Fundamental Parameters Contributing to Residual Lignin in Kraft Pulp

A.J. Ragauskas, W. Lin, T.J. McDonough, and J.E. Jiang

August 1997

Submitted to
1997 TAPPI Pulping and Bleaching Conference
San Francisco, California
October 19–23, 1997

Copyright® 1997 by the Institute of Paper Science and Technology
For Members Only
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY
PURPOSE AND MISSIONS

The Institute of Paper Science and Technology is a unique organization whose charitable, educational, and scientific purpose evolves from the singular relationship between the Institute and the pulp and paper industry which has existed since 1929. The purpose of the Institute is fulfilled through three missions, which are:

- to provide high quality students with a multidisciplinary graduate educational experience which is of the highest standard of excellence recognized by the national academic community and which enables them to perform to their maximum potential in a society with a technological base; and

- to sustain an international position of leadership in dynamic scientific research which is participated in by both students and faculty and which is focused on areas of significance to the pulp and paper industry; and

- to contribute to the economic and technical well-being of the nation through innovative educational, informational, and technical services.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company's use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
Fundamental Parameters Contributing to Residual Lignin in Kraft Pulp

A.J. Ragauskas
Associate Professor

W. Lin
Research Scientist

T.J. McDonough
Professor

Institute of Paper Science and Technology
500 10th Street N.W., Atlanta, GA 30318

J.E. Jiang
Ahlstrom Machinery Corp.
Karhula, Finland

ABSTRACT

Recent advances in kraft pulping have improved the selectivity of this process and extended the degree of practical delignification. Despite these improvements, little is known of the nature of residual lignin for low kappa number kraft pulps. This paper examines the structure of residual lignin for seven conventional kraft (CK: kappa number 33-13) and six Lo-Solids® kraft pulps (LS: kappa number 29-11). The residual lignin in each of these pulps was isolated and characterized by ¹H NMR. The results of these analyses demonstrate that both the extent of delignification and the process employed influence the overall structure of residual lignin.

INTRODUCTION

Advances in pulping technology have continued unabated for the last decade, in response to environmental and market pressures. The ability to lower the content of lignin in kraft pulps prior to bleaching facilitates environmentally compatible bleaching practices, reduces operating costs, and may assist in the development of low effluent pulp production. The fundamental principles involved in extending kraft delignification while retaining pulp strength properties were established in the late 1970s and early 1980s (1-3). These principles include leveling out the alkali concentration, maintaining a high sulfidity particularly at the beginning of the cook, reducing the dissolved lignin concentration, and employing lower cooking temperatures. Recently, further improvements have been made in continuous modified kraft cooking technology to enhance delignification while improving pulp strength and uniformity (4-6). Despite these significant advances in pulping technology, very little is known on how changes in the kraft pulping process can influence residual lignin structure. To address this issue, several researchers have begun to characterize the nature of residual lignin in kraft pulps (7-13). As a preliminary study in this field, we have previously reported that the functional groups of lignin can be influenced by the extent of delignification and type of pulping process employed (14). In this paper, we examine the fundamental changes in lignin structure that occur when loblolly pine is cooked under conventional and simulated Lo-Solids® kraft pulping conditions.

EXPERIMENTAL PROCEDURES

Kraft Pulping

A single, mature, loblolly pine tree grown in the southeastern United States was employed for all pulping studies reported in this paper. The tree was debarked, chipped, and carefully screened (chip thickness on average was between 2 and 8 mm). The kraft pulping experiments were performed at Ahlstrom Machinery Corp., in Glens Falls, NY. Established procedures (4) were used to simulate CK and LS kraft pulping processes; Table 1 summarizes pulp properties and conditions used.

Residual Lignin Isolation and Characterization

Residual lignin was isolated from the various pulps by employing an aqueous acidic-dioxane solution following literature procedures (10). This procedure afforded, on average, 55% yield of residual lignin. Lignin samples were then analyzed by quantitative ¹H NMR following the procedure described by K. Lundquist (15). The lignin samples were dissolved in anhydrous DMSO-d₆; pentafluorobenzaldehyde (or sodium-3-trimethylsilyl propionate-2,2,3,3-D₄) was added as an internal standard, and all NMR analyses were accomplished using a Bruker 400 MHz DMX spectrometer employing a π/2 pulse, 25-sec delay, 12,000 Hz sweep width, and 240 transients.

RESULTS AND DISCUSSION

Cooking Results

To minimize experimental variations due to the wood source, a single wood sample was used for all the studies described in this paper. To fully explore the dependency of lignin structure on kraft pulping process type, we elected to prepare a series of CK and LS kraft pulps covering a kappa number range of 39.3-11.0. Table 1 provides a brief description of the physical properties of these kraft pulps.
The data in Table 1 clearly demonstrate that extended modified continuous cooking procedures can attain lower lignin content pulps while retaining higher viscosity values. Our interest in these pulps was twofold. First, we were interested in determining if pulps of differing lignin contents would have differing types of lignin structures. Second, we were interested in establishing if differences in pulping technology such as those found between conventional and Lo-Solids® would also impact lignin structure. To examine these issues, the residual lignin from kraft pulps CK33-13 and LS29-11 were isolated and characterized by NMR. Following literature methods, residual lignin was extracted from each of these pulps by employing an acidic dioxane solution. After purification, typical yields were in the range of 45-65%. The lignin isolated from the kraft pulps was then characterized by employing quantitative ¹H NMR methods that have been developed by Lundquist (15). Figure 1 provides a representative spectrum of a lignin sample analyzed by proton NMR.

Figure 1. Quantitative ¹H-NMR spectrum of lignin samples.

The analysis of lignin structure by NMR is well described in the literature and provides a facile means for characterizing a variety of functional groups of lignin, including acid groups, and methoxy, phenoxy, and aliphatic units. The results of these analyses for the 13 pulps studied in this paper are summarized in Figures 2-5.

It is clear from these studies that for both conventional (CK) and modified (LS) kraft pulps the content of methoxy and aromatic hydrogens in residual lignin decreases as the extent of delignification is increased. For the CK pulps, the aliphatic and guaiacyl units also decrease as delignification proceeds. In contrast, for the LS pulps, the aliphatic and guaiacyl units appear to be at a minimum value for the K17 pulp. The lignin acid groups for both the CK and LS pulps remain approximately constant.

A comparison of the structural groups of residual lignins from the LS and CK kraft pulps provides additional information on the nature of kraft pulping and the influence that process modifications can have on the final product.
As shown in Figure 4, the content of methoxy groups was found to be lower in the modified kraft than in the conventional kraft pulps. The guaiacyl and 5-substituted guaiacyl units of the conventional and modified kraft pulps (see Fig. 5) exhibited a more complex pattern. At high kappa values, both the conventional and modified kraft pulps (ca. 30 kappa number) have comparable levels of phenoxy groups, but as delignification is extended, the LS pulps exhibit a decrease in free phenols whereas the conventional has an increase. Finally, at low kappa levels (<15), the extended modified pulps appear to have higher contents of free phenols. We have previously noted (14) a comparable pattern of residual lignin when comparing a conventional kraft pulp with an EMCC pulp. These differences in lignin structure were attributed to differing amounts of β-O-aryl ethers present in the pulp as delignification proceeds due to the differences in pulping.

Figure 4. Changes in methoxy content of residual lignin samples isolated from LS and CK pulps as determined by 1H NMR.

Figure 5. Changes in guaiacyl content of residual lignin samples isolated from LS and CK pulps as determined by 1H NMR.

Figure 6. Changes in aromatic proton content of residual lignin samples isolated from LS and CK pulps as determined by 1H NMR.

Figure 6 shows that there is a decrease in aromatic proton character in residual lignin as delignification is increased from the kappa ~30 pulps to kappa 11 pulps. Furthermore, as previously noted, the extended modified pulps appear to have lower amounts of aromatic protons than the conventional pulps, suggesting that they are further substituted. These results again mirror our previous results (14).

CONCLUSIONS

In summary, this paper provides further evidence that the nature of residual lignin in kraft pulps is influenced by the extent of delignification. Furthermore, we have noted that kraft pulping process parameters can influence the nature of residual lignin. All of these studies have been performed with a single wood source, and hence, variations in lignin structure due to the use of commercial samples have been eliminated. Our results continue to suggest that the kraft pulping process has a tremendous influence on the nature of residual lignin, and as our understanding of this process is increased, we anticipate that it will become possible to design kraft pulp processes to optimize subsequent bleaching operations.

ACKNOWLEDGMENT

The authors wish to acknowledge the assistance of K. Crofut at Ahlstrom Machinery in Glens Falls, NY, for performing the pulping studies, and B. Broerman at Union Camp Corp. for providing the investigators with wood supplies. The authors also wish to express their sincere appreciation to the U.S. Department of Energy (Cooperative Agreement DE-FC07-961D 13442) and the Member Companies of the Institute of Paper Science and Technology for their financial assistance for this project.
REFERENCES

<table>
<thead>
<tr>
<th>Pulp</th>
<th>CK33</th>
<th>CK28</th>
<th>CK21</th>
<th>CK20</th>
<th>CK18</th>
<th>CK15</th>
<th>CK13</th>
<th>LS29</th>
<th>LS26</th>
<th>LS19</th>
<th>LS17</th>
<th>LS16</th>
<th>LS11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kappa #</td>
<td>33.0</td>
<td>28.3</td>
<td>21.3</td>
<td>20.4</td>
<td>18.1</td>
<td>14.7</td>
<td>13.3</td>
<td>29.3</td>
<td>26.1</td>
<td>19.1</td>
<td>17.1</td>
<td>16.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Viscosity mPa</td>
<td>32.6</td>
<td>24.8</td>
<td>22.6</td>
<td>22.4</td>
<td>18.5</td>
<td>13.3</td>
<td>13.1</td>
<td>43.4</td>
<td>36.1</td>
<td>25.5</td>
<td>21.1</td>
<td>19.2</td>
<td>12.1</td>
</tr>
<tr>
<td>Total Yield % on Wood</td>
<td>48.6</td>
<td>48.1</td>
<td>46.6</td>
<td>47.4</td>
<td>46.8</td>
<td>44.7</td>
<td>44.0</td>
<td>48.3</td>
<td>47.8</td>
<td>45.6</td>
<td>44.9</td>
<td>44.2</td>
<td>41.8</td>
</tr>
<tr>
<td>Max. Temp °C</td>
<td>168</td>
<td>170</td>
<td>170</td>
<td>170</td>
<td>171</td>
<td>171</td>
<td>171</td>
<td>160</td>
<td>163</td>
<td>166</td>
<td>169</td>
<td>170</td>
<td>170</td>
</tr>
<tr>
<td>H-Factor</td>
<td>1201</td>
<td>1213</td>
<td>1999</td>
<td>2311</td>
<td>2987</td>
<td>3496</td>
<td>3499</td>
<td>2003</td>
<td>2442</td>
<td>3362</td>
<td>4126</td>
<td>4489</td>
<td>4474</td>
</tr>
<tr>
<td>Total EA Consumed % on wood NaOH</td>
<td>14.8</td>
<td>14.0</td>
<td>15.4</td>
<td>14.9</td>
<td>15.3</td>
<td>16.7</td>
<td>16.4</td>
<td>14.1</td>
<td>15.2</td>
<td>15.0</td>
<td>15.9</td>
<td>16.6</td>
<td>17.8</td>
</tr>
</tbody>
</table>

Table 1. Relevant pulping conditions and pulp properties from the CK and LS pulps.