Evaluation of Alignment Methods for Transtibial Prostheses

Missy Malkush
Masters Research Presentation
Georgia Tech, MSPO 2008
April 16, 2008
Intro: Developing Countries

- 3-4 million people in need of a prosthesis (Murdoch 1990)
- <5% people have access to medical care (WHO, 2003)
 - 80% in remote, rural areas (Sethi, 1989)
 - Unaffordable
 - Few trained specialists
Intro: Monolimb Appropriate Technology

- Fewer components
- Affordable
- Durable

Delivered on initial fit
(Valenti 2001)

- >1,000 fittings
 - Burma, Thailand, China, Vietnam, El Salvador

Monolimb initial fit, Burma 2007
Intro: Prosthetic Alignment

- Modular Design
 - Bench Alignment
 - Static Alignment
 - Dynamic Alignment
 - Delivery of Definitive Prosthesis

- Monolimb
 - Bench Alignment
 - Definitive Delivery of Prosthesis

Monolimb fabrication, Thailand 2007

www.ap.gatech.edu/mspo
Intro: Appropriate Alignment

“...good alignment can be achieved on the basis of [patient] measurements, if an easy procedure and fabrication fixture can be developed to assist with alignment...” CIR 2007

Two Alignment Methods: **VAA, ABA**
Research Goal

Question: Which alignment method (VAA, ABA, TRAD) requires the least magnitude of alignment changes to result in optimal gait?

Hypothesis: An alignment method based on patient measurements (VAA, ABA) will require a lower magnitude of change to arrive at appropriate prosthetic alignment.
Methods: Subjects

- 8 transtibial amputees
 - 18-65yo, <220lbs, healthy
- 8 students of prosthetics
 - Georgia Tech, MSPO
 - NUPOC
- 2 prosthetists per amputee/student pair
Protocol: Alignment Capture

1. Student captures VAA, ABA alignments on amputee
Vertical Alignment Axis (VAA)

- Socket center at PTB level projects onto alignment reference center
- Socket angles determined by natural attitude of limb during weight bearing

Wu et al, 1981
Vertical Alignment Axis (VAA)

- Coronal and sagittal planes intersection
Anatomical Based Alignment (ABA)

- Hip, knee, and ankle joint centers lie along a common axis in frontal and sagittal planes.
Protocol: Assemble and Dynamically Align

2. Students assemble 3 prostheses
 - VAA, ABA, TRAD
 - Quantify bench alignments

3. Prosthetists dynamically align 3 prostheses
 - Quantify dynamic alignments
Data

Alignment Parameters
Quantitative

1. Height
2. Toe-out
3. Foot posterior
4. Socket flexion
5. Foot inset
6. Socket adduction
Results

Absolute Change from Bench to Dynamic Alignment

No statistical significance (p<0.05) by repeated measures analysis
Discussion: Zahedi et al, 1986

- Alignment of Lower Limb Prostheses
 - A wide range of alignments are considered acceptable by the amputee and prosthetist
 - Average acceptable ranges
 - 45mm socket shifts
 - 10º socket tilts
 - Values depend on patient activity level and level of amputation
Discussion

Where these magnitudes of change of any significance to the amputee?
Discussion: Amputee Subjective Feedback

Overall Gait Quality Ratings by Amputee

- **Bench**
 - VAA: [X]
 - ABA: [X]
 - TRAD: [X]

- **Dynamic**
 - VAA: [X]
 - ABA: [X]
 - TRAD: [X]

<table>
<thead>
<tr>
<th></th>
<th>VAA</th>
<th>ABA</th>
<th>TRAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bench</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

Hypothesis: An alignment method based on patient measurements (VAA, ABA) will require a lower magnitude of change to arrive at appropriate prosthetic alignment.

NOT SUPPORTED
Limitations

- Soft heel of SACH foot
- Student inexperience
- ABA
 - Difficulty palpating anatomy
 - Does surface anatomy correspond to joint centers?
- VAA and ABA
 - Base of support assumed “fist-width apart”
Future Directions

- Control student, vary amputees
 Test accuracy of alignment methods
- or -
- Control amputees, vary student
 Test if little training is necessary
- or -
- Control student, vary amputee BMI
 Test effects of body composition
References

Special Thanks

Andrea Ikeda
Rob Kistenberg
Rob Macdonald
Dr. Gregor
Dr. Teresa Snow
Scott C
My classmates
My subjects
Methods

- Height, ABA
- Height, VAA
- Alignment Board
- Toe out, VAA
Alignment Board

- Align 3 things:
 - Etched line on plexiglass
 - Marker line on board
 - Marker alignment line on socket
Step Asymmetry

Step Length Asymmetry

Difference in step length (cm) (sound vs. prosthetic)

VAA | ABA | TRAD

Bench | Dynamic
Averaged Results

Average Change from Bench to Dynamic Alignment

-30.0
-20.0
-10.0
0.0
10.0
20.0

Height (mm) Toe out (°) Foot posterior (mm) Socket flexion (°) Foot inset (mm) Socket adduction (°)

VAA ABA TRAD
Monolimb Recipients