice of several options.

Textile manufacturing has, during recent years, become the leading industry in the South, and offers unusual opportunities for the technically trained man. Our graduates are filling positions of responsibility in the various mills and branches of the textile industry throughout this state and section.

CHARLES A. JONES
Director, A. French Textile School
In Memory of
C. A. Summerlin, Jr.