
I. The Lubrication Problem

F. Bloom, B. Hojjatie, and D. Orloff

February 1995

Submitted to
SIAM Journal of Applied Mathematics

Copyright© 1995 by the Institute of Paper Science and Technology

For Members Only
MODELING OF FLUID FLOW AND HEAT TRANSFER IN A CROWN-COMPENSATED IMPULSE DRYING PRESS ROLL

I. The Lubrication Problem

by
Frederick Bloom
Department of Mathematical Sciences
Northern Illinois University
DeKalb, IL 60115

and
Barry Hojjatie and David Orloff
Engineering and Paper Materials Division
Institute of Paper Science and Technology
500 10th St., N.W.
Atlanta, GA 30318-5794

Abstract

The lubrication problem which arises in the impulse drying of paper using a crown-compensated (CC) roll is modeled and studied both analytically and numerically; the geometry for the associated steady flow problem is constructed, and expressions are derived for the relevant velocity fields, mass flow rates, and normal and tangential forces acting on both the bottom surface of an internal hydrostatic shoe and the inside surface of the CC roll. A set of three nonlinear transcendental algebraic equilibrium equations are derived and solved numerically for different values of some of the key design parameters associated with such shoe/roll configurations.

Keywords: impulse drying, lubrication theory, numerical solutions
AMS Subject Classifications: 76D, 65H
Table of Contents

Nomenclature .. 1

1. Introduction .. 8

2. The Geometrical Model for the Lubrication Channel and the Motion of the Internal Shoe ... 11

4. Some Numerical Results for CC Rolls ... 28

 (a) Computational Methods ... 28

 (b) Results for a CC Roll with $R = 6.750''$, $R_s = 6.745''$ 29

 (c) Results for a CC Roll with $R = 6.760''$, $R_s = 6.745''$ 32

 (d) Results for a CC Roll with $R_s = R = 20.005''$ 33

5. Summary of Results and Conclusions ... 35

Acknowledgements .. 38

References ... 38

Appendix I: Figures .. 39

Appendix II: Graphs ... 58
NOMENCLATURE

Design Parameters

\(\Phi \) - angular opening of the shoe

\(\phi = \frac{1}{2} \Phi \)

\(w_{sh} \) - width (depth) of the shoe

\(n_c \) - number of capillaries on each side of the shoe

\(l_{sh} \) - length of the shaft of the shoe

\(\tilde{l} = \frac{1}{2} l_{sh} \)

\(l^* \) - half-width (length) of the confinement shaft

\(\tilde{l}_{eff} \) - effective length of a capillary

\(\tilde{R}_{eff} \) - effective radius of a capillary

\(w_{rec} \) - width (length) of the inside of a recess

\(\alpha_r \) - distance of the middle rib on the shaft of the shoe from the top of the shaft (measured to the middle of that rib)

\(\beta_r \) - distance that the middle rib protrudes beyond the neighboring ribs

\(R_s \) - radius of the shoe

\(R \) - radius of the roll

\(H_s \) - height of the shoe

\(\delta = \tan^{-1} \left(\frac{R_s - H_s}{\tilde{l}} \right) \)

\(L_c \) - distance (measured along the bottom surface of the shoe) from the midpoint on the bottom surface to the beginning of the recess
L_{rec} - distance (measured along the bottom surface of the shoe) from the midpoint on the bottom surface to the end of the recess

$L_T = R_t \cdot \varphi$

d - distance from the centroid of a cross section of the shoe to the middle of the arc describing the bottom surface of the shoe

Geometrical Parameters

ψ - angle between the center line through the shoe and the vertical direction

$(a, R + b)$ - location of the center of the circle that the arc forming the bottom surface of the shoe lies on

d_0 - depth of the lubrication channel along the line through $(a, R + b)$ and the point at the middle of the arc forming the bottom surface of the shoe

PV - location of the pivot point for the shoe along the wall of the confinement shaft

$m_L = \cot(\varphi + \psi)$

$m_C = \cot \psi$

$m_R = \cot(\psi - \varphi)$

θ_1 - angle between the positive x-axis and the secant line (segment) joining the endpoints of the lubrication channel along its bottom wall (arc)

θ_2 - angle between the positive x-axis and the secant line (segment) joining the endpoints of the lubrication channel along its upper wall (arc)

$\beta = \theta_1 - \theta_2$ - angular deviation between the (secant) line segments forming the upper and lower walls of the approximating lubrication channel (wedge)

η_R - angle between the positive x-axis and the secant line (segment) joining the point at the middle of the bottom surface (arc) of the shoe with the endpoint of that arc on the right-hand side of the shoe
\(\eta_c \) - angle between the negative x-axis and the secant line (segment) joining the point at the middle of the bottom surface (arc) of the shoe with the endpoint of that arc on the left-hand side of the shoe

\((d_R(x) = d_0 - x \tan \beta) \) - thickness of the approximating lubrication channel (wedge) \(x \) units to the right of the middle of that channel

\((d_L(x) = d_0 + x \tan \beta) \) - thickness of the approximating lubrication channel (wedge) \(x \) units to the left of the middle of that channel

\(d_{PV} \) - vertical distance of the pivot point PV above the point in the middle of the arc describing the surface of the shoe

\(l_c = L_c \cos \beta \)

\(l_\beta = L_{rec} \cos \beta \)

\(L_\beta = L_T \cos \beta \)

\(d_R(l_\beta) \) - trailing edge thickness in the approximating lubrication channel (wedge)

\(d_L(l_\beta) \) - leading edge thickness in the approximating lubrication channel (wedge)

\[
\lambda_R = \frac{d_R(l_\beta) d_R(L_\beta)}{d_R(l_\beta) + d_R(L_\beta)}
\]

\[
\delta_R = \frac{d^2_R(l_\beta) d^2_R(L_\beta)}{d^2_R(l_\beta) - d^2_R(L_\beta)}
\]

\[
\lambda_C = \frac{d_C(l_\beta) d_C(L_\beta)}{d_C(l_\beta) + d_C(L_\beta)}
\]

\[
\delta_C = \frac{d^2_C(l_\beta) d^2_C(L_\beta)}{d^2_C(l_\beta) - d^2_C(L_\beta)}
\]
Physical Parameters

μ - viscosity of the lubricant (at a given temperature)

ρ - density of the lubricant (at a given temperature)

s - (tangential) speed of the inner surface of the roll

F - load applied to the top of the shaft of the shoe

\tilde{p}_R - pressure in the right-hand recess

\tilde{p}_L - pressure in the left-hand recess

p_{sh} - pressure exerted at the top of the shaft of the shoe

$p_{exit}(\equiv p_{atm})$ - exit pressure of the lubricant at the left- and right-hand ends of the lubrication channel

$\tilde{p}_R(x)$ - pressure field in the (approximate) right-hand channel, $l_{\beta} \leq x \leq L_{\beta}$

$\tilde{p}_L(x)$ - pressure field in the (approximate) left-hand channel, $l_{\beta} \leq x \leq L_{\beta}$

$\tilde{C}_R(x) = -\tilde{p}_R(x)$

$\tilde{C}_L(x) = -\tilde{p}_L(x)$

$\bar{u}_R(x, y)$ - velocity field in the (approximate) right-hand channel, $l_{\beta} \leq x \leq L_{\beta}$

$\bar{u}_L(x, y)$ - velocity field in the (approximate) left-hand channel, $l_{\beta} \leq x \leq L_{\beta}$

\dot{m}_R - mass flow rate/unit depth in the right-hand channel

\dot{m}_L - mass flow rate/unit depth in the left-hand channel

$\Delta p_R = \tilde{p}_R(L_{\beta}) - \tilde{p}_R \equiv p_{atm} - \tilde{p}_R$

$(\Delta p^R = -\Delta p_R)$
\[\Delta p_C = p_C(L_\beta) - \tilde{p}_C = p_{atm} - \tilde{p}_C \]

\[(\Delta p^c = -\Delta p_C) \]

\(\dot{q}^R_C \) - volume flow rate through any one of the \(n_c \) capillaries feeding lubricant into the right-hand subchannel

\(\dot{q}^{R,net}_C \) - net volume flow rate through the capillaries feeding lubricant into the right-hand subchannel

\(\dot{q}^L_C, \dot{q}^{L,net}_C \) - same as for \(\dot{q}^R_C, \dot{q}^{R,net}_C \), but for the left-hand subchannel

\(u_R^c(x,y) \) - the velocity field in the right-hand subchannel for \(0 \leq x \leq l_c \)

\(u_L^c(x,y) \) - the velocity field in the left-hand subchannel for \(0 \leq x \leq l_c \)

\(u^c(x,y) \) - velocity field in the lubrication channel for \(-l_c \leq x \leq l_c \)

\(p_c(x) \) - pressure field in the lubrication channel for \(-l_c \leq x \leq l_c \)

\(C^c_R(x) = -p'_c(x), 0 \leq x \leq l_c \)

\(C^c_L(x) = -p'_c(x), -l_c \leq x \leq 0 \)

\(u^c_{recR}(x,y) \) - velocity field in the right-hand subchannel beneath the right-hand recess

\(u^c_{recL}(x,y) \) - velocity field in the left-hand subchannel beneath the left-hand recess

\(\tilde{N}_{sh}^R \) - normal force exerted by the lubricant on the bottom surface of the shoe to the right of the right-hand recess

\(\tilde{N}_{sl}^R \) - normal force exerted by the lubricant on the inside surface of the roll (lying in the channel) to the right of the right-hand recess

\(\tilde{N}_{sh}^R \) - normal force exerted by the lubricant on the inside surface of the right-hand recess

\(\tilde{N}_{sl}^R \) - normal force exerted by the lubricant on the inside surface of that part of the roll lying beneath the right-hand recess
\(c_R \) - normal force exerted by the lubricant on the bottom surface of the shoe between the middle of the shoe and the beginning of the right-hand recess

\(N_{sh} \) - normal force exerted by the lubricant on the inside surface of that part of the roll lying beneath the middle of the shoe and the beginning of the right-hand recess

\(\bar{N}_{sh} \) - same as \(N_{sh} \), but to the left of the left-hand recess

\(\bar{N}_{sl} \) - same as \(N_{sl} \), but to the left of the left-hand recess

\(\bar{N}_{sh} \) - same as \(N_{sh} \), but on the inside surfaces of the left-hand recess

\(\bar{N}_{sl} \) - same as \(N_{sl} \), but beneath the left-hand recess

\(c_L \) - same as \(c_R \), but between the middle of the shoe and the beginning of the left-hand recess

\(N_{sh} \) - same as \(N_{sh} \), but beneath the middle of the shoe and the beginning of the left-hand recess

\(\bar{N}_{sl} \) - same as \(N_{sl} \), but beneath the middle of the shoe and the beginning of the left-hand recess

\(\bar{\tau}_R \) - tangential force exerted by the lubricant on the bottom surface of the shoe to the right of the right-hand recess

\(\bar{\tau}_R \) - tangential force exerted by the lubricant on that part of the inside surface of the roll (lying in the channel) to the right of the right-hand recess

\(\bar{\tau}_{sl} \) - tangential force exerted by the lubricant on that part of the inside surface of the roll lying beneath the right-hand recess

\(\bar{\tau}_{sh} \) - tangential force exerted by the lubricant on the bottom surface of the shoe between the middle of the shoe and the beginning of the right-hand recess

\(\bar{\tau}_{sl} \) - tangential force exerted by the lubricant on that part of the inside surface of the roll lying beneath the middle of the shoe and the beginning of the right-hand recess

\(\bar{\tau}_{sh} \) - same as \(\bar{\tau}_{sh} \), but to the left of the left-hand recess

\(\bar{\tau}_{sl} \) - same as \(\bar{\tau}_{sl} \), but to the left of the left-hand recess
\(\bar{T}^L_{sl} \) - same as \(\bar{T}^R_{sl} \), but beneath the left-hand recess

\(\bar{T}^L_{sh} \) - same as \(\bar{T}^R_{sh} \), but between the middle of the shoe and the beginning of the left-hand recess

\(\bar{T}^R_{sl} \) - same as \(\bar{T}^L_{sl} \), but between the middle of the shoe and the beginning of the left-hand recess

\(V_{sh} \) - sum of the vertical components of all forces acting on the bottom surface of the shoe

\(H_{sh} \) - sum of the horizontal components of all forces acting on the bottom surface of the shoe

\(V_F \) - vertical component of the load \(F \)

\(H_F \) - horizontal component of the load \(F \)

\(V_W \) - vertical component of the weight \(W \) of the shoe

\(H_W \) - horizontal component of the weight \(W \) of the shoe

\(k_s \) - ‘equivalent’ spring constant for the rubber seals along the shaft of the shoe

\(H_s \) - horizontal force which results from compressing/stretching the rubber seals located along the shaft of the shoe

\(H_{PV} \) - horizontal reaction force of the confinement wall at the pivot point

\(M_{sh} \) - moment of all forces acting along the bottom surface of the shoe

\(M_W \) - moment of the weight of the shoe

\(M_{PV} \) - moment of the horizontal reaction force at the pivot point for the shoe along the wall of the confinement shaft

\(P \) - physical/geometrical/design parameter space for the equilibrium equations

\(c^s_D \) - drag coefficient for the roll
1 INTRODUCTION

Although energy intensive evaporative drying is currently used to dry paper, research has demonstrated that a significant savings in energy could be realized by implementing the newer impulse drying technology. In figure 1, which is taken from Orloff, Jones and Phelan [1], we show a crown-compensated (CC) extended-nip press which is configured with a ceramic coated press roll. The roll (see figures 1 and 2) revolves at high speed, counterclockwise, and is loaded, in the impulse drying mode, by the internal hydrostatic support element. Oil is injected through the hydrostatic support element, i.e., the shoe, so as to produce an oil film (between the bottom of the shoe and the inside surface of the roll) which provides lubrication and, also, acts as a heat sink for heat lost to the interior of the roll. In the overall process, wet paper sheets transported on felt enter an extended nip at point A, in figure 1, and leave the nip at point C, while the roll itself is heated in a zone from point D to point E so as to achieve a prescribed roll surface temperature at the entrance to the nip at point A. In this paper, and the companion paper [2], we consider the problem of fluid flow and heat transfer in the channel formed by the (curved) bottom of the internal shoe and the inside surface of the roll. It will be assumed that the arcs describing the bottom of the shoe and the inside surface of the roll lie on circles of radii \(R_s \) and \(R \), respectively, where we may have either \(R_s - R \) or \(R_s > R \). The actual channel, with curved walls, will be approximated by a planar walled convergent channel or wedge. The planar walled channel described above will be formed by inscribing appropriate secant lines within the circles describing the bottom of the shoe and the inside of the roll. A parallel-wall approximation for such a channel had been studied earlier by Orloff [3].

The internal shoe, which is sketched in figure 3, is loaded by an external force \(F \), measured per unit width of the shoe, so that the net load on the shoe is just \(F \) times the width \(w_s \) of the shoe. The other key variables which enter the mathematical model are \(p_{sh} \) (the pressure at the top of the shoe), \(p_{exit} \) (the pressure at which the lubricating oil exits each of the two subchannels - for our purposes in this report we will take \(p_{exit} = p_{atm} \), i.e., atmospheric pressure) \(ar{R}_{eff} \) and \(L_{eff} \) (respectively, the effective radius and length of each of the capillaries through which the lubricating oil enters the channel formed by the bottom surface of the shoe and the inside surface of the roll; i.e., see figure 3), \(\Phi \) (the angle subtended by those radii, in the circle describing the shoe, through the endpoints of the arc coincident with the bottom of the shoe), \(s \) (the linear speed of the inner surface of the roll, which is assumed to be rotating counterclockwise) and \(\mu \) and \(\rho \) (respectively, the viscosity and density of the lubricating oil). In this initial model it is assumed that the viscosity \(\mu \) is constant, but, in work to follow, we will take into account the fact that \(\mu \) varies with temperature, albeit linearly over the range of temperature at which it is anticipated that the roll will be operated.
As a consequence of the loading of the internal shoe, the pressure difference \(p_{sh} - p_{exit} \), and the counterclockwise motion of the roll, the shoe will be forced downward and will deflect clockwise once the shaft of the shoe has been displaced to the right and the middle rib (see figure 4) at the top of this shaft comes into contact with the wall of the confinement shaft. We note, for future reference, the rubber seals which are present on both sides of the top of the shaft (figures 2 and 4); the primary function of these seals is to prevent (downward) leakage of the pressurized oil at the top of the shaft of the shoe. However, during the motion of the internal hydrostatic shoe, the oil seals which are positioned along the shaft of the shoe are both stretched and compressed and, thus, function as mechanical springs (attached to the shaft of the internal shoe) which constrain the deflection of the shoe.

Concerning the geometry employed in the model, the point \((0, R)\) in figure 5 is the location of the center of the circle describing the inside surface of the roll so that \((0, 0)\) is the point of contact (tangency) between the roll and the paper. At a given tangential speed \(s \) of the roll, and a given load \(F \) on the shoe, the center of the circle describing the bottom surface of the shoe is located at the point \((a, R + b)\) where \(a, b\) are to be determined by a set of coupled, nonlinear equilibrium equations. The points \(E \) and \(B \) lie, respectively, at the centers of the top of the shaft of the shoe and the arc describing the bottom surface of the shoe. The line segments from \((a, R + b)\) to \(A, B, \) and \(C\) are radii of the shoe of length \(R_s \leq R_s \), while \(\psi \) is always the angle between the center line of the shoe (through \(E, B\)) and that radius of the circle describing the roll which goes through \((0, R)\) and \((0, 0)\). The lubrication channel is formed by the arcs \(ABC\) and \(A'B'C'\) and a base lubrication thickness may be measured along the segment \(BB'\). An approximating planar-walled channel (or wedge) may be constructed by using the secant lines through the points \(A, C\) and \(A', C'\). There is a slight tapering of the shoe near the endpoints located at \(A\) and \(C\) which is taken into account only in §4c.

When the upper right hand corner of the shaft of the shoe makes contact with the confinement wall (by virtue of the 2nd or middle rib at the top of the shaft of the shoe coming into contact with that wall) the shoe will turn slightly in the clockwise direction (see figure 6) and the point of contact between the rib on the shaft of the shoe and the confinement wall (labeled as point \(PV\) in figure 6) will slide up and down along that wall without friction. As shown in figure 6 the rib in question protrudes a distance \(\beta_t \) from the shaft of the shoe and is located a distance \(\alpha_t \) down from the top of the shaft. In our work in §2 we locate the position of the pivot point \(PV\) and indicate that the parameter \(a \) (figure 5) is determined entirely in terms of the angle \(\psi \) and given geometrical quantities that are associated with the design of the shoe. Also, in the model that is constructed in §2 there will be two primary (independent) variables: the angle \(\psi \) and either a base lubrication thickness \(d_0 \) (essentially the length of the line segment \(BB'\) in figure 5) or the value of the \(y \) coordinate of that point.
which locates the center of the circle on which the arc that describes the bottom surface of
the shoe lies, i.e. the value of the parameter b (figure 5).

The variables ψ and b (or d_0) must be determined by the physics of the problem, i.e.,
by enforcing equilibria of forces in both the vertical and horizontal directions as well as balance
of moments of forces acting on the internal hydrostatic shoe; the resulting equilibrium
equations in §3 turn out to be a system of coupled, nonlinear, transcendental algebraic
equations which can be numerically solved by an iterative procedure. Once ψ and d_0 have been
determined it is then possible to compute all the geometrical quantities which are needed
in order to fix the size and shape of the approximate wedge-shaped channel, as well as the
pressures \tilde{p}_R and \tilde{p}_L in each of the two sets of recesses, the mass flow rates \dot{m}_R and \dot{m}_L in
each subchannel lying, respectively, to the right and left of these sets of recesses, and the explicit
forms of the velocity fields in the subchannels. The velocity fields are two-dimensional
and are obtained by imposing the standard lubrication theory assumption (e.g., [4],[5]) of
pseudo-plane Couette flow. Expressions for the tangential and normal forces exerted by the
lubricating oil both on the bottom surface of the shoe as well as on the inside surface of the
roll are also computed in §3 and these results are, in turn, used to compute the net drag
force acting on the roll and, thus, the work which must be expended to operate the CC roll.

Inasmuch as the equilibrium equations of §3 yield implicit relations for ψ and b of the form

\[
\begin{align*}
\psi &= \psi(F, p_{sh} - p_{exit}, s, R, \phi, R_s, R_eff, \tilde{R}_{eff}, \mu, \rho) \\
b &= b(F, p_{sh} - p_{exit}, s, R, \phi, R_s, R_eff, \tilde{R}_{eff}, \mu, \rho)
\end{align*}
\]

one may, in principle, study the effect of holding all variables in the parameter space \mathcal{P}

\[
\mathcal{P} = \{F, p_{sh} - p_{exit}, s, R, \phi, R_s, R_eff, \tilde{R}_{eff}, \mu, \rho\}
\]

fixed except for one, say, s, in order to study how ψ and b vary with the speed of the
roll; this same procedure would then yield valuable information on how, e.g., the drag on
the roll varies with s if all other elements in the parameter space \mathcal{P} are frozen and one
could even consider holding all parameters fixed except for two, e.g., s and F, and repeating
the procedure described above. Some numerical results in this direction are present in §4.

In a companion paper [2] we show that having determined ψ and b (or d_0) for a fixed set
of values in the parameter space \mathcal{P}, so that all velocity fields may be explicitly computed, we
are led to a system of well-posed boundary value problems for the steady-state temperature
distributions in the subchannels; the solution of these boundary-value problems then enables
us to determine the net heat flow from the roll to the lubricating oil, the net heat flow from
the oil to the shoe, and the net heat convected away by the fluid, in terms of the variables
in the parameter space.
2 THE GEOMETRICAL MODEL FOR THE LUBRICATION CHANNEL AND THE MOTION OF THE INTERNAL SHOE.

In this section, we begin the work of modeling the lubrication problem occurring in the channel formed by the bottom surface of the internal shoe and the inside surface of the rotating roll. All pertinent variables are carefully defined in the nomenclature.

As a consequence of the load F applied to the top of the shoe and the tangential speed s of the roll, which turns counterclockwise, the shaft of the shoe will shift to the right until the middle rib at the top of the shaft of the shoe hits the wall of the confinement shaft (figure 4); thereafter, the shoe will turn clockwise through an angle ψ (figure 5) and, also, execute a motion, normal to the plane of the incoming paper, until it achieves an equilibrium position. The equilibrium position may be completely specified by the two variables ψ and $d_0 = BB'$ (figure 5).

In lieu of considering the motion of the lubricant in the channel formed by the curved surfaces at the bottom of the shoe and the inside of the roll, we will, below, consider the problem of steady flow in the channel formed by the secant line segments (see figure 5) $AB, A'B'$ and $BC, B'C'$; the task then is to specify the geometry of this approximate channel in terms of $R, R_s, \varphi, \psi,$ and d_0, φ being the half-angular opening of the shoe (figure 5).

The arc \widehat{ABC} describing the bottom surface of the shoe lies on the circle $(x - a)^2 + (y - (R+b))^2 = R^2$ (figure 5), while the arc $\widehat{A'B'C'}$, which describes the inside surface of the roll, lies on the circle $x^2 + (y - R)^2 = R^2$; either $R = R_s$ or $R > R_s$ and the coordinates of the point $(a, R+b)$ must be determined by the solution of the set of equilibrium equations for each fixed pair (F, s).

To specify the geometry of the approximate planar-walled channel, we must determine the coordinates of the points A, B, C and A', B', C'. To delineate the equilibrium equations, we must also specify the coordinates of the point PV in figures 6 and 7.

It may be shown that the equation of the line through points Q, Q^* (figure 7) has the form

$$y = \cot\psi[x - (a + \frac{t}{\cos \psi})] + R + b$$ \hspace{1cm} (2.1)

while that of the line through $(a, R+b)$ and Q is

$$y = -\tan(\delta + \psi)(x - a) + R + b$$ \hspace{1cm} (2.2)
Then (2.1), (2.2) yield for x_Q, the x-coordinate of point Q, figure 7,

$$x_Q = a + \frac{l^*}{\{\cos \psi [1 + \tan \psi \cdot \tan (\delta + \psi)]\}}$$ \hspace{1cm} (2.3)

while from figure 7, together with figure 6,

$$x_Q = l^* - (\beta_r \cos \psi - \alpha_r \sin \psi)$$ \hspace{1cm} (2.4)

If we combine (2.3) and (2.4) we are led to an expression for a of the form

$$a = a(\psi; l^*, \alpha_r, \beta_r, \delta),$$ \hspace{1cm} (2.5)

i.e. for a given set of design variables the coordinate a is a function of the angle ψ; the precise relation for a in terms of ψ is given by

$$a = l^* - \beta_r \cos \psi + \alpha_r \sin \psi - \tan (\delta + \psi) \left[\frac{\frac{l^*}{\cos \psi (1 + \tan \psi \tan (\delta + \psi))}}{\cos \psi (1 + \tan \psi \tan (\delta + \psi))} \right]$$ \hspace{1cm} (2.6)

For $\psi \approx 0$,

$$a \approx (l^* - \beta_r \cos \psi + \alpha_r \sin \psi)$$ \hspace{1cm} (2.7)

By virtue of figure 7, $x_Q' = x_{PV} = l^*$, while from figure 6,

$$y_{PV} = y_Q - (\alpha_r \cos \psi + \beta_r \sin \psi)$$ \hspace{1cm} (2.8)

The number y_Q may be computed using (2.2) and (2.3) and then y_{PV} is given by (2.8); the exact expression for y_{PV} is given by

$$y_{PV} = (R + b) - \alpha_r \cos \psi - \beta_r \sin \psi - \tan (\delta + \psi) \left[\frac{\frac{l^*}{\cos \psi (1 + \tan \psi \tan (\delta + \psi))}}{\cos \psi (1 + \tan \psi \tan (\delta + \psi))} \right]$$ \hspace{1cm} (2.9)

The points A, B, C and A', B', C' are, by virtue of figure 5, the points of intersection of the lines L_L, L_C and L_R with the arcs \widehat{ABC} and $\widehat{A'B'C'}$ describing, respectively, the bottom surface of the shoe and the inside surface of the roll. It is not difficult to show that these lines have the form:

$$\begin{align*}
L_L & : \quad y = m_L(x - a) + (R + b); \quad m_L = \cot (\varphi + \psi) \\
L_C & : \quad y = m_C(x - a) + (R + b); \quad m_C = \cot \psi \\
L_R & : \quad y = m_R(x - a) + (R + B); \quad m_R = \cot (\psi - \varphi)
\end{align*}$$ \hspace{1cm} (2.10a,b,c)

Combining (2.10a,b,c) with the equations of the circles on which the arcs \widehat{ABC} and $\widehat{A'B'C'}$ lie we are led to the expressions
\[
\begin{align*}
\{ x_{A'} &= \frac{1}{(1 + m_L^2)} \left[m_L^2 a - m_L b - \sqrt{R^2(1 + m_L^2) - (b - m_L a)^2} \right] \\
x_{C'} &= \frac{1}{(1 + m_R^2)} \left[m_R^2 a - m_R b + \sqrt{R^2(1 + m_R^2) - (b - m_R a)^2} \right] \quad \text{(2.11a)}
\end{align*}
\]

\[
\begin{align*}
\{ y_{A'} &= m_L (x_{A'} - a) + R + b \\
y_{C'} &= m_R (x_{C'} - a) + R + b \quad \text{(2.11b)}
\end{align*}
\]

as well as

\[
\begin{align*}
\{ x_A &= a - R_s \sin(\phi + \psi), y_A = (R + b) - R_s \cos(\phi + \psi) \\
x_C &= a + R_s \sin(\phi - \psi), y_C = (R + b) - R_s \cos(\phi - \psi) \quad \text{(2.11c)}
\end{align*}
\]

and

\[
\begin{align*}
x_B &= a - R_s \sin \psi \\
x_{B'} &= \frac{1}{(1 + m_C^2)} \left[m_C^2 a - m_C b - \sqrt{R^2(1 + m_C^2) - (b - m_C a)^2} \right] \quad \text{(2.11d)}
\end{align*}
\]

\[
\begin{align*}
y_B &= R + b - R_s \cos \psi \\
y_{B'} &= m_C (x_{B'} - a) + R + b \quad \text{(2.11e)}
\end{align*}
\]

for the coordinates of the points \(A, B, C,\) and \(A', B', C'.\) A base lubrication thickness \(d_0\) may then be defined by (figure 5)

\[
d_0 = BB' \equiv \sqrt{(x_B - x_{B'})^2 + (y_B - y_{B'})^2} \quad \text{(2.12)}
\]

Referring to the sketch in figure 8, we may either stay with the initial premise of using an approximation based on the line segments \(\overline{AB}\) and \(\overline{BC}\) for the bottom surface of the shoe, and \(\overline{A'B'}, \overline{B'C'}\) for the inside surface of the roll or we may start by taking the somewhat simpler route of using \(\overline{AC}\) to approximate the (curved) bottom surface of the shoe and \(\overline{A'C'}\) to approximate the (curved) inside surface of the roll; for \(\psi\) small it is expected that there will be only small quantitative differences between the two approaches and, thus, in this first model we opt for the latter approximation.

If \(\theta_1 = \) the angle between the positive \(x\)-axis and the direction of \(\overline{A'C'}\) while \(\theta_2 = \) the angle between the positive \(x\)-axis and the direction of \(\overline{AC}\) then

\[
\begin{align*}
\{ m_u &= \text{slope}\overline{AC} \equiv \tan \theta_2 \\
m_l &= \text{slope}\overline{A'C'} \equiv \tan \theta_1 \quad \text{(2.13)}
\end{align*}
\]
In all cases of physical interest we will have $\theta_1 < 0, \theta_2 < 0$ with $|\theta_2| > |\theta_1|$ so that

$$\beta \equiv \theta_1 - \theta_2 = |\theta_2| - |\theta_1| > 0$$ \tag{2.14}$$

Computing $\tan \theta_1$ and $\tan \theta_2$ we are led to the expression

$$\theta_1 = \tan^{-1} \left(\frac{y_0' - y_{A'}}{x_0' - x_{A'}} \right)$$ \tag{2.15}$$

for θ_1, where $x_{A'}$, $x_{C'}$, $y_{A'}$ and $y_{C'}$ are given by (2.11a,b) while it easily follows from (2.11c) and $\tan \theta_2 = (y_C - y_A)/(x_C - x_A)$ that $\theta_2 = -\psi$. We then have, by (2.14), that

$$\beta = \tan^{-1} \left[\frac{\tan \theta_1 + \tan \psi}{1 - \tan \theta_1 \tan \psi} \right]$$ \tag{2.16}$$

We now refer back to figure 8 and consider the wedge shaped quadrilateral formed by the points A', A, C, and C'; we rotate this quadrilateral by rotating the line through $A'C'$ a total of θ_0° counterclockwise, until it is coincident with the direction of the positive x-axis, and we obtain the approximating lubrication channel depicted in figure 9, where the 'base' lubrication thickness has been taken to be d_0 as given by (2.12).

If we consider separately the left and right subchannels associated with the wedge-shaped channel depicted in figure 9, then we have the situation detailed in figures 10a,b. In figure 10a, L_c is the (approximate) distance from point B, figure 5, to the beginning of the recess on the right-hand side of the shoe, L_{rec} the distance to the end of this recess, as measured along the projection of the bottom surface of the shoe, and $L_T = R_4 \varphi$ the distance to the end of the shoe; the quantities l_c, l_β, and L_T are the projections, respectively, of L_0, L_{rec}, and L_T on the direction of the line through $B'C'$. In figure 10b, so as to not have to deal with negative values of x, we show the left-hand subchannel as rotated π radians about the vertical axis in the plane. Thus the thickness in the right-hand subchannel is given by

$$d_R(x) = d_0 - x \tan \beta, 0 \leq x \leq L_\beta$$ \tag{2.17}$$

while that in the left-hand subchannel is given by

$$d_L(x) = d_0 + x \tan \beta, 0 \leq x \leq L_\beta$$ \tag{2.18}$$
3 PHYSICAL MODELING OF THE LUBRICATION PROBLEM: THE EQUILIBRIUM EQUATIONS.

We begin by analyzing the steady flow problem in the right-hand subchannel (figure 10a). Letting \(\bar{p}_R(x), l_\beta \leq x \leq L_\beta \) denote the pressure in this subchannel to the right of the recesses and \(\tilde{u}_R(x, y) \) the corresponding velocity field, our basic assumption is that of standard lubrication theory \([4],[5]\), namely, in a neighborhood of any point \(x, l_\beta \leq x \leq L_\beta \),

\[
\tilde{u}_R(x, y) = \frac{1}{2\mu} \tilde{C}_R(x)y(d_R(x) - y) + s(1 - yd_R^{-1}(x))
\]

(3.1)

with \(\tilde{C}_R(x) = -\tilde{p}_R(x) \) the negative of the pressure gradient. The velocity field \(\tilde{u}_R(x, y) \) satisfies \(\tilde{u}_R(x, 0) = s, \tilde{u}_R(x, d_R(x)) = 0 \) for all \(x, l_\beta \leq x \leq L_\beta \). Based on (3.1), the mass flow rate/unit depth in the right-hand channel is

\[
m_R = \rho \int_0^{d_R(x)} \tilde{u}_R(x, y)dy = \frac{1}{12\mu} \rho \tilde{C}_R(x)d_R^3(x) + \frac{1}{2}\rho \tilde{m}_Rd_R^2(x)
\]

(3.2)

and for \(\tilde{m}_R \) to be independent of \(x \) we must have, for \(l_\beta \leq x \leq L_\beta \)

\[
\tilde{p}_R(x) = 6\mu(sd_R^2(x) - \frac{2}{\rho} \tilde{m}_Rd_R^3(x))
\]

(3.3)

Integrating (3.3) from \(x = l_\beta \) to \(x = L_\beta \) and setting \(\tilde{p}_R(l_\beta) = \tilde{p}_R \) (the constant pressure in the right hand channel recesses \([7]\)) we obtain

\[
\tilde{p}_R(x) - \tilde{p}_R = \frac{6\mu}{\tan \beta}[s(d_R^{-1}(x) - d_R^{-1}(l_\beta)) - \frac{\tilde{m}_R}{\rho}(d_R^{-2}(x) - d_R^{-2}(l_\beta))]
\]

(3.4)

If we take \(\tilde{p}_R(L_\beta) = p_{\text{exit}} = p_{\text{atm}} \) then with \(\Delta p_R = p_{\text{atm}} - \tilde{p}_R \), setting \(x = L_\beta \) in (3.4) yields

\[
\Delta p_R = \frac{6\mu}{\tan \beta}[s(d_R^{-1}(L_\beta) - d_R^{-1}(l_\beta)) - \frac{\tilde{m}_R}{\rho}(d_R^{-2}(L_\beta) - d_R^{-2}(l_\beta))]
\]

(3.5)

Equation (3.5) may be solved for \(\frac{\tilde{m}_R}{\rho} \) in which case

\[
\frac{\tilde{m}_R}{\rho} = s\lambda_R - \Delta p_R \cdot \frac{\tan \beta}{6\mu} \delta_R
\]

(3.6)

with the parameters \(\lambda_R, \delta_R \) as defined in the nomenclature.
In an analogous manner, for the left-hand subchannel (figure 10b) the velocity field \(\bar{u}_L(x, y) \), \(l_\beta \leq x \leq L_\beta \) is given by

\[
\bar{u}_L(x, y) = \frac{C_L(x)}{2\mu} y(d_L(x) - y) - s(1 - yd_L^{-1}(x))
\]

(3.7)

and

\[
C_L(x) = 6\mu \left(\frac{2m_L}{\rho d_L^2(x)} + \frac{s}{d_L^2(x)} \right)
\]

(3.8)

The pressure distribution is

\[
\bar{p}_L(x) - \bar{p}_L = \frac{6\mu}{\tan \beta} [s(d_L^{-1}(x) - d_L^{-1}(l_\beta)) + \frac{m_L}{\rho} (d_L^{-2}(x) - d_L^{-2}(l_\beta))]
\]

(3.9)

while the pressure drop \(\Delta p_L = p_{atm} - \bar{p}_L \) is given by

\[
\Delta p_L = \frac{6\mu}{\tan \beta} \left[s \left(\frac{1}{d_L(L_\beta)} - \frac{1}{d_L(l_\beta)} \right) + \frac{m_L}{\rho} \left(\frac{1}{d_L^2(L_\beta)} - \frac{1}{d_L^2(l_\beta)} \right) \right]
\]

(3.10)

and the volume flow rate/unit depth in the left-hand subchannel is

\[
\frac{m_L}{\rho} = -s\lambda_L - \frac{\tan \beta}{6\mu} \delta_L \Delta p_L
\]

(3.11)

with \(\lambda_L \) and \(\delta_L \) as given in the nomenclature in (3.11), \(\Delta p_L = -\Delta p_C \). Of course, we will always have \(\Delta p_R = \bar{p}_R - p_{atm} > 0 \) and \(\Delta p_C = \bar{p}_C - p_{atm} > 0 \).

We now relate the mass flow rates per unit depth of the channels, i.e., \(\dot{m}_R \) and \(\dot{m}_C \), to the roll speed \(s \) and the difference \(p_{sh} - p_{atm} \). Let \(w_{sh} \) stand for the width of the shoe (i.e., the depth of the channel) and let \(n_c \) denote the number of capillaries which feed lubricant into each of the two subchannels. Assuming Hagen-Poiseuille flow in the capillaries, which are idealized to be circular cylindrical tubes of length \(l_{eff} \) and radius \(R_{eff} \), the volume flow rate through any one of the \(n_c \) capillaries which feed lubricant into the right-hand subchannel is

\[
\dot{q}_c^R = \pi R_{eff}^4 (p_{sh} - \bar{p}_R) / 8\mu l_{eff}
\]

(3.12)

The volume flow rate through all \(n_c \) capillaries which supply lubricant to the right-hand subchannel is, then

\[
\dot{q}_c^{R, net} = \frac{n_c\pi R_{eff}^4 (p_{sh} - \bar{p}_R)}{8\mu l_{eff}} = \left(\frac{\dot{m}_R}{\rho} \right) w_{sh}
\]

(3.13)

Equation (3.13) yields the two relations
\[\tilde{p}_R = p_{sh} = \left(\frac{w_{sh}}{n_c} \right) \frac{8 \mu \tilde{I}_{eff}}{\pi R_{eff}^4} \frac{\dot{m}_R}{\rho} \] (3.14)

and

\[\frac{\dot{m}_R}{\rho} = \left(\frac{n_c}{w_{sh}} \right) \pi R_{eff}^4 \frac{8 \mu \tilde{I}_{eff}}{\pi R_{eff}^4} \left(p_{sh} - \tilde{p}_R \right) \] (3.15)

From (3.6), however, we obtain

\[\tilde{p}_R = p_{atm} + \frac{6\mu}{(\tan \beta)\delta_R} \left[\frac{\dot{m}_R}{\rho} - s\lambda_R \right] \] (3.16)

so if we set the two expressions for \(\tilde{p}_R \) in (3.14) and (3.16) equal to each other there results the following relation for \(\frac{\dot{m}_R}{\rho} \):

\[\frac{\dot{m}_R}{\rho} = \frac{(p_{sh} - p_{atm}) + \frac{6\mu s\lambda_R}{\tan \beta (\delta_R)}}{(\frac{w_{sh}}{n_c}) \frac{8 \mu \tilde{I}_{eff}}{\pi R_{eff}^4}} \] (3.17)

For the left-hand subchannel a similar analysis yields the results

\[\tilde{p}_L = p_{sh} - \left(\frac{w_{sh}}{n_c} \right) \frac{8 \mu \tilde{I}_{eff}}{\pi R_{eff}^4} \left(\frac{\dot{m}_L}{\rho} \right) = p_{atm} - \frac{6\mu}{(\tan \beta)\delta_L} \left(s\lambda_L + \frac{\dot{m}_L}{\rho} \right) \] (3.18)

and

\[\frac{\dot{m}_L}{\rho} = \frac{(p_{sh} - p_{atm}) + \frac{6\mu s\lambda_L}{\tan \beta (\delta_L)}}{(\frac{w_{sh}}{n_c}) \frac{8 \mu \tilde{I}_{eff}}{\pi R_{eff}^4}} \] (3.19)

We now want to compute the normal and tangential forces exerted by the lubricant, in both the right and left-hand subchannels, on the bottom surface of the shoe and the inside surface of the roll; the resulting expressions will then be used to set up the equilibrium equations which serve to determine \(\psi \) and \(d_0 \) in terms of the other parameters in the model. To compute all the pertinent normal and tangential forces one must derive expressions not only for \(\tilde{u}_R(x, y) \) and \(\tilde{u}_L(x, y) \) for \(\delta \leq x \leq L_{\beta} \), but also for the velocity fields in the channel in the regions between the two sets of recesses and in the regions beneath each of the two sets of recesses.
The normal forces exerted on the roll (shell) in those regions of the right and left-hand subchannels which lie, respectively, between the end of the sets of recesses in the right-hand subchannel and the end of that subchannel and between the beginning of the left-hand subchannel and the point where the set of recesses in the left-hand subchannel begin, namely, \(N_{sl}^R \) and \(N_{sl}^L \), are computed as

\[
N_{sl}^R = \int_{l_R}^{L_R} (\bar{p}_R(x) - \bar{p}_R) \, dx
\]
(3.20)

and

\[
N_{sl}^L = \int_{l_L}^{L_L} (\bar{p}_L(x) - \bar{p}_L) \, dx
\]
(3.21)

If we substitute (3.4) into (3.20), and (3.9) into (3.21), and employ \(d_R(x) = d_0 - x \tan \beta \), \(d_L(x) = d_0 + \tan \beta \) in the respective integrals, we are led to the following algebraic expressions for \(N_{sl}^R = -\bar{N}_{sh}^R \) and \(N_{sl}^L = -\bar{N}_{sh}^L \), where \(\bar{N}_{sh}^R, \bar{N}_{sh}^L \) are the normal forces exerted on the bottom surface of the shoe by the lubricant in the regions described above:

\[
N_{sh}^R = \frac{6\mu_s}{\tan^2 \beta} \ln \left[\frac{d_R(l_R)}{d_R(l_R)} \right] + \frac{6\mu_s}{\tan \beta} \cdot \left[\frac{L_R - l_R}{d_R(l_R)} \right] - \frac{6\mu}{\tan^2 \beta} \left(\frac{m_R}{\rho} \right) \left[\frac{1}{d_R(l_R)} - \frac{1}{d_R(L_R)} \right] - \frac{6\mu}{\tan \beta} \left(\frac{m_R}{\rho} \right) \left(\frac{L_R - l_R}{d_R(l_R)} \right) = -\bar{N}_{sl}^R
\]
(3.22)

and

\[
N_{sh}^L = -\frac{6\mu_s}{\tan^2 \beta} \ln \left[\frac{d_L(l_L)}{d_L(l_L)} \right] + \frac{6\mu_s}{\tan \beta} \cdot \left[\frac{L_L - l_L}{d_L(l_L)} \right] + \frac{6\mu}{\tan^2 \beta} \left(\frac{m_L}{\rho} \right) \left[\frac{1}{d_L(L_L)} - \frac{1}{d_L(l_L)} \right] + \frac{6\mu}{\tan \beta} \left(\frac{m_L}{\rho} \right) \left(\frac{L_L - l_L}{d_L(l_L)} \right) = -\bar{N}_{sl}^L
\]
(3.23)

In both the right and left-hand subchannels, we must also take into account the normal forces exerted by the lubricant, in the regions beneath the respective set of recesses, on the inside surfaces of those recesses and the corresponding domains along the inside surface of the roll (see figure 4). Looking at figure 4 we easily see that these normal forces are given by

\[
\begin{align*}
N_{sl}^R &= -\bar{N}_{sl}^R \equiv \bar{p}_R \cdot \mathbf{w}_{rec} \\
N_{sl}^L &= -\bar{N}_{sl}^L \equiv \bar{p}_L \cdot \mathbf{w}_{rec}
\end{align*}
\]
(3.24)
To compute the normal forces acting on both the bottom surface of the shoe and the inside surface of the roll, in that region of the entire lubrication channel which lies between the two sets of recesses, we must have the pressure distribution in that region; experimental data supported the conclusion that (over a wide range of loads F and speeds s) the pressure field $p_c(x), -l_c \leq x \leq l_c$, in the region of the channel between the two sets of recesses, is simply a linear interpolation of the constant pressures \bar{p}_L and \bar{p}_R in those respective sets of recesses. Thus, for the pressure in this ‘center’ subchannel of the entire lubrication channel, we take

$$p_c(x) = \left(\frac{\bar{p}_R - \bar{p}_L}{2l_c}\right)x + \left(\frac{\bar{p}_R + \bar{p}_L}{2}\right), \quad -l_c \leq x \leq l_c$$ (3.25)

The situation corresponding to (3.25) is sketched in figure 11. Using (3.25) we may easily compute, with $\bar{p} = p_c(0) = \frac{1}{2}(\bar{p}_R + \bar{p}_L)$, that

$$\bar{N}_{sh}^R = \int_0^{l_c} (p_c(x) - \bar{p})\,dx = \left(\frac{\bar{p}_R - \bar{p}_L}{4}\right)l_c = -\bar{N}_{sl}$$ (3.26)

and also,

$$\bar{N}_{sh}^L = \int_{-l_c}^0 (p_c(x) - \bar{p}_L)\,dx = \left(\frac{\bar{p}_R - \bar{p}_L}{4}\right)l_c = -\bar{N}_{sl}$$ (3.27)

For the total normal force on that part of the bottom surface of the shoe which bounds this ‘center’ channel we have

$$\bar{N}_{sh} = \bar{N}_{sh}^R + \bar{N}_{sh}^L = \frac{1}{2}(\bar{p}_R - \bar{p}_L)l_c$$ (3.28)

For the tangential forces acting on the bottom surface of the shoe in the regions described above, where \bar{N}_{sh}^R and \bar{N}_{sh}^L are the corresponding normal forces, we have

$$\bar{T}_{sh}^R = -\mu \int_{l_\beta}^{L_\beta} \left(\frac{\partial u_R}{\partial y}(x, y) \mid y = d_R(x)\right)\,dx$$ (3.29)

and

$$\bar{T}_{sh}^L = -\mu \int_{l_\beta}^{L_\beta} \left(\frac{\partial u_L}{\partial y}(x, y) \mid y = d_L(x)\right)\,dx$$ (3.30)

respectively. Using (3.1) in (3.29), and (3.7) in (3.30) we are led, directly, to the expression

$$\bar{T}_{sh}^R = \frac{6\mu}{\tan \beta} \left(\frac{m_R}{\rho}\right) \left[\frac{1}{d_R(L_\beta)} - \frac{1}{d_R(l_\beta)}\right] + \frac{2\mu s}{\tan \beta} \ln \left[\frac{d_R(L_\beta)}{d_R(l_\beta)}\right]$$ (3.31)

for \bar{T}_{sh}^R and the expression

$$\bar{T}_{sh}^L = \frac{6\mu}{\tan \beta} \left(\frac{m_L}{\rho}\right) \left[\frac{1}{d_L(l_\beta)} - \frac{1}{d_L(L_\beta)}\right] + \frac{2\mu s}{\tan \beta} \ln \left[\frac{d_L(L_\beta)}{d_L(l_\beta)}\right]$$ (3.32)
for \bar{T}_{sl}^R. In an analogous fashion, the corresponding tangential forces along the inside surface of the roll are computed from the integrals

$$\bar{T}_{sl}^R = -\mu \int_{l_\alpha}^{L_\beta} \left(\frac{\partial u_R}{\partial y}(x, y) \right) \big|_{y=0} \, dx$$

and

$$\bar{T}_{sl}^L = -\mu \int_{l_\alpha}^{L_\beta} \left(\frac{\partial u_L}{\partial y}(x, y) \right) \big|_{y=0} \, dx$$

Employing (3.1) in (3.33) and (3.7) in (3.34) we find for \bar{T}_{sl}^R the expression

$$\bar{T}_{sl}^R = \frac{6\mu}{\tan \beta} \left(\frac{m_R}{\rho} \right) \left[\frac{1}{d_R(l_\beta)} - \frac{1}{d_R(L_\beta)} \right] + \frac{4\mu s}{\tan \beta} \ln \left[\frac{d_R(l_\beta)}{d_R(L_\beta)} \right]$$

and for \bar{T}_{sl}^L the expression

$$\bar{T}_{sl}^L = \frac{6\mu}{\tan \beta} \left(\frac{m_L}{\rho} \right) \left[\frac{1}{d_L(L_\beta)} - \frac{1}{d_L(l_\beta)} \right] + \frac{4\mu s}{\tan \beta} \ln \left[\frac{d_L(l_\beta)}{d_L(L_\beta)} \right]$$

We remark that the expressions we have derived for \bar{T}_{sh}^R and \bar{T}_{sh}^L (as well as the expression for the velocity field $u_L(x, y)$) have been computed from the point of view of an observer who views the left-hand subchannel from right to left; care must, therefore, be exercised in combining expressions which are valid in the two distinct subchannels.

It should be clear that, with the obvious notation, the tangential forces $\bar{T}_{sh}^R = \bar{T}_{sh}^L = 0$. To compute the tangential forces exerted by the lubricant on those portions of the inside surface of the roll which lie below the two different sets of recesses, we note that as $p_R(x) = \bar{p}_R, l_c \leq x \leq l_\beta$, and $p_L(x) = \bar{p}_L, l_c \leq x \leq l_\beta$, we have for the velocity fields under the respective sets of recesses

$$\begin{cases}
 u_{rec}^R = s(1 - yd_R^{-1}(x)), l_c \leq x \leq l_\beta \\
 u_{rec}^L = -s(1 - yd_L^{-1}(x)), l_c \leq x \leq l_\beta
\end{cases}$$

with u_{rec}^L computed from the viewpoint of an observer who views the left-hand subchannel from right to left. Using the velocity fields in (3.37) we easily compute that

$$\bar{T}_{sl}^R = -\mu \int_{l_\alpha}^{l_\beta} \left(\frac{\partial u_{rec}^R}{\partial y} \big| y=0 \right) \, dx - \frac{\mu s}{\tan \beta} \ln \left[\frac{d_R(l_c)}{d_R(l_\beta)} \right]$$

20
and
\[\tilde{T}^{c}_{st} = -\mu \int_{l_c}^{l} \left(\frac{\partial u^{c}_{L}}{\partial y} | y = 0 \right) dx = \frac{-\mu s}{\tan \beta} \ln \left[\frac{d_{c}(l)}{d_{c}(l_c)} \right] \] (3.39)

For the velocity fields in the 'center' subchannel we have, in the right-hand portion of that subchannel
\[u^{c}_{R}(x, y) = \frac{-p^{c}_{c}(x)}{2\mu} y(d_{R}(x) - y) + s(1 - yd_{R}^{-1}(x)), \] (3.40)
for \(0 \leq x \leq l_c \). Using (3.25) in (3.40) we find that
\[\tilde{T}^{c}_{sh} = \mu \int_{l_c}^{l} \left(\frac{\partial u^{c}_{R}}{\partial y} | y = d_{R}(x) \right) dx \] (3.41)
or
\[\tilde{T}^{c}_{sh} = \frac{\mu s}{\tan \beta} \ln \left[\frac{d_{0}}{d_{R}(l_c)} \right] - \left(\frac{\tilde{p}_{R} - \tilde{p}_{L}}{4l_c} \right) \left(d_{0}l_{c} - \frac{l_{c}^{2}}{2} \tan \beta \right) \] (3.42)
while
\[\tilde{T}^{c}_{sl} = \mu \int_{0}^{l_c} \left(\frac{\partial u^{c}_{L}}{\partial y} | y = 0 \right) dx \] (3.43)
or
\[\tilde{T}^{c}_{sl} = \frac{1}{4l_c} \left(\tilde{p}_{R} - \tilde{p}_{L} \right) [d_{0}l_{c} - \frac{l_{c}^{2}}{2} \tan \beta] - \frac{\mu s}{\tan \beta} \ln \left[\frac{d_{R}(l_{c})}{d_{0}} \right] \] (3.44)

In an analogous fashion,
\[u^{c}_{L}(x, y) = \frac{-p^{c}_{c}(x)}{2\mu} y(d_{L}(x) - y) - s(1 - yd_{L}^{-1}(x)), \] (3.45)
for \(0 \leq x \leq l_c \), so employing (3.25) in (3.45) we find that
\[\tilde{T}^{c}_{sh} = \mu \int_{l_c}^{l} \left(\frac{\partial u^{c}_{L}}{\partial y} | y = d_{L}(x) \right) dx \] (3.46)
is given by
\[\tilde{T}^{c}_{sh} = \frac{-\mu s}{\tan \beta} \ln \left[\frac{d_{L}(l_{c})}{d_{0}} \right] - \left(\frac{\tilde{p}_{R} - \tilde{p}_{L}}{4l_c} \right) \left(d_{0}l_{c} - \frac{l_{c}^{2}}{2} \tan \beta \right) \] (3.47)
while
\[\tilde{T}^{c}_{sl} = \mu \int_{0}^{l_c} \left(\frac{\partial u^{c}_{L}}{\partial y} | y = 0 \right) dx \] (3.48)
is given by
\[\tilde{T}^{c}_{sl} = \frac{1}{4l_c} \left(\tilde{p}_{R} - \tilde{p}_{L} \right) [d_{0}l_{c} + \frac{l_{c}^{2}}{2} \tan \beta] - \frac{\mu s}{\tan \beta} \ln \left[\frac{d_{L}(l_{c})}{d_{0}} \right] \] (3.49)
By using the same observer to compute both u^c_R and u^c_L, it is an easy exercise to show that (3.40), (3.45), and (3.25) may be combined so as to yield

$$u^c(x, y) = \left(\frac{\bar{p}_L - \bar{p}_R}{4\mu L_c} \right) y(d(x) - y) + s(1 - yd^{-1}(x)), \quad (3.50)$$

$-l_c \leq x \leq l_c$, $d(x) = d_0 - x \tan \beta$, as the expression for the velocity field everywhere in the 'center' subchannel. From either (3.42) and (3.47) or, directly, from (3.50), we have

$$\frac{c^R}{T_{sh}} = \frac{c^L}{T_{sh}} = \left(\frac{\bar{p}_L - \bar{p}_R}{2} \right) d_0 + \frac{\mu s}{\tan \beta} \ln \left[\frac{d(-l_c)}{d(l_c)} \right] \quad (3.51)$$

In a similar manner, from either (3.44) and (3.49), or, directly, from (3.50),

$$\frac{c^R}{T_{sl}} = \frac{c^L}{T_{sl}} = \left(\frac{\bar{p}_R - \bar{p}_L}{2} \right) d_0 + \frac{\mu s}{\tan \beta} \ln \left[\frac{d(-l_c)}{d(l_c)} \right] \quad (3.52)$$

and we observe that, in view of (3.57) and (3.52),

$$\frac{c^R}{T_{sl}} + \frac{c^L}{T_{sh}} = \frac{2\mu s}{\tan \beta} \ln \left[\frac{d(-l_c)}{d(l_c)} \right] \tag{3.53}$$

so that $\frac{c^R}{T_{sl}} \neq -\frac{c^L}{T_{sh}}$ for $s \neq 0$.

In order to compute the horsepower which must be expended to turn the roll, at a given tangential speed, and a given load on the shoe, we must compute the net tangential force acting on the roll from the point of view of one fixed observer. This net tangential force τ_{sl}^{net} may be obtained by adding together the sum of (3.35), (3.38), and (3.44) with negative one times the sum of (3.36), (3.39) and (3.49); the result is easily computed to be

$$\tau_{sl}^{net} = \frac{6\mu}{\tan \beta} \left(\frac{\bar{m}_R}{\rho} \left[\frac{1}{d_R(L_\beta)} - \frac{1}{d_R(L_\beta)} \right] + \frac{6\mu}{\tan \beta} \left(\frac{\bar{m}_L}{\rho} \left[\frac{1}{d_L(L_\beta)} - \frac{1}{d_L(L_\beta)} \right] + 4\frac{\mu s}{\tan \beta} \left(\ln \left[\frac{d_R(L_\beta)}{d_R(L_\beta)} \right] + \ln \left[\frac{d_L(L_\beta)}{d_L(L_\beta)} \right] \right) + \frac{\mu s}{\tan \beta} \left(\ln \left[\frac{d_R(L_\beta)}{d_R(L_\beta)} \right] + \ln \left[\frac{d_L(L_\beta)}{d_L(L_\beta)} \right] \right) + \frac{1}{2l_c} (\bar{p}_R - \bar{p}_L) d_0 + \frac{\mu s}{\tan \beta} \ln \left[\frac{d_R(-l_c)}{d_R(l_c)} \right] \right) \tag{3.54}$$

The pressure distributions in those portions of the lubrication channel which lie to the right of the recesses in the right-hand subchannel, and to the left of the recesses in the left-hand subchannel, are given respectively by (3.4) and (3.7). Using (3.4) we have

$$\bar{p}_R(x) = d_R(x)^{-3} \left[6\mu s d_R(x) - \frac{12\mu \bar{m}_R}{\rho} \right] \tag{3.55}$$
and
\[\bar{p}_R'(x) = 12\mu \tan \beta d_R^4(x)[sd_R(x) - \frac{3m_R}{\rho}] \] (3.56)

Thus, the graph of \(\bar{p}_R(x), l_\beta \leq x \leq L_\beta \), has a critical point on the interval \((l_\beta, L_\beta) \) if and only if there is a point \(x_{\text{crit}}, l_\beta < x_{\text{crit}} < L_\beta \), with \(\bar{p}'(x_{\text{crit}}) = 0 \). From (3.55), the only candidate for \(x_{\text{crit}} \) is
\[x_{\text{crit}} = \frac{1}{\tan \beta}[d_0 - \frac{2m_R}{\rho s}] \] (3.57)
in which case
\[d_R(x_{\text{crit}}) = \frac{2m_R}{\rho s} \] (3.58)

On the other hand, if \(x_{\text{crit}} \) as given by (3.57) does not belong to the interval \((l_\beta, L_\beta) \), then the graph of \(\bar{p}_R(x) \) must be strictly monotone decreasing on this interval, i.e., \(\bar{p}_R'(x) < 0, l_\beta < x < L_\beta \). From (3.55), \(\bar{p}_R'(x) < 0, l_\beta < x < L_\beta \), implies that, also, \(d_R(x) < \frac{2m_R}{\rho s} \) for \(l_\beta < x < L_\beta \). But, by (3.56), if \(d_R(x) < \frac{2m_R}{\rho s} \), for \(l_\beta < x < L_\beta \), then \(\bar{p}_R'(x) < -12\mu \tan \beta \frac{m_R}{\rho s}d_R^4(x) < 0, \) for \(l_\beta < x < L_\beta \). Thus if \(\bar{p}_R(x) \) has no critical point in \((l_\beta, L_\beta) \) then not only is the graph of \(\bar{p}_R(x) \) monotone decreasing on this interval but it is also strictly concave down. In an entirely analogous fashion one may show that if the corresponding pressure field in the left-hand subchannel has no critical point on its interval of definition, as we move from left to right in the left-hand subchannel, then the graph of that pressure field is not only strictly monotone increasing but is everywhere concave up; the absence of critical points for the graphs of \(\bar{p}_R(x) \) and \(\bar{p}_L(x) \) would thus lead one to expect a graph of the overall pressure field which resembles figure 12 and that this is, indeed, the case will be confirmed in the next section.

There remains for us, in this section, the task of delineating the coupled nonlinear system of (algebraic) equilibrium equations which serve to determine the variables \(d_0 \) and \(\psi \) (that fix the position of the shoe) in terms of the load \(F \) (applied at the top of the shaft of the shoe), the tangential speed \(s \) of the roll, the pressure drop \(p_{sh} - p_{atm} \), the geometry of the shoe, and the properties of the lubricant. Our equilibrium equations will be three in number: an equation expressing balance of forces in the vertical direction, an equation expressing balance of forces in the horizontal direction, and an equation expressing balance of moments of forces. In figure 13 we show yet another sketch of the shoe with the relevant forces that are acting on it; in figure 14 we have sketched the bottom surface of the shoe as it appears with respect to the rectilinear approximations introduced in figure 8. In figures 15a,b and 16a,b respectively, we show the resolution of the various forces acting on the bottom surface of the shoe, in the right and left-hand subchannels, into vertical and horizontal components.

The equation expressing balance of moments of forces for the internal shoe will be constructed by taking moments with respect to the point \(B \) (figure 13). In figures 15a and 16a
the points \(R_i, i = 1, 2, 3 \) and \(L_i, i = 1, 2, 3 \) denote the points of application of the normal forces in question (which act on the bottom surface of the shoe) for the purpose of computing the corresponding moments of force. All tangential forces acting on the bottom surface of the shoe act along the approximating secant line segments \(AB \) and \(BC \) (through point \(B \)) and have, therefore, no net moment with respect to \(B \). Comparing figures 15a and 16a with, respectively, figures 10a and 10b, we see that the moment arms for the normal forces acting along the bottom surface of the shoe have the following lengths:

\[
\begin{align*}
\overline{BR}_1 &= \frac{1}{2}L_c = BL_1 \\
\overline{BR}_3 &= \frac{1}{2}(L_{rec} + L_T) = BL_3
\end{align*}
\] (3.59)

Also, from figures 15a, 16a, and 13, \(\overline{BR}_2 = d_{rec} = BL_2 \) where \(d_{rec} \) is the distance from the middle of the inside of the recesses (left or right) to the center line through the middle of the shoe.

Using the expressions for \((x_C, y_C)\) in (2.11c) and those for \((x_B, y_B)\) in (2.11d,e) we find that \(\eta_R \) (figure 14) satisfies

\[
\tan \eta_R = \frac{\cos \psi - \cos(\varphi - \psi)}{\sin(\varphi - \psi) - \sin \psi}
\] (3.60a)

using the expression for \((x_A, y_A)\) in (2.11c) leads to the following result for angle \(\eta_C \) (figure 14):

\[
\tan \eta_C = \frac{\cos \psi - \cos(\varphi + \psi)}{\sin(\varphi + \psi) - \sin \psi}
\] (3.60b)

Using figures 15a,b and 16a,b it is then a straightforward exercise to show that the sum of all vertical components of all forces (normal and tangential), acting on the bottom surface of the shoe is given by

\[
V_{sh} = \tilde{N}_{sh}^R \cos \eta_R + \tilde{N}_{sh}^R \cos \psi + \tilde{N}_{sh}^L \cos \eta_L + \tilde{T}_{sh}^R \sin \eta_R + \tilde{T}_{sh}^R \sin \eta_R + \tilde{N}_{sh}^L \cos \eta_L
\]
\[
+ \tilde{N}_{sh}^C \cos \psi + \tilde{N}_{sh}^C \cos \eta_C - \tilde{T}_{sh}^L \sin \eta_C - \tilde{T}_{sh}^L \sin \eta_C
\] (3.61)

while the sum of all the corresponding horizontal components is given by
Besides the normal and tangential forces which act along the bottom surface of the shoe, there are several other forces which act on the internal hydrostatic shoe and, thus, affect its equilibrium configurations; these forces are as follows:

(i) the load \(F \) applied at the top of the shaft of the shoe which has a vertical component \(V_F = -F \cos \psi \) and a horizontal component \(H_F = -F \sin \psi \)

(ii) the weight of the shoe \(W \), which acts, of course, downward at the location of the centroid \((CT) \) of the shoe so that \(V_W = -W \) and \(H_W = 0 \).

(iii) the restorative forces exerted by stretched and compressed rubber seals and/or springs located, respectively, on the left and right-hand sides of the shaft of the shoe (figure 1b and figure 4); these are each stretched/compressed an amount equal to one-half the difference between the width of the confinement shaft and the width of the shaft of the shoe, i.e., through a distance \(\bar{l} = \bar{l}^* - \bar{l} \) (figure 7). If we assume that the resultant forces act only in the horizontal direction, and that the rubber seals in question can be modeled as mechanical springs with stiffness \(k_s \), then the net horizontal force exerted by stretching and compressing these rubber seals is

\[
H_s = -2k_s \bar{l}
\]

(iv) finally, as a result of all the forces acting on the shoe, a horizontal reaction force \(H_{PV} \) is exerted at the pivot point \(PV \) (figure 13).

Using (3.61) and (3.62), in conjunction with (i)-(iii), above, the equations expressing equilibrium in the horizontal and vertical directions take the form

\[
H_{sh} + H_F + H_s - H_{PV} = 0
\]
(3.63)

and

\[
V_{sh} + V_F + V_W = 0
\]
(3.64)

For the equation expressing balance of moments of forces, we note that, within the secant line approximation that has been used, if we take moments with respect to point \(B \) on the bottom surface of the shoe (figure 13) there will be no net contribution from the tangential forces acting along the bottom of the shoe as these forces, in the secant line approximation,
act along the line segments \overline{AB} and \overline{BC} which go through point B. Denoting moments which tend to turn the shoe clockwise with a plus ($+$) sign, and those which tend to turn the shoe counterclockwise with a minus ($-$) sign, we find that the net moment exerted by the normal forces which act either inside the recesses or along the bottom surface of the shoe is given by

$$M_{sh} = \frac{1}{2}(L_{rec} + L_T)(\vec{N}_{sh}^L - \vec{N}_{sh}^R) + d_{rec}(\vec{\tilde{N}}_{sh}^L - \vec{\tilde{N}}_{sh}^R) + \frac{1}{2}L_c(\vec{c}_L - \vec{c}_R) \quad (3.65)$$

Next, if we set $\tilde{d} = \{\text{distance between point } B \text{ and the centroid } CT \text{ of a cross section of the shoe}\}$ then the length of segment $\overline{BG} = \tilde{d}\sin\psi$ (figure 13) so the weight of the shoe contributes a moment equal to $M_W = W\tilde{d}\sin\psi$. As the load F applied to the shoe acts along the line through \overline{BE}, its net moment M_F with respect to point B is zero.

Finally, we recall that the pivot point PV has coordinates (l^*, y_{PV}) with respect to $(0, 0)$ where y_{PV} is given by (2.9). By virtue of figure 13, the moment arm for the horizontal reaction force H_{PV} has length equal to $d_{PV} = y_{PV} - y_B$, and is easily shown to be given by the approximate relation

$$d_{PV} \cong R_s \cos \psi - \alpha_r \cos \psi - \beta_r \sin \psi - \tan(\delta + \psi) \left\{ \frac{l}{\cos \psi(1 + \tan \psi \cdot \tan(\delta + \psi)} \right\} \quad (3.66)$$

so that the corresponding moment of H_{PV} with respect to point B (figure 13) is $M_{PV} = -H_{PV} \cdot d_{PV}$; in actuality, the precise numerical value for d_{PV} may be read off a blueprint and used in lieu of (3.66). The complete equation expressing balance of moments of forces for the internal shoe has, therefore, the form

$$M_{sh} + M_W + M_{PV} = 0 \quad (3.67)$$

with the individual moments M_{sh}, M_W, and M_{PV} given, respectively, by (3.65),

$$M_W = W\tilde{d}\sin\psi \quad (3.68)$$

and

$$M_{PV} = -H_{PV} \cdot d_{PV} \quad (3.69)$$

The full set of equilibrium equations for the internal shoe now consists of (3.63), (3.64), and (3.67); this system of three coupled, nonlinear, algebraic transcendental equations may easily be reduced to a system of two coupled equations by solving for H_{PV} from (3.63) and using the resulting expression in (3.69) and, then, (3.67). We remark that the system (3.63), (3.64), and (3.67) is an algebraic system of the form

$\begin{cases}
G_H(F, s, p_{sh} - p_{atm}, R, \phi, R_s, \tilde{R}_{eff}, l_{eff}, \mu, \rho; b, \psi) = 0 \\
G_V(F, s, p_{sh} - p_{atm}, R, \phi, R_s, \tilde{R}_{eff}, l_{eff}, \mu, \rho; b, \psi) = 0 \\
G_M(F, s, p_{sh} - p_{atm}, R, \phi, R_s, \tilde{R}_{eff}, l_{eff}, \mu, \rho; b, \psi) = 0
\end{cases} \quad (3.70)$
which, for fixed values in the parameter space,

\[\mathcal{P} = \{ F, s, p_{sh} - p_{atm}, R, \phi, R_s, \bar{R}_{eff}, \bar{I}_{eff}, \mu, \rho \} \]

serve to determine the 'deflection' \(\psi \) and the parameter \(b \) (and, thus, the base thicknesses \(d_0 \) of the lubrication channel). Once \(\psi \) and \(d_0 \) have been determined, for the same fixed values in the parameter space \(\mathcal{P} \) we may compute explicit values for \(\dot{m}_R, \dot{m}_L, \bar{p}_R, \bar{p}_L, \beta \), and the leading and trailing edge thicknesses \(d_L(l_\beta) \) and \(d_R(l_\beta) \), respectively. We may also compute, explicitly, expressions for all the various velocity fields in the channel (this has been done in [2] in the course of treating the heat transfer problem in the lubrication channel) as well as for all the normal and tangential forces which act along the bottom surface of the shoe, inside the recesses, and along the inside surface of the roll. From the computation of the net tangential and normal forces exerted, e.g., on the inside surface of the roll, one may readily compute both the horsepower required in order to operate the roll (for given values in the parameter space \(\mathcal{P} \)) and the drag coefficient

\[c_D = \frac{\sum \text{tangential forces on the roll}}{\sum \text{normal forces on the roll}} \]

Some typical numerical computations for three CC roll/internal shoe configurations are presented in §4, two in which \(R \neq R_s \) and one in which \(R = R_s \); we focus, in particular, on holding all of the variables in \(\mathcal{P} \) fixed except for one, e.g., \(F \) or \(s \), and study the effect on the mass flow rate, the recess pressure, leading and trailing edge (as well as 'average') thicknesses in the channel, the angle of the deflection of the shoe, the drag coefficient for the roll, the horsepower which must be expended to turn the roll, and the pressure distribution along the inside surface of the roll.
4 SOME NUMERICAL RESULTS FOR CC ROLLS

a. Computational Methods

A FORTRAN computer program was developed (using the Microsoft FORTRAN compiler, version 5.1, on a 486 IBM-PC compatible microcomputer) to numerically solve the reduced system of two equations for the two unknown variables, \(b \), and \(\psi \). These two equations were obtained from the three original equilibrium equations after direct substitution of the expression for \(H_{PV} \) into the equation corresponding to balance of moment of forces, and elimination of the equilibrium equation for the horizontal components of forces. As the system of equations is highly non-linear, and strongly coupled in terms of \(b \), \(\psi \), and other variables, and because these parameters are associated with several other transcendental algebraic equations, an iterative scheme was employed to obtain the solutions. To solve the non-linear equations, a specific subroutine (DNEQN2) from the IMSLTM mathematical subroutine library, version 2.0 [6] was called by the FORTRAN program. This subroutine employs a modified Powell hybrid algorithm (a variation of the Newton's method) which uses a finite-difference approximation to the Jacobian matrix. For the analysis performed in this study, the Jacobian is a 2x2 matrix which is obtained by moving all the terms in each of the two equilibrium equations to one side, and taking their derivatives with respect to each of the unknown variables \(b \) and \(\psi \). While the determination of an exact Jacobian is possible, it is a formidable task; thus, it was decided to use a numerical, approach. A finite difference method was used to estimate the Jacobian, using double precision for all real variables, and taking precautions to avoid large step size or increasing residuals. For each operating condition, appropriate initial guesses for \(b \) and \(\psi \) were introduced and the stopping criterion for iteration was taken to be that point at which the sum of the squares of the residual values corresponding to each equation was small (e.g., \(< 10^{-3}\)).

In the computer model, viscosity and density data for the oil were assumed to be 56 centipoise and 873 Kg/m\(^3\), respectively, (typical of an ISO 150 mobil oil at a temperature of 57°C). These properties correspond to the lubricant employed in experiments conducted by the Beloit Corporation for the small roll/shoe configuration. Since the speed of the roll, and the load applied to the top of the shoe, are two of the most important input parameters which can be controlled by an operator, for specific design conditions, all the calculated values were obtained at a function of these two parameters. Calculations were performed for selected outer surface roll speeds of 305–1067 m/min (1000–3500 ft/min) and load combinations of 35–1751 KN/m (200–10,000 PLI) for three roll-shoe configurations with different dimensions.
b. Results for a CC Roll with $R = 6.75''$, $R_s = 6.745''$

In this section the results for a shoe/roll configuration in which the radius of the shoe (R_s) is 171.32 mm (6.745 in) and the inside radius of the roll (R) is 171.45 mm (6.750 in) and the half-angular opening φ of the shoe is 28° are presented. The roll is subjected to outer surface roll speeds of 305-914 m/min (1000-3000 ft/min) and applied loads of 35-175 KN/m (200-1000 PLI) and differs from the roll/shoe configuration in §4c only in that $R = 6.76''$ in §4c; this latter case corresponds to a situation in which actual experimental data is available from the Beloit Corporation. Our results in this section, therefore, may be used, in conjunction with those in §4c, to gauge the sensitivity of the model with respect to variations in the inner radius R of the roll and the half-angular opening φ of the shoe. In §4c the results for a roll inner radius of $R = 6.76''$ and a value of $\varphi = 24°$ will be compared with the actual experimental data from Beloit. Also, in this section the spring constant k_s has been set equal to zero but in §4c actual numerical values for k_s, which were supplied by the Beloit Corporation, are used in the model even though the net effect of including these springs/seals appears to be a very minor one.

Shown in graph 1 are the lubricant film thicknesses at the leading edge vs. the roll speed for various applied loads in the range 35-175 KN/m (200-1000 PLI). The leading edge corresponds to the point at the end of the left-hand recess. For a constant load, the lubricant film thickness increases with the roll speed because of the hydrodynamic effect of the lubricant which increases the magnitude of the normal force exerted by the fluid on the bottom surface of the shoe. Similar qualitative results were obtained for the lubricant film thickness at the trailing edge (graph 2). The trailing edge corresponds to the point at the end of the right-hand recess. As expected, a smaller lubrication thickness corresponds to the operation of the roll at a higher load and smaller speed. Under the influence of an external load applied to the top of the shoe, and the normal and tangential forces exerted by the lubricant on the bottom of the shoe, the hydrostatic shoe is free to rotate about the pivot point on the confinement wall and to move up or down along the confinement wall at that pivot point (see figure 6). If the shoe experiences only a clockwise rotation and no vertical motion, then at the leading edge the channel becomes more divergent, and its thickness will increase with speed, while at the trailing edge the channel becomes more convergent and its thickness will decrease with speed. However, an upward motion of the shoe causes both the leading edge and trailing edge thicknesses to increase simultaneously. The increase in the leading edge and the trailing edge thicknesses with speed (graphs 1, 2) indicates that in addition to its clockwise rotation, the shoe is also subjected to such an upward motion. However, as the roll speed increases, the influence of the clockwise rotation becomes relatively smaller than that of the vertical motion. In graphs 3 and 4 we have plotted the predictions of the model for leading edge, trailing edge, and average thicknesses against increasing load at various speeds of the roll.
We show in graphs 5 and 6 the angle of deflection of the shoe (ψ) as a function of load for constant speeds, and as a function of speed for constant loads, respectively. A positive value for ψ corresponds to a clockwise rotation of the shoe. These figures indicate that for all the operating conditions analyzed in this study, the shoe turns in a clockwise direction. The greatest clockwise deflection of the shoe corresponds to the operating condition with the smallest applied load (35 KN/m), and the largest roll speed (914 m/min). For a constant roll speed, as the applied load is increased, the angle of deflection is decreased (graph 5). However, at a fixed roll speed and higher applied loads the curves become flatter which indicates that under these conditions, the hydrostatic shoe becomes more stable with respect to variation in applied loads. For a fixed load, as the roll speed increases, the normal and tangential forces exerted by the lubricant on the bottom surface of the shoe are increased in such a way that they result in an increase in the clockwise deflection of the shoe. When the applied load is small (e.g., 35 KN/m), the angle of deflection increases more rapidly with the speed of the roll. At a higher load (e.g., 175 KN/m) the forces exerted by the fluid on the shoe are not large enough to overcome the force applied to the top of the shoe, thus, they result in a smaller clockwise deflection of the shoe.

Shown in graph 7 are the mass flow rates of the lubricant in the left-hand and right-hand channels as a function of applied load for three outer surface roll speeds. Because of the clockwise deflection of the shoe, the left-hand channel becomes more divergent and its thickness becomes larger than that of the right-hand channel. Therefore, the lubricant flow rate in that channel is larger as compared with the right-hand channel. As the applied load is increased, because of the increase in the pressure gradient across the channel, more flow is passed through the left-hand channel. However, the lubricant flow rate in the right-hand channel is relatively insensitive to variation in applied loads, and the influence of the roll speed on the mass flow rate in that channel is greater as compared with that in the left-hand channel. For a fixed roll speed, an increase in applied load will influence the lubricant mass flow rates through two mechanisms: on one hand it will produce a thinner channel and thus will create more resistance to the flow of the lubricant; on the other hand, an increase in the applied load will result in a greater pressure gradient across the channel which will result in an increase in fluid motion. The amount of lubricant passing through each capillary is strongly influenced by the pressures at the top of the shoe and in the recess. As will be shown in the graphs referenced below, an increase in applied load will result in a much greater increase in the pressure in the right-hand recess than that in the left-hand recess. Therefore, for a fixed load, the pressure gradient across the left-hand capillaries will be greater than that across the right-hand capillaries. This will result in a greater flow of lubricant through the left-hand channel. As the speed of the roll is increased, the viscous nature of the lubricant will drag part of the lubricant from the left-hand channel toward the right-hand channel.
We show in graph 8 the lubricant total volumetric flow rate vs. roll speed for each applied load. The flow rate increases with speed and applied load because of an increase in the thickness of each channel and an increase in the pressure gradient, respectively. However, as this figure indicates, the influence of the applied load on the flow of lubricant is much greater than that of the roll speed. The influence of the speed of the roll on the fluid flow rate is the same for all applied loads. In graph 9 we display the net lubricant flow rate vs. load at three different inner roll speeds.

We show in graphs 10 and 11 the lubricant recess pressures in the left-hand and right-hand channels as a function of roll speed and applied load, respectively. Graph 10 indicates that an increase in roll speed from 305 to 914 m/min results in a negligible increase in the left-hand recess pressure, and only a small decrease in the right-hand pressure. Therefore, the influence of roll speed on the lubricant flow rate through the left-hand channel was negligible (graph 7), and its influence on the total flow rate was small (graph 8). As explained earlier, for a fixed roll speed, an increase in applied load resulted in a much greater increase in the right-hand recess pressure as compared with the left-hand recess pressure (graph 11). Therefore, under these conditions the left-hand capillaries (which are associated with a greater increase in pressure gradient) will experience a larger mass flow rate (graph 7).

Shown in graphs 12-17 are lubricant pressure distributions along the length of the left-hand, and right-hand channels at various roll speeds. The mathematical expressions for the pressure distributions along the length of the right-hand and left-hand channels are given in equations (3.4) and (3.9), respectively. In general, the shape of the pressure curves for the right-hand channels were concave downward, and those for the left-hand channel were concave upward. In other words, the pressure drop near the recess at the right-hand channel was smaller than that of the left-hand channel. As the magnitude of the applied load increases, the nonlinearity in the pressure distribution in both channels increases.

Shown in graph 18 are the roll drag coefficient vs. roll speed at each applied load. This coefficient was calculated as the ratio of total shear force exerted by the lubricating oil on the inner surface of the roll divided by the total normal force applied to the roll; the graph indicates that the roll drag coefficient increases with roll speed for a constant applied load, and decreases with applied load for a fixed roll speed.

In graph 19 we show the predicted values of the mechanical power required to operate the roll vs. load for three fixed roll speeds; the power was obtained from the product of the net shear force on the roll and the inner surface roll speed. For this roll/shoe configuration, the power increased with load at a constant roll speed, and increased with speed at a constant applied load, as shown in graph 20. Graphs 19 and 20 show that the slopes of the power curves become greater at both higher roll speeds and applied loads.
c. Results for a CC Roll with $R = 6.76''$, $R_s = 6.745''$

In this section we present some results that were obtained by using information provided by the Beloit Corporation [8]; the results are based on the dimensions for an actual shoe/roll configuration which has been used by Beloit to compile experimental data. The major changes from §4b include increasing the roll radius from its previous value of 6.750" to that of 6.760" and decreasing the angle ϕ (one-half the angular opening of the shoe) from its previous value of slightly more than 28° to 24°; the first is a direct consequence of the information from the Beloit Corporation regarding the actual radius of the shoe that was used in their experiments while the second change results from Beloit's [8] suggestions that as far as the hydrodynamic modeling goes, one should essentially ignore those regions in the channel which lie beneath the severely tapered ends of the shoe. We have also included, now, what appears to be the minor influence of the spring-like seals which are located along the shaft of the internal shoe. In general the predictions of the model for the various speeds and loads that were tested are quite close in terms of absolute magnitudes to the experimental data provided by Beloit. Whatever differences remain in magnitudes may be attributed to a multitude of factors: the simplified manner in which the portion of the channel under the tapered ends of the shoe is being treated, the secant line approximations used for the arc describing the bottom surfaces of the shoe and the roll, the fact that the oil which exits the channel on the right is not skimmed off but, rather, re-enters the channel on the left, the fact that all machine dimensions, including the dimensions of both the shoe and roll radii, are accurate only to within 0.002" (thus meaning that what is an extremely critical parameter in this model, namely, the difference between the roll radius and the shoe radius might be off by as much as 0.004"), and the fact that all of the results presented are based on assuming a constant oil viscosity (the viscosity at the lubricant inlet temperature). Because of viscous dissipation, at higher loads and speeds the average temperature in the oil will be higher than it is at lower speeds and loads, and at any fixed speed and load the temperature in the oil varies (spatially) throughout the lubrication channel; it is also known that the actual viscosity μ of the lubricant varies strongly with temperature, with viscosity decreasing as temperature increases. It is thus somewhat misleading to use the same viscosity when, e.g., we compare the predictions of the model at a roll speed of 1000 ft/min and different loads of, say, 1000 PLI and 800 PLI, with the experimental data generated by Beloit, because the viscosity will no longer be the same number at the two different loads. In fact, because of thermal expansion of the metal in both the roll and the shoe, it is even conceivable that neither the roll radius nor the shoe radius remains constant. Some of these difficulties will be resolved once a temperature dependent viscosity has been introduced into the model. Finally, we note that the mathematical/numerical model appears to be very sensitive to changes in some measure of the relative difference $(R - R_s)/R$ where R is the roll radius and R_s is the shoe radius; this may be easily seen by comparing the results for lubricant
thickness, mass flow rates, and the power to operate the roll for the case considered in this section, where $R = 7.60^\circ, R_s = 6.745''$ to those results reported in §4b for the case in which $R = 6.750^\circ, R_s = 6.745''$. The model is, also, at the same time, sensitive to some measure of the discrepancy between roll speed and load in the sense that branching of equilibrium solutions occurs and multiple solutions appear at relatively low loads and high speeds. This instability appears to be exacerbated by increasing some measure of the relative difference $(R - R_s)/R$. For the roll/shoe configuration of §4d, where $R = R_s$, the model is very stable with respect to initial guesses, and for many operating conditions produces unique solutions (except for the lowest load and highest speed scenarios); the other extreme consists of the roll/shoe configuration treated in this section where some measure of the ratio $(R - R_s)/R$ is presumably large and multiple equilibrium solutions appear even in the high load cases with the situation becoming worse at higher speeds of the roll. The matter of the sensitivity of the numerical scheme to variations in some appropriate measure of $(R - R_s)/R$, and the concurrent impact on quantities of interest, i.e., lubrication thickness, horsepower, and mass flow rates, is a subject for another investigation.

In graph 21 we provide a comparison between the lubricant film thicknesses (at both the leading and trailing edges of the channel) as predicted by the IPST model and as measured by the Beloit Corporation for a fixed roll speed of 305 m/min and a number of different loads; graph 22 provides a similar comparison but at a roll speed of 610 m/min. Graphs 23 and 24 provide a comparison (at roll speeds of 305 m/min and 610 m/min, respectively) of the average lubricant film thicknesses in the channel as predicted by the IPST model, on one hand, and as measured by the Beloit Corporation on the other; here average film thickness means the simple average of the leading and trailing edge thicknesses. Graphs 25 and 26 compare (for roll speeds of 305 m/min and 610 m/min, respectively) the volumetric flow rates in the channel as predicted by the IPST model and as measured by the Beloit Corporation. Finally, graph 27 compares (for the two roll speeds of 305 m/min and 610 m/min) the power required to operate the roll as predicted by the IPST model and as measured by the Beloit Corporation. All the predicted results referenced above are in good agreement with the corresponding experimental results, especially when one takes into account the extant shortcomings of the model as described at the beginning of this section and the types of experimental error that are present in the results measured by Beloit.

d. Results for a CC roll with $R_s = R = 20.005''$

Shown in graphs 28-48 are the results of the analytical model for the case in which the roll and the shoe are machined to the same radius of 508.13 mm ($R_s = R = 20.005$ in). This shoe was subjected to loads in the range of 175-1751 KN/m (1000-10,000 PLI) and roll speeds of 305-1067 m/min (100-3500 ft/min). With only minor exceptions, the qualitative results obtained for this ‘large’ shoe were similar to those for the ‘small’ shoes. Therefore,
for the sake of conciseness, only those results that are qualitatively different will be discussed in this section. As shown in graph 29, for a fixed load, the lubrication film thickness at the trailing edge decreases with an increase in roll speed. This indicates that for the ‘large’ shoe, as the roll speed increases, the influence of the rotation of the shoe on the thickness of the lubricant becomes relatively greater than that of its vertical motion; this was not observed in the results for the ‘small’ shoes. Similar to the results for the ‘small’ shoes, lubricant thickness and angle of deflection data indicate that operation of the large roll at higher loads will result in higher stability for the hydrostatic shoe with respect to variation in roll speed.

While for the case in which \(R = 6.750" \), \(R_s = 6.745" \), the mass flow rate in the left-hand channel was much greater than that in the right-hand channel (graph 7) for the ‘large’ roll, a negligible difference between the two flows was observed (graphs 32-35); this similarity between the flow magnitudes occurs, because for the large roll at a fixed speed, there is a small difference between the recess pressures in the left-hand and right-hand channels (see graphs 37-41). However, for the ‘small’ shoe in which \(R = 6.750" \), \(R_s = 6.745" \), the recess pressure in the right-hand channel was generally much greater than that in the left-hand channel; for a fixed applied load and roll speed, this results in a smaller pressure drop across the capillaries of the right-hand channel as compared with those of the left-hand channel, thus allowing more flow of lubricant into the left-hand channel.

In general, for this ‘large’ shoe subjected to a fixed load, the speed of the roll has no major effect on the lubricant flow rate (graph 36), while for the ‘small’ roll at a fixed applied load, an increase in roll speed resulted in a small increase in the lubricant flow rate (graph 8). Generally, the nonlinearity in the pressure distributions along each channel were less for the ‘large’ shoe as compared with the ‘small’ shoe (graphs 12-17). We show in graphs 42-45, the lubricant pressure distributions along the lengths of both subchannels for each applied load and each roll speed. In general, the speed of the roll had only a small influence on the pressure distribution. For all the operating conditions, the pressure exerted by the lubricant on the inner surface of the roll is slightly higher at the right-hand recess as compared with the left-hand recess; the pressure distribution in these regions has a significant effect on water removal during the wet pressing of paper. Since the machine direction width of the piston for the ‘large’ shoe was chosen to be 152.2 mm (5.994"), the corresponding magnitude of the pressures applied to the top of the shoe will be in the range of 2.33-11.5 MPa (for the applied loads of 350-1751 KN/m). Therefore, based on the results shown in graphs 42-45, in general, the ratio of the average recess pressure divided by the pressure applied to the top of the shoe was approximately 0.6 for all the operating conditions. For the ‘small’ shoe/roll configurations, the predicted mechanical power required to operate the roll increases with applied load and roll speed, and the rate of increase was generally higher at higher applied loads and roll speeds. However, for the ‘large’ shoe/roll, operating at a fixed roll speed, the power was relatively insensitive to changes in applied load (graph 47). This indicates that a
variation in the applied load does not change the magnitude of the net shear force which is
exerted by the lubricant on the inner surface of the roll; at higher loads this corresponds to
insensitivity of the angle of deflection of the shoe with respect to variations in applied loads.
At any fixed load, the mechanical power required to operate this roll increased nonlinearly
with increasing speed (graph 48).

Previously referenced graphs corresponding to lubrication film thickness and angle of
deflection for each shoe/roll configuration analyzed in this study indicate that operating
such press rolls at higher loads will result in a more stable hydrostatic shoe, one in which
the position of the shoe becomes relatively independent of the variation in the roll speed.
Graphs 19 and 20 show that operation of this ‘small’ roll at a high speed and a high load
requires a significantly higher power as compared with its operation at a moderate speed
and load; however, the results corresponding to mechanical power for the ‘large’ roll (graph
48) indicate that this shoe/roll configuration can be operated at a higher load without any
significant increase in mechanical power.

5. Summary of Results and Conclusions

We have analyzed the lubrication problem which arises in modeling impulse drying em-
ploying a crown compensated roll; the geometry for the associated steady flow problem was
constructed and expressions were derived for the relevant velocity fields, mass flow rates, and
normal and tangential forces acting on both the bottom surface of an internal hydrostatic
shoe and the inside surface of the CC roll.

The bottom surface of the shoe and the inside surface of the roll form a curvilinear
channel whose cross-sections were assumed to lie on circles of either equal or different radii;
the coordinates of the center of the circle, on which the arc describing the bottom surface
of the shoe lies, can be used, in conjunction with the angular deflection ψ of the shoe, to
define a base lubrication thickness d_0 for an approximate planar-walled channel in which the
lubrication problem is posed; d_0 is given in terms of b and ψ and the parameters b and ψ
are determined by the solution of a coupled set of three nonlinear, transcendental, algebraic
equilibrium equations. Parameters entering into the equilibrium equations included geomet-
rical design parameters such as the radii of both the shoe and the roll, and the angular
opening of the shoe, as well as physical parameters such as the load per unit width of the
shoe, exerted along the top surface of the shoe, and the tangential speed of the CC roll,
which rotates counterclockwise.

The equilibrium equations were, themselves, obtained by balancing horizontal and verti-
cal components of all forces acting on the shoe (including the tangential and normal forces
exerted by the lubricating oil on the upper planar-walled surface of the convergent wedge-
shaped channel which approximates the actual curvilinear channel) and by imposing, as well, balance of moments for all forces.

The lubrication channel is fed by two sets of capillaries which traverse the shoe and enter each side of the channel through recesses cut out of the bottom of the shoe; lubricating oil is injected through the capillaries on each side of the shoe, to the channel, and the shoe subsequently turns in the clockwise direction as a consequence of the viscosity of the oil, the motion of the roll, and the required balance of forces and moments.

The base thickness d_o of the (approximate) channel—equivalently, the coordinates of the center of that circle on which the arc describing a cross-section of the bottom surface of the shoe lies—and the angular deflection ψ of the shoe, not only serve to completely determine the equilibrium position of the shoe, once the load on the shoe and the speed of the roll are given, but also determine all pressure and velocity fields in the channel and, therefore, all normal and tangential forces which act on the bottom surface of the shoe.

Numerical solutions of the algebraic equilibrium equations have been carried out for two “small” shoe/roll configurations in which the shoe radius is slightly smaller than the inner roll radius, and for a “large” shoe/roll configuration in which the two radii are machined so as to be approximately equal; the results of these numerical studies were reported in §4. The numerical studies, which are based on the analytical model constructed in this report, indicate that the model can be used effectively to study the dependence of channel thicknesses, the deflection of the shoe, mass flow rates, pressure distributions, and the power required to operate the roll either on the load F (on the shoe) for a fixed tangential speed s (of the roll, where s refers to the speed of the inner surface of the roll) or on s for fixed F; the major results that can be abstracted are as follows:

(i) For the “small” shoe/roll configurations, film thicknesses increase at fixed load with increasing roll speed and at a fixed speed the film thicknesses decrease with increasing load; for the “large” shoe/roll configuration we observed that the leading edge thicknesses increase while trailing edge thicknesses decrease with increasing speed at a fixed load and with decreasing loads at a fixed speed.

(ii) The clockwise deflection of the shoe increases with increasing speed at each fixed load and decreases as the load increases at any fixed speed.

(iii) For the “small” shoe/roll configurations, at a fixed load, the mass flow rate in the entire channel increases with increasing roll speed, the increase being nearly linear at both high and low loads; also at a fixed speed, the net mass flow rate increases with
increasing load. For the “large” roll/shoe configuration the mass flow rate is relatively insensitive to changes in speed for a fixed load but increases linearly with increasing load at fixed speeds.

(iv) For the “small” shoe/roll configurations, at a given applied load, the mechanical power required to operate the roll increases with roll speed, with the increases being larger and nonlinear at high loads, the same being true with increasing load at fixed speeds. But, for the “large” shoe/roll configuration, the power required to operate the roll is relatively insensitive to increases in load at a fixed speed, while the power increases nonlinearly with increasing speed at a fixed load.

(v) Over a wide range of applied loads and roll speeds, the pressure distribution along the inside surface of the roll, in the lubrication channel, is constant in the vicinity of each of the two respective sets of recesses, where lubricant enters the channel, and falls off monotonically as one moves from each recess toward the end of the subchannel fed by that recess.

In view of the very prominent fashion that design parameters such as the radii of the shoe and roll and the angular opening of the shoe (as well as physical parameters such as the density and viscosity of the lubricating oil) enter into the expressions for \(d_0 \) and \(\psi \), and, thus, into the equilibrium equations, the model can be used to predict, for given applied loads and roll speeds, the effect that specific design changes would have on lubricant thicknesses, pressure distributions, mass flow rates, lubricant velocity fields, and the mechanical power required to operate the roll; the mathematical model thus presents the engineer with what is anticipated to be an extremely effective tool for optimizing specific design factors in the construction of the shoe/roll configuration in impulse drying.
Acknowledgements

The work reported here was supported by member companies of IPST and by the U.S. Department of Energy, Office of Industrial Programs, through Grant No. DE-FG02-8SCE40738. Their support is gratefully acknowledged. The authors also gratefully acknowledge extensive and useful discussions, related to this problem, with several of the staff members at Beloit Research & Development, Rockton, Illinois, especially David Lange and Paul Monroe.

References

3. Orloff, D., Unpublished Notes, Institute of Paper Science and Technology; Atlanta, GA.

Figure 1. The Crown Compensated Impulse Drying Press Roll (not shown to scale).
Figure 2. Cross sectional view of the shoe and the rotating shell.
Figure 3: Shoe cross section depicting capillaries entering the recesses (not shown to scale).
Figure 4. Contact between the shaft of the hydrostatic shoe and the wall of the confinement.
Figure 5. Motion of the hydrostatic shoe.
Figure 6. Geometry for the pivoting of the shaft of the hydrostatic shoe.
Figure 7. Determination of the coordinates of the pivot point along the wall of the confinement shaft.
Figure 8. Approximate geometry of the lubrication channel.
Figure 9. The approximate wedge-shaped bearing.
Figure 10a. The right-hand subchannel.
Figure 10b. The left-hand subchannel.
Figure 11. Pressure distribution under the recesses and in the middle channel.
Figure 12. Pressure distribution under the internal hydrostatic shoe.
Figure 13. Forces acting on the internal hydrostatic shoe.
Figure 14. Forces acting on the bottom surface of the shoe.
Figure 15a. Resolution of the normal forces acting on the bottom surface of the shoe in the right-hand subchannel.
Figure 15b. Resolution of the tangential forces acting on the bottom surface of the shoe in the right-hand subchannel.
Figure 16a. Resolution of the normal forces acting on the bottom surface of the shoe in the left-hand subchannel.
Figure 16b. Resolution of the tangential forces acting on the bottom surface of the shoe in the left-hand subchannel.
Appendix II: Graphs

Graph 1. Lubricant film thickness at the leading edge vs. roll speed for each applied load: R=6.750", R_s=6.745".
Graph 2. Lubricant film thickness at the trailing edge vs. roll speed for each applied load: $R = 6.750''$, $R_s = 6.745''$.
Graph 3. Lubricant film thicknesses at the leading edge and trailing edge vs. applied load for each roll speed: $R = 6.750''$, $R_s = 6.745''$.
Graph 4. Lubricant average film thickness vs. applied load for each roll speed: \(R = 6.750'' \), \(R_s = 6.745'' \).
Graph 5. Angle of rotation of the shoe vs. applied load for each roll speed: $R = 6.750''$, $R_s = 6.745''$.
Graph 6. Angle of rotation of the shoe vs. roll speed for each applied load: $R=6.750''$, $R_s=6.745''$.

$R = 6.750''$
$R_s = 6.745''$
Graph 7. Lubricant mass flow rates per unit width of the roll in the left-hand and right-hand channels for each roll speed: \(R = 6.750'' \), \(R_s = 6.745'' \).
Graph 8. Lubricant total volumetric flow rate vs. roll speed for each applied load: $R=6.750''$, $R_s=6.745''$.
Graph 9. Lubricant total volumetric flow rate vs. applied load for each roll speed: $R=6.750''$, $R_s=6.745''$.
Graph 10. Lubricant recess pressures at the left-hand and right-hand channels vs. roll speed for two applied loads: R=6.750", R_s=6.745"
Graph 11. Lubricant recess pressures at the left-hand and right-hand channels vs. applied load for each roll speed: $R = 6.750''$, $R_s = 6.745''$.
Graph 12. Lubricant pressure distribution along the length of the right-hand channel at a roll speed of 305 m/min: $R=6.750''$, $R_s=6.745''$.
Graph 13. Lubricant pressure distribution along the length of the left-hand channel at a roll speed of 305 m/min: \(R = 6.750'' \), \(R_s = 6.745'' \).
Graph 14. Lubricant pressure distribution along the length of the right-hand channel at a roll speed of 610 m/min: R=6.750", R_s=6.745".
Graph 15. Lubricant pressure distribution along the length of the left-hand channel at a roll speed of 610 m/min: $R = 6.750''$, $R_e = 6.745''$.
Graph 16. Lubricant pressure distribution along the length of the right-hand channel at a roll speed of 914 m/min: \(R = 6.750'' \), \(R_s = 6.745'' \).
Graph 17. Lubricant pressure distribution along the length of the left-hand channel at a roll speed of 914 m/min: $R = 6.750''$, $R_s = 6.745''$.

\[\text{PRESSURE (MPa)} \]

\[\text{LOAD (KN/m)} \]

\[\text{DISTANCE (mm)} \]
Graph 18. Roll drag coefficient vs. roll speed at each applied load: R=6.750", R_s=6.745".
Graph 19. The mechanical power required to operate the roll as predicted by the IPST model: $R = 6.750''$, $R_s = 6.745''$.

![Graph showing power vs load]
Graph 20. Mechanical power required to operate the roll vs. roll speed for each applied load: \(R = 6.750'' \), \(R_s = 6.745'' \).
Graph 21. Comparison between the lubricant film thicknesses at the leading edge \(d_L \) (mm), and trailing edge \(d_R \) (mm) predicted by the IPST model and measured by Beloit Corporation at a roll speed of 305 m/min for the roll/shoe configuration: \(R = 6.760'' \), \(R_s = 6.745'' \).
Graph 22. Comparison between the lubricant film thicknesses at the leading edge (d^L_{lb}, mm), and trailing edge (d^R_{lb}, mm) predicted by the IPST model and measured by Beloit Corporation at a roll speed of 610 m/min for the roll/shoe configuration: $R=6.760''$, $R_s=6.745''$.
Graph 23. Comparison between the average lubricant film thicknesses (mm) predicted by the IPST model and measured by Beloit Corporation at a roll speed of 305 m/min for the roll/shoe configuration: \(R = 6.760'' \), \(R_s = 6.745'' \).
Graph 24. Comparison between the average lubricant film thicknesses (mm) predicted by the IPST model and measured by Beloit Corporation at a roll speed of 610 m/min for the roll/shoe configuration: \(R = 6.760'' \), \(R_s = 6.745'' \).
Graph 25. Comparison between the volumetric flow rate predicted by the IPST model and by Beloit Corporation at a roll speed of 305 m/min for the roll/shoe configuration: \(R = 6.760\)", \(R_s = 6.745\)".
Graph 26. Comparison between the volumetric flow rate predicted by the IPST model and measured by Beloit at a roll speed of 610 m/min for the roll/shoe configuration: $R = 6.760''$, $R_s = 6.745''$.

FLOW RATE (lit/min)

LOAD (KN/m)

SPEED = 610 m/min
Comparison between the power predicted by the IPST model and measured by Beloit at roll speeds of 305 m/min and 610 m/min for the roll/shoe configuration: $R=6.760''$, $R_s=6.745''$.
Graph 28. Lubricant film thickness at the leading edge vs. roll speed for each load applied to the "large" shoe. $R_s = R = 20.005''$.
Graph 29. Lubricant film thickness at the trailing edge vs. roll speed for each applied load: \(R = R_s = 20.005'' \).
Graph 30. Angle of rotation of the shoe vs. load for each roll speed.

$R_x = R = 20.005''$.

$R = R_x = 20.005''$.

SPEED (m/min)

LOAD (KN/m)

ROTATION (Degrees)
Graph 31. Angle of rotation of the shoe vs. roll speed for each applied load: $R = R_s = 20.005''$.

$R_s = R = 20.005''$
Graph 32. Lubricant mass flow rates per unit width of the roll in the left-hand and right-hand channels at a roll speed of 305 m/min: \(R = R_s = 20.005" \).
Graph 33. Lubricant mass flow rates per unit width of the roll in the left-hand and right-hand channels at a roll speed of 610 m/min R=Rs=20.005".
Graph 34. Lubricant mass flow rates per unit width of the roll in the left-hand and right-hand channels at a roll speed of 914 m/min: $R = R_s = 20.005".$
Graph 35. Lubricant mass flow rates per unit width of the roll in the left-hand and right-hand channels at a roll speed of 1067 m/min: \(R = R_s = 20.005'' \).
Graph 36. Lubricant total volumetric flow rate vs. roll speed for each applied load: $R=R_s=20.005''$.

LOAD (KN/m) $R_s = R = 20.005''$

FLOW RATE (Klit/min)

SPEED (m/min)
Graph 37. Lubricant recess pressure at the left-hand and right-hand channels vs. roll speed for three applied loads: $R_s = R = 20.005''$.
Graph 38. Lubricant recess pressure at the left-hand and right-hand channels vs. load for a roll speed of 305 m/min: $R_s = R = 20.005''$.
Graph 39. Lubricant recess pressure at the left-hand and right-hand channels vs. load for a roll speed of 610 m/min: $R_{s} = R = 20.005''$.

LOAD (KN/m)
Graph 40. Lubricant recess pressure at the left-hand and right-hand channels vs. load for a roll speed of 914 m/min: $R_\text{L} = R_\text{R} = 20.005\"$.

- RIGHT
- LEFT

$R_\text{L} = R_\text{R} = 20.005\"$

SPEED = 914 (m/min)

LOAD (KN/m)
Graph 41. Lubricant recess pressure at the left-hand and right-hand channels vs. load for a roll speed of 1067 m/min: $R=R_s=20.005\"$.
Graph 42. Lubricant pressure distribution along the length of both channels at a roll speed of 305 m/min: $R = R_s = 20.005''$.
Graph 43. Lubricant pressure distribution along the length of both channels at a roll speed of 610 m/min: $R=R_s=20.005"$.
Graph 44. Lubricant pressure distribution along the length of both channels at a roll speed of 914 m/min: $R_s = R = 20.005"$.
Graph 45. Lubricant pressure distribution along the length of both channels at a roll speed of 1067 m/min: $R=R_s=20.005\"$.
Graph 46. Roll drag coefficient vs. roll speed at each applied load: $R=R_s=20.005''$.
Graph 47. Mechanical power required to operate the roll vs. load for each roll speed: R=R_s=20.005".
Graph 48. Mechanical power required to operate the roll vs. roll speed for each applied load: \(R_s = R = 20.005'' \).