Laser Ultrasonics for Non-Contact Measurement of Lamb Waves in Static and Moving Paper

January 2000

Submitted to
Journal of Pulp and Paper Science

Copyright© 2000 by the Institute of Paper Science and Technology
For Members Only
The Institute of Paper Science and Technology is an independent graduate school, research organization, and information center for science and technology mainly concerned with manufacture and uses of pulp, paper, paperboard, and other forest products and byproducts. Established in 1929 as the Institute of Paper Chemistry, the Institute provides research and information services to the wood, fiber, and allied industries in a unique partnership between education and business. The Institute is supported by 52 North American companies. The purpose of the Institute is fulfilled through four missions, which are:

- to provide multidisciplinary graduate education to students who advance the science and technology of the industry and who rise into leadership positions within the industry;

- to conduct and foster research that creates knowledge to satisfy the technological needs of the industry;

- to provide the information, expertise, and interactive learning that enables customers to improve job knowledge and business performance;

- to aggressively seek out technological opportunities and facilitate the transfer and implementation of those technologies in collaboration with industry partners.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company's use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
The experimental demonstration of a non-contact laser ultrasonics method to excite and detect Lamb waves in static and moving paper and, hence, provide a real-time technique to monitor the mechanical behavior of paper during papermaking is presented. The method involves the use of a pulsed Nd:YAG laser at 1064 nm to excite Lamb waves in paper, and a CW Ar:ion laser at 514.5 nm in combination with either a two-wave mixing photorefractive interferometer (TWM) or a photoinduced electromotive force interferometer (Photo-EMF) to detect Lamb waves. Measurements were performed in a temperature- and humidity-controlled laboratory using a variable-speed moving web simulator. The theory of wave propagation in paper is briefly reviewed. Signals obtained using the photorefractive method on nonmoving paper are discussed and the preliminary analysis of S_0 and A_0 modes is presented. On moving paper, the detection of ultrasonic signals based on the Photo-EMF interferometer technology is reported at and above production speeds on copy paper and 42-lb linerboard. Preliminary results verify the unique potential and universality of the laser ultrasonics approach for real-time paper elastic stiffness monitoring.
INTRODUCTION

The development of on-machine paper stiffness or “strength” sensors has been an on-going process for over 25 years because mechanical properties are critical to the papermaking process, converting operations, and end-use performance [1]. While the development of contact methods is at center stage [2-16], non-contact methods did not receive full attention even though they are far more desirable to the papermaker [17-21]. Merits of the latter methods include eliminating potential damage to the moving web and monitoring of fine papers, coated grades, and paperboards. These same methods may prove beneficial in tissue and wet end testing. It is expected that the availability of a non-contact method would simplify the development of full-sheet inspection systems for paper stiffness. Assuming that Lamb waves can be excited and detected in a non-contact manner using ultrasonic principles, one distinguishes two different test approaches: air-coupled transduction and laser ultrasonics.

Air-coupled Transduction. Considerable progress has been made in recent years toward the development of efficient air-coupled capacitive transducers, which are more sensitive and have a larger bandwidth than air-coupled piezoelectric transducers [22]. These transducers are relatively inexpensive. However, their utilization remains limited by the air medium itself: sound absorption in air increases with frequency, sound velocity in air is temperature-dependent, and path lengths are sensitive to turbulence [23]. A resonance technique to induce and detect Lamb waves using air-coupled transducers was successfully tested on non-moving paperboards [17,18]; an on-line implementation is hardly possible because the transmitter-receiver assembly must be rotated to get the maximum transfer of energy into the paper. Also, since the sheet must be fairly thick to excite Lamb waves (> 400 µm), testing of fine paper grades is difficult [18].

Laser Ultrasonics. The second approach, laser ultrasonics, considers the laser generation and detection of Lamb waves. The discipline is now well established [24], and applications exist in the metal and plastic industries. Merits include point source excitation (ideal configuration for detection of stiffness orientation distribution), absence of measurement artifacts due to the coupling medium (insensitivity to air temperature and moisture, turbulence), uniqueness of information, and large bandwidth. Also, it offers unique conditions for the simultaneous optical detection of fiber orientation distribution using a light scattering method. Difficulties still exist in relation to surface roughness dependency (speckle averaging), sheet fluttering (also true for air-coupled transduction), and complexity of equipment. There are currently three patents describing the use of lasers to generate Lamb waves in paper [19-21]. However, contact transducers [19,20] and unproved optical deflectometry [21] were used for detection of Lamb waves. None of these patents considers optical heterodyne interferometry for detection to enhance measurement sensitivity [25]. A formal demonstration of non-contact laser ultrasonics on static paper has been performed [26,27]. Also, a fundamental study of Lamb wave propagation in copy paper using non-contact laser generation and detection principles was investigated [28,29].

The concept of non-contact laser generation and detection of Lamb waves is schematically described in Fig. 1. A high-power pulsed laser beam is focused onto the surface of paper. Upon interaction of laser light with paper, a thermoelastic effect occurs, thus exciting a spectrum of Lamb waves (also called plate waves) in all directions in the plane of paper. An interferometer using a continuous wave (CW) laser is used for ultrasound detection, but a pulsed laser with sufficient coherent length could also be used. Depending upon the position of the detection point with respect to the generation point, waves propagating along machine direction (MD), cross-machine direction (CD), or any other planar directions are detected. Also, two different propagation modes are detected: dilatational and...
bending modes. Fundamental (zeroth order) dilatational or symmetric (S_0) and bending or antisymmetric (A_0) Lamb wave modes are depicted in Fig. 2.

![S0 Mode Lamb Wave](image)

![A0 Mode Lamb Wave](image)

Fig. 2. Cross-sectional view of paper exhibiting the fundamental S_0 and A_0 modes for Lamb waves.

In this work, results gathered using two promising laser detection systems for paper testing are described: a two-wave mixing photorefractive interferometer (TWM) applied to non-moving paper and a photoinduced electromotive force (Photo-EMF) interferometer applied to moving paper. Lamb waves were excited using a Q-switched Nd:YAG laser operating at 1064 nm (near infrared). Pulse width and maximum pulse energy were 5-7 ns and a few tens of mJ, respectively. The beam diameter on the paper was less than 1 mm. Under these generating conditions, an intermediate excitation regime between thermoelastic and ablation regime was observed. Additional work beyond the scope of this study is underway to optimize Lamb wave excitation, while preventing any visible damage to paper through ablation.

Two-Wave Mixing Photorefractive Interferometer (TWM)

A schematic diagram of the photorefractive interferometer setup for non-moving paper testing is shown in Fig. 3. A detailed description of this setup was reported by Lafond et al. [30]. In brief, output from the CW Ar:ion detection laser ($\lambda = 515$ nm) is split into two beams: the sample and pump beams. A microscope objective lens is used to focus the sample beam onto the paper surface. The scattered beam carrying the ultrasonic signal is collected by the objective lens and recombined with the pump beam in the Bi$_2$SiO$_5$ (BSO) photorefractive crystal. This arrangement is sensitive to nanometer-scale displacements at the surface of paper. The interference signal is detected by a photodiode. The BSO crystal is very sensitive to displacements, but its slow response time (> 10 ms) makes it
unsuitable for moving paper. A crystal with a faster response time such as Gallium Arsenide (GaAs) would be more appropriate for a moving surface. One should note in Fig. 3 that the paper surface is at an angle with respect to the optical detection path to optimize the detection of particle motion (Lamb waves) in the plane of paper. The paper sample can be rotated by 90 degrees to perform either MD or CD measurements.

Photoinduced electromotive force interferometer (Photo-EMF)

Photoinduced electromotive force interferometer detector: GaAs crystal

Web polarising beam splitter

Fig. 4. Schematic diagram of the Photo-EMF interferometer [31]. The variable speed moving web simulator is shown on left side.

A schematic diagram of the Photo-EMF interferometer for moving paper experiments is shown in Fig. 4. The paper sample is mounted on a computer-controlled, variable-speed, rotating drum capable of simulating web speeds up to 2850 m/min (9350 ft/min). The presence of a backing material for demonstration purposes does not affect Lamb wave propagation. Details of this setup are presented elsewhere [31]. The detection method is based on the photoconductive property of a photorefractive crystal. A small current is created at the surface of the crystal by the slight phase shift of the speckles caused by Lamb wave-induced motion of the paper surface. The current is picked up by two electrodes located on the sides of the crystal. The frequency response of the Photo-EMF interferometer is relatively flat and very well adapted to Lamb wave detection under continuously changing speckle conditions (moving paper). Moreover, it cuts off low frequency vibrations, which could be problematic in a mill environment (below 10 kHz).

LAMB WAVE PROPAGATION

Assuming that paper can be modeled as an orthotropic material, i.e., a material that has three mutually orthogonal symmetry planes, there exist relationships between paper stiffness properties and different Lamb wave propagation modes [1,18]. For orthotropic symmetry, there are nine independent bulk stiffness coefficients: C_{11}, C_{22}, C_{33}, C_{12}, C_{13}, C_{23}, C_{44}, C_{55} and C_{66} [18,27]. Although bulk stiffnesses are common in expressing 3D linear elasticity, it is convenient to use four planar stiffnesses for Lamb wave propagation in paper: Q_{11}, Q_{22}, Q_{12} and Q_{66}. Strictly speaking, $Q_{11} = C_{11} - C_{12}^2/C_{33}$ and $Q_{22} = C_{22} - C_{23}^2/C_{33}$, but the error is very small and one can assume in practice that $Q_{11} = C_{11}$ and $Q_{22} = C_{22}$ [27].

Figure 5 illustrates the dispersion behavior of Lamb waves for the special case of copy paper along machine direction. The dispersion equation [18,32] was solved from the stiffness data gathered using the contact ultrasonic test equipment available at IPST [33,34]. We are mainly concerned with the fundamental S_0 and A_0 modes here. Since the S_0 mode is nondispersive at low frequency (up to the cut-off frequency), a cross-correlation technique can be used to evaluate the wave velocity, from which Q_{11} and Q_{22} are determined (apparent density of paper multiplied by square of velocity) [13].
Fig. 5. Typical calculated dispersion curves in MD for copy paper.

The A_0 mode relates to both longitudinal and shear stiffness properties. This mode is dispersive (frequency dependent velocity) at low frequency and reaches a plateau at high frequency [32]. The asymptotic velocity at high frequency is known to be that of a Rayleigh wave, which exists on the surface of a half-space material. It can be used to determine the out-of-plane shear stiffnesses in MD-ZD and CD-ZD plane directions (C_{55} and C_{44}). As further described below, the frequency domain technique developed by Schumacher et al. [35] was used in this work to extract stiffness information from the A_0 mode.

Other important characteristics of the dispersion curves are found by varying the values of the elastic stiffnesses as defined in Ref. [1]. By raising or lowering the value of Q_{11}, one can determine its effect on the S_0 and A_0 modes. The major effect of Q_{11} is on the low frequency limit of the S_0 mode, while only a minor change is observed in the initial slope of the A_0 mode. The main effect of C_{33} is on the cut-off frequency for the S_0 mode. C_{13} has only a minor effect on the S_0 mode. The effect of C_{55} is on the high frequency limit of the S_0 and A_0 modes [27].

NON-MOVING PAPER RESULTS USING THE TWM METHOD

Fig. 6. Single shot signals collected with the TWM setup for non-moving copy paper in MD and CD.

Figures 6 (a) and (b) show examples of recorded signals obtained on non-moving copy paper using the TWM setup in MD and CD. The signals were recorded at generation-detection distances of 10 mm and 15 mm for Fig. 6(a) and 10 mm and 20 mm for Fig. 6(b). One important achievement of the detection method is the quality of single shot signals without any averaging. The presence of the symmetric S_0 mode wave is first observed. It is followed by the antisymmetric A_0 mode wave. As expected, this signal is significantly larger in amplitude and duration than the S_0 signal. Also, it is dispersive and has lower frequency content. These are all characteristics of a bending wave. Also, saturation of the A_0 signal in Fig. 6 (a) at 10 mm was due to generation in ablation regime overloading the photodiode, and this resulted in the beating of this signal.
To determine the phase velocity of the S_0 mode from Fig. 6(a), the cross-correlation function of the two S_0 signals was obtained. This is shown in Fig. 7. It indicates that there is a maximum peak at 1.72 μs. Since this peak exists at the relative time delay between the two signals, the resulting S_0 velocity can be found by dividing it by the relative distance between the two detection points, i.e., 5 mm. The resulting velocity is 2907 ± 29 m/s for this particular case. In comparison, the S_0 velocity obtained by the contact method was 3274 ± 33 m/s. The difference may be explained by the fact that the S_0 velocity is very sensitive to the exact measurement of the generation-detection distance and the local characteristics of the paper surface where the laser beam is shot. Hence, several measurements must be made to be statistically valid. More statistically valid measurements of the S_0 velocity were previously performed [29,36], which showed that the contact and noncontact methods provided similar values.

The S_0 mode velocity measurements in the low frequency region can be used to determine the elastic stiffness constants, Q_{11} in MD and Q_{22} in CD [18]. As previously indicated, the S_0 mode also contains information on C_{33} (ZD). Ideally, if the S_0 mode can be measured accurately around the cut-off frequency, C_{33} can be determined. Yet, the nature of the narrow frequency bandwidth of the S_0 mode makes it difficult to estimate C_{33} using this method [27]. Further work is needed to evaluate C_{33} from the S_0 mode, especially with thick linerboard samples in which the S_0 mode cut-off frequency is known to be in a lower frequency region when compared to thinner papers such as copy paper.

The technique used here to extract information from the A_0 mode is based on the method originally suggested by Sachse and Pao [37]. Later, Schumacher et al. [35] applied it to Lamb waves. In this method, the phase velocity is extracted from the frequency domain information and unwrapped as a function of frequency. Referring to Fig. 6 (b), only the signal region corresponding to the A_0 mode is selected and the rest is zero-padded. Each signal is windowed using a rectangular window and processed in the frequency domain. The phase angle spectra are unwrapped and their difference, $\Delta \phi(f)$, is directly related to the phase velocity of the A_0 mode using the following relationship:

$$c(f) = \frac{-2\pi \cdot f \cdot \Delta d}{(\Delta \phi(f) + 2m\pi)}$$ \hspace{1cm} (Eq. 1)

where $c(f)$ is the phase velocity of the A_0 mode (m/s), f is the frequency (Hz), Δd is the distance between two detection points (m), $\Delta \phi(f)$ is in radians, and m is an integer for correction of the phase at low frequency.
Figure 8 shows the combination of the steps described above for evaluating the A_0 mode wave using signals recorded in Fig. 6(b). The amplitude spectra indicate that significant signal energy exists only in the frequency region between 0.005 and 0.3 MHz. This trend is consistent throughout the trials. On the other hand, the results given by Johnson [27] on non-moving copy paper using a Mach-Zehnder interferometer showed that energy was present up to 1.0 MHz. The reason for not being able to detect higher frequency A_0 information with the TWM configuration is unclear. It may be related to the generation method.

Of importance is the integer m to be used in Eq. 1 to correct the phase angle in the very low frequency region (< 5 kHz) where the signal energy is also low. As the phase unwrapping is performed from low to high frequencies, the accuracy of the phase measurement at a given frequency depends upon the phase values at lower frequencies. A small error in phase angle at very low frequencies will accumulate and produce significant differences at higher frequencies.

Figure 9 shows a comparison between the theoretical A_0 dispersion curve and the results with corrected phase angles. The theoretical curve was obtained from the numerical solution of A_0 mode dispersion equation for a given
range of frequency. The valid range covers the frequency region where the signal energy is present. The phase velocity determined from the original phase difference tends to predict a higher magnitude in the low frequency region below 0.1 MHz, while the one corrected with -2π seems to match the theoretical curve. Comparison with other paper samples shows that good prediction seems to come from the correction of -2π or -4π. Nevertheless, further analysis is underway to determine the accuracy of the correction term m for the A_0 mode analysis [36].

RESULTS ON MOVING PAPER USING THE PHOTO-EMF METHOD

Fig. 10. Signals on moving copy paper in CD

Fig. 11. Signals on moving 42-lb linerboard in MD

Figure 10 shows a series of signals obtained on copy paper in CD using the Photo-EMF setup at web speeds up to 25 m/s. The distance between generation and detection points, power of the detection laser, and energy per pulse of the generation laser were maintained at 10 mm, 1.33 W, and 25.6 mJ, respectively. Single shot results are reported up to 6 m/s. While the S_0 mode signal is only easily observed up to 6 m/s, the A_0 mode is detected up to 25 m/s, e.g., above the production speed for copy paper. By improving the current experimental configuration and optimizing the laser optics, the S/N ratio can be further improved. Results were also obtained on moving 42-lb linerboard samples. Figure 11 shows averaged signals in MD at web speeds up to 20 m/s, e.g., above the production speed for linerboard. The distance between generation and detection points was 10 mm. While the A_0 mode is clearly detected up to 20 m/s, the S_0 mode is barely observed at even the lowest speed.
Fig. 12. Comparison of Lamb waves for different generation-detection separation distances in copy paper in CD at 2 m/s and 10 m/s.

To analyze the effect of the generation-detection separation distance on moving paper results, copy paper measurements were made at 10-, 15-, and 20-mm separation distances. Results obtained at web speeds of 2 and 10 m/s are shown in Fig. 12 (a) and (b), respectively. S_0 signals were not detected at 10 m/s. The dispersive nature of the A_0 mode is clearly seen.

It is interesting to observe attenuation and dispersion of Lamb wave in amplitude and wave speed. As the generation/detection distance increased, the amplitudes of S_0 and A_0 signals decreased. It is shown that the high frequency A_0 waves were attenuated in traveling the extra distance. On the other hand, the S_0 wave maintained almost the same arrival time, which indicates no dispersion in S_0 wave speed although the signal attenuation took place in amplitude.

Fig. 13. A_0 mode analysis at 10- and 20-mm distances between generation and detection in copy paper in CD at 2 m/s.
Figure 13 shows the A_0 mode analysis at 10- and 20-mm separation distances. The zero-padded A_0 signals are shown and the energy of the signals is mostly present below 0.4 MHz (see amplitude spectra). Figure 14 (a) shows the comparison of the original and several phase-corrected A_0 mode phase velocities shown against a theoretical curve and an approximate curve. The approximate curve was obtained by simplifying the theoretical dispersion equation applicable for a low frequency region [18,38]. Figure 14 (b) shows the same A_0 mode results in a different format, making it easier to interpret. The A_0 phase velocity is divided by the square root of the corresponding frequency so that the approximation curve becomes linear. The theoretical dispersion curve becomes a decreasing line that deviates away from the approximate curve. It is also easier to compare each phase correction with the approximate and theoretical curves. Eventually, the bending stiffness of paper may be obtained from Fig. 14 (b) since the bending stiffness is a function of basis weight and the fourth power of $C_{A_0}/\sqrt{\text{Freq}}$. Also possible is the...
information related to the out-of-plane shear, \(C_{44}\) and \(C_{55}\) from the data. Nevertheless, further work is required to extract bending stiffness and out-of-plane shear information.

FUTURE DIRECTION AND POTENTIAL OF THE TECHNOLOGY

The development of on-machine paper stiffness sensors has been an on-going process for over two decades because mechanical properties are critical to the papermaking process, converting operations, and end-use performance. Up to now, most of the research has focused on the development of contact methods, and some of these methods have started to appear in commercial applications [39]. Nevertheless, non-contact concepts are far more desirable to the papermaker. Also, it is hypothesized that the availability of a non-contact method would simplify the development of full sheet inspection systems for paper stiffness. Based on current knowledge and preliminary results of non-contact laser ultrasonics, the method has the full potential to become a next generation application to measure on-line paper stiffness properties. Its deployment is challenging, but it should provide the necessary information to fulfill the needs of elaborate papermaking control strategies. Further work needs to be pursued to address the inverse analysis of paper stiffness properties based on Lamb waves as well as the bending stiffness properties of a wide range of papers.

CONCLUSIONS

This study investigated the use of non-contact laser ultrasonics to measure paper stiffness on non-moving and moving paper. The TWM method was used to detect signals on non-moving paper. The \(S_0\) mode was analyzed using a cross-correlation method, and the current status of the \(A_0\) mode analysis technique was discussed. The Photo-EMF method was found useful to detect Lamb waves in MD and CD on moving paper at production speeds, but left minor visible marks on the paper surface when ablation was used. This is not acceptable for paper manufacturers and current efforts are focused to improve generation efficiency and detection sensitivity so that a good signal to noise ratio can be achieved without leaving a visible mark on the paper. The \(S_0\) and \(A_0\) wave results were evaluated to investigate the performance of the non-contact method compared to the contact method. The attenuation of the \(A_0\) wave was addressed. The effect of different generation/detection distances was presented based upon \(A_0\) mode analysis. Future directions and the potential of non-contact technology for on-line application were briefly commented upon.

ACKNOWLEDGEMENTS

The authors would like to thank C.C. Habeger from IPST, K. Telschow and V. Deason from Idaho National Engineering and Environmental Lab, and B. Pouet and M. Klein from Lasson Technologies. Support for the project was provided by the Member Companies of IPST. The authors also wish to thank for their collaborative work on this project the U.S. Department of Energy, Office of Industrial Technologies for its support through the Agenda 2020 Program for the Pulp and Paper Industry [Cooperative Agreement No. DE-FC07-97ID13578].

REFERENCES