Brightness Reversion of Mechanical Pulps XI:
Photostabilization of High-Yield Pulps by Thiosulfinates

C. Li, C.M. Cook, and A.J. Ragauskas

May 1998

Submitted to
Journal of Wood Chemistry and Technology
The Institute of Paper Science and Technology is a unique organization whose charitable, educational, and scientific purpose evolves from the singular relationship between the Institute and the pulp and paper industry which has existed since 1929. The purpose of the Institute is fulfilled through three missions, which are:

- to provide high quality students with a multidisciplinary graduate educational experience which is of the highest standard of excellence recognized by the national academic community and which enables them to perform to their maximum potential in a society with a technological base; and

- to sustain an international position of leadership in dynamic scientific research which is participated in by both students and faculty and which is focused on areas of significance to the pulp and paper industry; and

- to contribute to the economic and technical well-being of the nation through innovative educational, informational, and technical services.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company's use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
BRIGHTNESS REVERSION OF MECHANICAL PULPS XI: PHOTOSTABILIZATION OF HIGH-YIELD PULPS BY THIOSULFINATES

Cang Li, Charles M. Cook, and Arthur J. Ragauskas*
Chemical and Biological Sciences Division
The Institute of Paper Science and Technology
Atlanta, Georgia 30318

ABSTRACT

A series of eleven cyclic and acyclic thiosulfinates was synthesized and applied onto hardwood BCTMP (bleached chemithermomechanical pulp) testsheets. Treated and untreated testsheets were photoaged and their optical properties were monitored. The results of these photoaging experiments indicated that cyclic thiosulfinates were relatively ineffective at retarding brightness reversion, whereas, most acyclic additives were effective photostabilization agents for BCTMP. The use of acyclic thiosulfinates in combination with UV absorbers provided a very effective means of retarding the photoaging process of mechanical pulps.

INTRODUCTION

In general, sulfur-based antioxidants have been shown to be one of the most effective class of photostabilization additives for mechanical pulp.¹⁻¹⁰ The application of thiol additives to mechanical pulp have been shown to bleach lignin
chromophores from high-yield mechanical pulps and also trap reactive photochemically generated radical intermediates. It is currently believed that both of these mechanisms contribute to the reported photostabilization effects of thio-additives. Unfortunately, the odoriferous properties of thiols and their propensity to undergo autooxidation upon storage on mechanical pulp have hindered commercial application. Recently, we reported that thiosulfonates exhibit photostabilization properties as effective as thiol derivatives and yet this new class of photostabilization additives for high-yield pulps does not have the malodorous properties associated with mercapto-additives. The mechanism of photostabilization by thiosulfonates is undoubtedly due to the strong reducing properties of these additives as the corresponding disulfide and thiosulfonate derivatives do not exhibit effective photoprotection of high-yield pulps. This study examines the structural requirements of thiosulfonate additives needed for effective photostabilization of mechanical pulps and their synergistic interactions with UV absorbers.

EXPERIMENTAL

Materials

All chemicals, including methyl disulfide, \(-\)butyl disulfide, phenyl disulfide, \(-\)tolyl disulfide, and 4,4\(^{\prime}\)-dichlorodiphenyl disulfide, were commercially purchased and used as received. Commercial hardwood BCTMP (93% yield) prepared from aspen using hydrogen peroxide for both the chemical pretreatment and bleaching stages was employed for all studies in this report.
Instrumentation

A Perkin-Elmer 320 UV/VIS spectrometer was used routinely to measure UV-visible absorption spectra and to characterize the compounds. All 1H NMR spectra were recorded on a 400 MHz Bruker DMX spectrometer at ambient temperature. A VG 70SE high resolution mass spectrometer was used to measure the mass spectra of all synthesized thiosulfimates. A Brightimeter Micro S-5 (Technidyne Corporation) was used to measure the brightness according to a standard TAPPI procedure (T 452 om-92).13

Procedures

Synthesis of thiosulfimates (equation 1). Several disulfides were oxidized by 3-chloroperoxybenzoic acid (m-CPBA) as previously described.14-15

\[
R\text{-S-S-R} + 3\text{-Cl-C}_6\text{H}_4\text{CO}_3\text{H} \rightarrow R\text{-S(O)-S-R} + 3\text{-Cl-C}_6\text{H}_4\text{CO}_2\text{H} \quad (1)
\]

In brief, 3-chloroperoxybenzoic acid (0.015 mol) dissolved in 300 ml of chloroform was added dropwise, with stirring to a chloroform (300 ml) disulfide (0.015 mole) solution, cooled to 0°C. Upon completion of the addition of 3-chloroperoxybenzoic acid, the reaction mixture was stirred for an additional 5 minutes and the mixture was then washed with a cold aqueous 5% sodium carbonate solution (63 ml) followed by a second wash with aqueous 2% sodium carbonate solution (100 ml) and finally with water (100 ml). The water wash was re-extracted with chloroform and the combined organic phases were dried over sodium sulfate, filtered, and distilled under reduced pressure to remove the solvent. The thiosulfinate esters were purified by medium-pressure liquid
chromatography with 3:1 petroleum ether/ethyl acetate as eluent. The thiosulfinates prepared (see Figure 1) in this manner were characterized by 1H NMR and mass spectroscopy and these results agreed with reported values.14,16

Preparation of handsheets. BCTMP fibers were Soxhlet extracted with acetone for 24 hours and air-dried prior to handsheet formation. The removal of extractives facilitated accurate measurements of the amounts of additives applied onto handsheets. We have previously demonstrated that the removal of extractives does not alter the fundamental photoreversion properties of mechanical pulp.17 BCTMP handsheets (3 grams) were prepared following TAPPI standard procedure T 218 om-9113 and air-dried at constant temperature (22.0 ± 2.0°C) and relative humidity (50 ± 2.0%).

Handsheets treated with additives. In a typical experiment, a BCTMP handsheet was sprayed with a methanolic solution (10 ml) of the thiosulfinate (0.015 mole, ca 1 wt.%) and then allowed to air-dry overnight in the absence of light. Control handsheets were prepared in an analogous manner except that the thiosulfinate was omitted from the methanol solution.

Handsheets containing a mixture of the thiosulfinate (3 or 7) and UV-absorber (12 or 13) were prepared in an analogous manner except that the methanolic solution contained: (a) 2,2'-dithio-2-oxodiethanol 3 (0.5% wt/wt basis) and 0.5% 2,4-dihydroxybenzophenone 12; (b) 0.5% thiosulfinate 3 and 0.5% 3-(2H-benzotriazole-2-yl)-5-(t-butyl)-4-hydroxybenzene-propanoic acid, methyl ester 13; (c) 0.5% phenyl thiosulfinate 7 and 0.5% UV absorber 12; (d) 0.5% thiosulfinate 7 and 0.5% UV absorber 13.

UV photolysis and brightness of handsheets. Four BCTMP handsheets were attached to a merry-go-round and photolyzed in a Rayonet RPR-100
photochemical reactor with 16 black lamps at ~ 30°C. At selected time periods, the handsheets were removed from the reactor, and kept in the dark for 4 hours to equilibrate to constant temperature (22.0 ± 2.0°C) and relative humidity (50 ± 2.0%). TAPPI brightness values were then determined and the handsheets were then further photolyzed.

RESULTS AND DISCUSSION

Structure activity effects. As a preliminary investigation into the structural components contributing to the photostabilization effects of thiosulfinates, we prepared a series of acyclic and cyclic thiosulfinates (see Fig. 1). These additives were conveniently prepared from the corresponding disulfides by m-CPBA oxidation. Cyclic additives examined included trans-1,2-dithiane-1-oxo-4,5-diol 4 and 1-oxo-1,2-dithiane-4-oxepane 2. Acyclic derivatives included 3,3'-dithio-3-oxo-propionate 1, 3,3'-dithio-3-oxo-dipropionate acid, methyl ester 6, 3,3'-dithio-3-oxo-dipropanesulfonic acid, sodium salt 5, and 2,2'-dithio-2-oxo-diethanol 3.

The photostabilization effects of these additives were examined by treating BCTMP testsheets with 0.015 moles of the additive and irradiating the treated and untreated handsheets with black lamps (λmax ≈ 350 nm) for selected time periods. The relative changes in brightness were then monitored following standard TAPPI testing methods and these results are summarized as follow. These data demonstrate that the thiosulfinate are effective photostabilization agents but this property is governed by the alkyl substituents. In Figure 2, a comparison of the reversion properties of testsheets treated with thiosulfinate 3 or its cyclic analogue 4 clearly shows that acyclic additive is more effective (Figure 2). Likewise, the photostabilization of 2 is as effective as 4.
Although the exact factors contributing to this difference in reactivity between acyclic and cyclic thiosulfimates are unknown for mechanical pulps, it has been shown that alkyl thiosulfimates are unstable and are able to undergo the radical scavenging reactions;18 whereas, some cyclic thiosulfimates have been found to be stable for several weeks in the presence of O\textsubscript{2}, light, and air.19 These factors presumably contribute to the observed photostabilization effects observed in Figure 2. The differences in photostabilization effects observed between 1 and 6 can be tentatively attributed to an improved compatibility with the lignocellulosic fibers. Nonetheless, additives 1, 5, and 6 were all less effective than 3 (Figure 3) suggesting that the presence of electron withdrawing substituents does not enhance the photostabilization effects of thiosulfimates.

The effects of electron-donating and withdrawing groups on the photostabilization properties of thiosulfimates were further examined with additives 7, 8, and 9 as summarized in Figure 4.

Interestingly, additive 7 was found to be a very effective photostabilization agent but placement of either chloro or methyl on the para-position substantially reduced this photostabilization effect. These results demonstrate that the photostabilization effect of thiosulfimates is not dependent upon the availability of an \(\alpha\)-hydrogen but is sensitive to the structure of the alkyl substituent. The sensitivity of the thiosulfinate photostabilization effect to the nature of the alkyl substituent is further exemplified by comparing the photoyellowing properties of handsheets treated with 2,2'-dithio-2-oxo-dimethane 10 and 2,2'-dithio-2-oxo-di-t-butane 11 (see Fig. 5). The poor photostabilization effect of 11 is most likely due to steric considerations.

\textit{Synergistic effects.} Prior studies by Pan6 have demonstrated that the use of antioxidants and UV absorbers can provide a very effective means of retarding the overall rates of brightness reversion. Indeed, it was shown that the use of 0.5%
charge of ethylene glycol bisthioglycolate (thiol) and 0.5% charge of 2,4-dihydroxybenzophenone 12 provided photostabilization effects greater than treating a handsheet with 2% ethylene glycol bisthioglycolate or 2% UV absorber 12 separately.6 To study the potential benefits of using two additives to photostabilize high-yield pulps, we examined the relative rates of brightness reversion for BCTMP handsheets treated with thiosulfinate 7 or 3 combined with either UV absorber 12 or 13. Figures 6 and 7 show that the brightness loss decreases when the charge of 12 or 13 increases.

The addition of thiosulfinate 7 or 3 clearly enhances the photostabilization effect of the UV absorber, as shown in Figures 8 and 9. In general, the use of 0.5% 3 and UV absorber possesses a higher photostabilization property compared to 0.5% 7 and UV absorber. In each case the use of 0.5% charge of the thiosulfinate and a 0.5% charge of a UV absorber retards photodiscoloration more than can be achieved with at least a 1.5% singular charge of the UV absorber. The use of 0.5% 3 and 12 results in the least brightness loss, indicating a very effective photostabilization agent.

CONCLUSIONS

This study further demonstrates the versatility and applicability of thiosulfinates to retard brightness reversion of mechanical pulps. The synergistic effect observed between thiosulfinates and UV absorbers is most likely due to cooperative photostabilized mechanism in which the UV absorber reduces the flux of light on the fiber and the thiosulfinate traps the photoinduced intermediates. The structure-activity investigations have highlighted some limitations for the use of thiosulfinates. Additional studies need to be performed before we completely understand the mechanisms of thiosulfinate photostabilization.
ACKNOWLEDGMENTS

This investigation was made possible by the financial support provided by the National Science Foundation (Grant CTS-94144695) and the member companies of IPST.

REFERENCES

FIGURE CAPTIONS

FIGURE 1. Structures of thiosulfinates and UV absorbers used.

FIGURE 2. TAPPI Brightness of the testsheets treated with 0.015 mol of thiosulfinates 1-4 as a function of photolysis time.

FIGURE 3. TAPPI Brightness of the testsheets treated with 0.015 mol of thiosulfinates 1, 3, 5, and 6 as a function of photolysis time.

FIGURE 4. TAPPI Brightness of the testsheets treated with 0.015 mol of thiosulfinates 7-9 as a function of photolysis time (6 black lamps were used).

FIGURE 5. TAPPI Brightness of the testsheets treated with 0.015 mol of thiosulfinates 7, 10, and 11 as a function of photolysis time (6 black lamps were used).

FIGURE 6. TAPPI Brightness of the testsheets treated with UV absorber 12 as a function of photolysis time and the charge of UV absorber 12.

FIGURE 7. TAPPI Brightness of the testsheets treated with UV absorber 13 as a function of photolysis time and the charge of UV absorber 13.

FIGURE 8. TAPPI Brightness of the testsheets treated with 0.5% (wt/wt basis) of UV absorber 12 and 0.5% of thiosulfinates 3 and 7 as a function of photolysis time.

FIGURE 9. TAPPI Brightness of the testsheets treated with 0.5% (wt/wt basis) of UV absorber 13 and 0.5% of thiosulfinates 3 and 7 as a function of photolysis time.
Figure 1

HOOC-(CH₂)₂-S-S-(CH₂)₂-COOH

HO-(CH₂)₂-S-S-(CH₂)₂-OH

NaO₃S-(CH₂)₃-S-S-(CH₂)₃-SO₃Na

H₃COOC-(CH₂)₂-S-S-(CH₂)₂-COOCH₃

H₃C-S-S-CH₃

(H₃C)₃C-S-S-C(CH₃)₃

Figure 1
Figure 2
Figure 3

- Untreated
- Thiosulfinate 1
- Thiosulfinate 3
- Thiosulfinate 5
- Thiosulfinate 6
Figure 5
Figure 6

Graph showing the Photolysis Time, min on the x-axis and TAPPI Brightness on the y-axis. The graph compares untreated and treated samples with different concentrations of UV absorbers. The legend indicates the following:
- ● Untreated
- □ 0.5% UV absorber 12
- ▲ 1% UV absorber 12
- ▼ 2% UV absorber 12
Figure 7

- Untreated
- 0.5% UV absorber 13
- 1% UV absorber 13
- 2% UV absorber 13
Figure 8
Figure 9