Institute of Paper Science and Technology
Atlanta, Georgia

IPST Technical Paper Series Number 736

Effects of Pulping Conditions on the Bleachability of Hardwood Kraft Pulps:
1. Effects of Effective Alkali Charge in the Pulping of Birch and Maple

N. Rawat and T.J. McDonough

July 1998

Submitted to
1998 TAPPI Pulping Conference
Montreal, Quebec, Canada
October 25–29, 1998

Copyright© 1998 by the Institute of Paper Science and Technology
For Members Only
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY
PURPOSE AND MISSIONS

The Institute of Paper Science and Technology is a unique organization whose charitable, educational, and scientific purpose evolves from the singular relationship between the Institute and the pulp and paper industry which has existed since 1929. The purpose of the Institute is fulfilled through three missions, which are:

· to provide high quality students with a multidisciplinary graduate educational experience which is of the highest standard of excellence recognized by the national academic community and which enables them to perform to their maximum potential in a society with a technological base; and

· to sustain an international position of leadership in dynamic scientific research which is participated in by both students and faculty and which is focused on areas of significance to the pulp and paper industry; and

· to contribute to the economic and technical well-being of the nation through innovative educational, informational, and technical services.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company’s use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
EFFECTS OF PULPING CONDITIONS ON THE BLEACHABILITY OF HARDWOOD KRAFT PULPS: 1. EFFECTS OF EFFECTIVE ALKALI CHARGE IN THE PULPING OF BIRCH AND MAPLE

Nidhi Rawat and Thomas J. McDonough
Institute of Paper Science and Technology
500 10th Street, N.W.
Atlanta, GA 30318
USA

ABSTRACT

The objective of this work was to study the effects of digester alkali charge on the chlorine dioxide bleachability of hardwood kraft pulps. We prepared birch and maple pulps with unbleached kappa numbers in the 19-20 range at two effective alkali (EA) levels, 14% and 20% (Na₂O). These were bleached in the D₀(EO)D₁ED₂ sequence. A kappa factor of 0.2 was used throughout and various combinations of ClO₂ charges in D₁ and D₂ stages were investigated. The response to ClO₂ in the D₁ and D₂ stages was characterized in terms of the values of the parameters in a simple mathematical model, which were then subjected to statistical analysis. The result was a model that describes and predicts the effect of EA on ECF bleachability.

In the case of birch, increasing EA gave an unbleached pulp of higher brightness, lower total yield, higher rejects and lower viscosity. The high-EA maple pulp, on the other hand, had much higher brightness than its low-EA counterpart but similar yield, rejects and viscosity levels. Increasing EA substantially increased the brightness ceiling of both the hardwood species. After the D₁ stage, the brightnesses of both high-EA pulps were about 5 points higher than those of their low-EA counterparts and the brightness advantage of maple over birch was maintained. It was possible to prepare pulps of 93% ISO brightness in three stages from high-EA maple pulp. After the 5-stage sequence, the high- and low-EA pulps exhibited brightness ceilings of 94% ISO and 92% ISO, respectively. The corresponding birch pulps had brightness ceilings close to 90% ISO, and brightnesses near the ceiling were reached with lower consumption of ClO₂ in the case of high-EA pulp.

At moderate levels of ClO₂ consumption, increasing EA allowed substantially higher brightness to be reached after three stages of bleaching in the case of maple, and after five stages in case of birch. Much of the beneficial effect of increasing EA can be attributed to an unbleached pulp brightness advantage that was retained through the bleaching sequence, except in the case of five-stage bleaching of birch with high ClO₂ charges.

INTRODUCTION

The United States Environmental Protection Agency’s “Cluster Rules” place strict regulations on control and quality of effluent and air emissions (1). In order to comply with the new rules, bleached pulp mills will use increasing amounts of chlorine dioxide, implementing so-called “elemental chlorine free” (ECF) bleaching. The replacement of the cheaper chlorine with chlorine dioxide will increase the cost of production. The bleaching chemical cost can be cut back if we can develop new pulping processes or improve on the existing processes to produce pulps that are easy to bleach and consume less bleaching chemical. With this aim, we have initiated studies of the effects of individual pulping variables on the ECF bleachability of kraft pulps at constant unbleached kappa number.

In earlier work, we reported the effect of EA on ECF bleachability of southern pine over a range of kappa numbers (2). It was found that the brightness ceiling in the D₀(EO)D₁ sequence can be increased by increasing EA and decreasing unbleached kappa number. The effect of EA on brightness ceiling after D₀(EO)D₁ED₂ bleaching depends on the unbleached kappa number. At higher kappa number (~27), an increase in EA leads to an increase in brightness ceiling from 88 to 90% ISO. But EA has little effect on brightness ceiling at lower kappa number (~15). Also, at low kappa number, high-EA pulps consume more
ClO₂ than low-EA pulps to reach a given brightness after bleaching.

Not much work is reported in the literature on the influence of individual pulping variables on the bleachable nature of North American hardwood species. Recently a Canadian kraft mill reported results of high alkali pulping trials of mixed hardwood species aimed at compensating for the loss in throughput during winter months (3). They found that cooking time to achieve the same final K number was reduced by 10 minutes with a small increase in active alkali charge from 16.0 to 16.5%. No significant change was reported in dirt content, rejects, brown stock freeness or final pulp properties. Aurell (4) reported the effect of effective alkali on different wood components of birch during Kraft cooking. He found that at 15% EA almost 65% of the xylan was left in pulp as compared to 50% of the xylan at 24% EA. This difference was partly attributed to a more extensive degradation and partly to a more pronounced dissolution of xylan molecules at high alkalinity. Reeve and Weishar investigated the bleaching response of three pure hardwood species in ECF bleaching sequences (5). Maple, oak and gum were bleached to a final brightness of 86% ISO by D(EO)D and D(EO)(D/N)D sequences, with and without oxygen delignification. They found that oak was more difficult to bleach than maple and gum. Hanna et al. (6) studied the effect of alkali concentration in displacement batch cooking on pulp yield, bleachability, refinability, hexeneuronic content acid and residual lignin structure. They found that when the total effective alkali applied was decreased substantially from 14.8 to 10.7%, aspen required a higher kappa factor and more total active chlorine to reach target brightness. However, hexeneuronic acid content did not appear to affect the bleachability of either aspen or pine.

In the work reported here, we have studied the effect of EA on ECF bleaching of kraft pulps from two North American hardwood species - birch and maple. These studies have been carried out at constant unbleached kappa number (19-20) to evaluate bleaching responses unaffected by differences in lignin content.

EXPERIMENTAL

Birch and maple logs were kindly supplied by the Quinnesec, MI, mill of Champion International Corporation. They were chipped in a pilot scale Carthage chipper and screened. The fraction passing through a screen with 1-inch openings and retained by a ¼-inch screen was used. Pulping was carried out in an M/K Systems 6-L laboratory digester using liquors prepared from reagent grade sodium hydroxide and sodium sulfide. Pulping conditions were as follows: maximum temperature 170°C; time to maximum temperature, 90 min; liquor-to-wood ratio, 4:1; and sulfidity, 25%. All pulping chemical charges, including EA (NaOH + Na₂S), are expressed in terms of Na₂O. Sulfidity is expressed as a percentage of active alkali (NaOH + Na₂S).

After pulping, the cooked chips were disintegrated by vigorous agitation and screened on a Valley flat screen having 0.008-inch slots. The kappa number, viscosity, and brightness of each pulp were then determined prior to bleaching.

Chlorine dioxide delignification (D₀)-stages were conducted in a Quantum Technologies Mark III high-shear laboratory bleaching reactor under the following conditions: kappa factor, 0.20; 30 min; 45°C; and 10% consistency. Oxygen-reinforced alkali extraction (EO) stages were conducted in a pressurized reactor equipped with a horizontal-shaft pin mixer rotating at approximately 100 rpm, under the following conditions: NaOH charge, 1.6%, o.d. pulp basis; 60 min; 70°C; and 10% consistency. The oxygen pressure was initially 60 psi and was decreased by 12 psi at 5-min intervals thereafter. Chlorine dioxide brightening stages were conducted in sealed Kapak™ bags. Dilution water and NaOH solution were added to the pulp in the bag, which was then thoroughly mixed by kneading the bag. ClO₂ solution was then mixed with the pulp, and the bag was sealed and placed in a temperature-regulated water bath for the required time.

Kappa number, viscosity, and brightness were determined by TAPPI test methods T236, T230, and T525, respectively. Handsheets for the brightness testing were prepared according to TAPPI test method T272.

Hexeneuronic acid (hexA) was determined in unbleached pulp by the method of Vuorinen et al. (7).
Briefly, 5.0g o.d. pulp was refluxed with 150 mls of 10 mM sodium formate solution at 100°C, 3.0% consistency for 5.0 hours. The pH of the reaction was 3.5. After the treatment the hydroxylate was analyzed by ultraviolet spectroscopy for the reaction product, 2-furoic acid.

Black liquor samples were analyzed for residual NaOH by titration to pH 11. The pH's of all the black liquor samples were also measured.

RESULTS AND DISCUSSION

Unbleached Pulps

To study the effect of EA on ECF bleachability at constant kappa number, it was first necessary to establish the cooking time necessary to achieve the target kappa number. A series of pulping experiments in which cooking time was varied at three EA levels, 12, 16, and 20%, gave the results as shown in Figures 1 and 2.

![Figure 1](image1.jpg)
Figure 1: Effect of EA on H-Factor - Kappa Number Relationship in Kraft Cooking of Birch.

![Figure 2](image2.jpg)
Figure 2: Effect of EA on H-Factor - Kappa Number Relationship in Kraft Cooking of Maple.
Larger samples of both birch and maple pulps were then prepared with unbleached kappa numbers of ~20 at EA levels of 14 and 20%. Table 1 shows the unbleached properties of the pulps. The results indicate that, in the case of birch, increasing EA gave an unbleached pulp of higher brightness, but lower yield, higher rejects and lower viscosity. However, for maple, pulping with high-EA produced pulp much higher in brightness than its low-EA counterpart, at comparable yield, rejects and viscosity levels. Increasing the digester alkalinity thus significantly reduces the cooking time with no significant effect on pulp yield and viscosity in the case of maple.

Table 1: Unbleached Pulp Properties

<table>
<thead>
<tr>
<th>Hardwood species</th>
<th>Birch</th>
<th>Maple</th>
</tr>
</thead>
<tbody>
<tr>
<td>EA, % (Na$_2$O)</td>
<td>14</td>
<td>20</td>
</tr>
<tr>
<td>H-Factor</td>
<td>880</td>
<td>284</td>
</tr>
<tr>
<td>Kappa Number</td>
<td>19.4</td>
<td>18.7</td>
</tr>
<tr>
<td>Total Yield, %</td>
<td>51.9</td>
<td>50.5</td>
</tr>
<tr>
<td>Screened Yield, %</td>
<td>49.3</td>
<td>44.8</td>
</tr>
<tr>
<td>Brightness, % ISO</td>
<td>30.2</td>
<td>36.7</td>
</tr>
<tr>
<td>Viscosity, mPa.s</td>
<td>71.8</td>
<td>48.7</td>
</tr>
</tbody>
</table>

Black Liquor:

<table>
<thead>
<tr>
<th></th>
<th>Birch</th>
<th>Maple</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>13.2</td>
<td>13.6</td>
</tr>
<tr>
<td>NaOH by titration to pH 11, g/l (Na$_2$O)</td>
<td>5.5</td>
<td>7.9</td>
</tr>
</tbody>
</table>

Constant cooking conditions: Sufidity, 25%; liquor to wood ratio, 4.0; maximum temperature 170°C.

The increase in birch rejects that accompanies increased EA is presumably a result of the associated reduction in H-factor, which decreases the time available for transport of chemicals to the chip centers. Another factor which may contribute to a deficiency in alkali at the chip center is a high rate of alkali consumption at the chip exterior, as suggested by the observation that when EA was increased in birch cooks, most of the added alkali was consumed. In the maple cooks, on the other hand, very little of the additional alkali was consumed and rejects remained low.

Response in the D$_0$(EO) Partial Sequence

Table 2 includes the results of bleaching in the first two stages with a kappa factor of 0.2 in the D$_0$ stage.

Increasing EA had no effect on brightness gain over the D$_0$(EO) partial sequence, which was higher for maple. Increasing EA substantially improved the extent of delignification and reduced specific chemical consumption in these stages for maple but had no effect in the case of birch.
Table 2: Unbleached Properties and Bleachability of Birch and Maple Kraft Pulps

<table>
<thead>
<tr>
<th>Unbleached pulp</th>
<th>Hardwood species</th>
<th>EA %, Na<sub>2</sub>O</th>
<th>Kappa No.</th>
<th>Brightness, ISO</th>
<th>Delta Kappa/ TAC</th>
<th>Brightness, ISO</th>
<th>Brightness, Ceiling (b_0 + b_1)</th>
<th>Response Factor (b_2)</th>
<th>(D_1) stage</th>
<th>(D_2) stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birch</td>
<td>14</td>
<td>19.5</td>
<td>30.2</td>
<td>3.8</td>
<td>58.9</td>
<td>28.7</td>
<td>82.9</td>
<td>6.5</td>
<td>0.4</td>
<td>88.8</td>
</tr>
<tr>
<td>Birch</td>
<td>20</td>
<td>18.7</td>
<td>36.7</td>
<td>3.8</td>
<td>65.3</td>
<td>28.6</td>
<td>87.4</td>
<td>5.8</td>
<td>0.4</td>
<td>90.1</td>
</tr>
<tr>
<td>Birch</td>
<td>20</td>
<td>20.3</td>
<td>43.5</td>
<td>4.3</td>
<td>74.9</td>
<td>31.4</td>
<td>92.9</td>
<td>5.0</td>
<td>0.4</td>
<td>93.1</td>
</tr>
<tr>
<td>Maple</td>
<td>14</td>
<td>20.4</td>
<td>34.8</td>
<td>3.9</td>
<td>66.3</td>
<td>31.5</td>
<td>87.8</td>
<td>4.9</td>
<td>0.4</td>
<td>92.0</td>
</tr>
<tr>
<td>Maple</td>
<td>20</td>
<td>20.3</td>
<td>43.5</td>
<td>4.3</td>
<td>74.9</td>
<td>31.4</td>
<td>92.9</td>
<td>5.0</td>
<td>0.4</td>
<td>93.1</td>
</tr>
</tbody>
</table>

n.r. – not reported; standard error greater than 50% of the estimated value.

Response in the \(D_0(EO) \) \(D_1 \) Sequence

In the \(D_1 \) stage the pulps were bleached with 0.4, 0.8 and 1.2% ClO₂. A \(D_1 \) brightness response curve was thus developed for each of the \(D_0 \) (EO) pulps at three levels of ClO₂ charge. The response was characterized, as described earlier (8), by fitting the data with the following equation:

\[
y = b_0 + b_1 [1 - \exp(-b_2x)]
\]

where

\(y \) = brightness of the pulp after \(D \) stage
\(x \) = % chlorine dioxide consumed (o.d. pulp basis) in the \(D \) stage
\(b_0 \) = brightness of the entering pulp
\(b_1 \) = maximum brightness gain
\(b_2 \) = brightness response factor

The sum, \((b_0 + b_1) \) is the predicted brightness "ceiling," the highest brightness that can be reached, regardless of how much ClO₂ is applied. The parameter \(b_2 \) is a measure of the responsiveness of the brightness to increases in ClO₂ consumption at brightness levels below the ceiling.

The results are recorded in Table 2. The high-EA pulps were easily bleachable, as further illustrated in Figure 3. At any given ClO₂ charge in the \(D_1 \) stage, the brightness difference between low- and high-EA pulps was as much as 5 points. Most importantly, increasing EA resulted in very high brightness maple pulps having a ceiling of \(-93\%\) ISO. A practical implication of this is that increasing EA allows shortening of the bleaching sequence from 5 stages to 3 stages with associated benefits of energy and capital savings.

The \(D_1 \) stage model parameters shown in Table 2 reflect these observations. The predicted brightness ceilings are higher for maple than for birch and are increased by increasing EA. The response factor, \(b_2 \), is
unaffected by EA, suggesting that increasing EA has no effect on the ease of removal of the removable chromophores. The higher brightness ceiling of the high-EA pulps is apparently due to a reduction in the amount of intractable chromophores.

![Graph showing effect of EA charge in pulping on D1 stage brightness](image)

Figure 3: Effect of EA Charge in Pulping on D1 Stage Brightness

Response in the $D_0(EO)D_1ED_2$ Sequence

All of the $D_0(EO)D_1$ pulps were further bleached by subjecting them to an alkaline extraction followed by a D_2 stage. In the final brightening stage, the pulps were bleached with three levels of ClO$_2$, i.e., 0.2, 0.4 and 0.8%. Analysis of the D_2 response was done using the above model to arrive at brightness ceiling and brightness response factor values. The results are recorded in Table 2 and Figure 4.

For a given charge of ClO$_2$ in D_1, the brightness ceiling was higher for high-EA pulps and higher for maple than for birch. For both species, the brightness ceiling was relatively insensitive to the D_1 stage ClO$_2$ charge, increasing slightly as the ClO$_2$ charge was increased from 0.4 to 1.2% in case the of birch.

The response of the low-EA pulps to increasing D_2-stage ClO$_2$ charge, as measured by b_2, was higher for pulps that had been bleached with higher levels of ClO$_2$ in the D_1 stage, indicating that the remaining chromophores had been in some way “preconditioned” by the additional D_1 stage ClO$_2$. In the case of high-EA pulps, high levels of ClO$_2$ in the D_1 stage raised the brightness to such high levels, that the brightness entering the D_2 stage was already close to the ceiling. Consequently, the response in the D_2 stage was depressed, and b_2 decreased.
Figure 4: Effect of EA Charge on D$_2$ Brightness Ceiling for Various Charges of ClO$_2$ in D$_1$ Stage.

Figure 5 shows the brightness after 5 stages of bleaching plotted as a function of total ClO$_2$ consumed. By increasing the digester alkalinity, bleaching response can be substantially improved. Both hardwood species exhibit better bleachability when cooked with high EA. They possess higher brightness ceilings and consume less bleaching chemical to achieve a given target brightness. Maple pulps give much higher brightness than birch at all levels of ClO$_2$ consumption.

Effect of EA on Hexeneuronic Acid Content

The hexeneuronic acid (HexA) content of birch and maple pulps as a function of EA is recorded in Table 3. The presence of HexA in kraft pulps has been reported only recently due to their instability in conventional acid hydrolysis conditions. 4-O-Methyl-D-Glucuronic acid units which exist in xylan are in part converted to unsaturated hexeneuronic acid groups during kraft cooking (9). Because of their unsaturation, they react with bleaching chemicals, including ClO$_2$, and contribute to kappa number of the pulp to a significant extent, especially in the case of hardwood pulps. In ECF bleaching, a part of the oxidizing power of ClO$_2$
will be lost in this undesirable reaction, leaving less ClO₂ for the reaction with the residual lignin in the pulp. Depending on the cooking conditions, the HexA content may differ profoundly and subsequently affect the bleachability of these pulps (10).

Table 3: Effect of EA on Hexeneuronic Acid Content

<table>
<thead>
<tr>
<th>Hardwood species</th>
<th>Hexeneuronic acid, µM/g pulp</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low-EA</td>
</tr>
<tr>
<td>Birch</td>
<td>56.7</td>
</tr>
<tr>
<td>Maple</td>
<td>59.4</td>
</tr>
</tbody>
</table>

The analysis of both birch and maple pulps showed that the alkalinity of the cooking liquor affected the amount of HexA. As the EA charge was increased from 14 to 20%, the HexA decreased by 8 and 14% for birch and maple, respectively. The better bleachability of high-EA pulps may be related to the lower HexA contents in these pulps as compared to their low-EA counterparts. In this regard, it is noteworthy that, when EA was increased, D₄(EO) delignification was improved more in the case of maple than in that of birch, just as the HexA content was decreased more for maple.

SUMMARY AND CONCLUSIONS

The results of these initial studies indicate that the alkalinity of the cooking liquor affects the nature and bleachability of the pulp produced. An important outcome of this work was that high-EA pulping emerged as an attractive option. High-EA pulping significantly reduces the cooking time and produces brighter pulps at comparable pulp yield and viscosity. It also greatly enhances maple pulp bleachability by allowing very high brightness pulps to be produced in only 3 stages of ECF bleaching. High-EA pulping of this species has the potential to increase digester throughput without any negative effect on pulp yield and viscosity and with improved bleachability. For birch, high EA has a negative effect on pulp yield and viscosity although it greatly improves the ECF bleaching response. Increasing the alkalinity of the cooking liquor decreased the hexeneuronic acid content, especially in the case of maple. Improved D₄(EO) delignification of high-EA maple pulps may be related to their lower HexA contents.

REFERENCES

9. Teleman, A., Harjumaa, V., Tenkanen, M., Buchert, J., Hausalo, T., Drakenberg, T., and Vuorinen,

ACKNOWLEDGMENTS

The authors gratefully acknowledge the funding provided for this research by the Office of Industrial Technology of United States Department of Energy and the Member Companies of the Institute of Paper Science and Technology. We thank Kathy Kulas of Champion International for providing birch and maple logs.