Nanoscale Imaging Probes for Personalized Medicine

Undergraduate Researchers
Leslie Chan, Rahul Balusu and Alice Chan

Mentors
Efstathios Karathanasis, PhD
Ravi V. Bellamkonda, PhD
Biomedical Engineering, Georgia Tech/Emory
Nanotechnology for Solid Tumors

Many nanotherapeutics are currently under clinical evaluation or in clinical use (clinicaltrials.gov)...

The promise...

- Multi-functionality
 - Targeting
 - Non-invasive tracking
 - Diagnostic and therapeutic capabilities
- Promise of personalized nanotherapy
FACT: Nanocarriers need to get to the tumors to do their ‘magic’...!!

Long Blood Residence Time

Repeating passage through tumor’s microvascular bed

Enhanced accumulation in "leaky" vasculature

Enhanced Permeation & Retention phenomenon

Each tumor is different

Some tumors are not “leaky”

No prior knowledge of tumor’s status to optimize therapy protocol; type of systemic chemotherapy, dosimetry and dose frequency

Currently... One dose fits all
Multifunctional agent for patient-specific therapy: A nanoscale probe and a drug-carrier

In each specific patient, is their tumor susceptible to nano-therapy?

Our approach: Develop a nano-construct capable of:
1. non-invasive interrogation of tumor status using CT or MRI and
2. delivery of chemotherapeutics to tumor

Pre-treatment
CT/MR scan
- Nanoscale probe
- CT or MR scan
- Nanocarrier tumor distribution

CRITERION
Good candidate for Nano-therapy

Treatment
-Nanocarrier with contrast agent & drug
-Monitor treatment

Consider alternative treatments

YES

NO

Adjust dosage/frequency for optimal result
PERSONALIZED BREAST CANCER DIAGNOSIS AND THERAPY USING THE NCTX IMAGING NANOPROBE

Contrast Agent and/or Drug

50-100nm

t_{1/2} \sim 55\text{hrs}
100\text{nm} \text{ diameters}
150 \text{ mg/mL} \text{ of Iodine}
Breast cancer statistics...
most common cancer in women
- Every 3 min. a woman is diagnosed with breast cancer
- Breast cancer incidence: from 1 in 20 (in 1960) to 1 in 8 (today)
- NCI estimates for 2007: 178,000 new cases / 41,000 deaths

Mammography: most common screening tool
- Mammography is a low cost x-ray
- Annual mammogram >40 yrs
- Mammograms have caused a dramatic reduction of mortality
‘Nano-probing’ using mammography

Cell line: 13762 MAT B III rat mammary adenocarcinoma
Fisher F344 rat

Breast tumor
‘Nano-probing’ using mammography

Dose: 800 mg Liposomal Iodine / Kg body weight
‘Nano-probing’ using mammography

Dose: 200 mg Liposomal Iodine / Kg body weight

Liposomes
in tumor

Liposomes
in spleen

No vasculature
enhancement

Different
animal
Time course monitoring
Prediction of chemotherapeutic efficacy using the NCTX
Prediction of chemotherapeutic efficacy using the NCTX
Prediction of chemotherapeutic efficacy using the NCTX
Prediction of chemotherapeutic efficacy using the NCTX

\[y = -0.576x + 0.174 \]

\[R^2 = 0.838 \]
Prediction of chemotherapeutic efficacy using the NCTX

![Graph showing prediction of chemotherapeutic efficacy](image)

- Good prognosis
- Bad prognosis

Grey level variation vs. Days after tumor inoculation

- p<0.0001
- p=0.0009
Prediction of chemotherapeutic efficacy using the NCTX

![Graph showing tumor volume over time with different treatments and prognoses.](attachment:graph.png)
Conclusions

- Nanotherapy can enable personalized tumor therapy by facilitating real-time imaging of pharmacokinetics and tumor probing in patients.

FUNDING: National Institutes of Health (NCI), National Science Foundation, Georgia Cancer Coalition, Wallace H Coulter Translational Research Grant, Nora L. Redman Foundation, GTEC, Marval Biosciences