Paper Strength: Statistics and Correlation Structure

M. DiMillo and M. Ostoja-Starzewski

March 1999

Submitted to
International Journal of Fracture
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY
PURPOSE AND MISSIONS

The Institute of Paper Science and Technology is an independent graduate school, research organization, and information center for science and technology mainly concerned with manufacture and uses of pulp, paper, paperboard, and other forest products and byproducts. Established in 1929, the Institute provides research and information services to the wood, fiber, and allied industries in a unique partnership between education and business. The Institute is supported by 52 North American companies. The purpose of the Institute is fulfilled through four missions, which are:

- to provide a multidisciplinary education to students who advance the science and technology of the industry and who rise into leadership positions within the industry;
- to conduct and foster research that creates knowledge to satisfy the technological needs of the industry;
- to serve as a key global resource for the acquisition, assessment, and dissemination of industry information, providing critically important information to decision-makers at all levels of the industry; and
- to aggressively seek out technological opportunities and facilitate the transfer and implementation of those technologies in collaboration with industry partners.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company’s use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
Abstract. Due to the presence of a multiscale, disordered, fibrous microstructure in paper, its mechanical characteristics are not universal material properties but, rather, emerge as functions of specimen size and shape, as well as loading conditions. In order to grasp the statistical variability and spatial correlation structure of elasticity and strength parameters, a random field model is introduced. One- and two-point specifications of the model are exemplified by an array of 7" × 1" specimens subjected to tensile tests.

1. Random field of mechanical properties. The degree of variability in the stress-strain response of paper is displayed in Fig. 1, which shows typical results of ten tensile tests. All the specimens are cut out of a large (several meters wide and many kilometers long) paper web. Thus, at every point, given a chosen size and shape of a test specimen, the four conventionally measured parameters (elastic modulus E, breaking strength σ_{max}, strain to failure ε_{max}, and tensile energy absorption TEA) are random variables. Clearly, these variables are functions of position, and so, they constitute a four-component vector random field \mathbf{u}.
Here B is the body domain of the paper web in the x, y-plane, while Ω is the probability space (or space of elementary events ω).

The physical meaning of the space Ω is clarified by considering any single event ω. The occurrence of this ω - and hence, of specific values of field \hat{u} that correspond to it - represents an uncertain phenomenon, which can only be described statistically. Our problem formulation is analogous to the one encountered in turbulence theories (Frisch, 1995; Lumley, 1970), where one cannot predict exactly (i.e., deterministically) the velocity flow field and has to resort to probability tools. Indeed, our random field of paper properties has its origin in the turbulent settling of disordered fiber suspensions on the wire, and is interpreted as a final result of a “frozen-in turbulence.” The field \hat{u} is parametrized by the size $L_x \times L_y$ of specimens - a concept again analogous to the turbulence theory, where the sampling of values of the velocity field is conducted over certain finite volumes corresponding to the resolution of a given instrument, e.g., radar, or laser Doppler.

Here, x and y correspond to the machine and cross directions, respectively. In the following, we focus on the $7'' \times 1''$ (0.1778m \times 0.0254m) specimen sizes, which represent the most common paper industry standard (TAPPI, 1994-95). The unnotched specimens are subjected to quasi-static tensile tests in the machine (x) direction. They are cut from a $-79''$ (2m) wide roll of paper provided by Champion Intl. Corp. The paper has basis weight of \sim21 lb/1000 ft2 (\sim34 g/m2) and a caliper of \sim2.6 mils (\sim6.6 \cdot 10$^{-5}$ m); the sheet contains some mechanical pulp.

On the theoretical side, the random field \hat{u} is, most fundamentally, specified by a family of all the finite-dimensional m-point distribution functions ($x \equiv (x, y)$)

$$P\{U_1(x_1) \leq u_{11}, \ldots, U_1(x_m) \leq u_{1m}, \ldots, U_4(x_1) \leq u_{41}, \ldots, U_4(x_m) \leq u_{4m}\} \quad (2)$$

Now, in view of the tremendous amount of information that would need to be collected to obtain (2), we content ourselves with an assessment of the one-point statistics and of the second-order correlation structure. These are obtained through
tensile strength tests on an 8 × 25 array of our 7″ × 1″ specimens. Figures 2(a)-(d) display the results of these tests for E, σ_{max}, ε_{max}, and TEA, respectively.

2. Statistics and correlation structure. The one-point statistics of E, σ_{max}, ε_{max}, and TEA are shown in Fig. 3 in a probability paper format with a logarithmic axis for the cumulative probability set in such a way as to result in a straight fit through the data points should they be Gaussian. While these data show only small departures from Gaussianity, Beta turns out to be the probability distribution of the best overall goodness-of-fit for a wide range of specimen sizes and other types of paper (to be discussed in a follow-up report). Beta is shown as a broken line.

The means of E, σ_{max}, ε_{max}, and TEA are, respectively, 3980, 34.9, 1.9, and 0.46, while their coefficients of variation are 0.04, 0.05, 0.1 and 0.14. It is most interesting to note here that the COV of E is on the same order as that of σ_{max}. This also holds for other specimen sizes and other types of paper, as will be demonstrated in a subsequent report.

The fundamental two-point, second-order information on the relation of two components u_i and u_j of the underlying vector field \hat{u} is specified by a correlation coefficient

$$\rho_{ij}(x_1, x_2) = \frac{\langle C_i(x_1)C_j(x_2) \rangle - \langle C_i(x_1) \rangle \langle C_j(x_2) \rangle}{\sigma_i \sigma_j}$$

(3)

which takes values between 1 and -1. These two extreme values are called, respectively, full positive and full negative correlatedness, while $\rho_{ij} = 0$ represents zero-correlatedness. The case $i = j$ is termed the auto-correlation, while $\rho_{12}, \rho_{13}, \ldots$, are called cross-correlation.

There are, clearly, four auto-correlations and six cross-correlations, all of which can be put into a symmetric 4 × 4 array whose lower tridiagonal only is shown below (recall definition (1))

$$\rho_{ij}(x_1, x_2) = \begin{bmatrix}
\rho_{E,E} & \rho_{E,\sigma_{\text{max}}} & \rho_{E,\varepsilon_{\text{max}}} & \rho_{E,\text{TEA}} \\
\rho_{E,\sigma_{\text{max}}} & \rho_{\sigma_{\text{max}}\sigma_{\text{max}}} & \rho_{\sigma_{\text{max}}\varepsilon_{\text{max}}} & \rho_{\sigma_{\text{max}}\text{TEA}} \\
\rho_{E,\varepsilon_{\text{max}}} & \rho_{\varepsilon_{\text{max}}\varepsilon_{\text{max}}} & \rho_{\varepsilon_{\text{max}}\text{TEA}} & \rho_{\varepsilon_{\text{max}}\text{TEA}} \\
\rho_{E,\text{TEA}} & \rho_{\sigma_{\text{max}}\text{TEA}} & \rho_{\varepsilon_{\text{max}}\text{TEA}} & \rho_{\text{TEA}\text{TEA}}
\end{bmatrix}$$

(4)
Fig. 2. A grey-scale plot of: (a) elastic modulus E lbf/in; (b) breaking strength σ_{max} in lbf/in; (c) strain to failure ε_{max} in %; and (d) tensile energy absorption TEA lbf/in. All data are for an 8 x 25 array of 7" x 1" specimens. The ranges and assignments of values are shown in the respective insets.
Thus, when we consider correlations between the nearest neighbors (contiguous specimens) - i.e., when \(x_2 = x_1 \pm L_x \) - we cannot expect the diagonal entries to equal unity. This is the setup which begins to shed light on the spatial correlation structure. We can do it with our data at hand (Fig. 2) providing we assume wide-sense stationarity of the \(\hat{u} \) field, that is \(\rho_{ij}(x_1, x_2) = \rho_{ij}(r) \) for \(\forall r = x_1 - x_2 \).

The \(\rho_{ij} \)'s for the nearest neighbors in the machine (x) and cross (y) directions are

\[
\rho_{ij}(L_x) = \begin{bmatrix}
0.24 \\
0.21 0.27 \\
0.00 0.10 0.21 \\
0.14 0.23 0.15 0.22
\end{bmatrix} \quad \rho_{ij}(L_y) = \begin{bmatrix}
0.33 \\
0.18 0.13 \\
0.09 0.02 0.26 \\
0.05 0.04 0.04 0.04
\end{bmatrix}
\] (5)

The actual numbers in (5) depend on various factors - type of paper, specimen size and shape, fiber, fiber-fiber bonding, floc and streak structure, etc. - but it is already apparent that \(\hat{u} \) is a quasi-isotropic random field (e.g., Ostoja-Starzewski, 1998).

Next, focusing on \(\rho_{ij} \) functions at a point - i.e., when \(x_1 = x_2 \) - we find

\[
\rho_{ij} = \begin{bmatrix}
1 \\
\rho_{12} & 1 \\
\rho_{13} & \rho_{23} & 1 \\
\rho_{14} & \rho_{24} & \rho_{34} & 1
\end{bmatrix} = \begin{bmatrix}
1 \\
0.43 & 1 \\
0.10 & 0.56 & 1 \\
0.14 & 0.90 & 0.69 & 1
\end{bmatrix}
\] (6)

where \(\rho_{ij} = \rho_{ij}(x_1, x_1) \). From this we observe that:

i) Cross-correlations between \(E \) and inelastic parameters \(\sigma_{max}, \varepsilon_{max} \), and TEA are weak, although we note that \(\rho_{E, \sigma_{max}} \) is greater than \(\rho_{E, \varepsilon_{max}} \) or \(\rho_{E, \text{TEA}} \).

ii) Three cross-correlations between \(\sigma_{max}, \varepsilon_{max} \), and TEA are about the same.

Acknowledgement: This research was made possible by the IPST member companies and the National Science Foundation under grant CMS-9713764. We thank Dr. J. Schulz of Champion International Corp. for providing the paper for testing.

REFERENCES

Fig. 3. Top to bottom: empirical histograms and Beta probability distribution fits of four mechanical properties.