Knee Joint Moments of Transtibial Amputees While Cycling

Laura Jones
April 16, 2008
INTRODUCTION
Main Goal

- Improve Quality of Life for Amputees
 - Rehabilitation
 - Exercise
 - Amputees less active than nonamputees [Bussmann, 2008]
 - Recreation
Cycling

- Currently used in Physical Therapy
 - Soft tissue injuries [Hunt 2004]
 - Cerebral palsy [Williams 2007]
 - Chronic heart failure [Jonsdottir 2006]

- Popular for general exercise and recreation
Amputee Cycling

- Popular among amputees
 - Recreational
 - Competative
- Possible for most amputation levels
- Little research
 - 1 leg cycling [Chin 2001, Chin 2002]
 - Effect of Prosthesis is unknown

[http://www.mtb-amputee.com]
Cycling Research

- Performance Enhancement
- Injury Prevention
- Enhanced Physical Rehabilitation
Cycling Research

- Various subject populations
 - Elite athlete
 - Rehabilitation population
- Various aspects
 - Conditioning
 - Muscle coordination – EMG
 - Biomechanics – Force/Moment/Power
 - Equipment setup
Cycling Research

- Biomechanics
 - Reaction force normal to the pedal [Gregor 1985]
 - Moment about the ankle, knee, and hip [Gregor 1985]
 - Limb asymmetry [Daly 1976, Hunt 2004]
 - Effect of saddle height and foot position [Ericson 1986]
Purpose

- Determine moment about the knee in persons with a trans-tibial amputation while cycling with a prosthesis.
- Baseline data
Goals

- Baseline values of common measurements
- Understand how changes effect baseline
- Relate previous research to amputee populations

[http://picasaweb.google.com/stopmines/CyclingAgainstLandminesAVLoContreLesMines]
Methods

- 3 subjects
 - 2 with unilateral transibial amputation
 - Experienced prosthetic user
 - Use current prosthesis and suspension
 - 1 intact
- >6 months of cycling experience
Methods

- Vicon motion capture system
- Instrumented pedals
- Adjustable bicycle
- Standardized prosthetic foot
Methods

- 6 Cycling conditions
 - 3 loads
 - Self selected “Easy”
 - Self selected “Hard”
 - 100 W
 - 2 pedaling velocities
 - 60 rpm
 - 90 rpm
Methods

- **Knee moment calculation** [Prilutsky 2000]
 - Inverse dynamics
 - Program used previously

- **Prosthesis characteristics**
 - Inertial characteristics
Expected Data

160 Watts
60 RPM

[Gregor 1985]
Expected Data
Expected Data

160 Watts
60 RPM

Extension

Flexion

[Gregor 1985]
RESULTS
Intact Subject, Hard, 90 rpm

Net Torque (Nm)

Extension

Flexion

% of Cycle

Self selected ‘Hard’ = 209 Watts
Intact Subject, Hard, 90 rpm

Self selected ‘Hard’ = 209 Watts
Amputee Subject, Hard, 90 rpm

Intact leg

Residual limb

Self selected ‘Hard’ = 209 Watts
Amputee Subject, Hard, 90 rpm

Self selected ‘Hard’ = 209 Watts
Hard, 90 rpm, 2 subjects

Self selected ‘Hard’ = 209 Watts
Future Application

- Understanding effect of the prosthesis
 - Improve amputee cycling
 - Safer
 - More effective
- May impact rehabilitation programs
- May impact configuration
 - Prosthesis
 - Bike
Limitations

- Few subjects
- Experienced cyclists
- Characteristics of residual limb
 - Scan limb in future research
References

References

Questions?
Amputee Anthropometrics

- Prosthesis
 - Moment of Inertia [Street 2007]
 - Pendulum method
 - Center of Mass
- Theoretical “intact” body weight
- Residual limb
 - Theoretical mass
 - Interial characteristics
 - Assumed elliptical parabaloid
Expected Data

225 Watts, 90 RPM
[Ruby 1992]
Overview

- Introduction
- Purpose
- Methods
- Results
Main Goal

- Modality
 - Walking
 - Running
 - Swimming
 - Bicycling

Andriacchi TP, Andersson

Other
 - Look into knee/muscle/cardio strength training/injuries in amputees
 - Look at http://www.kneeguru.co.uk/insights/doku.php/rehab/cycling01