Investigation of Ortho- and Para-Quinone Chromophores in Alkaline Extraction Stage Residual Lignins

M. Zawadzki, T.M. Runge, and A.J. Ragauskas

July 1998

Submitted to Lignin Book ACS Symposium Series 1998
The Institute of Paper Science and Technology is a unique organization whose charitable, educational, and scientific purpose evolves from the singular relationship between the Institute and the pulp and paper industry which has existed since 1929. The purpose of the Institute is fulfilled through three missions, which are:

- to provide high quality students with a multidisciplinary graduate educational experience which is of the highest standard of excellence recognized by the national academic community and which enables them to perform to their maximum potential in a society with a technological base; and

- to sustain an international position of leadership in dynamic scientific research which is participated in by both students and faculty and which is focused on areas of significance to the pulp and paper industry; and

- to contribute to the economic and technical well-being of the nation through innovative educational, informational, and technical services.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company’s use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
Investigation of *Ortho*- and *Para*-Quinone Chromophores in Alkaline Extraction Stage Residual Lignins

Michael Zawadzki, Troy Runge, and Arthur Ragauskas
Institute of Paper Science and Technology, 500 10th St., NW, Atlanta, Georgia, 30318

The chromophoric properties of a series of residual lignins were studied in order to understand brightness development during pulp bleaching. This study focused upon lignins isolated from kraft softwood brownstock, chlorine dioxide delignified brownstock, and a series of oxidative alkaline extracted pulps. The chromophoric properties of the isolated lignins were assessed by both visible absorbance and 31P-NMR spectroscopy. A 31P-NMR spectroscopic method was employed for the quantification of the combined *ortho-* and *para*-quinone content in the isolated lignins. The 31P-NMR method, modified from the literature, utilized the derivatization of lignin quinone structures by trimethylphosphite. The results suggest that chromophores, such as *ortho-* and *para*-quinones, may be important contributors to brightness ceiling development during chemical pulp bleaching.

A number of structures have been implicated as chromophores in mechanical and chemical pulps, including: catechol-metal complexes [1-4], coniferaldehyde [1,2,5], quinone methides [1], stable radicals [1] and quinones [1,2,4,6-9]. Of the various possible chromophores, quinones have been suggested to be major contributors to the color of kraft lignin [6-8,10]. This study employed visible absorbance spectroscopy and a 31P-NMR-based procedure to investigate the presence of quinone chromophores in residual lignin isolated from bleached kraft pulps. The generation of quinone structures during chlorine dioxide bleaching and their fate during oxidative alkaline extraction were explored.

Chemical Pulp Bleaching. Multistage bleaching consists of delignification and brightening stages. In the delignification bleaching stage, bulk residual lignin is degraded and removed. Chlorine dioxide (D), as a delignification agent, is replacing chlorine (C) or chlorine/chlorine dioxide (C/D) because of environmental pressures to reduce adsorbable organic halide (AOX) formation.

Contemporary bleaching sequences use alkaline extraction (E) after a chlorine dioxide (D) stage to remove oxidized lignin and increase the efficiency of a subsequent chlorine dioxide stage. The primary function of the alkaline extraction stage is thought to involve solubilization of oxidized lignin fragments by conversion of various functional
groups to their ionized forms: carboxylate, phenolate, and enolate anions [11]. Oxidants, such as hydrogen peroxide (P) and oxygen (O), are often applied in the alkaline extraction stage to further assist with delignification and increase pulp brightness.

The final brightening stages are responsible for the elimination of residual chromophoric structures. The chromophoric structures may be initially present both in the pulp and/or formed during the preceding bleaching sequences. During the final brightening stages of bleaching, the residual lignin concentration is low. Therefore, during brightening, the elimination of the chromophoric structures must be highly selective or else cellulose damage will take place.

Quinone Chemistry. Lignin quinone structures are important because of their chromophoric properties and because they may be concurrently formed and destroyed during bleaching. For example, chlorine dioxide has been shown by several investigators [12-18] to react with phenolic lignin structures giving ortho- and para-quinone structures among its products. Conversely, hydroperoxide anion, generated during hydrogen peroxide bleaching, specifically removes conjugated carbonyl structures such as quinones [19-21]. Quinones may also be formed by the Dakin reaction of hydrogen peroxide with para-hydroxy carbonyl structures [19,22].

During alkaline oxygen bleaching, hydroxyl radicals may generate lignin-hydroxycyclohexadienyl radicals which lead to quinone formation via disproportionation or demethoxylation [23]. Alternatively, given the presence of superoxide anion, the hydroxycyclohexadienyl radical may be degraded to muconic acid structures.

Lignin model compound studies have also shown ortho-quinones to be susceptible to nucleophilic attack by hydroxide anions. Ortho-quinone structures may rearrange to an α-hydroxy-carboxylic acid cyclopentadiene structure by a benzylic acid type of rearrangement [19]. Also, hydroxide may add to quinone structures by nucleophilic addition to give precursors of chromophoric hydroxy-substituted quinones [19,24].

Materials and Methods

Chemicals. All chemicals, except 1,4-dioxane, were purchased and used as received. Before use, 1,4-dioxane was purified by distillation over sodium borohydride.

Pulps. Conventional kraft pulp was obtained from a single, 30-year-old, disease-free Loblolly pine (Pinus taeda) tree. Brownstock pulp (kappa number 30.5) was bleached in a \(\text{D}_0 \) stage under the following conditions: 2.3% chlorine dioxide charge, 10% consistency, 45°C, final pH=2.0, and 45 minute reaction. The bleached pulp was then washed with water and characterized for kappa number, Klason lignin content, and viscosity.

Alkaline Extraction. Chlorine dioxide (\(\text{D}_0 \)) delignified pulp was alkaline extracted in a stirred pressure reactor under the following general conditions: 10% consistency, 70°C, and 75 minute reaction. Table 1 summarizes the specific conditions used for the oxidative alkaline extraction study. Washed alkaline extracted pulps were characterized in terms of kappa number, Klason lignin content, and pulp viscosity.
Table I. Alkaline Extraction Stage Conditions.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Bleaching Conditions<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>2.0% NaOH charge; atmospheric pressure air.</td>
</tr>
<tr>
<td>E+O</td>
<td>2.5% NaOH charge; 60 psig oxygen initially, decreased by 12 psig/5 minutes.</td>
</tr>
<tr>
<td>E+P</td>
<td>2.5% NaOH charge; 0.5% hydrogen peroxide charge.</td>
</tr>
<tr>
<td>E+O+P</td>
<td>2.5% NaOH charge; 0.5% hydrogen peroxide charge; 60 psig oxygen initially, decreased by 12 psig/5 minutes.</td>
</tr>
<tr>
<td>E+Ar</td>
<td>Oxygen was removed from the pulp slurry by a freeze-thaw cycle; 2.0% NaOH charge; slight applied pressure (~10 psig) with argon.</td>
</tr>
</tbody>
</table>

^a final pH > 10.5

Brightness Ceiling Determination. The alkaline extracted pulps were further bleached with a D₂ED₂ sequence. The D₁ stage conditions were as follows: 0.75% chlorine dioxide charge, 10% consistency, 70°C, and 3-hour reaction. E₂ stage conditions were as follows: 1.0% sodium hydroxide charge, 10% consistency, 70°C, and 60-minute reaction. Washed E₂ stage pulps were bleached in a D₂ stage. Chlorine dioxide charge in the D₂ stage was varied from 0.2% to 0.8% charge in a series of separate experiments. A small amount of sodium hydroxide (25% of chlorine dioxide charge added) was added at the D₂ stage for pH adjustment.

Isolation of Residual Lignin. Residual lignin was isolated from the pulps by a mild acidic dioxane hydrolysis procedure modified from the literature [25-28]. Pulp was extracted using 90% 1,4-dioxane/0.1 N HCl (v/v) solution (8% consistency) by refluxing for 2 hours under an argon atmosphere. The extract was filtered, neutralized, and 1,4-dioxane was removed under reduced pressure at 40°C. The resulting aqueous lignin solution was acidified (pH 2.5) to precipitate the lignin. The precipitated lignin was purified by three cycles of a freeze-thaw-centrifuge-decant sequence. The purification sequence involved freezing the aqueous lignin sample (-20°C), slow thawing, centrifugation, decanting, and washing the lignin with water. Between each cycle the pH of the solution was adjusted to 2.5. The yield of residual lignin, relative to Klason lignin, was 45-65%. Purified lignin was freeze-dried and analyzed by visible absorbance spectroscopy and ³¹P-NMR spectroscopy after trimethyl phosphite derivatization.
Visible Spectrum of Lignin. The visible absorbance spectra of isolated lignins were measured in 90% 1,4-dioxane/water (v/v) solvent. The visible absorbance spectra were acquired with a Shimadzu UV160U ultraviolet/visible spectrophotometer.

Pulp Characterization. The lignin contents were measured by both a ¼ kappa number test (TAPPI T 236 om-85) and a modified standard Klason lignin content test (TAPPI T 222 om-88). The Klason lignin content test used an autoclave to speed up the sulfuric acid digestion of the pulp. Viscosity of cupriethylenediamine (CED) dissolved pulp was measured by TAPPI method T 230 om-94. Standard TAPPI handsheets were prepared from D2 stage pulp (basis weight of 150 g/m²) and used to measure ISO brightness (TAPPI T 205 sp-95).

Quinone Determination. Dry residual lignin (30 mg) was derivatized with 500 μL 50% trimethyl phosphite/DMSO (v/v) under an argon atmosphere at room temperature for seven days. Lignin samples were previously dried under vacuum (3 millitorr) at 40°C for 24 hours.

Derivatized lignin samples were prepared for analysis by removing excess trimethyl phosphate under vacuum at 40°C for 3 hours. The treated lignins were dissolved in 400 μL of solvent consisting of DMSO-d₆, tri-m-tolyl-phosphate (2.5 mg/mL) and chromium acetylacetonate (1.0 mg/mL). Derivatized lignin quinone structures were hydrolyzed to the open-chain phosphate ester by the addition of 5 μL water (0.3 mmol per 30 mg lignin). After 12 hours, the ³¹P-NMR spectrum of the resulting solution was acquired with a Bruker 400 MHz NMR spectrometer.

Phosphorus-NMR spectra were acquired under quantitative conditions at 305°K. A 90° pulse was utilized with a 5-second pulse delay along with inverse-gated broad-band proton decoupling. A line-broadening factor of 15 Hz was used and the time domain (TD) size was 64K. For each spectrum 1000-3000 scans were collected. The internal standard tri-m-tolyl-phosphate (-16.3 ppm) was used both for quantification and as a shift reference. The ³¹P-NMR chemical shift of tri-m-tolyl-phosphate in DMSO-d₆ was determined with the aid of 85% H₃PO₄ as an external shift reference. Quantification of lignin quinone content was achieved by integrating the areas of the internal standard and the phosphate-ester (quinone adduct) resonance centered at -2.5 ppm.

Chromium acetylacetonate was used to reduce the T₁ (spin-lattice) relaxation of the components of interest including the internal standard. The T₁ value for the open-chain phosphate ester (quinone adduct) in trimethyl phosphate treated lignin was found to be 0.7 seconds. The T₁ relaxation time constant for the internal standard, tri-m-tolyl-phosphate, was found to be 0.9 seconds. A standard inversion-recovery experiment [29] was used to determine the T₁ parameters.

Results and Discussion

Pulp Characterization. Lignin contents of the bleached pulps were determined by both Klason lignin and kappa number tests and are shown in Table II. In general, a higher degree of delignification occurs with increased application of oxidant in the alkaline extraction stage. The CED viscosity data, which is an indirect measure of cellulose
degradation, is also given in Table II. The viscosity data reveals that only minor carbohydrate damage occurs during the bleaching stages. In the alkaline extraction stage, hydrogen peroxide was more selective towards lignin removal than oxygen on the basis of Δkappa per Δviscosity (using brownstock for the initial values).

<table>
<thead>
<tr>
<th>Pulp Description</th>
<th>Kappa Number</th>
<th>Kalson Lignin</th>
<th>CED viscosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brownstock</td>
<td>30.4</td>
<td>1.895</td>
<td>30.27</td>
</tr>
<tr>
<td>D</td>
<td>14.6</td>
<td>1.583</td>
<td>26.40</td>
</tr>
<tr>
<td>D(E+Ar)</td>
<td>7.10</td>
<td>0.768</td>
<td>25.72</td>
</tr>
<tr>
<td>DE</td>
<td>6.37</td>
<td>0.709</td>
<td>22.57</td>
</tr>
<tr>
<td>D(E+O)</td>
<td>4.17</td>
<td>0.661</td>
<td>20.10</td>
</tr>
<tr>
<td>D(E+P)</td>
<td>4.80</td>
<td>0.671</td>
<td>22.64</td>
</tr>
<tr>
<td>D(E+O+P)</td>
<td>3.33</td>
<td>0.589</td>
<td>20.38</td>
</tr>
</tbody>
</table>

Brightness Ceiling. A brightness ceiling is the maximum brightness that can be achieved in a given bleaching stage after which further application of bleaching agent does not lead to an increase in brightness. The various alkaline extracted pulps were further bleached with a D₁ED₂ sequence to generate a D₂ brightness ceiling (Figure 1).

The D₂ brightness ceiling data reveals that the use of hydrogen peroxide in the alkaline extraction stage, D(E+P) and D(E+O+P), results in the highest achievable brightness ceilings. When excluding all oxygen with argon, D(E+Ar), or incorporating air, D(E), or reinforcing with pressurized oxygen, D(E+O), in the alkaline extraction stage gives similar D₂ brightness ceiling values. Figure 1 demonstrates that pulp properties altered in the first alkaline extraction stage directly impact the bleachability of the pulp. Specifically, hydrogen peroxide decreases the content of structures which have a detrimental influence on the final brightness ceiling value.

Previous chemical pulp bleaching studies have investigated parameters influencing brightness ceiling values. For example, McDonough found that brightness ceiling development during D₂ stage bleaching (of a D₀(E+O)D₁ED₂ sequence) is dependent upon D₁ stage brightness [30]. In further studies of the D₀(E+O)D₁ED₂ bleaching sequence, McDonough et al. found that at a constant kappa factor the D₂ brightness ceiling is affected by the unbleached kappa number and the effective alkali charge during pulping [31]. These results suggest that lignin structural features may influence final brightness ceiling values.

Senior et al. showed that the brightness ceiling of a DEDP sequence is greater than that of a DEPD sequence [32]. Senior et al. hypothesized that the higher brightness ceiling of the DEDP sequence is due to the presence of quinone or conjugated-carbonyl chromophores which survive the DED sequence only to be removed when hydrogen
peroxide stage is subsequently applied [32]. Similarly, the results of this investigation suggest that hydrogen peroxide, applied in the alkaline extraction stage, removes quinone (or conjugated carbonyl) structures that would otherwise cause a lower D₂ brightness ceiling value.

Visible Spectrum. The visible absorbance difference spectra for the series of residual lignins isolated from chlorine dioxide delignified brownstock and oxidative alkaline extracted pulps were acquired (**Figure 2**). Difference spectra were calculated by subtracting the brownstock residual lignin absorption spectrum from the absorption spectra of the isolated lignins. Analysis of difference spectra allows for the identification of chromophore changes occurring in the alkaline extraction stage relative to the unbleached brownstock.

Clearly, the absorbance difference spectra are observed to cluster into groups based upon the oxidant applied to the alkaline extraction stage. Residual lignins arising from peroxide-treated pulps displayed considerably less visible absorbance than the initial unbleached brownstock residual lignin. Note that with the exception of hydrogen peroxide bleaching, D(E+P) and D(E+O+P), all residual lignins are darker than the initial brownstock residual lignin (**Figure 2**).
Quinone structures are potential chromophoric contributors to the brightness ceiling phenomena. The $n-\pi^*$ transition for quinones occurs in the visible region and may contribute to the colored nature of pulps. In general, the $n-\pi^*$ transition for para-quinones occurs in the 420-460 nm region and 500-580 nm for ortho-quinones [33]. According to Furman and Lonsky, the absorption maximum for kraft lignin quinone structures occurs at ~430 nm [8]. If the residual lignins are ordered in terms of absorbance at 430 nm the following series is derived: $D(E+Ar) > D = D(E) > D(E+O) >> D(E+P) > D(E+O+P)$. It can be noted that this order corresponds to the brightness ceiling results shown in Figure 1. The correlation between brightness ceiling values and absorption spectra at the alkaline extraction stage indicates that lignin structural features of a chromophoric nature may be carried through from a previous bleaching stage and directly impact the final brightness value. These results suggest that lignin quinone structures may be important chromophoric contributors to the brightness ceiling values.

Trimethyl Phosphite Chemistry

Ortho-Quinone Derivatization. Both ortho- and para-quinones are known to form adducts with trimethyl-phosphite [34-36]. The reaction of trimethyl phosphite with the ortho-quinone 3,5-di-tert-butyl-1,2-benzoquinone (I) is shown in Figure 3. Attack of the trimethyl phosphite phosphorus at the carbonyl is thought to initially give a zwitterionic structure (II). Cyclization of II then leads to a benzo-dioxaphospholene structure (III) [34,36-38]. The phosphorus chemical shift value, determined in this study (-45.3 ppm, DMSO-d_6 solvent), for the benzo-dioxaphospholene is similar to previously reported values: -46.5 ppm (CD$_2$Cl$_2$ solvent) [37] and -46.9 ppm (CDCl$_3$ solvent) [36].
The benzo-dioxaphospholene adduct can be hydrolyzed to give a cyclic phosphate ester (IV, Figure 3) [34,38]. The phosphorus chemical shift value determined for cyclic phosphate ester was found to be 13.6 ppm (DMSO-\textit{d}_6 solvent) and this value is similar to that reported by Medvecz (13.4 ppm, CD$_2$Cl$_2$ solvent) [37]. During the present investigation it was found that the cyclic phosphate ester (IV) is unstable and further hydrolysis leads to a structure with a chemical shift similar to the open-chain phosphate ester. The expected structure of the cyclic phosphate ester hydrolysis product is V (R=H) [39].

An open-chain phosphate ester adduct (V, Figure 3) can also result from the direct action of water on the benzo-dioxaphospholene adduct [37]. Two possible isomeric open-chain phosphate esters products (V, R=CH$_3$) may be formed. The phosphorus chemical shift values (-2.2 and -2.4 ppm, DMSO-\textit{d}_6 solvent) for the open-chain phosphate esters were found to be similar to a reported value of -4.0 ppm (CDCl$_3$ solvent) [36]. Medvecz reported a similar phosphorus chemical shift for the open-chain phosphate ester adduct of 3-methoxy-1,2-benzoquinone (-2.3 ppm, CD$_2$Cl$_2$ solvent) [37].

Para-Quinone Derivation. Ramirez et al. demonstrated that trimethyl phosphite can form an adduct with \textit{para}-quinones [34,35]. Figure 4 illustrates the reaction of trimethyl phosphite with the \textit{para}-quinone 2,6-dimethoxy-1,4-benzoquinone (VI). The mechanism is thought to proceed by attack of trimethyl phosphite on the carbonyl oxygen leading initially to a phosphonium-phenoxide zwitterion (VII). Rapid methyl group translocation gives the open-chain phosphate ester in high yield (VIII) [34,35]. Two isomeric adducts may be formed depending upon which quinone carbonyl group is initially attacked. The phosphorus chemical shift value for VIII was found to be -1.4 ppm (DMSO-\textit{d}_6 solvent). In a related study, Medvecz reported the phosphorus chemical shift values for the trimethyl phosphite/2-methoxy-1,4-benzoquinone isomeric adducts as -2.6 and -3.15 ppm (CD$_2$Cl$_2$ solvent) [37].
Figure 4. Reaction of Trimethyl Phosphite with 2,6-Dimethoxy-1,4-benzoquinone (31P Chemical Shifts were Determined in this Study; DMSO-d_6 Solvent).

Lignin Derivatization. Using trimethyl phosphite derivatization, Lebo and others have developed a solid-state 31P-NMR spectroscopic method for the detection ortho-quinones [40-44]. Lebo et al. [40-42] and Argyropoulos et al. [43,44] both used the cyclic phosphate ester adduct (III, **Figure 3**) as diagnostic for the presence of ortho-quinones in trimethyl phosphite derivatized mechanical pulp. For this study, the literature procedure [40-44] was modified and applied to the determination of quinone structures in isolated lignins. The modification consisted of hydrolyzing the cyclic phosphate ester, ortho-quinone adduct (III), to the open-chain phosphate ester adduct (V). Therefore, after the addition of water, the combined lignin ortho- and para-quinone content can be determined by monitoring the open-chain phosphate ester structures with phosphorus chemical shifts in the -2.5 ppm region.

A solution 31P-NMR spectrum of trimethyl phosphite derivatized D(E+Ar) residual lignin is shown in **Figure 5**. The internal standard, tri-m-tolyl-phosphate is observed as a sharp resonance with a chemical shift of -16.3 ppm. The broad Gaussian resonance corresponding to open-chain phosphate esters, arising from derivatized quinone structures, are observed with a peak centered at -2.5 ppm. Resonances downfield from the open-chain phosphate ester correspond to trimethyl-phosphate (3.5 ppm, verified with pure material) and an expected series of phosphate esters arising from trimethyl phosphite hydrolysis [45,46].

Lignin Quinone Content. The combined ortho- and para-quinone content data (after subtraction of the softwood brownstock residual lignin quinone content) for the D$_{0}$ and alkaline extraction stage residual lignins is given in **Figure 6**. The brownstock residual lignin quinone content value, 1.6 quinones per 100 C$_{9}$, determined in this study was similar to literature values for softwood kraft lignin: 3 quinones per 100 C$_{9}$ (via reductive acetylation) [8] and 3-4 quinones per 100 C$_{9}$ (via visible absorbance) [47]. The 31P-NMR derived quinone content data (**Figure 6**) was found to cluster into groups in a manner similar to the visible difference absorbance data (**Figure 2**). The lowest quinone contents were observed when the alkaline extraction stage was reinforced with hydrogen peroxide, D(E+P) and D(E+O+P) (**Figure 6**), and this corresponds to the highest achievable brightness ceilings (**Figure 1**).
Chlorine Dioxide Stage. The application of chlorine dioxide (D₀) was found to cause a dramatic increase in the quinone content relative to the brownstock residual lignin value (Figure 6). The D₀ residual lignin contained 0.135 mmol/g lignin (2.5 quinones per 100 C₉) more quinone structures than the brownstock residual lignin. These results are consistent with literature accounts which indicate that both phenolic and non-phenolic lignin structures can react with chlorine dioxide to give ortho- and para-quinones [12-18]. The 31P-NMR derived quinone content data is also consistent with the visible absorption difference spectra which demonstrates that D₀ residual lignin is darker than brownstock residual lignin. Chlorine dioxide is an effective delignification agent (Table II), but the residual lignin is darker than the unbleached brownstock residual lignin.

Alkali Effect in the Alkaline Extraction Stage. The influence of alkali on quinone chromophores was studied by performing the alkaline extraction under an argon atmosphere, D(E+Ar). Application of alkali resulted in the destruction of 55% of the quinone content introduced at the D₀ stage (Figure 6). Clearly, the influence of alkali is not merely lignin solubilization, but also involves the destruction of quinone chromophores.

The visible absorbance difference spectra (Figure 2) reveal that the D(E+Ar) residual lignin is the darkest ($\lambda = 430$ nm) of all the studied lignins. According to the 31P-NMR analysis (Figure 6), the D₀ stage residual lignin contains the highest quinone content and would be expected to have the greatest visible region absorbance ($\lambda = 430$ nm). One possible explanation for the apparent discrepancy between the 31P-NMR and visible absorbance data may be that a portion of the quinone structures in the D(E+Ar) residual lignin are hydroxy substituted. Mechanical pulp [48] and model compound [24] studies have both suggested that hydroxy-quinone structures may contribute to the "alkali-
darkening" phenomena. The action of alkali on quinone precursors may give rise to polyphenolic structures which may be subsequently oxidized to hydroxy-quinones.

![Graph showing residual lignin quinone content data after subtraction of brownstock residual lignin quinone content value.]

Figure 6. Residual Lignin Quinone Content Data After Subtraction of Brownstock Residual Lignin Quinone Content Value.

Table III gives spectral data, acquired in this study, for a number *para*-quinone models with various degrees of hydroxylation. The hydroxyl auxochrome causes a bathochromic shift and intensifies the $\pi-\pi^*$ transition in the quinone chromophore [33]. Furthermore, visible absorbance spectra were acquired in aqueous dioxane solution and ionization effects also intensify the molar absorptivity of hydroxy-substituted quinones [24,33]. **Table III** shows that increased hydroxyl substitution results in greater visible region ($\lambda = 430$ nm) molar absorptivity. In particular, the spectrum of tetrahydroxy-1,4-benzoquinone was found to be characterized by a broad intense absorption throughout much of the visible region. Therefore, the data in **Table III** combined with both visible absorbance difference spectra (**Figure 2**) and 31P-NMR analysis (**Figure 6**) suggests that although alkali is effective at removing lignin-quinone structures, a portion of the remaining quinones may be hydroxy-substituted and display enhanced chromophoric properties.
Table III. Visible Region Spectral Parameters for Selected Quinones.

<table>
<thead>
<tr>
<th>Quinone</th>
<th>log ε<sub>430 nm</sub><sup>a</sup></th>
<th>log ε<sub>500 nm</sub><sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,4-Benzoquinone</td>
<td>1.35</td>
<td>0.56</td>
</tr>
<tr>
<td>2,5-Dihydroxy-1,4-benzoquinone</td>
<td>2.33</td>
<td>1.35</td>
</tr>
<tr>
<td>Tetrahydroxy-1,4-benzoquinone</td>
<td>2.04</td>
<td>2.14</td>
</tr>
</tbody>
</table>

^a 90% 1,4-dioxane/10% water (v/v) solvent

Oxygen Effect in the Alkaline Extraction Stage. Interestingly, incorporating air in the alkaline extraction stage, D(E), results in a greater quinone content than if only alkali is applied, D(E+Ar) (Figure 6). The higher quinone content of D(E) relative to D(E+Ar) can tentatively be assigned to the contribution of quinone formation during alkaline oxygen bleaching [23]. Table II reveals that a major benefit of incorporating air in the alkaline extraction stage is greater delignification relative to the effect of alkali alone.

When alkaline extraction is reinforced with pressurized oxygen, D(E+O), 81% of the quinone content introduced at the D₀ stage is removed (Figure 6). The D(E+O) residual lignin contains 0.026 mmol/g lignin (0.48 quinones per 100 C₉) more quinone structures than the brownstock residual lignin. The application of pressurized oxygen, D(E+O), versus air, D(E), suggests that the mechanism of quinone removal by oxygen is dependant of the oxygen concentration (pressure). The general mechanism of oxygen bleaching is known to be influenced by the concentration of oxygen [23,49].

Peroxide Effect in the Alkaline Extraction Stage. The dramatic influence of hydrogen peroxide on quinone destruction is observed in Figure 6. Application of hydrogen peroxide in the alkaline extraction stage, D(E+P), results in the removal of more quinone structures than were introduced at the D₀ stage. The result in Figure 6 is consistent with the known reactivity of hydroperoxide anion towards conjugated carbonyl structures [19-21]. Although application of both hydrogen peroxide and pressurized oxygen in the alkaline extraction stage, D(E+O+P), gives a higher quinone content than hydrogen peroxide alone, D(E+P), greater delignification is a benefit of the concurrent application of both hydrogen peroxide and pressurized oxygen (Table II).

Conclusions

The presence of chromophores such as ortho- and para-quinones may be important contributors to brightness ceiling development during chemical pulp bleaching. This investigation further suggests that brightness ceiling values may be dependant upon the chromophore content established in earlier bleaching stages. Although quinones are only one of a number of potential chromophoric structures in kraft lignin, analyzing residual lignin quinone contents may be of valuable in understanding the origin of bleachability differences between chemical pulps.
The utility of trimethyl phosphite derivatization for investigating quinone chromophores in isolated kraft lignins was demonstrated for the first time. The results of this investigation are consistent with many of the suspected reactions of quinone structures in lignin. For example, the ability of chlorine dioxide to introduce lignin quinone structures and hydrogen peroxide to remove them was clearly observed. Further work is in progress applying 3P-NMR spectroscopy towards understanding the introduction and removal of quinone chromophores in multistage bleaching sequences.

Acknowledgments

The authors wish to thank Drs. McDonough, Dimmel, and Lucia for guidance. Financial support from the Institute of Paper Science and Technology (IPST) and its member companies is gratefully acknowledged. Portions of this work were used by M.Z. and T.R. as partial fulfillment of the requirements for the Ph.D. degree at IPST.

Literature Cited
