Stiffness properties in the frontal plane of multiaxis prosthetic feet and the influence of shoes

Stephen Gaw, MS
Georgia Tech MSPO
April 23, 2008
Introduction: Prosthetic Feet

- Provide essential connection between prosthesis and ground

- Currently divided into traditional foot classifications (Lusardi 2007, Smith 2004)
 - SACH
 - Single axis
 - Multiaxis
 - Flexible Keel
 - Dynamic response
 - Dynamic response/multiaxis

- Multiaxis feet
 - Allow motion in sagittal, frontal and/or transverse planes (Lusardi 2007)
 - Popular among amputees for activities on uneven terrain (Stark 2005)
Variation in designs of multiaxis feet
- Previous research suggests feet in same classification vary functionally
- Current classification system may be inadequate for optimal prescription recommendation
- Stiffness can be used as metric to divide feet into more specific subcategories (Geil 2001)

Influence of shoes on materials testing is unknown
- Vast majority of foot materials testing performed barefoot
- Prosthetic feet are designed to be worn with shoes
- Test environments should strive to meet real world conditions (Hafner 2005)
Objectives/Hypotheses

- Analyze stiffness properties of multiaxis feet in the frontal plane
 - Hypothesis: Stiffness properties of feet will vary and feet will divide themselves into subcategories

- Determine the influence of a shoe on the stiffness properties of multiaxis feet in the frontal plane
 - Hypothesis: Shoe will influence the stiffness properties of the foot
Methods: Foot selection

- Foot selection (n=6)
 - Donations to MSPO program by manufacturers and distributors
 - SACH used for comparison
- Foot specifications
 - Adult, male
 - 175 lbs
 - Size 26
 - Left side amputation
- Shoe
 - Athletic Works, velcro closure
Methods: Test set-up

- Instron 8521: servo-hydraulic testing machine

- Simulate mid-stance of gait
 - Neutral inversion/eversion
 - Parallel to ground (sagittal plane)

- Custom built inclines
 - 5°, 10°, 15°, 20°

- 2 conditions
 - Eversion and inversion
Methods: Test set-up

- Cyclic loading
 - Amplitude: 1350 N (Toh 1993)
 - Frequency: .95 Hz (Perry 1992)
- 6 cycles of data collected
- Tested with and without shoes
- Stiffness = force/deflection slope
 - Calculated at 800N
Results: All Feet Barefoot

* No statistical difference between feet A & B, and feet D & E
Results: All Feet Barefoot

* No statistical difference between feet A & B, and feet D & E
Results: All Feet with Shoe

- Influence of shoe
 - Lower stiffness of feet at all inclines compared to barefoot
 - Magnitude of decrease in stiffness varied by foot

Example: Foot A
Results: All Feet with Shoe

* No statistical difference between feet A, B, C
Results: All Feet with Shoe

* No statistical difference between feet A, B, C
Results: Barefoot vs. Shoe

- Influence of shoe: Shoe changes natural divisions among feet

<table>
<thead>
<tr>
<th>Subcategory</th>
<th>Feet</th>
<th>With shoe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A,B</td>
<td>1 A,B,C</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>2 D</td>
</tr>
<tr>
<td>3</td>
<td>D,E</td>
<td>3 E</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>4 F</td>
</tr>
</tbody>
</table>

≠
Stiffness properties of multiaxis feet will vary and feet will divide themselves into subcategories
- Hypothesis is supported

Shoe will influence the stiffness properties of the foot
- Hypothesis is supported
Discussion

- Limitations
 - Anonymity of feet
 - Variability of shoes
 - Only simulate part of gait cycle

- Future research
 - Similar studies on other foot classifications
 - Comprehensive study of all multiaxis feet
 - Improve classification system
References

Thank You

- Sean Zeller, MSPO
- Chris Hovorka, MS, CPO/L, FAAOP
- Mark Geil, PhD
- Jon Jowers
- Theresa Snow, PhD
- Yudan Wang
- Southern Prosthetic Supply
- Otto Bock HealthCare
Extra slides
Current State of Research

- Most current research compares feet to SACH; Little research compares feet within/across categories (Hafner 2005)
- Majority of research investigated sagittal plane; Paucity of data on frontal plane motion (SSC (JPO) 2005)
- Stiffness can be used to divide dynamic response feet into subcategories (Geil 2001)
- Prosthesis performance different while wearing shoes than barefoot (Han 2003)
Data collection

<table>
<thead>
<tr>
<th>Cycle</th>
<th>Stiffness (N/mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>n/a</td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
</tr>
<tr>
<td>3</td>
<td>446.15</td>
</tr>
<tr>
<td>4</td>
<td>442.85</td>
</tr>
<tr>
<td>5</td>
<td>452.39</td>
</tr>
<tr>
<td>6</td>
<td>448.63</td>
</tr>
<tr>
<td>7</td>
<td>440.86</td>
</tr>
<tr>
<td>8</td>
<td>447.2</td>
</tr>
<tr>
<td>9</td>
<td>456.14</td>
</tr>
<tr>
<td>10</td>
<td>447.17</td>
</tr>
<tr>
<td>11</td>
<td>436.68</td>
</tr>
<tr>
<td>12</td>
<td>446.16</td>
</tr>
<tr>
<td>13</td>
<td>442.45</td>
</tr>
<tr>
<td>14</td>
<td>439.67</td>
</tr>
<tr>
<td>15</td>
<td>436.91</td>
</tr>
<tr>
<td>16</td>
<td>450.51</td>
</tr>
<tr>
<td>29</td>
<td>444.39</td>
</tr>
<tr>
<td>30</td>
<td>440.82</td>
</tr>
</tbody>
</table>

Collect Data
Mean = 442.06
St. Dev = 5.47

Warm-up period
Influence of shoes

Foot A

Stiffness (N/mm)

Incline (°)

Difference

Foot A
Foot B
Foot C
Foot D
Foot E
Foot F

Incline (°)

Difference (N/mm)
Statistical Analysis

- Repeated measure design
- General linear model
 - Within subject factor: stiffness data
 - Between subject factor: prosthetic foot
- Multiple comparison test on feet
 - Post hoc: Bonferroni (p-value < .05)
Multiple Comparisons

Measure: MEASURE_1

Based on observed means.

* The mean difference is significant at the .05 level.

<table>
<thead>
<tr>
<th>(I) Foot</th>
<th>(J) Foot</th>
<th>Mean Difference (I-J)</th>
<th>Std. Error</th>
<th>Sig.</th>
<th>95% Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lower Bound</td>
</tr>
<tr>
<td>A</td>
<td>B</td>
<td>18.1303</td>
<td>7.92912</td>
<td>.442</td>
<td>-7.1541</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>57.7213**</td>
<td>7.92912</td>
<td>.000</td>
<td>32.4369</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>165.9417**</td>
<td>7.92912</td>
<td>.000</td>
<td>140.6572</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>191.1357**</td>
<td>7.92912</td>
<td>.000</td>
<td>165.8512</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>246.7530**</td>
<td>7.92912</td>
<td>.000</td>
<td>221.4868</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>-18.1303</td>
<td>7.92912</td>
<td>.442</td>
<td>-43.4148</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
<td>39.5910*</td>
<td>7.92912</td>
<td>.000</td>
<td>14.3066</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>147.8113**</td>
<td>7.92912</td>
<td>.000</td>
<td>122.5269</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
<td>173.0053*</td>
<td>7.92912</td>
<td>.000</td>
<td>147.7209</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>228.6227*</td>
<td>7.92912</td>
<td>.000</td>
<td>203.3383</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>-57.7213*</td>
<td>7.92912</td>
<td>.000</td>
<td>-83.0058</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>-39.5910*</td>
<td>7.92912</td>
<td>.000</td>
<td>-64.8754</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>108.2203*</td>
<td>7.92912</td>
<td>.000</td>
<td>82.9359</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>133.4143*</td>
<td>7.92912</td>
<td>.000</td>
<td>108.1299</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>189.0317*</td>
<td>7.92912</td>
<td>.000</td>
<td>163.7473</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>-165.9417**</td>
<td>7.92912</td>
<td>.000</td>
<td>-191.2261</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>-147.8113*</td>
<td>7.92912</td>
<td>.000</td>
<td>-173.0958</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>-108.2203*</td>
<td>7.92912</td>
<td>.000</td>
<td>-133.5048</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>-25.1940</td>
<td>7.92912</td>
<td>.051</td>
<td>-50.4784</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>25.1940</td>
<td>7.92912</td>
<td>.051</td>
<td>55.6174*</td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>-191.1357*</td>
<td>7.92912</td>
<td>.000</td>
<td>-216.4201</td>
</tr>
<tr>
<td>B</td>
<td>A</td>
<td>-173.0053*</td>
<td>7.92912</td>
<td>.000</td>
<td>-198.2898</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>-133.4143*</td>
<td>7.92912</td>
<td>.000</td>
<td>-158.6988</td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>-25.1940</td>
<td>7.92912</td>
<td>.051</td>
<td>-50.4784</td>
</tr>
<tr>
<td>F</td>
<td>A</td>
<td>25.1940</td>
<td>7.92912</td>
<td>.051</td>
<td>55.6174*</td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>-246.7530*</td>
<td>7.92912</td>
<td>.000</td>
<td>-272.0375</td>
</tr>
<tr>
<td>C</td>
<td>B</td>
<td>-228.6227*</td>
<td>7.92912</td>
<td>.000</td>
<td>-253.9071</td>
</tr>
<tr>
<td>D</td>
<td>B</td>
<td>-189.0317*</td>
<td>7.92912</td>
<td>.000</td>
<td>-214.3161</td>
</tr>
<tr>
<td>E</td>
<td>B</td>
<td>-80.8114*</td>
<td>7.92912</td>
<td>.000</td>
<td>-106.0958</td>
</tr>
<tr>
<td>F</td>
<td>B</td>
<td>-55.6174*</td>
<td>7.92912</td>
<td>.000</td>
<td>-80.9018</td>
</tr>
</tbody>
</table>