THE IMPROVEMENT OF MULTI-MODAL
FREIGHT TRANSPORT NETWORKS

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
By
Michael A. Mullens

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy in the
School of Industrial and Systems Engineering

Georgia Institute of Technology
December, 1978
THE IMPROVEMENT OF MULTI-MODAL FREIGHT TRANSPORT NETWORKS

Approved:

G.R. Sharp, Chairman

J.J. Jarvis

P.S. Jones

W.L. Dickerson

Ronald L. Rardin

Date approved by Chairman 26 Feb 79
ACKNOWLEDGEMENTS

This author expresses his appreciation to everyone who aided in this research effort. Dr. Gunter Sharp, advisor, Dr. Paul Jones, former advisor, Dr. Ron Rardin and Dr. Steve Dickerson, Thesis Advisory Committee members, and Dr. John Jarvis, Reading Committee member.

This research was sponsored by the U. S. Department of Transportation, under contracts DOT-OS-60512 and DOT-OS-80050.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgments</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>vii</td>
</tr>
<tr>
<td>Summary</td>
<td>ix</td>
</tr>
</tbody>
</table>

Chapter

I. INTRODUCTION AND REVIEW OF THE LITERATURE 1

1. The Single-Mode Network Improvement Problem 2
2. The Multi-Modal Network Improvement Problem 8
3. Freight Modal Choice Models 18
4. The Need for a New Formulation 21
5. Approach 22

II. THE FORMULATION 23

1. Modelling Assumptions 23
2. The Formulation 32

III. A SOLUTION METHODOLOGY 36

1. Continuous Optimal Adjustment: A Heuristic 36
 1.1 The General Methodology 36
 1.2 Modifiable Components and Parameters of the Methodology 40
2. P1(MS^0): The Multi-Modal Network Improvement Problem with Fixed Modal Splits 43
 2.1 Determination of Subproblem Objective Function H_j(f_j) 50
 2.2 Properties of Subproblem Objective Function H_j(f_j) 62
 2.3 Problem P2 (MS^0): The Uncapacitated, Concave Disutility Transportation Assignment Problem 67
 2.4 The Yaged Algorithm 70
 2.5 A Global Optimum-Seeking Extension to the Yaged Algorithm 73
3. Extending the ATC To Be Functions of Flow

4. Summary

IV. IMPLEMENTATION AND RESULTS

1. Implementation
 1.1 Program CNCASNB: A Two-Phase Solution Procedure for P2(\text{MS}^0)
 1.2 Data Requirements

2. Results
 2.1 Description of Test Runs
 2.2 Convergence of the Methodology
 2.3 Aggregate Characteristics of Solutions
 2.4 Detailed Characteristics of Solutions
 2.5 Summary of Results and Conclusions

V. AN EXTENSION OF THE METHODOLOGY TO INCLUDE MULTIPLE COMMODITIES

1. Modelling Assumptions and the Formulation
 1.1 Modelling Assumptions
 1.2 The Formulation

2. The Solution Methodology
 2.1 Continuous Optimal Adjustment Extended to Multiple Commodities
 2.2 MP1(\text{MMS}^0): The Multi-Commodity, Multi-Modal Network Improvement Problem with Fixed Modal Splits

3. Implementation and Results
 3.1 Implementation
 3.2 Results

VI. THE APPROXIMATION OF PROBLEM P2(\text{MS}^0) BY A GENERAL MULTI-COMMODITY FIXED CHARGE NETWORK FLOW PROBLEM: PROBLEM AP(\text{MS}^0)

1. Initial Formulations
 1.1 The Node-Arc Formulation
 1.2 The Arc-Path Formulation

2. An Approximation to Problem AP(\text{MS}^0)
 2.1 A Simplified Case
 2.2 The General Case
 2.3 The Development of An Alternative Convex Underestimator
 2.4 Problem Q(\text{MS}^0): An Approximation to Problem AP(\text{MS}^0)

3. A Proposed Solution Procedure for Problem Q(\text{MS}^0)
 3.1 Problem DQ(\text{MS}^0): The Dual of Q(\text{MS}^0)
 3.2 Dantzig-Wolfe Decomposition of Problem DQ(\text{MS}^0)
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>The Solution of the Subproblem $S(MS^0)$</td>
<td>199</td>
</tr>
<tr>
<td>4.</td>
<td>Problems Associated with the Proposed Solution Procedure</td>
<td>203</td>
</tr>
<tr>
<td>5.</td>
<td>Summary</td>
<td>206</td>
</tr>
<tr>
<td>VII.</td>
<td>CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH</td>
<td>207</td>
</tr>
<tr>
<td>1.</td>
<td>Conclusions</td>
<td>207</td>
</tr>
<tr>
<td>1.1</td>
<td>The Single-Commodity Problem</td>
<td>207</td>
</tr>
<tr>
<td>1.2</td>
<td>The Multi-Commodity Problem</td>
<td>209</td>
</tr>
<tr>
<td>2.</td>
<td>Recommendations for Future Research</td>
<td>211</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
<td>215</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td></td>
<td>273</td>
</tr>
<tr>
<td>VITA</td>
<td></td>
<td>277</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1. Approximate Aggregate Statistics of Problem</td>
<td>90</td>
</tr>
<tr>
<td>4-2. Test Runs</td>
<td>92</td>
</tr>
<tr>
<td>4-3. Effect of Alpha on Rate of Convergence</td>
<td>97</td>
</tr>
<tr>
<td>4-4. Effect of Phase I Procedure on Rate of Convergence (Micro-Iterations)</td>
<td>99</td>
</tr>
<tr>
<td>4-5. Solution Characteristics and Use of a Phase I Procedure</td>
<td>110</td>
</tr>
<tr>
<td>4-6. Investment by Mode</td>
<td>112</td>
</tr>
<tr>
<td>4-7. Investment by Mode and Type of Facility</td>
<td>114</td>
</tr>
<tr>
<td>4-8. Investment and Flow on HW Line Haul Arcs</td>
<td>115</td>
</tr>
<tr>
<td>5-1. Approximate Aggregate Statistics of Problem</td>
<td>141</td>
</tr>
<tr>
<td>5-2. Effect of Alpha on Rate of Convergence</td>
<td>144</td>
</tr>
<tr>
<td>5-3. Effect of Phase I Procedure on Rate of Convergence</td>
<td>146</td>
</tr>
<tr>
<td>5-4. Solution Characteristics and Use of a Phase I Procedure</td>
<td>158</td>
</tr>
<tr>
<td>5-5. Investment by Mode</td>
<td>159</td>
</tr>
<tr>
<td>5-6. Investment by Mode and Type of Facility</td>
<td>160</td>
</tr>
<tr>
<td>5-7. Investment and Flow on HW Line Haul Arcs</td>
<td>161</td>
</tr>
<tr>
<td>5-8. Investment and Flow on HW Line Haul Arcs</td>
<td>164</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>2-1.</td>
<td>Representation of a Network Zone</td>
</tr>
<tr>
<td>2-2.</td>
<td>Relationship Between Investment and an ATC</td>
</tr>
<tr>
<td>3-1.</td>
<td>Continuous Optimal Adjustment Applied to the Multi-Modal Network Improvement Problem</td>
</tr>
<tr>
<td>3-2.</td>
<td>Addition of Nodes and Arcs to Network</td>
</tr>
<tr>
<td>3-3.</td>
<td>$c_j(I_j)$ as a Function of I_j</td>
</tr>
<tr>
<td>3-4.</td>
<td>I^*_j as a Function of f_j for Category I Arcs</td>
</tr>
<tr>
<td>3-5.</td>
<td>I^*_j as a Function of f_j for Category II Arcs</td>
</tr>
<tr>
<td>3-6.</td>
<td>I^*_j as a Function of f_j for Category III Arcs</td>
</tr>
<tr>
<td>3-7.</td>
<td>$H_j(f_j)$ for Category I Arcs</td>
</tr>
<tr>
<td>3-8.</td>
<td>$H_j(f_j)$ for Category II Arcs</td>
</tr>
<tr>
<td>3-9.</td>
<td>$H_j(f_j)$ for Category III Arcs</td>
</tr>
<tr>
<td>4-1.</td>
<td>Micro-Flowchart for Algorithm</td>
</tr>
<tr>
<td>4-2.</td>
<td>Flowchart for CNCASNB</td>
</tr>
<tr>
<td>4-3.</td>
<td>Multi-State Zone Structure</td>
</tr>
<tr>
<td>4-4.</td>
<td>Initial Modal Split versus Rate of Convergence</td>
</tr>
<tr>
<td>4-5.</td>
<td>Total Savings versus Investment, All Runs</td>
</tr>
<tr>
<td>4-6.</td>
<td>User Savings versus Investment, All Runs</td>
</tr>
<tr>
<td>4-7.</td>
<td>Total Savings versus User Savings, All Runs</td>
</tr>
<tr>
<td>4-8.</td>
<td>Micro-Iterations versus Total Savings, All Runs</td>
</tr>
<tr>
<td>4-9.</td>
<td>Micro-Iterations versus Investment, All Runs</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>4-10.</td>
<td>Micro-Iterations versus User Savings</td>
</tr>
<tr>
<td>4-11.</td>
<td>Total Savings versus Initial Modal Split</td>
</tr>
<tr>
<td>4-12.</td>
<td>Investment versus Initial Modal Split</td>
</tr>
<tr>
<td>4-13.</td>
<td>User Savings versus Initial Modal Split</td>
</tr>
<tr>
<td>5-1.</td>
<td>Macro Flowchart for the Multi-Commodity Algorithm</td>
</tr>
<tr>
<td>5-2.</td>
<td>Flowchart for MCNCASB</td>
</tr>
<tr>
<td>5-3.</td>
<td>Initial Modal Split versus Rate of Convergence</td>
</tr>
<tr>
<td>5-4.</td>
<td>Total Savings versus Investment, All Runs</td>
</tr>
<tr>
<td>5-5.</td>
<td>User Savings versus Investment, All Runs</td>
</tr>
<tr>
<td>5-6.</td>
<td>Total Savings versus User Savings, All Runs</td>
</tr>
<tr>
<td>5-7.</td>
<td>Micro-Iterations versus Total Savings, All Runs</td>
</tr>
<tr>
<td>5-8.</td>
<td>Micro-Iterations versus Investment</td>
</tr>
<tr>
<td>5-9.</td>
<td>Micro-Iterations versus User Savings</td>
</tr>
<tr>
<td>5-10.</td>
<td>Total Savings versus Initial Modal Split</td>
</tr>
<tr>
<td>5-11.</td>
<td>Investment versus Initial Modal Split</td>
</tr>
<tr>
<td>5-12.</td>
<td>User Savings versus Initial Modal Split</td>
</tr>
<tr>
<td>6-1.</td>
<td>Piecewise Linear Underestimate to the Category II Arc Disutility Function</td>
</tr>
<tr>
<td>6-2.</td>
<td>Case I Arc Disutility Surface</td>
</tr>
<tr>
<td>6-3.</td>
<td>Case I Arc Disutility Surface and Type III Estimator</td>
</tr>
<tr>
<td>6-4.</td>
<td>Case II Arc Disutility Surface and Type III Estimator</td>
</tr>
<tr>
<td>6-5.</td>
<td>Case III Arc Disutility Surface and Type III Estimator</td>
</tr>
<tr>
<td>6-6.</td>
<td>Case IV Arc Disutility Surface and Type III Estimator</td>
</tr>
</tbody>
</table>
Although the concept of multi-modal freight transport planning has been given little serious attention in the past, public sector transport planners are becoming increasingly concerned with the efficient development of all freight transport modes. Existing network improvement algorithms concentrate on the improvement of a single mode and, thus, are of little value in multi-modal freight transport planning. In this thesis a multi-modal freight transport improvement problem is formulated, and a heuristic solution methodology is developed for the solution of large scale problems. The problem is concerned with the modification of arcs on a multi-modal network so that total disutility associated with the network is minimized. Distinctive features of the formulation include a mode abstract multinomial logit modal split model and convex arc transport characteristic improvement functions. The heuristic solution methodology developed to solve the problem is based on the general Continuous Optimal Adjustment heuristic suggested by Steenbrink. The principal component of the methodology is the solution of a concave disutility transportation assignment problem. Two methods are developed to solve this problem. The first uses Dantzig-Wolfe decomposition to solve an arc-path formulation of the general multi-commodity fixed charge network flow problem. The second is a heuristic based on the local optimum seeking procedure developed by Yaged. The
Continuous Optimal Adjustment solution methodology was programmed using the latter solution procedure for the transportation assignment problem. Thirty test runs were made on a large scale test problem derived from the Multi-State Transportation Corridor research program. A number of conclusions are reached after analyzing the results, the most important being that the solution methodology is viable. Although solution times are long, this is not unusual for problems of this size or design construction projects of this scale. Solution times may be shortened considerably by proper selection of methodology parameters. As a final step, the solution methodology is extended to include multiple transport commodity classes.
CHAPTER I

INTRODUCTION AND REVIEW OF THE LITERATURE

The purpose of this research is to formulate a multi-modal freight transport network improvement problem, and to develop a practical methodology for its solution. The network improvement problem is concerned with the modification of arcs on a multi-modal network so that the total disutility associated with the network is minimized. The present research is motivated by needs encountered in a sponsored research program conducted by a consortium of nine universities of the U.S. Department of Transportation [Jones, 1977]. The primary objective of that program is the development of a general analytical procedure which jointly identifies economic development opportunities and the transportation services needed to assure their viability. An integral component of that procedure is a methodology which can be used to identify desirable improvements in a large-scale multi-modal freight transport network. A large-scale network is defined as one with about 300 nodes and 1000 arcs.

This particular problem has been formally addressed in the literature, although this fact represents more the historical development of current multi-modal freight transportation than the true importance of the problem. As background, intercity freight moves primarily on three independent transport modes: highway, rail, and water. From the inception of current multi-modal freight transportation, the three
modes have been owned and operated independently. Fierce modal competition, mistrust, and national transportation policy encouraged and even legally required their independence. A natural consequence of modal independence was that, for all practical purposes, system improvements were performed independently for each mode. Waterway improvements, highway improvements, and railway improvements were planned by the U.S. Army Corps of Engineers, Federal and state highway agencies, and railroad companies, respectively. As a result, almost all network improvement models which were developed for or are adaptable to freight networks are oriented toward a specific mode. Since the single-mode problem has been widely studied and is closely related to the multi-mode problem, it is useful to review previous work in this area.

1. The Single-Mode Network Improvement Problem

Both the single-mode and multi-mode network improvement models can be classified in the following ways: [Dantzig, 1976]

(1) Whether the investment decision variables are discrete or continuous.

(2) Whether flow assignment is based on user equilibrium (first principle of Wardrop) or systems optimal (second principle of Wardrop) [Potts and Oliver, 1972].

(3) Whether congestion is allowed.

Dantzig classified some previous models using these factors. After analyzing the ability of the various models to solve large-scale network problems, Dantzig reached several important conclusions:

(1) For problems with discrete investment decision variables, integer programming techniques, such as branch and bound, will usually be necessary. As a result, such models will not have the ability to solve large-scale network problems.
(2) For problems utilizing user equilibrium traffic assignment and congestion, a more complex objective function is required. Again, the result is an inability to solve large-scale network problems. It should be noted that with no congestion effects a user equilibrium traffic assignment reduces to a systems optimal assignment.

Thus, Dantzig concluded that only a network improvement model utilizing continuous investment decision variables and systems optimal assignment could handle large-scale networks. This will be the approach followed in this research. Such a model may be formulated as:

Problem S: \[\text{Min } \sum_{j \in A} \left[H_j(f_j, I_j) + \lambda G_j(I_j) \right] \] (1-1)

\[\text{s.t. } \sum_{j \in W_i} f^r_j - \sum_{j \in V_i} f^r_j = h^r_i \quad \forall i \in N \quad r \in 0 \] (1-2)

\[f^r_j = \sum_{r \in 0} f^r_j \quad \forall j \in A \] (1-3)

\[L_j \leq I_j \leq U_j \quad \forall j \in A \] (1-4)

\[f^r_j \geq 0 \quad \forall j \in A \quad r \in 0 \] (1-5)

where:

\[N \equiv \text{set of nodes} \]
\[A \equiv \text{set of arcs} \]
\[O \equiv \text{set of origins} \]
\[W_i \equiv \text{set of arcs originating at node} \ i \]
\[V_i \equiv \text{set of arcs terminating at node} \ i \]
The objective (1-1) is to minimize the total social transportation cost, both travel time and investment. Constraint set (1-2) is the familiar conservation of flow equations. Constraint set (1-3) forces total flow on each arc to equal the sum of flow over all origins. Constraint set (1-4) sets lower and upper bounds on investment. Constraint set (1-5) forces nonnegative arc flows.

The actual form of the model and the resulting solution procedure depend upon the functions H_j. Dafermos assumed that total arc travel time was a quadratic function of arc flow and that investment only affected capacity [Dafermos, 1968]. Using a systems optimal assignment,
she proved that a gradient technique could be used to reach optimality. Morlok assumed that total arc travel time was a piecewise linear function of arc flow and that investment only shifted the location of the breakpoints [Morlok, 1969]. Using systems optimal assignment, he solved the resulting problem using linear programming. Steenbrink assumed that total arc travel time was a nonlinear differentiable function of arc flow, capacity, and free flow travel time and that investment only affected capacity [Steenbrink, 1974]. The function was similar to the Federal Highway Administration (FHWA) travel time curve [COMSIS, 1973]. To solve the problem using systems optimal assignment, Steenbrink developed the following decomposition procedure: [Steenbrink, 1974]

1. A subproblem is solved for each network arc.
2. The results of these subproblems are substituted into the objective function to obtain a master problem equivalent to the nonlinear transportation assignment problem.
3. The assignment problem is solved to obtain the optimal flows of the original problem.

Dantzig showed that Steenbrink's decomposition technique would work equally well on the total arc travel time functions proposed by Dafermos and Morlok and that the technique would be an efficient method for solving large-scale network problems [Dantzig, 1976]. He also showed that, in general, one cannot modify unit arc travel time by investment without introducing nonconvexities into the objective function. One exception to this finding is through the use of piecewise-linear total travel time functions where distinct new arcs are introduced to represent distinct unit travel time options [Dantzig, 1976, Ch. 4].

It is interesting to note that heuristic procedures have not been
developed extensively for problem S. There are two primary reasons. The first is that most researchers have made assumptions which result in a linear or convex objective function. The second is that many researchers do not deal with large-scale networks. For example, Dafermos and Morlok each assumed that investment could only affect capacity and could not affect free flow travel time [Dafermos, 1968; Morlok, 1969]. On the other hand, Steenbrink used the FHWA travel time curve which assumes that travel time is a function of capacity and, thus, of investment [Steenbrink, 1974]. This assumption led to a nonconvex objective function in S. When Steenbrink performed the decomposition described previously, the resulting master problem took the form of a nonconvex transportation assignment problem. Had Steenbrink been modelling a smaller network, he might have used a branch and bound scheme such as that of Rech and Barton to solve the problem [Rech and Barton, 1970]. However, since he was modelling the entire Dutch highway system, Steenbrink concluded that a branch and bound procedure was not tractable. Thus, Steenbrink developed a heuristic transportation assignment routine called SALMOF (Stepwise Assignment according to Least Marginal Objective Function). Heuristics are commonly used on the single-mode network design problem with discrete variables for the same reason. These heuristics include those of Scott, Billheimer, O'Connor, Barbier, and Haubrich [Scott, 1969; Billheimer, 1970; O'Connor, 1970; Barbier, 1966; Haubrich, 1972].

LeBlanc proposed a rail network improvement model [LeBlanc, 1976]. The formulation was stated as:
Min \[\sum_{j \in A} [H_j(f_j, I_j) + \lambda G_j(I_j)] \]

s.t. \[\sum_{j \in W_i} f_j - \sum_{j \in V_i} f_j = h_i \quad \forall i \in N \]

\[I_j \leq c_j \quad \forall j \in A \]

\[0 \leq f_j \leq U_j \quad \forall j \in A \]

where:

\[H_j(f_j, I_j) = I_j(f_j)^{1/2} \]

\[\lambda G_j(I_j) = b_j(I_j - c_j)^2 + d_j \]

\[b_j, c_j, d_j \equiv \text{parameters of model} \]

\[h_i = \begin{cases} -D_i & \text{if } i \text{ is destination node} \\ S_i & \text{if } i \text{ is a source node} \\ 0 & \text{otherwise} \end{cases} \]

\[D_i \equiv \text{net demand at node } i \]

\[S_i \equiv \text{net supply at node } i \]

\[U_j \equiv \text{upper bound on flow on arc } j \]

One should note that the objective function is neither convex nor concave.

Several differences in the constraint set of the LeBlanc model (1-7)-(1-10) and the standard formulation (1-1)-(1-5) are discernible:

1. The LeBlanc formulation is a single commodity transshipment problem with many origins, while the standard formulation is a multi-commodity problem with one distinct commodity per origin.
(2) The LeBlanc formulation has upper bounds (1-10) in arc flow while the standard formulation does not.

(3) The LeBlanc formulation has no lower bounds on the investment decision variables.

LeBlanc proved that constraint set (1-9) was redundant and, thus, the objective could be transformed into a strictly concave function over f_j. The resulting problem is a concave transshipment problem which LeBlanc solved by using a branch and bound procedure. Since the LeBlanc formulation does not allow one to preselect origin-destination (O-D) flows, it will not be considered further.

2. The Multi-Modal Network Improvement Problem

It is interesting to consider the multi-modal problem in terms of the single-mode problem. Consider three single-mode problems, one for each mode. Adding the objective functions and combining the constraint sets, one is left with a multi-modal design problem which is separable by mode. However, as it now stands, this problem is not a complete representation of the multi-modal problem. For example, O-D demands are fixed for each mode, which implies that investment in one mode will not affect demand on it or the other two modes. Recent results in freight demand and modal split modelling indicate that O-D demand for any mode is a function of the transport characteristics (cost, time, etc.) of the given mode as well as of those of competing modes [Creighton, 1977; Townsend, 1969; Sharp, 1977; Herendeen, 1969]. Thus, if one makes the reasonable assumption that investment in a mode will modify any of its transport characteristics, then one must also conclude that the model described above is inadequate. Furthermore, the model does not recognize
the possibility of multi-modal shipments. To complete the model one would need to make two additions. The first is a set of modal demand or split relationships which relate O-D modal demand, the h_i^r, to the transport characteristics and, thus, to investment. The second is a set of intermodal transfer arcs which recognize the possibility of inter-modal shipments. Theoretically, the current independent planning of modal subsystem improvements represents a single stage modal decomposition of the multi-mode problem. Such a decomposition procedure would yield a global optimal solution to the initial problem described above. However, there is no guarantee that this procedure will yield an optimal solution to the complete multi-modal problem.

While the formulation proposed for this research is developed principally for freight transport networks, this is not to say that the methodology could not be extended to passenger transport. In fact, the little research that has been done on multi-modal network design and improvement has been related to passenger transport. Since the passage of the Federal Aid Highway Act of 1962, urban passenger transportation planning has, at least superficially, been multi-modal. Two multi-modal, passenger network design and improvement models have been formulated for use in the urban setting. Creighton has developed a model to determine optimal aggregate investment in individual (highway) and group (mass transit) transportation systems in an urban area [Creighton, 1966]. The study area involved is a one-square mile section of urban land, for which investment decisions are to be made, surrounded by a large urban area of uniform density, trip lengths, transportation facilities, etc. The methodology is essentially to construct a response surface of total
daily transportation cost, including user and investment cost, as a function of the spacing of individual and group transport facilities in the study area. Spacing and user costs on a mode are assumed to be simple functions of investment in the mode. Spacing is assumed uniform throughout the study area. Although the author does not explicitly state how trips are divided between individual and group transport, he apparently divides trips on the basis of spacing and, thus, investment. Having constructed the response surface, one selects the combination of spacings which yield the minimum point on the surface.

Morlok has developed a methodology utilizing linear programming (LP) for finding the optimal combination of modal services in an urban transportation corridor. The study area involved is a linear corridor radiating from the central business district (CBD). The corridor is assumed to be segmented into a finite number of linear zones with each zone spanned by a road segment. The decision variables of the problem are:

(1) Zone through which the rapid transit line should be completed from the CBD.

(2) Capacity of the rapid transit line on each completed segment of the corridor.

(3) Capacity of each road segment in the corridor.

(4) Slowness on each road segment in the corridor.

(5) Flow on each segment for each type of facility.

Variables 2 through 5 are assumed continuous. The objective of the analysis is to minimize the total annual out-of-pocket cost of transportation, including:
(1) Annual road capital cost =

\[
\sum_{i=1}^{n} \left[C_i c_i + M_i \left(1 - \frac{m_i}{M_i} \right) + S_i (m_i - s_i) \right]
\]

(1-14)

where:

- \(C_i \) = annual unit capacity cost
- \(c_i \) = capacity
- \(S_i \) = annual unit cost of additional non-peak period slowness, slowness is expressed in minutes per mile
- \(s_i \) = non-peak period slowness
- \(n \) = number of zones in corridor
- \(M_i \) = annual unit peak period speed cost, normalized to be consistent with slowness units
- \(m_i \) = peak period slowness
- \(\bar{M}_i \) = maximum technological slowness

(2) Annual vehicle operating costs = \(\sum_{i=1}^{n} V_i v_i \)

(1-15)

where:

- \(V_i \) = cost per vehicle on segment \(i \)
- \(v_i \) = annual volume on segment \(i \)

(3) Annual rapid transit capital and operating cost =

\[
C_{rt} + \sum_{i=1}^{n} P_i p_i
\]

(1-16)

where:

- \(C_{rt} \) = capital cost of completing rapid transit line (dependent on length of line)
\(P_i \equiv \text{annual cost per unit of peak capacity} \)

\(p_i \equiv \text{peak period demand for rapid transit from zone} \ i \)

It should be noted that the assumed time cost of travelers is not included in the objective. Optimization of the objective is subject to a number of constraints which include:

(1) Modal choice constraints:

\[
P_j = Y_j \sum_{i=1}^{h} \frac{L_i m_i + H_i}{R_j + W_j} + B_j \quad h = \begin{cases} j & \text{if } j \leq k \\ k & \text{if } j > k \end{cases} \quad (1-17)
\]

where:

\(L_i \equiv \text{length of zone} \)

\(R \equiv \text{uniform average slowness of transit} \)

\(k \equiv \text{segment through which rapid transit line is completed} \)

\(H_i \equiv \text{from the point of modal decision, the time required to get from decision point to corridor highway plus that required to get from corridor highway in CBD to job.} \)

\(Y_j, B_j \equiv \text{parameters of the modal choice model} \)

Several characteristics of the modal choice constraints should be noted:

(a) The transit travel demand from any origin is a simple linear function of the ratio of highway travel time to transit travel time at the point of modal decision.

(b) Once the rapid transit line is fixed, the denominator of the travel time ratio becomes a constant. This implies that the resulting constraint is now linear. This would not be the case if one could vary the speed or frequencies of service on the line.
(2) Capacity constraints stipulate that total capacity on any segment must equal total demand.

(3) Level of service constraints specify minimum levels of transport service in the corridor.

(4) Technological constraints place lower and upper bounds on decision variables.

Constraint sets 2, 3, and 4 are linear. The solution procedure suggested by Morlok is obvious, given the formulation. For each zone in the corridor, assume that the transit line extends from the CBD to this zone. This fixes C_{rt} in the objective function and the denominator of the modal choice constraints, leaving a linear program which can be easily solved. After solving all linear programs, one selects the optimal values of the decision variables associated with the linear program having the minimum value of the objective function.

There has been only one significant study of the more general case of intercity, multi-modal network design [Morlok, 1969]. This study concerned the passenger transport network in the Northeast corridor. Morlok and his associates developed a methodology utilizing dynamic programming (DP) and LP for solving a multi-period, multi-modal, intercity, passenger transport network design and improvement problem. The study area can be any region representable by a network rather than the limiting cases discussed previously. The decision variables include:

(1) New additions to the network for each time period.

(2) Level of service characteristics for existing arcs for each time period.

(a) Capacity and travel time of highway arcs.

(b) Capacity and frequency of movements on common carrier arcs.
(3) Arc flows for each time period.
The second and third sets of variables are assumed continuous. The objective of the analysis is to minimize the total discounted out-of-pocket costs of the network over the desired time span.

The solution methodology involved the use of DP in order to make choices concerning the integer variables, the addition of new arcs over time, and the use of LP to make choices regarding the values of the continuous variables. Each stage of the DP corresponds to one time period. Alternatives to be considered at each stage correspond to the different alternatives of fixed plant. For each such fixed network there remains the task of selecting the optimal values of the continuous variables. This can be accomplished by solving what Morlok calls the Optimal Multi-Modal Network Operation Model. This model essentially corresponds to the multi-modal network improvement problem.

The Optimal Multi-Modal network Operations Model has a set of decision variables which include all the continuous variables of the original problem for a single time period. The objective is to minimize the total, out-of-pocket costs associated with a given network configuration for a single time period. These costs includes:

\[(1) \text{ Improvement cost on highway arcs } = \sum_{j \in A_{HW}} \left(c_j C_j + T_j T_j^j + \hat{T}_j \right)\]

(1-18)

where:

\[C_j = \text{ annual unit capacity cost on arc } j \]
\[c_j = \text{ additional vehicle capacity on arc } j \]
\(T_j \equiv \text{annual unit cost of travel time on arc } j, \text{ a negative number} \)

\(t_j \equiv \text{travel time on arc } j \)

\(\hat{T}_j \equiv \text{annual cost associated with designing a highway for a designated maximum speed} \)

\(A_{\text{HW}} \equiv \text{set of Highway (HW) arcs} \)

(2) **Highway operating cost** =

\[
\sum_{j \in A_{\text{HW}}} F_j \sum_{r \in \emptyset} \sum_{d \in D_r} \sum_{p \in P_{rd}} d_{rd, \text{HW}, p} (1/E) (1-19)
\]

where:

\(F_j \equiv \text{annual cost of daily auto trip on fixed arc } j \)

\(d_{rd, \text{HW}, p} \equiv \text{daily demand from } r \text{ to } d \text{ via highway path } p \)

\(E \equiv \text{average auto occupancy} \)

\(\emptyset \equiv \text{set of all origins} \)

\(D_r \equiv \text{set of all destinations corresponding to origin } r \)

\(P_{rd}^j \equiv \text{set of all paths between } r \text{ and } d \text{ containing arc } j \)

(3) **Common Carrier operating costs** =

\[
\sum_{m \in M} \sum_{j \in A_m} (F_j f_j + Y_j y_j) \quad (1-20)
\]

where:

\(F_j \equiv \text{annual unit cost of trip frequency on arc } j \)

\(f_j \equiv \text{daily vehicle trip frequency on arc } j \)

\(Y_j \equiv \text{annual unit cost of vehicle capacity on arc } j \)
\(y_j \equiv \text{vehicle capacity on arc } j \)

\(M \equiv \text{set of common carrier modes} \)

\(A_m \equiv \text{set of arcs corresponding to mode } m \)

Optimization of the operations model is subject to a set of constraints which include demand constraints for common carrier modes:

\[
\sum_{p \in P_{rd,m}} d_{rd,m,p} \geq U_{rd} + F \sum_{p \in P_{rd,m}} f_{rd,m,p} + P(p_{tm} + D_{rd}p_{vm}) + T_{trd,m} - P(p_{t,best} + D_{rd}p_{v,best}) - T_{trd,best} \geq 0 \tag{1-21}
\]

where:

\(f_{rd,m,p} \equiv \text{frequency of path } p \text{ on mode } m \text{ from } r \text{ to } d \)

\(p_{t,m} \equiv \text{threshold price associated with price of trip on mode } m \)

\(p_{t,best} \equiv \text{threshold price associated with price of trip on minimum price mode} \)

\(D_{rd} \equiv \text{distance between } r \text{ and } d \)

\(p_{v,m} \equiv \text{price per unit distance associated with price of trip on mode } m \)

\(p_{v,best} \equiv \text{price per unit distance associated with price of trip on minimum price mode} \)

\(t_{rd,m} \equiv \text{travel time of trip from } r \text{ to } d \text{ on mode } m \)

\(U_{rd}, F, P, T \equiv \text{parameters of model} \)

\(P_{rd,m} \equiv \text{set of paths by mode } m \text{ between } r \text{ and } d \)

Several characteristics of the common carrier modal demand constraints should be noted:

(1) The constraints place a lower bound on total demand over all
mode m paths between r and d.

(2) This modal demand on the shortest path is a function of the sum of frequencies over all paths.

(3) Prices are set exogenously with auto assumed best.

(4) Time on common carrier paths is set exogenously. Time between a city pair by auto is equal to average time over all auto paths between a city pair.

For the auto mode the constraints are identical except for the frequency term being fixed. There are also included a series of other, linear constraints relating to technology, accessibility, social states, profit, and budgets.

In the same study, Morlok extended the operations model to include certain nonlinear relationships. In the objective function he removed highway travel time as a decision variable and, instead, made it a nonlinear function of free-flow arc travel time, arc capacity, and arc flow according to the FHWA travel time curve. In the demand constraints he replaced the linear demand functions with multiplicative, nonlinear functions based on a Mathematica study [Mathematica, 1967]. Both types of these new nonlinear constraints are log-linear, and, thus, the resulting problem must be solved by separable programming instead of LP.

Steenbrink, discussing possible extensions of his single-mode network design methodology, considered the multi-modal, intercity, passenger transport network improvement problem, but conceded that difficulties in formulation and solution have resulted in few attempts at solving the problem [Steenbrink, 1974]. He suggested that branch and
bound solution procedures might be a fruitful area for very small networks, but that heuristics may be necessary for larger networks. To demonstrate the difficulties inherent in a heuristic procedure, he attempted to solve a very simple two node, two arc problem, where each arc corresponded to a different mode. He used a heuristic he termed continuous optimal adjustment. The procedure converged to several possible solutions depending upon the initial starting solution; however, this was due as much to the nonconvexity of the problem as to performance of the heuristic. Finally he suggested a decomposition of the problem into a number of modal subproblems with a controlling master problem defining overall policy.

3. Freight Modal Choice Models

As noted previously, an important component in a multi-modal, freight transport network improvement formulation is the freight modal choice model. While freight modal choice has not received the attention of passenger modal choice, a significant amount of research has been completed. The results of this research are thoroughly summarized by Creighton [Creighton, 1977]. Three of the most widely used freight modal choice models are the inventory theoretic model, the multiplicative freight modal choice model, and the multinominal logit model.

In 1969 Townsend, attempting to model freight modal choice in the Northeast corridor, developed an inventory theoretic freight modal choice model [Townsend, 1969]. The general form of the model, given a specific O-D pair, is as follows:
\[S_{m,n} = \frac{1}{1 + \left(\frac{d_m}{d_n} \right)^B} \]

(1-22)

where:

\[S_{m,n} = \frac{W_m}{W_m + W_n} \]

\(W_m \) ≡ tonnage moved from O to D by mode m

\(d_m \) ≡ unit disutility of shipping from O to D by mode m

\(B \) ≡ parameter of model

\[d_m = a_1 c_m + a_2 t_m \]

(1-24)

\(c_m \) ≡ unit cost of shipping from O to D by mode m

\(t_m \) ≡ travel time from O to D by mode m

\(a_1, a_2 \) ≡ parameters of disutility function

Herendeen used a multiplicative freight modal choice model of the form: [Herendeen, 1969]

\[S_m = B \left(\frac{C_{Best}}{C_m} \right)^{a_1} \cdot \left(\frac{t_{Best}}{t_m} \right)^{a_2} \cdot \left(\frac{r_{Best}}{r_m} \right)^{a_3} \]

(1-25)

where:

\(C_m \) ≡ unit cost of shipping from O to D by mode m

\(C_{Best} \) ≡ unit cost of shipping from O to D by mode having minimum cost

\(t_m \) ≡ transport time from O to D by mode m

\(t_{Best} \) ≡ transport time from O to D by mode with minimum travel time
\[r_m \equiv \text{reliability of shipping from 0 to D by mode } m \]
\[r_{\text{Best}} \equiv \text{reliability of shipping from 0 to D by mode with best reliability} \]
\[B, a_1, a_2, a_3 \equiv \text{parameters of model} \]

Sharp, after testing a number of model forms, concluded that the multinomial logit modal split model provided a reasonable fit to commodity flow data [Sharp, 1977]. Given a specific O-D pair, the multinomial logit model may be expressed as:

\[S_m = \frac{U_m}{\sum_{n \in M} U_n} \quad (1-26) \]

where:

\[S_m \equiv \text{share of flow moving between 0 and D by mode } m \]
\[U_m \equiv \text{unit utility associated with moving from 0 to D by mode } m \]
\[M \equiv \text{set of all modes} \]
\[U_m = \text{Exp} (a_1 c_m + a_2 t_m + a_3 v_m) \quad (1-27) \]
\[c_m \equiv \text{unit cost of shipping from 0 to D by mode } m \]
\[t_m \equiv \text{transport time from 0 to D by mode } m \]
\[v_m \equiv \text{transport time variability from 0 to D by mode } m \]
\[a_1, a_2, a_3 \equiv \text{model parameters (theoretically nonpositive)} \]

Each of these models were fit using data from a number of different commodities. Comparison of fit between the models is difficult if not impossible. This results from several factors:
(1) Models were calibrated using different data sets and different commodities.

(2) Different models required different calibration techniques. For example, Herendeen used linear regression, Sharp used linear regression and nonlinear search, and Townsend used iterative, nonlinear techniques.

4. The Need for a New Formulation

The need to develop a new formulation and solution procedure rather than adapt one of the existing passenger formulations is a result of several factors. First, Creighton's formulation and Morlok's first formulation model specific applicational settings rather than the more general problem. Creighton assumes a uniform spacing of transport facilities throughout a square parcel of urban land, while Morlok assumes a linear corridor. Morlok's recent formulation attempts to model the more general problem. However, he appears to have sacrificed much to achieve linearity or log-linearity, such as:

(1) All improvement cost functions are assumed linear over the region of interest.

(2) Travel time on existing common carrier arcs cannot be modified by investment.

(3) Operating costs on arcs cannot be modified by investment.

(4) Demand functions for a given mode do not realistically consider the level of service characteristics on competing modes.

(a) Cost - although the actual form of the constraints implies that the costs of the given and competing modes are considered, costs are fixed exogenously (not as a function of investment in improvements) and the highway mode is assumed the minimum cost mode.

(b) Time - time for common carrier modes is fixed exogenously.
5. **Approach**

The specific objectives of the proposed research are presented below together with its scope and limitations, and the methodology used and the expected nature of conclusions.

1. **Specific objectives**

 (a) Given the problem as formulated in Chapter II, investigate general approaches for its solution. This investigation will focus on the relationship between the single-mode and multi-modal improvement problems.

 (b) Select the general approach appearing to have the most promise and use it to develop a functional solution procedure.

2. **Scope and limitations**

 (a) Only the formulation developed in Section II and those extensions which appear to be amenable to the selected procedure are considered.

 (b) Only those approaches which are capable of solving realistic-sized problems are considered.

 (c) Only the most promising general approach is extended into a functional solution procedure.

3. **Methodology**

 (a) Postulate several possible solution approaches to the problem.

 (b) Select the approach that appears to have the most promise, that is, that approach which appears likely to achieve a good solution for a realistic-sized problem in a reasonable amount of CPU time.

 (c) Develop the approach into a functional algorithm and program it in the FORTRAN language for use on the Cyber 74 computer system. This program will consist of a battery of subprograms, some of which, such as shortest path and assignment routines, may have already been programmed as part of the ongoing Multi-State University Research Program [Jones, 1977].

 (d) Test the algorithm on a problem arising from the Multi-State University Research Program.
CHAPTER II

THE FORMULATION

1. Modelling Assumptions

Certain aspects of the proposed formulation are considered fixed. First, the study area is represented by a finite number of zones. Second, all flow on the network belongs to the same transport commodity class. By a transport commodity class, it is meant goods or products which have similar transport characteristics. This differs from the concept of a math programming commodity class which typically corresponds to flow from a specific origin. Third, origin-destination (O-D) flows of the commodity are known and fixed. This item has several implications:

(1) Theoretically, network improvements will not significantly upset existing or proposed production-market relationships.

(2) Practically, even though only one transport commodity class is being considered, a number of math programming commodity classes must be considered.

Fourth, zones and the intercity freight transport system are represented by a network composed of nodes and arcs. By the intercity freight transport system one means all transportation facilities used to move freight in the study area. This includes:

(1) Line-haul facilities such as highways, railways and waterways.

(2) Loading and unloading facilities for each mode.

(3) Forwarding facilities for each mode such as railroad classification yards.
(4) Intermodal transfer facilities.

The actual network is constructed in the following manner:

(1) Each zone is represented by a node.

(2) Associated with each zonal node is a set of artificial nodes, an inbound and an outbound artificial node for each mode serving the zone.

(3) Each one-way modal line-haul facility is represented by a one-way arc from the outbound node associated with the origin zone and mode to the inbound node associated with the destination zone and mode. Two-way facilities are represented as two one-way facilities.

(4) Each modal loading facility is represented by a one-way arc from the zonal node to the appropriate outbound node. Similarly, each modal unloading facility is represented by a one-way arc to the zonal node from the appropriate inbound node. A combined loading and unloading facility is represented as separate loading and unloading facilities.

(5) Each modal forwarding facility is represented by a one-way arc from the inbound node to the outbound node associated with the zone and mode. For convenience, such facilities are located at zonal nodes.

(6) Each one-way intermodal transfer facility is represented by a one-way arc from the inbound node associated with the unloading mode to the outbound node associated with the loading mode. Two-way intermodal transfer facilities are represented as two one-way facilities. Such facilities are located at zonal nodes.

A representation of this procedure at a zonal node for the two mode case is shown in Figure 2-1 below.

Fifth, each arc in the network has an associated set of arc transport characteristics (ATC). This set is quite large and includes length, unit cost of transport, transport time, transport time variability, capacity, and congestion effects, among others. In the formulation, however, it is sufficient to recognize only those ATC which describe the arc in sufficient detail to allow flow assignment and
Fig. 2-1. Representation of a Network Zone
investment decisions to be made. Jones has identified all of the above mentioned ATC, except length, as being important [Jones, 1977]. In the interest of simplicity the formulation assumes arcs to be uncapacitated and to suffer no congestion effects due to freight traffic. Note that the latter assumption implies that the ATC are not functions of arc flow. Since intercity line-haul facilities typically operate at levels far below capacity, the assumption regarding congestion is probably valid for them. In the case of intercity highways, freight traffic represents such a small portion of total traffic that even a moderate change in freight traffic is unlikely to significantly increase transport time, cost, or time variability. However, this assumption does not necessarily accurately model terminal related facilities. The resulting set of ATC to be used in the formulation includes transport cost, transport time, and transport time variability.

The sixth assumption is actually a set of assumptions relating to the movement of 0-D flows on the network. From basic micro-economic theory, one can assume that each shipper will transport his commodity to market via the unique modal path which he perceives as yielding the maximum utility. For purposes of this discussion, the multi-modal option is considered a distinct mode. However, each 0-D commodity flow data point is the result of an aggregation over time of all shippers of a single class of commodities produced in an origin zone and marketed in a destination zone. Furthermore, shippers have different perceptions of utility; all commodities comprising a single class may not be homogeneous with respect to shipping characteristics; shippers may be located far from each other in the origin zone; and actual markets may be located
for from each other in the destination zone. Thus, the aggregated flow represented by one O-D data point is often transported on more than one modal path instead of a unique "best" path. This is shown in the U.S. Census of Transportation Commodity Flow Data Base [Bureau of the Census, 1975].

In order to reasonably model this phenomenon without being forced to accept a much finer breakdown of commodities and zones, one can use the concept of modal split. Certain detailed assumptions aid in this analysis:

1. Given an O-D commodity flow, for each mode there is a unique path on which all flow on the mode will occur.

2. This unique modal path is defined as the one having maximum utility to the shipper over the set of all other paths for the mode.

To perform adequately in the proposed formulation, a modal split model should possess three properties:

1. It should provide a reasonable fit to existing flow data.

2. It should be mode abstract so that the multi-modal option may be considered.

3. A monotonic transformation of the path utility function should be linear in the ATC along the path. This will facilitate use of a standard shortest path algorithm to determine maximum utility modal paths, as well as provide a convenient measure of path disutility to be used in the objective function.

Of the three modal split models discussed earlier, only Townsend's inventory-theoretic model and the multinomial logit model satisfy all the desired properties. Since the multinomial logit model is easier to calibrate, has already been calibrated for several commodities as part of the ongoing Multi-State University Research
Program, and is much simpler for the case of three or more modes, it will be used in the formulation.

Restating the model for the current purpose:

\[
S_m = \frac{U_m}{\sum_{n \in M} U_n}
\]

where:

- \(S_m\) = share of flow moving between 0 and D by mode \(m\)
- \(U_m\) = unit utility along maximum utility mode \(m\) path between 0 and D
- \(M\) = set of all modes with paths connecting 0 and D
- \(U_m = \text{Exp}(a_1c_m + a_2t_m + a_3v_m)\)
 \(c_m\) = sum of arc unit transport costs on maximum utility mode \(m\) path connecting 0-D
 \(t_m\) = sum of arc transport times on maximum utility mode \(m\) path connecting 0-D
 \(v_m\) = sum of arc transport time variabilities on maximum utility mode \(m\) path connecting 0-D
- \(a_1, a_2, a_3\) = parameters of modal split model

The seventh assumption formalizes the objective function. It states that minimizing the total disutility associated with the network is the proper objective of the improvement methodology. Total disutility is equal to the sum of total shipper disutility and total investment in the network. Unit shipper disutility along a path is expressed in terms of equivalent dollars and is derived from the argument of the path utility function. For example, for a particular O-D commodity flow:
\[U_m = \exp(a_1 c_m + a_2 t_m + a_3 v_m) \]

(2-2)

where the variables have been previously defined.

\[d_m = \frac{a_1 c_m + a_2 t_m + a_3 v_m}{a_1} \]

(2-3)

where:

- \(d_m \) = unit disutility on maximum-utility mode \(m \) path expressed in equivalent dollars.

The eighth and last modelling assumption deals with the relationships between the three ATC and arc investment.

(1) For any level of investment on an arc, only one set of physical improvements will be considered. This implies that there will exist unique values of the three ATC for any level of investment.

This assumption can be justified as follows:

Let:

\(T_j(I_j) \) = the set of all possible physical improvements which can be effected on arc \(j \) given investment \(I_j \)

\(c_{ij} \) = unit transport cost on arc \(j \) given improvement \(i \in T_j(I_j) \)

\(t_{ij} \) = transport time on arc \(j \) given improvement \(i \in T_j(I_j) \)

\(v_{ij} \) = transport time variability on arc \(j \) given improvement \(i \in T_j(I_j) \)

\(i^* \) = that element of \(T_j(I_j) \) which will be considered in the analysis

If one selects \(i^* \) such that:
\[
c_{ij} + \frac{a_2}{a_1} t_{ij} + \frac{a_3}{a_1} v_{ij} = \min_{i \in T_j(I_j)} \left\{ c_{ij} + \frac{a_2}{a_1} t_{ij} + \frac{a_3}{a_1} v_{ij} \right\} \quad (2-4)
\]

where:

\[a_1, a_2, a_3 \equiv \text{parameters of modal split model} \]

then one cannot decrease total disutility in the network by selecting some other improvement project \(i \in T_j(I_j) \). In other words, this assumption is based on a preliminary screening of improvement projects on each arc.

(2) Each ATC is a continuous, strictly decreasing function of the investment on the arc over the interval of interest. This is demonstrated in Figure 2-2 below.

A number of functional forms might be considered:

(a) LeBlanc suggests a function of the form: [LeBlanc, 1974]

\[
I = b(c - \bar{c})^2 + d \quad (2-5)
\]

where:

\[I \equiv \text{level of investment on arc} \]
\[c \equiv \text{arc transport characteristic} \]
\[b, \bar{c}, d \equiv \text{parameters of model} \ (\geq 0) \]

Transformed for current purposes, this form yields:

\[
c = \left(\frac{I - d}{b} \right)^{1/2} + \bar{c} \quad (2-6)
\]

or
Fig. 2-2. Relationship Between Investment and an ATC

L lower bound on investment
U upper bound on investment
\[c = b'(I - d)^{1/2} + \bar{c} \] \hspace{1cm} (2-7)

where:

\[(I - d)^{1/2} \leq 0 \] \hspace{1cm} (2-8)

\[d \leq I \leq d + bc^2 \] \hspace{1cm} (2-9)

Other possible forms are

(b) \[c = b(I - \bar{c})^2 + d \] \hspace{1cm} (2-10)

where:

\[o \leq I \leq \min \{ \bar{c}_c, \bar{c}_t, \bar{c}_v \} \] \hspace{1cm} (2-11)

(c) \[c = d + \frac{b}{\bar{c}} \] \hspace{1cm} (2-12)

where:

\[\bar{c} < I \] \hspace{1cm} (2-13)

(d) \[c = b \cdot d^{-\bar{c} \cdot I} \] \hspace{1cm} (2-14)

where:

\[I \geq 0 \] \hspace{1cm} (2-15)

2. The Formulation

The multi-modal freight transport network improvement problem can now be formulated as:
Problem P: Min \(Z = \sum_{r \in D} \sum_{d \in D_r} \sum_{p \in P_{rd}} Y_{rd} \left[\sum_{j \in A_{rd}} c_j(I_j) + \frac{a_2}{a_1} \sum_{j \in A_{rd}} t_j(I_j) \right. \\
+ \left. \frac{a_3}{a_1} \sum_{j \in A_{rd}} v_j(I_j) \right] + \sum_{j \in A} I_j \) \hspace{1cm} (2-16)

s.t.

\[
Y_{rd} = \frac{D_{rd} \cdot \text{Exp} \left[a_1 \sum_{j \in A_{rd}} c_j(I_j) + a_2 \sum_{j \in A_{rd}} t_j(I_j) + a_3 \sum_{j \in A_{rd}} v_j(I_j) \right] \sum_{q \in B_{rd}(I)} \text{Exp} \left[a_1 \sum_{j \in A_{rd}} c_j(I_j) + a_2 \sum_{j \in A_{rd}} t_j(I_j) + a_3 \sum_{j \in A_{rd}} v_j(I_j) \right] \}
\\
\forall r \in D, d \in D_r, p \in B_{rd}(I) \hspace{1cm} (2-17)
\]

\[
Y_{rd} = 0 \hspace{1cm} \forall r \in D, d \in D_r, p \not\in B_{rd}(I) \hspace{1cm} (2-18)
\]

\[
L_j \leq I_j \leq U_j \hspace{1cm} \forall j \in A \hspace{1cm} (2-19)
\]

\[
\sum_{p \in P_{rd}} Y_{rd} = D_{rd} \hspace{1cm} \forall r \in D, d \in D_r \hspace{1cm} (2-20)
\]

\[
Y_{rd} \geq 0 \hspace{1cm} \forall r \in D, d \in D_r, p \in P_{rd} \hspace{1cm} (2-21)
\]

where:

\(I_j \) \(\equiv \) investment on arc \(j \)

\(Y_{rd} \) \(\equiv \) flow on path \(P \) from node \(r \) to \(d \)
\[
D_{rd} \equiv \text{total demand for commodity from node } r \text{ at node } d \\
L_j, U_j \equiv \text{lower and upper bounds for investment on arc } j \\
a_1, a_2, a_3 \equiv \text{modal split model parameters} \\
c_j(I_j) \equiv \text{unit transport cost on arc } j \text{ as a function of } I_j \\
t_j(I_j) \equiv \text{transport time on arc } j \text{ as a function of } I_j \\
v_j(I_j) \equiv \text{transport time variance on arc } j \text{ as a function of } I_j \\
0 \equiv \text{set of origin nodes} \\
D_r \equiv \text{set of destinations associated with origin } r \\
P_{rd} \equiv \text{set of paths connecting } r \text{ and } d \\
A_{rd}^p \equiv \text{set of arcs comprising } p^{th} \text{ path connecting } r \text{ and } d \\
B_{rd}(I) \equiv \text{set of maximum utility paths connecting } r \text{ and } d \text{ given an} \\
\text{investment vector } I. \text{ The set includes one path for each} \\
\text{mode including the multi-modal option where it is distinct} \\
\text{from a single-mode path} \\
N \equiv \text{set of network nodes} \\
A \equiv \text{set of network arcs}
\]

The objective function (2-16) is the total disutility associated with the network. It is the sum of shipper disutility and total investment in the network. Constraint sets (2-17) and (2-18) perform the modal split and drive flow assignment on the network. Constraint set (2-17) states that the flow on any maximum utility path connecting an O-D pair is equal to the total flow between the O-D pair times the share as determined by the modal split model. Constraint set (2-18) forces flow on any non-maximum utility path to zero. Constraint set (2-19) sets upper and lower bounds on arc investment.

Constraint set (2-20) states that the sum of the flow over all paths connecting an O-D pair equals the desired flow between the pair.
Constraint set (2-21) forces all flows to be nonnegative. It is obviouis that constraint sets (2-17) and (2-18) imply constraint sets (2-20) and (2-21), and thus, after rearranging terms, P can be restated as:

Problem P: \(\min Z = \sum_{r \in O} \sum_{d \in D_r} \sum_{p \in P_{rd}} x_{rd}^P \cdot \sum_{j \in A_{rd}} \left[c_j(I_j) + \frac{a_2}{a_1} t_j(I_j) \right. \\
+ \left. \frac{a_3}{a_1} v_j(I_j) \right] + \sum_{j \in A} I_j \) (2-16)

s.t.

\[y_{rd}^P = \frac{D_{rd} \cdot \text{Exp} \left\{ \sum_{j \in A_{rd}} \left[a_1 c_j(I_j) + a_2 t_j(I_j) + a_3 v_j(I_j) \right] \right\}}{\sum_{q \in B_{rd}(I)} \text{Exp} \left\{ \sum_{j \in A_{rd}} \left[a_1 c_j(I_j) + a_2 t_j(I_j) + a_3 v_j(I_j) \right] \right\}} \]

\(\forall r \in O, d \in D_r, p \in B_{rd}(I) \) (2-17)

\[y_{rd}^P = 0 \quad \forall r \in O, d \in D_r, p \notin B_{rd}(I) \] (2-18)

\[L_j \leq I_j \leq U_j \quad \forall j \in A \] (2-19)
CHAPTER III

A SOLUTION METHODOLOGY

The solution of the formulation defined in Chapter II presents serious difficulties. Although the decision variables are continuous, the problem has integer characteristics. This results from the modal split and assignment relationships, which divide all flow among maximum utility paths and which force flow on non-maximum utility paths to zero. To further complicate matters, the objective function is non-convex. At the present time, the only methods which can guarantee a global optimal solution to the formulation are integer procedures, such as branch and bound or cutting plane methods. However, as both Dantzig and Steenbrink have concluded, these methods cannot solve problems involving large-scale transport networks [Steenbrink, 1974; Dantzig, 1976]. Thus, this research will consider a heuristic methodology.

1. Continuous Optimal Adjustment: A Heuristic

1.1 The General Methodology

The general methodology developed in this research is based on the continuous optimal adjustment heuristic suggested by Steenbrink. The general procedure might be briefly summarized:

(1) Fix the initial modal split between each O-D pair.

(2) Determine the O-D demand by mode.

(3) Solve the resulting multi-modal network improvement with fixed modal split.
(4) Does the fixed set of modal splits agree with the set of modal splits feasible with respect to (2-17), (2-18) given the solution of (3) above?

(a) If yes, go to (5) below.

(b) Otherwise, adjust the assumed modal splits and go to (2) above.

(5) Is the solution satisfactory?

(a) If yes, terminate.

(b) Otherwise, determine a completely different set of initial modal splits and return to (2) above.

In the first step, a modal split for each O-D pair is assumed. Call this set of modal splits MS^0. For convenience, MS^0 might be the existing modal split. Given MS^0, one can uniquely define O-D demand by mode. Let the resulting multi-modal network improvement problem with fixed modal splits be $Pl(MS^0)$. For the moment, assume that one can obtain a good solution to $Pl(MS^0)$:

$I^*(MS^0) =$ investment vector from $Pl(MS^0)$

$f^*(MS^0) =$ flow pattern from $Pl(MS^0)$

Although the maximum utility paths implied by $f^*(MS^0)$ are identical to those identified by (2-17) and (2-18) given $I^*(MS^0)$, MS^0 may not be equivalent to the set of modal splits MS^F identified by (2-17) given $I^*(MS^0)$. Thus, the solution of $Pl(MS^0)$ may not be feasible to problem P. If this is the case, then MS^0 can be modified using knowledge of MS^F, and problem $Pl(MS^0)$ resolved.

Assume that at some iteration MS^0 is equivalent to MS^F. Then the current solution possesses several important properties:

(1) It is a good solution to $Pl(MS^0)$.

(2) It is feasible to P.
While these two properties certainly do not guarantee that the current solution is optimal to \(P \), they do suggest that the current solution may be an improvement over a randomly chosen solution. Note that the optimal solution to \(P \) must satisfy these properties. Thus, the methodology is capable of producing the optimal solution. An important issue, then, is the existence of other solutions, not optimal to \(P \), which satisfy these properties. Obviously, if the optimal solution to \(P \) is the only solution with these properties, then if the methodology converges, the current solution is optimal to \(P \). To resolve this issue, note that problem \(P \) is nonconvex and that it is being solved by an iterative heuristic. Thus, there is no guarantee that the current solution is unique and, thus, optimal to \(P \). Steenbrink demonstrates this using a similar procedure on a simplified network consisting of two nodes and two arcs, one arc for each mode serving the pair. He found that his procedure produced two different solutions, depending on the set of initial modal splits [Steenbrink, 1974]. Since there is no guarantee of global optimality, the methodology can either be terminated upon convergence or reinitiated with a different set of parameters. The overall methodology is shown in Figure 3-1 below.

Throughout the discussion it has been assumed that at some finite iteration of the methodology \(MS^0 \) and \(MS^F \) converge. However, there is no inherent feature of the methodology which guarantees convergence. In practical applications, however, such procedures do seem to converge. In solving the simplified problem discussed earlier, Steenbrink demonstrated convergence of a similar procedure. In addition, Steenbrink and Ventker have suggested the use of similar heuristics in solving large
Set the initial modal Split MS^0

Determine O-D demand by mode assuming MS^0

Set up problem $Pl(MS^0)$ and determine a good solution $I^*(MS^0); f^*(MS^0)$

Calculate the feasible split MS^F given $I^*(MS^0)$ using (2-17)

Modify MS^0 No

Do MS^0 and MS^F satisfy convergence criteria?

Is the solution satisfactory?

Determine new initial MS^0

Stop

Fig. 3-1. Continuous Optimal Adjustment Applied to the Multi-Modal Improvement Problem.
traffic assignment problems [Steenbrink, 1970; Steenbrink, 1971; Ventker, 1970].

1.2 Modifiable Components and Parameters of the Methodology

The methodology proposed in Section 1.1 above has a number of modifiable components and parameters which might affect its performance. First, there is the solution of Pl(MS^). This is discussed at length in Section 2 below. The second is the convergence criterion involving MS^0 and MS^F. The third is the manner in which MS^0 will be adjusted given knowledge of MS^F. A fourth is the overall termination criteria and the subsequent determination of an entirely different set of initial modal splits. Consider the second item. Assume that at the end of some iteration there exist a current set of initial modal splits MS^0 as well as a current set of modal splits MS^F as determined by (2-17) given I*(MS^0). There are a number of practical tests which might be used to test the convergence of MS^0 and MS^F.

Let:

\[MS^0_{im} \] = the initial estimate of the mode \(m \) share for 0-D pair \(i \)

\[MS^F_{im} \] = the feasible mode \(m \) share for 0-D pair \(i \) given investment \(I^*(MS^0) \)

\[\varepsilon_{im} = MS^F_{im} - MS^0_{im} \]

\(R \) = the set of 0-D pairs

\(M \) = the set of modes

Then, these tests include rejecting the convergence assumption if:

\[
(1) \quad |\varepsilon_{im}| > \varepsilon_1 \quad \text{for some } i \in R, m \in M \quad (3-1)
\]

\[
(2) \quad \sum_{i \in R} \sum_{m \in M} |\varepsilon_{im}| > \varepsilon_2 \quad (3-2)
\]
where:

\[\epsilon_1, \epsilon_2, \epsilon_3, \] are convergence parameters

The advantage of the first convergence test relative to the second is that it will identify a single large error, even if the remaining errors are relatively small. A disadvantage of the first test relative to the second is that it will tolerate a large number of errors as large as \(\epsilon_1 \). Somewhat of a compromise might be struck by utilizing the third test. Of course, multiple convergence criteria might be used to the same end. It should be noted that the convergence test is not only significant because of its role in identifying convergence, but also for its potential role in hastening convergence. If the methodology demonstrates convergent behavior, then increasing \(\epsilon_1 \) should hasten convergence. The practical effect of such action is to loosen modal split feasibility requirements. Practically, this may not significantly affect the validity of the results due to the primitive state-of-the-art in modal split modelling and the condition of the freight data bases [Creighton, 1977; Hartwig and Linton, 1974].

Dealing with the third item, assume that at the end of some iteration, \(MS^0 \) and \(MS^F \) have not satisfied the convergence criteria. Then there is a need to update \(MS^0 \) and iterate. In updating \(MS^0 \) it would be useful to obtain a revised \(MS^0 \) which will yield a new \(MS^F \) close to \(MS^0 \). A reasonable approach might be to let the new \(MS^0 \) be the current \(MS^F \). However, such an approach often results in an overcorrection and could possibly result in an undercorrection. Thus, define the new \(MS^0 \) such that:

\[
\sum_{i \in R} \sum_{m \in M} \epsilon_{im}^2 > \epsilon_3
\]
\[MS^0_{\text{New}} = MS^0_{\text{Old}} + \alpha \epsilon \]

(3-4)

where:

\[\alpha \equiv \text{the correction factor, positive} \]

\[\epsilon \equiv \text{the error vector as calculated above} \]

Note that this approach moves \(MS^0 \) in the direction of \(MS^F \) while not necessarily forcing \(MS^0 \) exactly equal to \(MS^F \). In many nonlinear programming algorithms, when an improving direction is determined, a search is made along that direction until the best point is identified. Consider such an approach for the present case. Noting that problem \(P1(MS^0) \) would need to be solved repeatedly, it should be obvious that solution times would quickly become excessive.

Last, assume that \(MS^0 \) and \(MS^F \) have passed the convergence test. There is left the question of whether to search for better solutions or terminate the search. A tight lower bound for the value of the objective would greatly facilitate the decision. Unfortunately, there appears to be no reasonable method to obtain a tight lower bound. A loose lower bound on user disutility can be determined by setting arc investment at its upper bound and allowing flow to use any modal path. A loose lower bound on investment can be found by setting all arc investment at its lower bound. Thus, a very loose lower bound on overall network disutility is the sum of these lower bounds. Since the resulting lower bound is very poor, it will be of little value in the search termination decision. A better lower bound could be obtained by placing all flow on the multi-modal mode and determining the optimal
solution to problem $P_1(MS^0)$. However, this is a difficult task as demonstrated in the following section. Barring the determination of a good lower bound, a less desirable strategy will need to be developed. Such a strategy might be to perform a more exhaustive search until it appears that no significant improvement can be made.

Assume that MS^0 and MS^F have passed the convergence test, and it has been decided to continue the search. The final step is the identification of a new set of initial modal splits. One important factor in this step is the need to identify a new MS^0 sufficiently distant from all of the preceding MS^0's so that the methodology does not converge to a previously obtained solution. Sets which should probably always be investigated are the current set of modal splits and the extreme sets:

1. Those sets with all flow assigned to a single mode.
2. Those sets with all flow assigned equally to two modes.
3. Those sets with all flow assigned equally to three modes.
4. Those sets with all flow divided equally between all four modes.

Hartman reviewed a variety of procedures used in identifying new starting solutions for nonconvex programs. However, these procedures are precluded by the large number of decision variables in this problem [Hartman, 1972]. Finally, new sets might be generated randomly.

2. $P_1(MS^0)$: The Multi-modal Network Improvement Problem with Fixed Modal Splits

In Section 1 above there was defined the multi-modal network improvement problem with fixed modal splits $P_1(MS^0)$. If the set of modal splits MS^0 were such that all flow was assigned to pure modes, as
opposed to the multi-modal option, then $P_1(MS^0)$ would be separable into a number of smaller single-mode network improvement problems. However, the presence of the multi-modal option significantly complicates this simple decomposition procedure, since there is not an easy way to represent multi-modal flow on a single-mode network.

The approach taken here will be to transform the multi-modal problem into a single-mode problem with two additional constraint sets. This transformation is accomplished by the addition of nodes and arcs, shown in Figure 3-2 below, and can be described as follows. For each original origin node:

1. Add a new origin node to the network for each single mode serving the original origin node.
2. Remove all loading arcs. Place these arcs between the new origin nodes and the appropriate outbound nodes.
3. Add a new origin node corresponding to the multi-modal option.
4. From each new origin node corresponding to the multi-modal option, add an arc to each new single-mode origin node.
5. Remove all flow originating at the original origin node.
6. Place the O-D demand by mode determined by MS^0 at the appropriate new origin.

$P_1(MS^0)$ can now be expressed in node-arc terms as:

$$P_1(MS^0): \min_{I_j, f_j, f^r_j} \sum_{j \in A} f_j \left[c_j(I_j) + \frac{a_2}{a_1} t_j(I_j) + \frac{a_3}{a_1} v_j(I_j) \right]$$

$$+ \sum_{j \in A} I_j$$
New Origin Nodes

Fig. 3-2. Addition of Nodes and Arcs to Network
\[
\text{s.t. } \sum_{j \in W_i} f^r_j - \sum_{j \in V_i} f^r_j = h^r_i \quad \forall i \in N, r \in 0 \quad (3-6)
\]

\[
f_j = \sum_{r \in 0} f^r_j \quad \forall j \in A \quad (3-7)
\]

\[
f^r_j = 0 \quad \forall j \in \text{ITA}, r \in \text{SMO} \quad (3-8)
\]

\[
f^r_j \geq 0 \quad \forall j \in A, r \in 0 \quad (3-9)
\]

\[
L_j \leq I_j \leq U_j \quad \forall j \in A \quad (3-10)
\]

O-D flows must occur only on maximum utility paths. If there is more than one maximum utility path for any O-D pair and mode, it is assumed that all flow occurs on only one path.

where:

\[f_j \equiv \text{total flow on arc } j\]

\[f^r_j \equiv \text{flow on arc } j \text{ from origin } r\]

\[I_j \equiv \text{investment on arc } j\]

\[L_j \equiv \text{lower bound on investment on arc } j\]

\[U_j \equiv \text{upper bound on investment on arc } j\]

\[
h^r_i \equiv \begin{cases} -x_{ri} & \text{if } i \in D_r \\ \sum_{j \in D_i} x_{rj} & \text{if } i = r \\ 0 & \text{otherwise} \end{cases} \quad (3-12)
\]

\[x_{ij} \equiv \text{flow from origin } i \text{ to destination } j\]
Constraint sets (3-6), (3-8), (3-9), and (3-11) assure that the selection of paths is in accordance with constraint sets (2-17) and (2-18) of P. Constraint set (3-8) insures that only flow from multi-modal origins can use intermodal transfer arcs. The objective (3-5) coupled with constraint set (3-7) is equivalent to the objective (2-16) of P. Problem $P_l(MS^0)$ is a single-mode network improvement problem with additional constraint sets (3-8) and (3-11). However, it can be shown that constraint set (3-11) is redundant.

Theorem 3.1

Constraint set (3-11) is redundant to problem $P_l(MS^0)$.

Proof. To prove that (3-11) is redundant, it is sufficient to show that the optimal solution of problem $P_l(MS^0)$, problem $P_l(MS^0)$ with (3-11) relaxed, always satisfies (3-11). This would imply that the
optimal solution of $P_1(MS^0)'$, whose objective by the relaxation theorem must be less than or equal to that of $P_1(MS^0)$, is also feasible to $P_1(MS^0)$ and, thus, is optimal to $P_1(MS^0)$.

To show this, assume the optimal solution of $P_1(MS^0)'$ does not satisfy (3-11), i.e.

Let:

$I_j^* = \text{optimal investment on arc } j \text{ from } P_1(MS^0)'$

$Z^* = \text{optimal value of objective from } P_1(MS^0)'$

$d_p^* = \text{unit disutility along any path } P \text{ for } I_j^*$

Then, for some 0-D pair and mode there exist paths P and Q such that:

1) $d_p^* < d_Q^*$

and

2) There is positive flow along path Q for the previously designated I_j^*.

or:

3) $d_p^* = d_Q^*$

and

4) There is positive flow on both paths P and Q.

To show that assumption (2) must be false if assumption (1) is true, consider the alternate feasible solution obtained by placing the flow currently on path Q onto path P. Since $d_p^* < d_Q^*$, the value of the objective of $P_1(MS^0)'$ must decrease. Therefore, assumption (2) is false. If assumption (3) is true, then simply form an equivalent alternative optimal solution by placing all flow on either path P or Q. This makes
assumption (4) false. Thus, the optimal solution of $P_1(MS^0)'$ must satisfy (3-11), and (3-11) is redundant in $P_1(MS^0)$.

Q.E.D.

Thus, problem $P_1(MS^0)$ can be stated as a single-mode network improvement problem with additional constraint set (3-8).

Returning to the review of the single-mode network improvement problem in Chapter I, recall that Dantzig found that a Steenbrink type decomposition technique might be an efficient method for solving problems involving large-scale networks. In terms of problem $P_1(MS^0)$ the Steenbrink technique requires the following steps:

1. A subproblem is solved for each network arc.

Let:

$$H_j(f_j) = \min_{I_j} f_j \left[c_j(I_j) + \frac{a_2}{a_1} t_j(I_j) \right] + \frac{a_3}{a_1} v_j(I_j) + I_j$$

(3-13)

$$s.t. \quad L_j \leq I_j \leq U_j$$

(3-14)

2. The results of these subproblems are substituted into the objective function of $P_1(MS^0)$ to obtain a master problem $P_2(MS^0)$ equivalent to the nonlinear transportation assignment problem with additional constraint set (3-8).

Problem $P_2(MS^0)$: \[\min_{f_j \in A} \sum_{j \in A} H_j(f_j) \] (3-15)

$$s.t. \quad \sum_{j \in W_i} f_j^r - \sum_{j \in V_i} f_j^r = h_i^r \quad \forall i \in N, r \in O$$ (3-16)
\[f_j = \sum_{r \in O} f_j^r \quad \forall j \in A \quad (3-17) \]

\[f_j^r = 0 \quad \forall j \in \text{ITA} \quad r \in \text{SMO} \quad (3-18) \]

\[f_j^r \geq 0 \quad \forall j \in A \quad r \in O \quad (3-19) \]

2.1 Determination of Subproblem Objective Function \(H_j(f_j) \)

For the moment, assume that the ATC and investment are linked by functions of the form:

\[c_j(I_j) = b_{1j}(I_j - \tilde{c}_j)^2 + d_{1j} \quad (3-20) \]

\[t_j(I_j) = b_{2j}(I_j - \tilde{t}_j)^2 + d_{2j} \quad (3-21) \]

\[v_j(I_j) = b_{3j}(I_j - \tilde{v}_j)^2 + d_{3j} \quad (3-22) \]

A graph of \(c_j(I_j) \) is shown in Figure 3-3 below. The reason for selecting this functional form will become apparent later. Thus, \(H_j(f_j) \) can be determined by solving the problem \(S1(MS^0) \):

Problem \(S1(MS^0) \):

\[H_j(f_j) = \min_{I_j} A_j f_j I_j^2 + B_j f_j I_j + C_j f_j + I_j \]

subject to \(L_j \leq I_j \leq U_j \).
Fig. 3-3. $c_j(I_j)$ as a function of I_j.
where:

\[A_j = b_{1j} + \frac{a_2}{a_1} b_{2j} + \frac{a_3}{a_1} b_{3j} \] (3-25)

\[B_j = -2 \left(b_{1j} c_j + \frac{a_2}{a_1} b_{2j} t_j + \frac{a_3}{a_1} b_{3j} v_j \right) \] (3-26)

\[C_j = b_{1j} c_j^2 + d_{1j} + \frac{a_2}{a_1} (b_{2j} t_j^2 + d_{2j}) + \frac{a_3}{a_1} (b_{3j} v_j^2 + d_{3j}) \] (3-27)

Note that if \(f_j \) is fixed and nonnegative, the objective function (3-23) is the sum of a convex quadratic term, two linear terms, and a constant term. Thus, (3-23) is convex. \(S(I(MS^0)) \) is a convex program, and the Kuhn-Tucker conditions apply:

Theorem 3.2

The optimal solution to \(S(I(MS^0)) \) is defined by:

\[
I^*_j = \begin{cases}
L_j & \text{if } \hat{I}_j \leq L_j \\
\hat{I}_j & \text{if } L_j \leq \hat{I}_j \leq U_j \\
U_j & \text{if } \hat{I}_j \geq U_j
\end{cases}
\] (3-28)

where:

\[
\hat{I}_j = \frac{-B_j}{2A_j f_j} - \frac{1}{2A_j f_j}
\] (3-29)

Proof. The kuhn-Tucker conditions for \(S(I(MS^0)) \) are:

1. \(2A_j f_j I^*_j + B_j f_j + 1 - v_1 + v_2 = 0 \)
2. \(v_1 (L_j - I^*_j) = 0 \)
(3) \(v_2(I^o_j - U_j) = 0 \)

(4) \(L_j - I_j \leq U_j \)

(5) \(v_1, v_2 \geq 0 \)

Case 1

If \(\hat{I}_j \leq L_j \):

Let: \(I^o_j = L_j \)

\[
\begin{align*}
v_1 &= 2A_j f_j L_j + B_j f_j + 1 \\
v_2 &= 0
\end{align*}
\]

Clearly conditions 1, 2, 3, and 4 are satisfied.

Thus, if:

\[
v_1 = 2A_j f_j L_j + B_j f_j + 1 \geq 0
\]

then the K-T conditions are satisfied and Theorem 3.1 holds for Case 1.

Since:

\[
\hat{I}_j \leq L_j, \quad A_j > 0, \quad \text{and} \quad f_j \geq 0
\]

\[
v_1 \geq 2A_j f_j \hat{I}_j + B_j f_j + 1
\]

\[
\geq 2A_j f_j \left(\frac{-B_j}{2A_j} - \frac{1}{2A_j f_j} \right) + B_j f_j + 1
\]

\[
\geq B_j f_j + 1 - B_j f_j - 1
\]

\[
\geq 0
\]
Theorem 3.1 holds for Case 1.

Case 2

\[L_j \leq \hat{I}_{ij} \leq U_j \]

Let: \[I^*_j = \hat{I}_{ij} \]
\[v_1 = v_2 = 0 \]

Clearly conditions 2, 3, 4, and 5 are satisfied.

Regarding condition 1:

\[2A_j f_{ij} I^*_j + B_j f_{ij} + 1 - v_1 + v_2 = 2A_j f_{ij} \left(\frac{-B_j}{2A_j} - \frac{1}{2A_j f_{ij}} \right) + B_j f_{ij} + 1 \]

\[= 0 \]

\[\therefore \] All K-T conditions are satisfied and Theorem 3.1 holds for Case 2.

Case 3

If \[\hat{I}_{ij} \geq U_j \]

Let: \[I^*_j = U_j \]
\[v_1 = 0 \]
\[v_2 = -2A_j f_{ij} U_j - B_j f_{ij} - 1 \]

Conditions 1, 2, 3, and 4 are clearly satisfied.

Thus, if:

\[v_2 = -2A_j f_{ij} U_j - B_j f_{ij} - 1 \geq 0 \]

then the K-T conditions are satisfied and Theorem 3.1 holds for Case 3.

Since:
\[\hat{I}_{j} \geq U_{j} \]

\[\therefore v_{2} \geq -2A_{j}f_{j} \hat{I}_{j} - B_{j}f_{j} - 1 \]

\[\geq -2A_{j}f_{j}\left(\frac{-B_{j}}{2A_{j}} - \frac{1}{2A_{j}f_{j}}\right) - B_{j}f_{j} - 1 \]

\[\geq 0 \]

\[\therefore \text{Theorem 3.1 holds for all cases.} \]

Q.E.D.

Consider the form of \(I^{*}_{j} \), (3-28), paying particular attention to its performance with respect to \(f_{j} \), the flow on arc \(j \). First note that the term \(\frac{-B_{j}}{2A_{j}} \) forms an economic upper bound on investment (as opposed to a budget related bound). Note:

\[\frac{-B_{j}}{2A_{j}} = \frac{b_{1j} \hat{c}_{j} + \frac{a_{2}}{a_{1}} b_{2j} \hat{e}_{j} + \frac{a_{3}}{a_{1}} b_{3j} \hat{f}_{j}}{b_{1j} + \frac{a_{2}}{a_{1}} b_{2j} + \frac{a_{3}}{a_{1}} b_{3j}} \]

Then, every arc in the network will fall into one of three categories:

Category I arcs: \(L_{j} \geq \frac{-B_{j}}{2A_{j}} \)

For a Category I arc, there will never be sufficient flow to justify anything more than the lower bound on investment.

\[I^{*}_{j} = L_{j} \quad \forall f_{j} \quad (3-30) \]
This is shown in Figure 3-4 below.

Category II arcs: \[U_j < \frac{-B_j}{2A_j} \]

For a Category II arc, the actual upper bound on arc investment will be a budget-related bound rather than an economic bound.

Let:

- \(f_j^L \): the minimum level of flow which will induce investment above the minimum level on arc \(j \)
- \(f_j^U \): the maximum level of flow which will induce additional investment in arc \(j \)

\[
L_j = \frac{-B_j}{2A_j} - \frac{1}{2A_j f_j^L}
\]

\[
U_j = \frac{-B_j}{2A_j} - \frac{1}{2A_j f_j^U}
\]

or:

\[
f_j^L = -\frac{1}{2L_j A_j + B_j}
\]

\[
f_j^U = -\frac{1}{2U_j A_j + B_j}
\]

Therefore, \(I_j^* \) can be restated as:

\[
I_j^* = \begin{cases}
L_j & \text{if } f_j \leq f_j^L \\
\hat{I}_j & \text{if } f_j^L \leq f_j \leq f_j^U \\
U_j & \text{if } f_j \geq f_j^U
\end{cases}
\]

(3-32)

This is shown in Figure 3-5 below.
Fig. 3-4. I^*_j as a function of f_j
for Category I arcs
Fig. 3-5. i^*_j as a function of f_j

for Category II arcs
Category III arcs: $L_j < \frac{-B_j}{2A_j}$

$U_j \geq \frac{-B_j}{2A_j}$

For a Category III arc, $\frac{-B_j}{2A_j}$ will form the actual upper bound on arc investment.

$I^*_j = \begin{cases} L_j & \text{if } f_j \leq f^L_j \\ \hat{f}_j & \text{if } f_j \geq f^L_j \end{cases}$ \hspace{1cm} (3-33)

This is shown in Figure 3-6 below.

Now, $H_j(f_j)$ can be expressed as a function of I^*_j:

Category I arcs: $L_j \geq \frac{-B_j}{2A_j}$

$H_j(f_j) = \frac{c}{4A_j} f_j \left(f_j - \frac{1}{4A_j} \right) \cdot \frac{1}{f_j} - \frac{b_j}{2A_j}$ \hspace{1cm} (3-34)

This is shown in Figure 3-7 below.

Category II arcs: $U_j < \frac{-B_j}{2A_j}$

$H_j(f_j) = \begin{cases} \frac{A_j f_j \hat{L}_j^2}{4A_j} + (B_j f_j + 1) L_j + c_j f_j & \text{if } f_j \leq f^L_j \\ \frac{A_j f_j \hat{U}_j^2}{4A_j} + (B_j f_j + 1) U_j + c_j f_j & \text{if } f_j \geq f^U_j \end{cases}$ \hspace{1cm} (3-35)
Fig. 3-6. I_j^* as a function of f_j
for Category III arcs
Fig. 3-7. $H_j(f_j)$ for Category I arcs
This is shown in Figure 3-8 below.

Category III arcs: \(L_j < \frac{-B_j}{2A_j} \)

\[
U_j > \frac{-B_j}{2A_j}
\]

\[
H_j(f_j) = \begin{cases}
A_j f_j L_j^2 + (B_j f_j + 1)L_j + c_j f_j & \text{if } f_j \leq f_j^L \\
\frac{4A_j c_j - B_j^2}{4A_j} f_j - \frac{1}{4A_j} \cdot \frac{1}{f_j} - \frac{b_j}{2A_j} & \text{if } f_j^L \leq f_j \leq f_j^U
\end{cases}
\] (3-36)

This is shown in Figure 3-9 below.

2.2 **Properties of Subproblem Objective Function** \(H_j(f_j) \)

The expressions for \(H_j(f_j) \) derived above can be shown to have a number of important properties.

Theorem 3.3

\(H_j(f_j) \) is both continuous and differentiable for feasible \(f_j \).

Proof.

Category I arcs: \(H_j(f_j) \) is linear, continuous, and differentiable.

Category II arcs: Over the regions \(0 \leq f_j < f_j^L \) and \(f_j^U < f_j \), \(H_j(f_j) \) is linear, continuous, and differentiable. Over the region \(f_j^L < f_j < f_j^U \), \(H_j(f_j) \) is concave, continuous, and differentiable, since

\[
\frac{\partial^2 H_j(f_j)}{\partial f_j^2} = -\frac{1}{4A_j} \cdot \frac{1}{f_j^4} \leq 0.
\] Therefore, \(H_j(f_j) \) is continuous and differentiable at all points except possibly the two breakpoints \(f_j^L \) and \(f_j^U \).
Fig. 3-8. $H_j(f_j)$ for Category II arcs
Fig. 3-9. $H_j(f_j)$ for Category III arcs
Consider f_j^L. For the linear segment:

$$H_j(f_j^L) = (A_jL_j^2 + B_jL_j + C_j)f_j^L + L_j$$

$$= (A_jL_j^2 + B_jL_j + C_j) \cdot \frac{-1}{2L_jA_j + B_j} + L_j$$

$$= \frac{L_j^2A_j - C_j}{2L_jA_j + B_j}$$

$$\frac{\partial H_j(f_j^L)}{\partial f_j^L} = A_jL_j^2 + B_jL_j + C_j$$

For the concave segment:

$$H_j(f_j^L) = \frac{4A_jC_j - B_j^2}{4A_j} f_j^L - \frac{1}{4A_j} \cdot \frac{1}{f_j^L} - \frac{B_j}{2A_j}$$

$$= \frac{4A_jC_j - B_j^2}{4A_j} \cdot \frac{-1}{2L_jA_j + B_j} - \frac{1}{4A_j} \cdot \frac{2L_jA_j + B_j}{-1} - \frac{B_j}{2A_j}$$

$$= \frac{L_j^2A_j - C_j}{2L_jA_j + B_j}$$

$$\frac{\partial H_j(f_j^L)}{\partial f_j^L} = \frac{4A_jC_j - B_j^2}{4A_j} + \frac{1}{4A_j} \cdot \left(\frac{1}{f_j^L} \right)^2$$

$$= \frac{4A_jC_j - B_j^2}{4A_j} + \frac{1}{4A_j} \cdot (4L_j^2A_j^2 + 4L_jA_jB_j + B_j^2)$$
= A_j L_j^2 + B_j L_j + C_j

Since the functional values and the derivatives are the same for both segments, \(H_j(f_j) \) is both continuous and differentiable at \(f_j^L \).

Similarly, consider \(f_j^U \). For the linear segment:

\[
H_j(f_j^U) = \frac{U_i^2 A_j - C_j}{2 U_j A_j + B_j}
\]

\[
\frac{\partial H_j(f_j^U)}{\partial f_j^U} = A_j U_j^2 + B_j U_j + C_j
\]

For the concave segment:

\[
H_j(f_j^U) = \frac{U_i^2 A_j - C_j}{2 U_j A_j + B_j}
\]

\[
\frac{\partial H_j(f_j^U)}{\partial f_j^U} = A_j U_j^2 + B_j U_j + C_j
\]

Therefore, \(H_j(f_j) \) is everywhere continuous and differentiable.

Category III arcs: Continuity and differentiability follow directly from that of Category II arcs.

Therefore, \(H_j(f_j) \) is continuous and differentiable for all arcs.

Q.E.D.
Theorem 3-4

\[H_j(f_j) \] is concave for feasible \(f_j \).

Proof. Follows directly from fact that each segment is concave and \(H_j(f_j) \) is continuous and differentiable for feasible \(f_j \).

Q.E.D.

2.3 Problem P2(MS^0): The Uncapacitated, Concave Disutility Transportation Assignment Problem

The resulting master problem P2(MS^0) which becomes the key component in the heuristic methodology is an uncapacitated, concave disutility transportation assignment problem. This particular problem has not received the attention given other types of transportation assignment problems. The most simple type of transportation assignment problem is uncapacitated with linear arc disutilities. This problem is solved by constructing a minimum disutility tree for each origin and placing all flow on the minimum disutility path between each O-D pair. Next, there is the capacitated problem with linear arc disutilities. Here, all flow may not be assignable to a minimum disutility path, since there are capacities on arc flow. Solution procedures capable of solving problems involving large-scale networks include the out-of-kilter algorithm and the network simplex [Ford and Fulkerson, 1974; Jarvis and Bazaraa, 1977]. Third, there is the problem with convex arc disutilities. Here, unit arc disutility increases as flow increases. This raises the possibility of multiple paths serving the same O-D pair, even without binding capacity constraints. As is the case with other nonlinear convex programs, this implies the possibility of a non-extreme point local optimum. However, a local optimum is also a global optimum.
number of nonlinear algorithms have been developed specifically to solve this problem, but currently none are capable of solving problems involving large-scale networks [Dantzig, 1976; Le Blanc, 1973; Nguyen, 1974; Ruiter, 1974; Potts and Oliver, 1972; Peterson, 1975; Murchland, 1969].

The most difficult of the transportation assignment problems is that problem with concave arc disutilities. The difficulty lies in the fact that, although local optima lie at extreme points, local optimality does not imply global optimality. Thus, obtaining the global optimal solution to the problem necessitates the use of some sort of enumeration scheme. Rech and Barton have developed a branch and bound algorithm capable of obtaining a global optimum to the problem [Rech and Barton, 1970]. Their algorithm utilizes an increasingly more accurate linear approximation to the disutility surface. While theoretically capable of obtaining the global optimum, the Rech and Barton algorithm will not practically solve problems involving large-scale networks. Solving a very similar problem, Jarvis, Rardin, and Unger approximate the concave disutility surface with a piecewise, linear surface [Jarvis, Rardin, and Unger, 1976]. This results in a general fixed charge network flow problem. A node-arc formulation of the problem is solved using a branch and bound procedure. Again, the procedure will not practically solve problems involving large-scale networks.

Barring the use of a global optimum seeking procedure to solve P2(MS\(^0\)), any of a number of heuristics might be used to obtain a solution. An obvious initial possibility is to approximate each concave arc disutility surface with its linear convex envelope. This will result in an easily solved uncapacitated transportation assignment problem with
linear arc disutilities. The principal drawback to such a procedure is that the maximum flow which might use any arc is very large. This implies that the linear convex envelope will be a very poor approximation to the original concave disutility surface. This has several consequences:

(1) The solution obtained is probably far from optimal.

(2) The resulting lower bound on the value of the objective is probably very poor.

Finally, there is no guarantee that the solution is even a local optimum to $P_2(\text{MS}^0)$. A second possibility is the use of Steenbrink's SALMOF (Stepwise Assignment according to Least Marginal Objective Function) heuristic [Steenbrink, 1974]. As the name implies, the heuristic assigns a fraction of the flow to the network at each step. Flow is placed on paths with the minimum marginal disutility, evaluated at current flow levels. When used to solve a problem with concave arc disutilities, the SALMOF heuristic has the undesirable characteristic of assigning all flow to those paths with minimum initial marginal disutility. Thus, the solution obtained is probably far from optimal. Again, there is no guarantee that the solution is even a local optimum to $P_2(\text{MS}^0)$. An advantage of the previous two methods is that they can both solve problems involving large-scale networks. A third possible approach is to use one of the existing convex disutility techniques to yield a local optimal solution to $P_2(\text{MS}^0)$. However, as stated previously, these techniques cannot currently accommodate problems involving large-scale networks.

A fourth possible approach to the solution of $P_2(\text{MS}^0)$ is the use
of an algorithm developed by Yaged [Yaged, 1971]. This algorithm exploits special properties of local optima to $P_2(MS^0)$ in order to efficiently generate these solutions. This algorithm is capable of determining local optimal solutions to large-scale problems within a reasonable computation time. A fifth possible approach is motivated by the Jarvis, Rardin, and Unger approach described previously. In essence, the approach seeks to obtain a good solution to the fixed-charge problem using an arc-path formulation instead of the node-arc formulation. Performance of such a procedure on a large-scale problem is not known.

The solution procedures to receive further consideration are constrained by the necessity of working with a large-scale network. This immediately rules out the global optimum seeking procedures as well as the nonlinear algorithms designed to solve the problem with convex arc disutilities. A second criterion which is also desirable is the need to identify the best possible solutions to $P_2(MS^0)$. Two approaches appear worthy of further consideration: the Yaged algorithm is explained in greater detail in the next section; the fifth heuristic approach, that involving the arc-path formulation of the general fixed-charge network flow problem, is developed in Chapter VI.

2.4 The Yaged Algorithm

The Yaged Algorithm was developed to aid in the design and improvement of the long distance telephone network spanning the United States. It seeks to determine local optimal solutions to the uncapacitated transportation assignment problem in which each link disutility function is a strict concave function of link flow. The efficiency of the algorithm stems from its exploitation of special properties of local
optima to the problem. This efficiency allows the user to examine a number of local optima in hopes of obtaining a good solution.

The Yaged Algorithm requires the satisfaction of several assumptions concerning the link disutility functions:

1. The functional values are nonnegative for feasible \(f_j \).
2. The first derivative of the function exists and is positive for feasible \(f_j \).
3. The second derivative of the function exists and is negative for feasible \(f_j \), i.e., the function is strictly concave.
4. The function is continuous for feasible \(f_j \).

From the previous discussion, the only assumption which is not satisfied is the third. The \(H_j(f_j) \) are concave, but not strictly concave. Fortunately, however, the algorithm can be modified slightly to take this into account.

Given the modified set of assumptions, certain properties of a local optimal solution to \(P2(MS^0) \) can be ascertained:

Property 1. For any local optimal solution, either:

(a) All flow between any 0-D pair occurs on a single path, or

(b) An equivalent (in terms of value of the objective) local optimal solution can be determined satisfying property 1.a.

Property 1 results from the fact that an equivalent extreme point solution can always be found for any local optimum of \(P2(MS^0) \). Note that since \(P2(MS^0) \) is uncapacitated, an extreme point solution is synonymous with Property 1.a. For the remainder of the discussion, it is assumed that a local optimum is the extreme point equivalent defined in Property 1.a.

Property 2. For any local optimal solution, if flow between an
O-D pair uses path p, and nodes a and b lie on path p, then the flow between a and b can also be made to lie on path p.

Property 3. A solution is a local optimum if and only if the path between each O-D pair is the shortest path between the pair where arc length is defined to be the first derivative of the disutility function evaluated at the current flow level.

From these properties follows Yaged's Algorithm:

Initialization: Determine an initial set of arc lengths. Set old arc flows to 0.

Step I. Construct shortest path trees from each origin using the current set of arc lengths. Assign all flow to the shortest path between each O-D pair.

Step II. If the newly generated arc flows are equivalent to the old arc flows, go to Step IV. Otherwise, go to Step III.

Step III. Set each arc length to equal the marginal arc disutility evaluated at the new arc flow. Let the new arc flows become the old arc flows. Go to Step I.

Step IV. Is the current local optimum satisfactory? If not, determine a new set of initial arc lengths and go to Step I. Otherwise, terminate.

Yaged has proven the convergence of the algorithm and has demonstrated its ability to solve problems involving large-scale networks in a reasonable computation time. The only modification to the basic algorithm needed to accommodate the non-strictly concave arc disutility functions is that trees must be constructed consistently at each iteration. By consistently, it is meant that given the same set of arc lengths, the
tree-building algorithm will always construct the same set of trees. This will assure that some 0-D flow will not cycle between two paths with equal linear disutilities.

2.5 A Global Optimum-Seeking Extension to the Yaged Algorithm

A significant undesirable property of the Yaged Algorithm is that a number of local optima must be generated in order to verify the quality of the final solution. It would therefore be useful to start in the vicinity of a good local optimum rather than at some point about which little is known. Rardin has suggested a procedure which could hopefully lead to a starting solution in the vicinity of a good local optimum [Rardin, 1978]. The procedure, which is patterned after a similar procedure developed by Tiplitz, is iterative in nature [Tiplitz, 1973].

The procedure is essentially the Yaged Algorithm substituting average disutility for marginal disutility in Step III. The reasoning behind such a substitution is that the Yaged Algorithm does not give sufficient consideration to the overall disutility associated with a given flow pattern. Instead, it assigns flow on the basis of marginal disutility. Thus, one could obtain a better solution in the global sense by substituting average disutility for marginal disutility. Several points concerning such an extension should be noted:

1. Given that the extension converges, there is no guarantee of a local optimal solution to $P2(MS^0)$.

2. There is no guarantee that the extension will converge.

Thus, an ideal role for the extension is to act as Phase I in the solution of $P2(MS^0)$. Given the solution provided by Phase I, Phase II, the Yaged Algorithm, would then determine a local optimum in the vicinity of
the Phase I solution. Note also that since Phase I is used only to
obtain an initial solution for Phase II, it need not be iterated to
convergence. Thus, one might set a maximum number of iterations at
which Phase I would terminate, given no previous convergence.

3. Extending the ATC To Be Functions of Flow

In Chapter II it was assumed that the arc transport characteristics (ATC) associated with an arc were not affected by flow on the arc. It is interesting to consider relaxations of this assumption with respect to the methodology developed in this chapter. First, consider problem \(\hat{P} \) which corresponds to problem \(P \) (Chapter II) with \(c_j(I_j) \) replaced by \(\hat{c}_j(I_j, f_j) \) where

\[
\hat{c}_j(I_j, f_j) = c_{1j}(I_j) + c_{2j}(I_j)/f_j
\]

(3-37)

with \(f_j > 0 \) assumed

Here the cost attribute consists of a variable portion and a fixed por-
tion, the latter being obtained from a fixed cost shared by all flow
units on the arc. Both components of cost depend on the investment \(I_j \).

Letting \(\hat{Z} \) be the objective of \(\hat{P} \), then:

\[
\hat{Z} = Z + \sum_{j \in A} c_{2j}(I_j)
\]

(3-38)

with the \(c_{1j}(I_j) \) now replacing \(c_j(I_j) \) in \(Z \). The other difference
between problems \(\hat{P} \) and \(P \) occurs in constraint set (2-17), the modal
split constraints, where \(c_j(I_j, f_j) \) is substituted for \(c_j(I_j) \).

Consider now the corresponding multi-modal network improvement problem with fixed modal splits, problem \(P_l(\text{MS}^o) \). The objective of this problem, \(\hat{Z}_l \), can be stated as:

\[
\hat{Z}_l = Z_l + \sum_{j \in A} c_{2j}(I_j)
\]

(3-39)

The constraints are identical to those of problem \(P_l(\text{MS}^o) \) which include (3-6), (3-7), (3-8), (3-9), (3-10), and (3-11). In problem \(P_l(\text{MS}^o) \) constraint set (3-11) was shown to be redundant at optimality; i.e., O-D flows would occur only on maximum utility modal paths. For problem \(\hat{P}_l(\text{MS}^o) \) this need not always be true. For example, it is not difficult to find constant \(c_{2j}(I_j) \)'s which foil this simplifying property.

Assume, however, that this property holds for problem \(\hat{P}_l(\text{MS}^o) \). Then, the associated Steenbrink type subproblem \(\hat{H}_j(f_j) \) can be stated as:

\[
\hat{H}_j(f_j) = \min_{I_j} f_j \left[c_{1j}(I_j) + \frac{a_2}{a_1} t_j(I_j) \right] + \frac{a_3}{a_1} v_j(I_j) + I_j
\] s.t. (3-14)

or:

\[
\hat{H}_j(f_j) = \min_{I_j} \hat{Z}_S = f_j \left[c_{1j}(I_j) + \frac{a_2}{a_1} t_j(I_j) + \frac{a_3}{a_1} v_j(I_j) \right] + I_j + c_{2j}(I_j)
\] s.t. (3-14)
Now, note that if the objective \hat{Z} of the subproblem is convex, one might still use Steenbrink decomposition to solve problem $\hat{P}_1(MS^0)$.

Two applications immediately suggest themselves. First, the $c_{2j}(I_j)$ may represent a fixed operating and maintenance cost to be shared by the users, perhaps for a rail or waterway arc. Second, the $c_{2j}(I_j)$ may simply be the investment I_j which is to be recovered from the users. In the case of investment, the $c_{2j}(I_j)$ is linear, and the \hat{Z} remains convex. In the case of operating and maintenance costs, the $c_{2j}(I_j)$ is likely to be concave, but probably not enough to render \hat{Z} nonconvex. Even \hat{Z} should become nonconvex, it should probably remain pseudo-convex, enabling one to find the optimal solution $\hat{N}_j(f_j)$.

Finally, if the $\hat{N}_j(f_j)$ remain concave, then either the Yaged or the two phase algorithm might be used to determine a local optimum to problem $\hat{P}_1(MS^0)$.

Now, consider problem \overline{P} which differs from problem P with the ATC suffering congestion effects; i.e., the ATC are increasing functions of flow. It should be noted that problem P is inconsistent. In the objective the ATC deteriorate as flow increases, implying that more than one path per mode may carry flow. In constraint sets (2-17) and (2-18) flow is constrained to only one path per mode, the maximum utility modal path. Thus, some basic modifications in the assumptions underlying the problem would need to be made in order to make problem P consistent.

4. Summary

In this chapter a solution methodology was developed for problem P. The general methodology was based on the continuous optimal
adjustment heuristic proposed by Steenbrink [Steenbrink, 1974]. The modifiable components and parameters of the methodology were identified and their roles in the methodology analyzed. The major component in the methodology was found to be a solution procedure for problem $Pl(MS^0)$, the multi-modal network improvement problem with fixed modal splits. Problem $Pl(MS^0)$ was translated into an equivalent single-mode network improvement problem with an additional constraint set. Using a Steenbrink type decomposition procedure, problem $Pl(MS^0)$ was transformed into master problem $P2(MS^0)$, an uncapacitated, concave disutility transportation assignment problem. A two phase algorithm was developed to determine a good local optimal solution to $P2(MS^0)$. In the first phase a modification of the Yaged Algorithm was used to locate a point in the vicinity of a good local optimum. In the second phase the Yaged Algorithm was used to pinpoint this local optimum [Yaged, 1971].
CHAPTER IV

IMPLEMENTATION AND RESULTS

1. Implementation

The methodology developed in Chapter III was implemented on the Georgia Tech CDC Cyber 74 computing system. All programming was done in the FORTRAN programming language. The basic flow of the methodology is shown in the flowchart in Figure 4-1 below. The first component of the methodology determines a set of initial modal splits for each original 0-D pair. Several programs have been developed for this purpose:

(1) Program PREPF7 generates the current modal splits based on actual flow data.

(2) Program SMS generates extreme modal splits as discussed in Chapter III, Section 1.2 above.

(3) Program INMS generates random modal splits.

The second component calculates the 0-D demand for the expanded network using the original 0-D flows and the initial set of modal splits M^0. Program INFOD is the functional version of this component. The third component determines an initial set of arc lengths for the expanded network. Program INAC was developed to randomly generate these lengths. The fourth component solves problem $P2(M^0)$ using the two-phase algorithm developed in Chapter III. Program CNCASNB is the functional version of this component. Program CNCASNB is discussed at length in Section 1.1 below. The fifth component of the methodology performs several functions.
1. Determine a set of initial modal splits

2. Develop O-D demand for the expanded network of Problem P2(MS°)

3. Determine a set of initial arc lengths for the expanded networks of Problem P2(MS°)

4. Use the two-phase procedure to solve Problem P2(MS°)

5a. Calculate the modal splits MS^F feasible to the solution of P2(MS°)

5b. Do MS° and MS^F satisfy the convergence criteria?

5c. Modify MS° - No

Is the current solution satisfactory? - No

Stop

Fig. 4-1. Macro-Flowchart of Algorithm
(a) It calculates the set of feasible modal splits M^F using the solution of $P2(M^0)$.

(b) It tests the convergence of M^0 and M^F.

(c) It modifies M^0 if there is not convergence.

(d) It develops the new set of 0-D demands for the expanded network using the revised M^0.

Program TESTMS is the functional version of this component.

The convergence test used in Program TESTMS is:

$$|\epsilon_{sm}| \leq \epsilon_1 \quad \forall s \in R, m \in M$$ \hspace{1cm} (4-1)$$

where:

$$\epsilon_{sm} = M^F_{sm} - M^0_{sm}$$

M^0_{sm} ≡ the initial estimate of the mode m share for 0-D pair s

M^F_{sm} ≡ the feasible mode m share for 0-D pair s

R ≡ the set of 0-D pairs

M ≡ the set of modes

ϵ_1 ≡ the convergence parameter

The convergence parameter ϵ_1 is an input variable to TESTMS. M^0 is updated according to the equation:

$$M^0_{New} = M^0_{Old} + \alpha \epsilon$$ \hspace{1cm} (4-2)$$

α ≡ the correction factor, positive

ϵ ≡ the error vector, as calculated above

The correction factor α is also an input variable to TESTMS. The sixth
and final component of the methodology is the analyst's decision to terminate the methodology with an existing solution or to reinitiate it with another set MS^0. All of the programs are listed in Appendix A.

1.1 Program CNCASNB: A Two-Phase Solution Procedure for $P2(MS^0)$

Program CNCASNB is the functional version of the two-phase algorithm developed in Chapter III. A basic flowchart of CNCASNB is shown in Figure 4-2. Inputs to the program include:

1. The expanded network including the expanded set of nodes and arcs.
2. The expanded set of O-D pairs.
3. The initial arc lengths.
4. The maximum number of Phase I iterations.

Program CNCASNB is always either in Phase I or Phase II. The basic structure of the program is the same for both phases. A shortest path tree is constructed for each expanded origin using the current set of arc lengths. The tree-building algorithm used is a Dijkstra type labeling algorithm with several special features: [Dijkstra, 1959]

1. The algorithm does not consider intermodal transfer arcs when constructing a tree from a single-mode origin; i.e., an origin corresponding to the highway, rail, or water mode.
2. For a given origin, the tree-building process terminates when all destinations for that origin have been labeled.

Only the most current tree is stored, with each tree occupying the same core storage block, approximately 3,000 decimal words. This is necessitated by the relatively small core storage capacity of the Cyber 74, approximately 80,000 decimal words, coupled with the large size of the
Let I be the first arc

Is Algorithm in Phase I?

No

Read set of marginal disutility parameters for arc I

Update the length of arc I using parameters and current flow

Is there another arc? No

Let the new flow pattern become the previous flow pattern

Let I be next arc

Yes

Yes

Write: Current arc lengths, Current 0-D disutility for each expanded 0-D pair

Stop

Fig. 4-2. Flowchart for CNCASNB
Let I be first expanded origin

Construct the shortest path tree from Origin I

Assign flow originating at Origin I

Is there another expanded origin?
 Yes → Let I be next expanded origin

Is Algorithm in Phase I?
 Yes → Is current flow pattern on network equivalent to previous flow pattern?

 No → Is Algorithm in Phase I and have we reached maximum iterations?

No → Begin Phase II

(continued)
network. When a tree has been constructed for an origin node, all flow originating from that node is assigned to the shortest paths as determined by the tree.

After a tree has been constructed for each expanded origin node, and all flow has been assigned to the network, the current iteration is completed. It must now be determined whether the algorithm is to terminate, shift phases, or merely iterate in the same phase. The only way the algorithm may terminate is to be in Phase II and to have converged to a local optimum. Convergence has occurred when arc flows are identical on two successive iterations. The algorithm may shift from Phase I to Phase II in two ways.

(1) The algorithm is in Phase I and converges.

(2) The algorithm is in Phase I and has reached its maximum number of iterations.

Finally, the algorithm will remain in its current phase and iterate when convergence has not occurred and when Case 2 above does not hold.

The only effect of phase on the operation of the algorithm is in the calculation of arc length at the beginning of an iteration. When the algorithm is in Phase I it is seeking a point which is good globally. Thus, it bases arc length on average arc disutility. When in Phase II, the algorithm defines arc length as marginal arc disutility. Note that the parameters used to calculate these lengths are input from the appropriate data file at each iteration. Again, this is necessitated by the limited core storage available and the large number of arc parameters, approximately 33,000.
1.2 Data Requirements

The network used in the implementation of the methodology was the network developed by Jones for use in the Multi-State Corridor Research Project [Jones, 1977]. The continental United States is divided into 120 separate zones as shown in Figure 4-3 below. A complete description of these zones is given in Appendix B below. Note that zone size is smallest in the Multi-State Corridor area, roughly corresponding to an area planning and development district, and grows larger with distance from the corridor. A node representing each zone is placed at the major population/industrial center in the zone.

Line-haul arcs representing actual line-haul transport facilities connect the various nodes. For a complete listing of the line-haul arcs by mode, see Appendix C below. Additional nodes and arcs were added to the network in order to represent other transport facilities located within the zones. For a review of this procedure, see Chapter II, Section 1 above. The size of the resulting expanded network was approximately 1,000 nodes and 3,000 arcs.

The functions relating the arc transport characteristics (ATC) to arc investment were developed as follows:

(1) The general form used:

\[c_j(I_j) = b_{lj}(I_j - \bar{c}_j)^2 + d_{lj} \]

(4-3)

where:

\[c_j(I_j) \equiv \text{the arc transport characteristic for arc } j \text{ given } I_j \]
Figure 4-3
Multi-State Zone Structure
\(I_j \equiv \text{investment in arc } j \)

\(b_{lj}, c_j, d_{lj} \equiv \text{parameters of the model} \)

(2) Select the current value of the ATC averaged over all commodities for use as base value. Jones has estimated these base values for unit cost, time, and time variability for all transport facilities [Jones, 1977].

Let: \(\hat{c}_j \equiv \text{the current value of the ATC on arc } j \)

(3) Divide the current value into two parts, one susceptible to improvement by investment and the other fixed.

Let: \(c^1_j \equiv \text{the part susceptible to improvement} \)
\(c^2_j \equiv \text{the fixed part} \)

Note:

\[\hat{c}_j = c^1_j + c^2_j \]
\[d_{lj} = c^2_j \]

(4) Let: \(L_j \equiv \text{the lower bound on investment} \)
\(U_j \equiv \text{the upper bound on investment} \)

Then:

\[\bar{c}_j = U_j \]
\[b_{lj} = \frac{c^1_j}{(L_j - \bar{c}_j)^2} \]

The factors by which the base values were divided as well as the lower and upper bounds on investment are given in Appendix D below. It should be noted that only those arcs within the Multi-State Corridor,
approximately 1,000 arcs, were allowed to be improved. This was accomplished by setting $L_{ij} = U_{ij}$ for all arcs outside of the Multi-State Corridor.

The O-D flow data set used in the implementation, listed in Appendix E below, was derived from a data base prepared by Mullens and Sharp for use in the Multi-State Corridor Research Project [Mullens and Sharp, 1978]. Three commodities were selected for inclusion:

1. SIC 22 - Textile Mill Products
2. SIC 24 - Lumber and Wood
3. SIC 287 - Agricultural Chemicals

Flows of these commodities were combined to form a single macro-commodity. The final flow data set was obtained by selecting 63 different O-D flow data points of the macro-commodity and multiplying their flows by a factor of 25. Only those flows most likely to use the corridor were selected. Flows were multiplied by an expansion factor in order to increase them to realistic flow levels roughly equivalent to the sum of all commodity flows included in the original data base [Mullens and Sharp, 1978].

It should be noted that for the special case where only a portion of the overall network is allowed to improve, some O-D pairs might be excluded from the analysis without affecting the results. For the Multi-State Corridor example, consider a flow from Seattle to Los Angeles. It is highly unlikely that this flow would ever be routed through the Multi-State Corridor, even given maximum improvement in the Corridor. A simple criterion for O-D pair elimination is the following:

1. Route all O-D flows assuming maximum investment in the network.
(2) If the path for some 0-D pair does not include an arc subject to improvement, then the 0-D flow can be eliminated. The proof of this criterion follows from the fact that even with maximum improvement on the network, the identified 0-D flow uses a better non-improvable path. Thus, no other path could possibly divert the flow, and it can have no effect on the analysis.

A final data input to the implementation is the set of modal split model parameters. The multinomial logit modal split model is used. The three parameters needed to use the logit model were taken from the Multi-State Corridor Research Project [Jones, 1977]. Values are representative for the three commodities selected.

\[
a_1 = -0.01 \\
a_2 = -0.0033 \\
a_3 = -0.0004
\]

Note: \[
\frac{a_2}{a_1} = 0.033 \text{ equivalent dollars/min.}
\]

\[
\frac{a_3}{a_1} = 0.04 \text{ equivalent dollars/hr.}
\]

Aggregate statistics relating to the size of the resulting problem are shown in Table 4.1 below.
Table 4-1. Approximate Aggregate Statistics of Problem

<table>
<thead>
<tr>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual transport facilities</td>
<td>2600</td>
</tr>
<tr>
<td>Arcs (after network expansion)</td>
<td>3000</td>
</tr>
<tr>
<td>Zones</td>
<td>120</td>
</tr>
<tr>
<td>Nodes (prior to expansion)</td>
<td>840</td>
</tr>
<tr>
<td>Nodes (after expansion)</td>
<td>1000</td>
</tr>
<tr>
<td>0-D pairs (prior to expansion)</td>
<td>63</td>
</tr>
<tr>
<td>0-D pairs (after expansion)</td>
<td>227</td>
</tr>
<tr>
<td>Transport commodity classes</td>
<td>1</td>
</tr>
<tr>
<td>Math programming commodity classes*</td>
<td>14</td>
</tr>
<tr>
<td>(prior to expansion)</td>
<td></td>
</tr>
<tr>
<td>Math programming commodity classes*</td>
<td>56</td>
</tr>
<tr>
<td>(after expansion)</td>
<td></td>
</tr>
</tbody>
</table>

*In the mathematical programming literature a commodity is usually defined by origin and by a set of arc costs (alternatively, by destination and by arc costs). The term commodity as used in this research is defined by arc costs only.

2. Results

2.1 Description of Test Runs

The battery of programs described in Section 1.1 above was used to obtain solutions to the problem described in Section 1.2. Solutions were obtained for a variety of different methodological configurations, initial solutions, and parameters. Specific factors which were varied for the test runs included:
(1) The set of initial modal splits MS^0.
(2) The modal split updating parameter α.
(3) The modal split convergence parameter ϵ.
(4) The use of a Phase I type procedure in the two-phase algorithm.
(5) The set of initial arc lengths used in the first iteration of the two-phase algorithm. These arc lengths correspond to an initial set of arc investments.

Although a full or fractional factorial experimental design could have been used to estimate the effects of these factors, the lengthy computation times and subsequent high cost of solution made this alternative impractical. Accordingly, since several factors, such as the use of a Phase I procedure, the set of initial modal splits, and the set of initial arc lengths, were thought to be more critical than others, these factors were given more careful consideration in what can best be termed a "guided" experiment. The resulting set of test runs are described in detail in Table 4-2 below. These runs are placed in the format of a full factorial experimental design in Appendix F.

The first six runs were designed to demonstrate the effect of using a Phase I type procedure. The presence of a Phase I procedure was crossed with three sets of initial arc lengths (sets A, B, and C) while the initial modal split was held at the current split. It should be noted that each set of initial arc lengths was identified by a descriptor representing the seed used to randomly generate the set. These seeds and their descriptors were:
Table 4-2. Test Runs

<table>
<thead>
<tr>
<th>Run</th>
<th>Modal Split</th>
<th>Alpha</th>
<th>Epsilon</th>
<th>Phase I Used</th>
<th>Arc Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Current</td>
<td>1</td>
<td>.02</td>
<td>No</td>
<td>A</td>
</tr>
<tr>
<td>2</td>
<td>Current</td>
<td>1</td>
<td>.02</td>
<td>No</td>
<td>B</td>
</tr>
<tr>
<td>3</td>
<td>Current</td>
<td>1</td>
<td>.02</td>
<td>No</td>
<td>C</td>
</tr>
<tr>
<td>4</td>
<td>Current</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>5</td>
<td>Current</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>6</td>
<td>Current</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>7</td>
<td>1000</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>10</td>
<td>0100</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>0100</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>0100</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>0010</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>14</td>
<td>0010</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>15</td>
<td>0010</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>16</td>
<td>0001</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>17</td>
<td>0001</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>18</td>
<td>0001</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>19</td>
<td>1001</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>20</td>
<td>1001</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>21</td>
<td>1001</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>22</td>
<td>1110</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>23</td>
<td>1110</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>24</td>
<td>1110</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>25</td>
<td>1110</td>
<td>.8</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>26</td>
<td>1110</td>
<td>.8</td>
<td>.02</td>
<td>Yes</td>
<td>B</td>
</tr>
<tr>
<td>27</td>
<td>1110</td>
<td>.8</td>
<td>.02</td>
<td>Yes</td>
<td>C</td>
</tr>
<tr>
<td>28</td>
<td>0110</td>
<td>1</td>
<td>.02</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>29</td>
<td>0110</td>
<td>1</td>
<td>.01</td>
<td>Yes</td>
<td>A</td>
</tr>
<tr>
<td>30</td>
<td>0100</td>
<td>1</td>
<td>.01</td>
<td>Yes</td>
<td>B</td>
</tr>
</tbody>
</table>

Notes:

1. Modal split: \(C^{MM}, C^{HH}, C^{RR}, C^{W}\)

\[
C_m = 0 \Rightarrow \text{mode } m \text{ receives no share}
\]

\[
C_m = 1 \Rightarrow \text{mode } m \text{ receives equal share}
\]

2. Arc Lengths: A \rightarrow \text{Seed 767676767676}

B \rightarrow \text{Seed 765676567656}

C \rightarrow \text{Seed 656565656565}
The next factor examined was the initial set of modal splits. To demonstrate the effect of this factor seven modal splits were crossed with the same three sets of initial arc lengths while all other factors were held constant, resulting in runs 4 through 24. An additional run, number 28, used an eighth set of initial modal splits. Except for the current modal split, all sets of initial modal splits were identified by a descriptor of the form:

\[(C_{MM}, C_{HW}, C_{RR}, C_{W})\]

where:

\[C_m = 0 \Rightarrow \text{mode } m \text{ receives no share}\]
\[C_m = 1 \Rightarrow \text{mode } m \text{ receives an equal share for each 0-D pair it connects}\]

Note: \[C_{MM} = 1 \text{ if no other designated mode connects the 0-D pair.}\]

The third factor examined was ALPHA, the modal split updating parameter. To demonstrate the effect of this factor, two values of ALPHA were crossed with the three sets of initial arc lengths, resulting in runs 22 through 27. The initial modal split for these runs was 1110. The final factor examined was EPSILON, the modal split convergence parameter.
To demonstrate the effect of this factor, four runs were made with two different values of ALPHA. Runs 28 and 29 were made with a 0110 modal split and arc length set A, and runs 11 and 30 were made with a 0100 modal split and arc length set B. Finally, with the exception of runs 1 through 3, all test runs used a Phase I type procedure in the two-phase algorithm. This was done because it was thought that utilization would result in better, more uniform solutions to Problem P2(MS°), the concave transportation assignment problem. Selected results from the test runs are given in Appendix F.

2.2 Convergence of the Methodology

In Chapter III it was noted that convergence of the methodology could not be guaranteed. Specific areas of concern included:

(1) Convergence of MS° and MS F in the general methodology.
(2) Convergence of the first phase of the two-phase algorithm.

From the results in Appendix F it appears that the methodology converged for all runs. The minimum CPU time required for convergence was 632 seconds, the maximum 1213 seconds, and the average 1064 seconds. The overall computation time was the result of two factors:

(1) The number of macro-iterations of the general methodology required for convergence.
(2) The CPU time for each macro-iteration.

The minimum number of macro-iterations was two and maximum was three. The minimum CPU time required for a macro-iteration was 164 seconds, the maximum 466 seconds, and the average 364 seconds. The time required for a macro-iteration was determined by two factors:

(1) The number of micro-iterations constituting the macro-iteration. A micro-iteration is defined to be one Phase I or Phase II iteration of the two-phase algorithm.
(2) The time required for each micro-iteration. The minimum number of micro-iterations in a macro-iteration was two and the maximum was eight. It is interesting to note that as the general methodology approached convergence, the number of micro-iterations per macro-iteration decreased. For example, the average number of micro-iterations required for the first macro-iteration was 6.6, the average for the second was 6.3, and the average for the third was 4.6.

The average CPU time required to complete a micro-iteration was 61 seconds. Each micro-iteration consisted of two components:

(1) Reading a set of 11 arc disutility parameters for each of the 3080 network arcs and calculating the current arc length.
(2) The construction of 56 shortest path trees, for 227 O-D pairs. Assigning the flow to the network.

Thus, the average CPU time required to construct one tree was something less than 1.1 second. For a given origin, a shortest path tree was completed when all destinations for that origin were attached to the tree. Thus, the actual CPU time required to construct a tree depended upon the relative arc lengths for that iteration.

Now, consider the effects of the factors listed in Table 4-1 on the rate of convergence. Since the number of micro-iterations required for convergence is roughly proportional to the CPU time, this number can be used as a measure of rate of convergence. Consider the effect of the first factor, the set of initial modal splits MS^0. Micro-iterations are plotted against initial modal splits in Figure 4-4 below. Holding all other factors constant, the methodology converged at approximately the same rate, 3 macro-iterations and 18 to 20 micro-iterations, for most initial modal splits. Obvious exceptions involved the splits 1110 and 0110 which converged in two macro-iterations and 12 to 13 micro-iterations.
Set of Initial Arc Lengths: 25

A - *
B - ○
C - *

Micro-Iterations

Current 1000 0100 0010 0001 1001 1110 0110

Initial Modal Split

Fig. 4.4. Initial Modal Split Versus Rate of Convergence
Second, consider the effect of the modal split updating parameter ALPHA. Results are shown in Table 4-3 below.

Table 4-3. Effect of ALPHA on Rate of Convergence

<table>
<thead>
<tr>
<th>Run</th>
<th>Set of Initial Arc Lengths</th>
<th>ALPHA</th>
<th>Macro-Iterations</th>
<th>Micro-Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>A</td>
<td>1.0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
<td>.8</td>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>1.0</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>.8</td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>1.0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
<td>.8</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

From preliminary program battery verification runs with a much smaller problem, it was demonstrated that deviation of ALPHA from 1.0 resulted in a significant decrease in the rate of convergence. The same effect was demonstrated by the test runs. Changing ALPHA from 1.0 to 0.8 resulted in increases in the number of macro-iterations from two to three and in the number of micro-iterations by five. Next, consider the effect of the third factor, the modal split convergence parameter EPSILON. It was postulated previously that as EPSILON was decreased, the time required for convergence might increase substantially. This was verified by runs 28 and 29. As EPSILON was decreased from .02 to .01, the number of macro-iterations increased from two to three and the number of micro-iterations increased from 13 to 18. Runs 11 and 30 showed little difference in convergence as EPSILON was decreased from
Next, consider the effect of using a Phase I procedure in the two-phase algorithm. Since this factor is internal to a single component of the general methodology, it might not be expected to affect the number of macro-iterations. Runs 1 through 6 demonstrated this, each requiring three macro-iterations. However, the use of a Phase I procedure had a substantial effect on the number of micro-iterations required for convergence. The results are shown in Table 4.4. Several points should be noted:

1. The use of a Phase I procedure increased the number of micro-iterations by approximately 100%.
2. Although the use of the Phase I procedure decreased the number of Yaged type Phase II iterations required, the Phase I iterations more than made up for this decrease.

Finally, consider the effect of the initial set of arc lengths. Returning to Figure 4.4, note that this factor did not cause the rate of convergence to change greatly. The maximum change was 2 micro-iterations. While no set of initial arc lengths uniformly hastened convergence, set A appeared to slightly impede convergence.

2.3 Aggregate Characteristics of Solutions

In this section the solutions obtained from the test runs are analyzed with respect to three characteristics: total savings over current total disutility associated with the network (the objective), investment over the current minimum level, and user savings over current level. The current values were obtained by setting all arc investments at their lower bounds and allowing the flow assignment constraints (2-17) and (2-18) to assign flow to the network. All values are given in terms of millions of equivalent annual dollars. The current values were estimated as:
Table 4-4. Effect of Phase I Procedure on Rate of Convergence (Micro-iterations)

<table>
<thead>
<tr>
<th>Run</th>
<th>Initial Set of Arc Lengths</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>12</td>
<td>6</td>
<td>18</td>
</tr>
</tbody>
</table>
Total disutility - 16,626
Investment - 269
User disutility - 16,357

The total savings associated with the solutions ranged from a minimum of 1140 for run 21 to a maximum of 1318 for run 7. Investment associated with solutions ranged from a minimum of 187 for run 4 to a maximum of 220 for run 3. User savings associated with solutions ranged from a minimum of 1351 for run 21 to a maximum of 1537 for run 7. The objective, total savings, is plotted against investment in Figure 4-5 below. Although the best solutions occurred at high levels of investment, very poor solutions also occurred at these levels. In general, there appears to be little relationship between investment and total savings. Solutions tended to congregate around certain combinations of investment and total savings. This tendency could indicate the presence of local optimal solutions. Investment is plotted against user savings in Figure 4-6 below. As might be expected, the solutions having the highest user savings also had some of the highest levels of investment. However, high investment did not assure a high level of user savings. In general, the relationship between investment and user savings was not strong. Finally, total savings are plotted against user savings in Figure 4-7 below. The strong relationship between total savings and user savings results from the fact that investment is relatively small compared to these two values. Thus, one closely approximates the other. This is also the reason for the similarity of Figures 4-5 and 4-6 above.

Total savings are plotted against the total number of
Fig. 4.5. Total Savings Versus Investment, All Runs
Fig. 4.6. User Savings Versus Investment, All Runs
Fig. 4.7. Total Savings Versus User Savings, All Runs
micro-iterations in Figure 4-8 below. There appears to be little relationship between the two. Investment and user savings are plotted against the number of micro-iterations in Figures 4-9 and 4-10 respectively. Again, there appears to be little relationship between the characteristics being considered and the rate of convergence.

Now, consider the effects of the factors listed in Table 4-1 on the characteristics' total savings, investment, and user savings. First, consider the effect of the set of initial modal splits MS° and the set of initial arc lengths. Total savings is plotted against these factors in Figure 4-11 below. Several points should be noted:

1. The set of initial modal splits apparently had a strong effect on total savings for each set of initial arc lengths.
2. No set of initial modal splits was superior or inferior for all sets of initial arc lengths.
3. The set of initial arc lengths had a strong effect on total savings for each of the sets of initial modal splits, with the possible exception of 0010.
4. The set of initial arc lengths A was consistently superior to sets B and C. Set C was consistently inferior to sets A and B.

Investment is plotted against these factors in Figure 4-12 below. Several points should be noted:

1. While most sets of initial modal splits and arc lengths resulted in approximately the same level of investment, several sets of initial modal splits resulted in substantially lower levels of investment.
2. The current set of modal splits and the 0010 set resulted in much lower levels of investment for all sets of initial arc lengths.
3. The set of initial arc lengths did not have a strong effect on the level of investment given a set of initial modal splits.
Fig. 4.8. Micro-Iterations Versus Total Savings, All Runs
Fig. 4.9. Micro-Iterations Versus Investment, All Runs
Fig. 4.10. Micro-Iterations Versus User Savings
Set of Initial Arc Lengths:

A -
B - o
C - *

Total Savings

Initial Modal Split

Fig. 4.11. Total Savings Versus Initial Modal Split
Set of Initial Arc Lengths:

- A - *
- B - o
- C - *

Investment

Fig. 4.12. Investment Versus Initial Modal Split
User savings are plotted against these factors in Figure 4-13 below. Since user savings is closely related to total savings, the same observations can be made.

Next, consider the effect of the modal split updating parameter ALPHA. Comparing the characteristics of runs 22-24 with those of runs 25-27, note that for each set of initial arc lengths the methodology converged to the same solution, regardless of the value of ALPHA.

Next, consider the effect of the modal split convergence parameter EPSILON. Comparing the characteristics of runs 28 and 11 to those of runs 29 and 30 respectively, it should be noted that the methodology converged to the same solutions. Finally consider the effect of the use of a Phase I procedure in the two-phase algorithm. The results are shown in Table 4-5 below.

<table>
<thead>
<tr>
<th>Run</th>
<th>Set of Initial Arc Lengths</th>
<th>Phase I Used</th>
<th>Total Savings</th>
<th>Investment</th>
<th>User Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>No</td>
<td>1250</td>
<td>197</td>
<td>1446</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Yes</td>
<td>1260</td>
<td>187</td>
<td>1447</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>No</td>
<td>1199</td>
<td>219</td>
<td>1418</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Yes</td>
<td>1255</td>
<td>187</td>
<td>1442</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>No</td>
<td>1190</td>
<td>220</td>
<td>1410</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>Yes</td>
<td>1170</td>
<td>191</td>
<td>1361</td>
</tr>
</tbody>
</table>

For the sets of initial arc lengths A and B, use of the Phase I procedure resulted in an improved objective, lower investment, and higher user
Set of Initial Arc Lengths:

- A - • 1550
- B - °
- C - *

1500
1450
1400
1350

User Savings

Initial Modal Split

Fig. 4.13. User Savings Versus Initial Modal Split
savings. For the set C, use of Phase I resulted in an increase in the objective, a decrease in investment, and a decrease in user savings. Thus, no specific conclusions can be drawn regarding this factor.

2.4 Detailed Characteristics of Solutions

In the previous sections the solutions were analyzed with respect to some aggregate characteristics. Although the solutions appeared to differ with respect to these characteristics, there was still some question as to whether the differences in solutions represented true investment and flow pattern differences. The purpose of this section is to examine this question in greater detail. The solutions of 3 test runs were analyzed:

(1) Run 7 - the best solution
(2) Run 21 - the worst solution
(3) Run 6 - a low investment solution

First, consider investment over minimum for each solution.

Investment was 215 for run 7, 212 for run 21, and 191 for run 6. This may be separated by mode as shown in Table 4-6 below.

<table>
<thead>
<tr>
<th>Run</th>
<th>Highway</th>
<th>Railroad</th>
<th>Water</th>
<th>Intermodal Transfer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 7</td>
<td>120</td>
<td>95</td>
<td>.08</td>
<td>0</td>
<td>215</td>
</tr>
<tr>
<td>Run 21</td>
<td>116</td>
<td>96</td>
<td>.08</td>
<td>0</td>
<td>212</td>
</tr>
<tr>
<td>Run 6</td>
<td>94</td>
<td>96</td>
<td>.08</td>
<td>0</td>
<td>191</td>
</tr>
</tbody>
</table>

Several points should be noted:
(1) Investment in water and intermodal transfer facilities was negligible for all runs.

(2) Investment in railroad facilities remained virtually constant.

(3) Investment in highways decreased from run 7 to 21 and from run 21 to 6.

Examining highway and railway facility investment in greater detail, investment can be further subdivided by type of facility as shown in Table 4-7 below. Several points should be noted:

(1) The loss in highway investment across runs occurred in line-haul facilities.

(2) A slight gain in rail investment occurred.

Thus, the differences between solutions noted in the previous section appear to be real and to be concentrated primarily on highway line-haul facilities. To examine these differences in still greater detail, the first 50 highway line-haul arcs in the arc list were selected for further examination. All 50 arcs were corridor arcs and thus subject to improvement. Investment and flow on these arcs for the 3 runs are shown in Table 4-8 below. Although this is but a small sample of the over 700 corridor arcs, it should be clear that investment and flow patterns did differ from solution to solution.

2.5 Summary of Results and Conclusions

The battery of programs developed to implement the methodology was used to solve the problem described in Section 1.2. Solutions were obtained for a variety of different methodological configurations, initial solutions and parameters. Specific factors which were varied included:

(1) The set of initial modal splits M^0_0.
Table 4-7. Investment by Mode and Type of Facility

<table>
<thead>
<tr>
<th></th>
<th>Highway</th>
<th></th>
<th></th>
<th></th>
<th>Rail</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loading</td>
<td>Line-Haul</td>
<td>Transfer</td>
<td>Unloading</td>
<td>Loading</td>
<td>Line-Haul</td>
<td>Transfer</td>
<td>Unloading</td>
</tr>
<tr>
<td>Run 7</td>
<td>0.3</td>
<td>119</td>
<td>0</td>
<td>0.4</td>
<td>0.3</td>
<td>93</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Run 21</td>
<td>0.3</td>
<td>115</td>
<td>0</td>
<td>0.4</td>
<td>0.3</td>
<td>94</td>
<td>0.8</td>
<td>0.4</td>
</tr>
<tr>
<td>Run 6</td>
<td>0.3</td>
<td>94</td>
<td>0</td>
<td>0.4</td>
<td>0.3</td>
<td>95</td>
<td>0.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Table 4-8. Investment and Flow on HW Line-Haul Arcs

<table>
<thead>
<tr>
<th>Origin</th>
<th>Dest.</th>
<th>Run 7</th>
<th>Run 21</th>
<th>Run 6</th>
<th>Run 7</th>
<th>Run 21</th>
<th>Run 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.8</td>
<td>2.8</td>
<td>.3</td>
<td>3,346</td>
<td>3,346</td>
<td>633</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3.7</td>
<td>0</td>
<td>0</td>
<td>13,764</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>5.0</td>
<td>0</td>
<td>0</td>
<td>7,185</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>5.1</td>
<td>0</td>
<td>0</td>
<td>6,579</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>4,316</td>
<td>4,342</td>
<td>4,342</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>4.2</td>
<td>0</td>
<td>0</td>
<td>11,092</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>4.3</td>
<td>4.4</td>
<td>0</td>
<td>16,530</td>
<td>27,891</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2.7</td>
<td>0</td>
<td>2.6</td>
<td>11,092</td>
<td>0</td>
<td>6,579</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>2,461</td>
<td>2,474</td>
<td>2,474</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>3.7</td>
<td>3.8</td>
<td>0</td>
<td>14,558</td>
<td>25,912</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>3.6</td>
<td>3.6</td>
<td>3.3</td>
<td>4,611</td>
<td>4,623</td>
<td>2,643</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(continued)
Table 4-8 (cont'd)

<table>
<thead>
<tr>
<th>Origin</th>
<th>Dest.</th>
<th>Run 7</th>
<th>Run 21</th>
<th>Run 6</th>
<th>Flow ((\times) 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Run 7</td>
<td>Run 21</td>
<td>Run 6</td>
<td>Run 7</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>0</td>
<td>1.8</td>
<td>1.8</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>1.9</td>
<td>1.5</td>
<td>1.5</td>
<td>2,323</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>4.1</td>
<td>0</td>
<td>1.4</td>
<td>15,387</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
(2) The modal split updating parameter ALPHA.

(3) The modal split convergence parameter EPSILON.

(4) The use of a Phase I procedure in the two-phase algorithm.

(5) The set of initial arc lengths used in the first macro-iteration.

The methodology converged for all runs which were attempted. Convergence occurred after two to three macro-iterations or 9 to 20 micro-iterations. The corresponding solution times ranged from 632 to 1213 seconds. The total savings ranged from 1140 to 1318, with investment ranging from 187 to 220. Although the best solutions occurred at high levels of investment, a number of poorer solutions did also. In general, there was little relationship between total savings and investment. In addition, there was little relationship between the rate of convergence and total savings, investment, or user savings.

Regarding the factors which were varied, it was demonstrated that the set of initial modal splits could affect the rate of convergence, the total savings, investment, and user savings. It was also demonstrated that the set of initial arc lengths could affect the rate of convergence, the total savings, and user savings. Regarding the modal split updating parameter ALPHA, it was demonstrated that convergence deteriorated as ALPHA was varied from 1. . As for the modal split convergence parameter EPSILON, it was demonstrated that convergence deteriorated as EPSILON decreased. Holding all other factors constant, modifying ALPHA and EPSILON did not change the final solution. Finally, it was demonstrated that a Phase I procedure could be utilized in the two-phase algorithm to improve the solution objective. However, this
improvement will be accompanied by a substantial increase in computation time.

A number of conclusions might be drawn from the results presented in this chapter. First, the methodology developed appears to be a viable method of generating solutions for the multi-modal network improvement problem. Although solution times are long, this is certainly not unusual for problems of this size or design-construction projects of this magnitude. Solution times might be shortened considerably by selecting an ALPHA of 1.0 and an EPSILON as large as modal split error tolerances will permit. Solution times might be further shortened by as much as 50% by eliminating the Phase I portion of the two-phase algorithm. However, the latter effort may cause an appreciable deterioration in the value of the objective.

Second, any reasonable search procedure developed for this methodology must consider varying both the set of initial modal splits and the set of initial arc lengths. One such reasonable search procedure might be as follows:

1. Select a group of initial modal split sets to be investigated. This group might contain the sets of extreme modal splits as defined in Chapter III.

2. For some initial modal split set in this group, randomly generate a set of initial arc lengths and use the methodology to obtain the solution. Continue generating sets of initial arc lengths and solving until n consecutive solutions are obtained which are not better by X% than the best previous solution. At this point, terminate efforts on this initial modal split set, select a new set from the group, and iterate.

The results of any search procedure can be plotted on a total savings-investment graph similar to that of Figure 4-5 above. After defining
the maximum savings envelope over investment, the decision maker might then select the preferred combination of investment and total savings.

Finally, the tendency of solutions generated from many starting points to cluster around certain points on all graphs tends to indicate the presence of local optimal solutions to the multi-modal network improvement problem. This finding would not be inconsistent given the nonconvex nature of this problem.
CHAPTER V

AN EXTENSION OF THE METHODOLOGY TO INCLUDE MULTIPLE COMMODITIES

In Chapter II, Section 1, an assumption was made that all flows on the network belonged to the same transport commodity class. This is a tenuous assumption at best. In real problems there are thousands of transport commodity classes, each with its very own transport characteristics [Bureau of the Census, 1975]. Jones has identified 53 different transport commodity classes for use in the Multi-State Corridor Research Project [Jones, 1977]. Thus, it would be highly desirable to extend the methodology developed in Chapter III to the multi-commodity case. Note that in this chapter multi-commodity refers to multi-transport commodity classes. The purpose of this chapter is to extend the methodology developed in Chapter III to the multi-commodity case. The development will follow directly from that of Chapter III.

1. Modelling Assumptions and the Formulation

1.1 Modelling Assumptions

Consider the set of modelling assumptions made in Chapter II, Section 1. A number of modifications and additions must be made. First, each transport facility represented by an arc can carry flow of any commodity. Second, each such arc has a set of arc transport characteristics (ATC) for each commodity. This implies that the cost, time, and time variability may not be uniform for all commodities using a given arc. A direct result of the second assumption is that, while the
function relating an arc's ATC and investment retains its general form, the parameters of the function become commodity specific. Third, although the general form of the modal split model remains the same, the parameters of the model become commodity specific. Finally, consider the first part of the eighth assumption given in Chapter II, Section 1. It states that for any level of investment on an arc, only one set of physical improvements will be considered. Justification for this assumption came from the fact that for each level of arc investment, preliminary screening had identified the best physical improvement. Now, consider the multi-commodity case. For line-haul arcs the assumption may still be reasonable. However, for loading, unloading, and inter-modal transfer arcs, the physical improvement may not only depend upon level of investment, but also upon the specific commodity using the facility. The reason is that equipment used in this type facility is commodity dependent. For example, if one were to spend $100,000 to improve the loading of lumber, he would probably not spend it in the same way were he to improve the loading of grain. One possible method of dealing with this problem is to expand the number of arcs, replacing each loading, unloading, or intermodal transfer arc with an arc for each commodity. Of course, flow of commodity x would not be permitted on an arc corresponding to commodity y. However, for the purposes of the following discussion, assume that the initial assumption is still valid.

1.2 The Formulation

The formulation of the multi-commodity problem can be stated as:
Problem MP: Min \(Z \) =

\[
\sum_{p \in \mathcal{P}, c \in \mathcal{C}} y_{p,c} \text{pc} + \sum_{j \in \mathcal{J}} c_{j} \text{jd} + \sum_{p \in \mathcal{P}} \exp \left\{ \frac{1}{\alpha_{j}} \sum_{c \in \mathcal{C}} \left[\frac{a_{c} s_{j}(I) + c_{j}}{a_{j} s_{j}(I) + c_{j}} \right] \right\}
\]

s.t.

\[
y_{p,c} = \begin{cases} 0 & \text{if } r \neq 0, c \in \mathcal{C}, d \in \mathcal{D}, p \in \mathcal{P} \text{ and } \mathcal{E}(I) \end{cases}
\]

where:

- \(I_j \) = investment on arc \(j \)
- \(L_{j} \) = flow of commodity \(c \) on path \(p \) from node \(r \) to \(d \)
- \(D_{r,d} \) = total demand for commodity \(c \) from node \(r \) at node \(d \)
- \(L_{j} \) = lower and upper bounds for investment on arc \(j \)
- \(a_{1}, a_{2}, a_{3} \) = modal split parameters for commodity \(c \)
- \(c_{j} \) = unit transport cost of commodity \(c \) on arc \(j \) as a function of \(I_{j} \)
- \(v_{j} \) = transport time of commodity \(c \) on arc \(j \) as a function of \(I_{j} \)
\(\nu_{ij}^c(I) \) \equiv \text{transport time variance of commodity } c \text{ on arc } j \text{ as a function of } I_j \\
O \equiv \text{set of origin nodes} \\
D_r^c \equiv \text{set of destinations for commodity } c \text{ associated with origin } r \\
P_{rd} \equiv \text{set of paths connecting } r \text{ and } d \\
A_{rd}^p \equiv \text{set of arcs comprising } p^{th} \text{ path connecting } r \text{ and } d \\
B_{rd}^c(1) \equiv \text{set of maximum utility paths connecting } r \text{ and } d \text{ for commodity } c \text{ given an investment vector } I. \text{ The set includes one path for each mode including the multi-modal option where it is distinct from a single-mode path.} \\
N \equiv \text{set of network nodes} \\
A \equiv \text{set of network arcs} \\
C \equiv \text{set of commodities} \\

2. The Solution Methodology

2.1 Continuous Optimal Adjustment Extended to Multiple Commodities

The general methodology of continuous optimal adjustment can be easily extended to multiple commodities:

(1) Fix the initial modal split for each commodity between each O-D pair.

(2) Determine the O-D demand by commodity and mode.

(3) Solve the resulting multi-commodity, multi-modal network improvement problem with fixed modal splits.

(4) For each commodity, does the fixed set of modal splits agree with the set of modal splits feasible with respect to (5-2), (5-3) given the solution of (3) above?

(a) If yes, go to (5) below.

(b) Otherwise, adjust the assumed modal splits and go to (2) above.

(5) Is the solution satisfactory?

(a) If yes, terminate.
(b) Otherwise, determine a completely different set of initial modal splits and return to (2) above.

The general multi-commodity methodology is almost identical to that of the single-commodity. The only difference is the need to consider a set of modal splits for each commodity for an O-D pair. Let \(\text{MMS}^0 \) be the initial set of modal splits and let \(\text{MMS}^F \) be the feasible set. Let \(\text{MP1}(\text{MMS}^0) \) be the multi-commodity, multi-modal network improvement problem with fixed modal splits.

2.2 \(\text{MP1}(\text{MMS}^0) \): The Multi-commodity, Multi-modal Network Improvement Problem with Fixed Modal Splits

After adding nodes and arcs exactly as was done for Problem \(\text{Pl}(\text{MS}^0) \), \(\text{MP1}(\text{MMS}^0) \) can be stated in node-arc terms as:

\[
\begin{align*}
\text{Problem } \text{MP1}(\text{MMS}^0): & \quad \text{Min } \sum_{I_j, f^c_{ij}, f^{rc}_{ij}} \sum_{j \in A} \sum_{c \in C} f^c_{ij} \left[\frac{c_c(j, I_j)}{\alpha} + \frac{a^2_c}{\alpha} f_c(j, I_j) + \frac{a^3_c}{\alpha} v_c(j, I_j) \right] \\
& \quad + \sum_{j \in A} I_j \\
\text{s.t.} & \quad \sum_{j \in W_i} f^{rc}_{ij} - \sum_{j \in V_i} f^{rc}_{ij} = h^{rc}_{i} \quad \forall i \in N, r \in O, c \in C \\
& \quad f^c_{ij} = \sum_{r \in O} f^{rc}_{ij} \quad \forall j \in A, c \in C \\
& \quad f^{rc}_{ij} = 0 \quad \forall j \in \text{ITA}, r \in \text{SMO}, c \in C \\
& \quad f^{rc}_{ij} \geq 0 \quad \forall j \in A, r \in O, c \in C
\end{align*}
\]
For each commodity, 0-D flows must occur only on maximum utility modal paths. If there is more than one maximum utility path for any commodity, 0-D pair, and mode, it is assumed that all flow occurs on only one path.

where:

\[f^c_j = \text{total flow of commodity } c \text{ on arc } j \]
\[f^r_{jc} = \text{total flow of commodity } c \text{ from node } r \text{ on arc } j \]
\[h^r_{ic} = \begin{cases} -x^c_{ri} & \text{if } i \in D^c_r \\ \sum_{j \in D^c_i} x^c_{rj} & \text{if } i = r \\ 0 & \text{otherwise} \end{cases} \]
\[x^c_{ij} = \text{flow of commodity } c \text{ from origin } i \text{ to destination } j \]
\[W_i = \text{set of arcs originating at node } i \]
\[V_i = \text{set of arcs terminating at node } i \]
\[\text{SMO} = \text{set of single-mode origins} \]
\[\text{ITA} = \text{set of intermodal transfer arcs} \]

As was the case with problem Pl(MS^0), constraint set (5-11) is redundant and can be eliminated. The proof follows directly from the previous proof.

Proceeding as before, assume that the ATC for any commodity \(c \) and arc \(j \) are related to the arc investment \(I_j \) by functions of the form:

\[c^c_j(I_j) = b^c_{1j}(I_j - c^c_j)^2 + d^c_{1j} \]

(5-12)
\[t_j^c(I_j) = b_{2j}^c (I_j - \bar{t}_j^c)^2 + d_{2j}^c \] (5-13)

\[v_j^c(I_j) = b_{3j}^c (I_j - \bar{v}_j^c)^2 + d_{3j}^c \] (5-14)

where:

\[b_{ij}^c, c_j, t_j^c, v_j^c, d_{ij} \] are commodity \(c \) specific parameters for arc \(j \)

Again using the Steenbrink decomposition procedure to solve problem MP1(MMS\(^0\)), a subproblem is solved for each arc:

Problem MS\(_1\)(MMS\(^0\)):

\[H_j(f_j) = \min \sum_{I_j c \in C} (A_j^c f_j c I_j^2 + B_j^c f_j c I_j + C_j^c f_j c I_j) + I_j \] (5-15)

s.t. \(L_j \leq I_j \leq U_j \) (5-16)

where:

\[f_j = [f_j^c] \] (5-17)

\[A_j^c = b_{1j}^c + \frac{a_2^c}{a_1^c} b_{2j}^c + \frac{a_3^c}{a_1^c} b_{3j}^c \] (5-18)

\[B_j^c = -2 \left(b_{1j}^c c_j^c + \frac{a_2^c}{a_1^c} b_{2j}^c c_j^c + \frac{a_3^c}{a_1^c} b_{3j}^c c_j^c \right) \] (5-19)

\[C_j^c = b_{1j}^c \bar{c}_j^c + \frac{a_2^c}{a_1^c} b_{2j}^c \bar{c}_j^c + \frac{a_3^c}{a_1^c} b_{3j}^c \bar{c}_j^c \] (5-20)
or, after rearranging terms:

\[
\text{Problem } MSL_j(MMS^0): \quad H_j(\mathbf{f}_j) = \min_{I_j} I_j^2 \sum_{c \in C} A_{j}^{c} f_{j}^{c} + I_j \left(\sum_{c \in C} B_{j}^{c} f_{j}^{c} + 1 \right) + \sum_{c \in C} C_{j}^{c} f_{j}^{c} \quad (5-21)
\]
\[
s.t. \quad L_j \leq I_j \leq U_j \quad (5-22)
\]

If the vector \mathbf{f}_j is fixed, i.e., flow is fixed on arc j for all commodities, then the objective (5-21) is the sum of a convex quadratic, a linear term, and a constant. Thus, (5-21) is convex, $MSL_j(MMS^0)$ is a convex program, and the Kuhn-Tucker conditions apply:

Theorem 5.1

The optimal solution to $MSL_j(MMS^0)$ is defined by:

\[
\hat{I}_j^* = \begin{cases}
L_j & \text{if } \hat{I}_j \leq L_j \\
\hat{I}_j & \text{if } L_j \leq \hat{I}_j \leq U_j \\
U_j & \text{if } \hat{I}_j \geq U_j
\end{cases} \quad (5-23)
\]

where:

\[
\hat{I}_j = \frac{-\sum_{c \in C} B_{j}^{c} f_{j}^{c} - 1}{2 \sum_{c \in C} A_{j}^{c} f_{j}^{c}} \quad (5-24)
\]

Proof. The Kuhn-Tucker conditions for $MSL_j(MMS^0)$ are:
(1) \[2I^*_j \sum_{c \in C} A^c_{j}f^c_{j} + \sum_{c \in C} B^c_{j}f^c_{j} + 1 - v_1 + v_2 = 0 \]

(2) \[v_1(L_j - I^*_j) = 0 \]

(3) \[v_2(I^*_j - U_j) = 0 \]

(4) \[L_j \leq I_j \leq U_j \]

(5) \[v_1, v_2 \geq 0 \]

Case 1

If \(\hat{I}_j \leq L_j \)

Let: \(I^*_j = L_j \)

\[
\begin{align*}
 v_1 &= 2L_j \sum_{c \in C} A^c_{j}f^c_{j} + \sum_{c \in C} B^c_{j}f^c_{j} + 1 \\
 v_2 &= 0
\end{align*}
\]

Clearly conditions 1, 2, 3, and 4 are satisfied.

Thus, if \(v_1 \geq 0 \), then the K-T conditions are satisfied.

Note: \(\hat{I}_j \leq L_j \)

\[
\therefore v_1 \geq 2\hat{I}_j \sum_{c \in C} A^c_{j}f^c_{j} + \sum_{c \in C} B^c_{j}f^c_{j} + 1 = 0
\]

Thus, the K-T conditions are satisfied for Case 1.

Case 2

\(L_j \leq \hat{I}_j \leq U_j \)

Let: \(I^*_j = \hat{I}_j \)

\[
\begin{align*}
 v_1 &= v_2 = 0
\end{align*}
\]

Clearly conditions 2, 3, 4, and 5 are satisfied.

Regarding condition 1:

\[
2\hat{I}_j \sum_{c \in C} A^c_{j}f^c_{j} + \sum_{c \in C} B^c_{j}f^c_{j} + 1 - v_1 + v_2 = 0
\]
Therefore, all K-T conditions are satisfied for Case 2.

Case 3

\[\hat{i}_j \geq U_j \]

Let: \(I^*_j = U_j \)

\[v_1 = 0 \]

\[v_2 = -2U_j \sum_{c \in C} A_{j,j}^{c} - \sum_{c \in C} B_{j,j}^{c} + 1 \]

Conditions 1, 2, 3, and 4 are satisfied. Thus, if \(v_2 \geq 0 \), then the K-T conditions are satisfied.

Note: \(\hat{i}_j \geq U_j \)

\[\therefore v_2 \geq -2I_j \sum_{c \in C} A_{j,j}^{c} - \sum_{c \in C} B_{j,j}^{c} + 1 = 0 \]

Thus, the K-T conditions are satisfied for all three cases.

Q.E.D.

Substituting the results of Theorem 5.1 into (5-15):

\[
H_j(\tilde{f}_j) = \begin{cases}
L_j^2 \sum_{c \in C} A_{j,j}^{c} + L_j \left(\sum_{c \in C} B_{j,j}^{c} + 1 \right) + \sum_{c \in C} c_{j,j}^{c} & \text{if } \hat{i}_j \leq L_j \\
- \left(\sum_{c \in C} B_{j,j}^{c} + 1 \right)^2 & \text{if } L_j \leq \hat{i}_j \leq U_j \\
U_j^2 \sum_{c \in C} A_{j,j}^{c} + U_j \left(\sum_{c \in C} B_{j,j}^{c} + 1 \right) + \sum_{c \in C} c_{j,j}^{c} & \text{if } \hat{i}_j \geq U_j
\end{cases}
\]

(5-25)

As for the properties of \(H_j(\tilde{f}_j) \):

Theorem 5.2

\(H_j(\tilde{f}_j) \) is both continuous and differentiable for feasible \(\tilde{f}_j \).
Proof. Over the region where \(\hat{f}_j < L_j \) and \(\hat{f}_j > U_j \), \(H_j(\hat{f}_j) \) is linear, continuous, and differentiable.

Over the region where \(L_j < \hat{f}_j < U_j \), \(H_j(\hat{f}_j) \) is pseudo-concave, continuous, and differentiable [Bazaraa and Shetty, 1975]. Thus, the only regions in question are those where:

1. \(\hat{f}_j = L_j \)
2. \(\hat{f}_j = U_j \)

\(H_j(\hat{f}_j) \) is trivially continuous over both regions. As for differentiability:

1. Consider the first region in question: \(\hat{f}_j = L_j \). For the linear segment:

\[
\frac{\partial H_j(\hat{f}_j)}{\partial f_j^c} = L_j^2 A_j^c + L_j B_j^c + c_j^c
\]

For the pseudo-concave segment:

\[
\frac{\partial H_j(\hat{f}_j)}{\partial f_j^c} = U_j^2 A_j^c + U_j B_j^c + c_j^c
\]

Thus, \(H_j(\hat{f}_j) \) is differentiable over this region.

2. Consider the second region: \(\hat{f}_j = U_j \). For the pseudo-concave segment:

\[
\frac{\partial H_j(\hat{f}_j)}{\partial f_j^c} = U_j^2 A_j^c + U_j B_j^c + c_j^c
\]

For the linear segment:
Thus, \(H_j(\bar{f}_j) \) is continuous and differentiable over feasible \((\bar{f}_j) \).
Q.E.D.

Theorem 5.3

\(H_j(\bar{f}_j) \) is pseudo-concave for feasible \(f_j \).

Proof. Follows directly from fact that each segment is pseudo-concave and \(H_j(f_j) \) is continuous and differentiable.
Q.E.D.

The Steenbrink type master problem can now be stated as:

Problem MP2(MMS\(^0\)): Min \(\sum_{j \in A} H_j(\bar{f}_j) \) (5-26)

s.t.

\[
\sum_{j \in W_i} f_{j}^{rc} - \sum_{j \in V_i} f_{j}^{rc} = h_{i}^{rc} \quad \forall i \in N, r \in 0, c \in C \quad (5-27)
\]

\[
f_{j}^{c} = \sum_{r \in 0} f_{j}^{rc} \quad \forall j \in A, c \in C \quad (5-28)
\]

\[
f_{j}^{rc} = 0 \quad \forall j \in ITA, r \in SMO, c \in C \quad (5-29)
\]

\[
f_{j}^{rc} \geq 0 \quad \forall j \in A, r \in 0, c \in C \quad (5-30)
\]

where \(H_j(\bar{f}_j) \) is defined in (5-25). Note that problem MP2(MMS\(^0\)) is a
multi-commodity, uncapacitated transportation assignment problem with pseudo-concave arc disutilities. Several properties of MP2(MMS^0) should be noted:

1. MP2(MMS^0) is a true multi-commodity problem. Problem P2(MS^0) was multi-commodity in the sense that flow from each origin was considered a separate commodity. However, arc disutility was based only on total arc flow irrespective of where the flow originated. For Problem MP2(MMS^0) several commodities may originate at the same origin. Furthermore, flows of these commodities must maintain their identity in order to calculate arc disutility, since identical flows of different commodities may have different effects on an arc's cumulative disutility.

2. The sum of the pseudo-concave $h_j^i(f_j)$ is not necessarily pseudo-concave. Thus, there is a question of whether an optimal solution must lie at an extreme point of the solution space. However, it should be noted that since the problem is uncapacitated, an extreme point solution corresponds to one in which each O-D flow of a commodity occurs on a single path. This property has already been established for a local optimal solution of MP1(MMS^0). Thus, since the optimal flow pattern of MP2(MMS^0) must correspond to that of MP1(MMS^0), it can be inferred that an optimal solution to MP2(MMS^0) can always be assumed to lie at an extreme point.

3. A local optimal solution of MP2(MMS^0), lying at an extreme point, need not be a global optimum. This follows from the fact that MP2(MMS^0) is not a convex program.

A reasonable solution procedure for problem MP2(MMS^0) might be an extension of the Yaged Algorithm. A local optimal solution to the problem has several properties similar to those of Problem P2(MS^0):

Property 1. For any local optimal solution, either:

(a) All flow of any commodity between any O-D pair occurs on a single path, or

(b) An equivalent (in terms of value of the objective) local optimum can be determined satisfying Property 1.a.

Property 2. For any local optimal solution, if flow of any commodity between any O-D pair uses path p, and nodes a and b lie on path p,
then the flow of the same commodity between a and b can also be assumed to lie on path p.

Property 3. A solution is a local optimum if and only if for any commodity k the flow-carrying path between each 0-D pair is the shortest path between the pair where arc length is defined as the first partial derivative of the arc disutility function with respect to the flow of commodity k on the arc evaluated at this current flow.

The proof of Property 3 is a direct extension of Yaged's proof.

From these properties is developed the multi-commodity extension of the Yaged Algorithm:

Initialization: Determine an initial set of arc lengths for each commodity being considered. Set old arc flows to zero.

Step I. For each commodity construct shortest path trees from each origin using the current set of arc lengths for that commodity. Assign all flow of the commodity to the shortest path between each 0-D pair.

Step II. If the newly generated arc flows are equivalent to the old arc flows for each commodity, go to Step IV. Otherwise, go to Step III.

Step III. For each commodity, determine a new set of arc lengths. For some arc j and commodity k, this new length is defined as the first partial derivative of the arc disutility function with respect to the flow of commodity k on the arc, evaluated at this current flow.

Let the new arc flows become the old arc flows for each commodity.
Go to Step I.

Step IV. Is the current solution satisfactory? If not, determine a new set of arc lengths for each commodity and go to Step I. Otherwise, terminate.

Finally, it may again prove useful to use a Phase I type procedure prior to using the Yaged extension. For any arc \(j \) the average unit disutility of shipping commodity \(k \) is defined to be:

\[
a_{jk} = U_{jk} + \frac{I_j - L_j}{f_j}
\]

where:

- \(a_{jk} \) = average unit disutility of shipping commodity \(k \) on arc \(j \)
- \(U_{jk} \) = unit user disutility of shipping commodity \(k \) on arc \(j \)
- \(I_j \) = investment on arc \(j \)
- \(L_j \) = minimum investment on arc \(j \)
- \(f_j \) = total flow over all commodities on arc \(j \)

3. Implementation and Results

3.1 Implementation

The methodology developed in this chapter was implemented on the Georgia Tech CDC Cyber 74 computing system. All programming was done in the FORTRAN programming language. The basic flow of the methodology is shown in the flowchart in Figure 5-1 below. The programs which comprise the methodology are, for the most part, simple extensions of those prepared for the single-commodity methodology. These programs include MMS,
Start

Determine a set of initial modal splits for each commodity and O-D pair (MMS°)

For each commodity develop the O-D demand for the expanded network of Problem MP2(MMS°)

For each commodity determine a set of initial arc lengths for the expanded network of Problem MP2(MMS°)

Use the two-phase procedure to solve Problem MP2(MMS°)

Calculate the modal splits MMS° feasible to the solution of MP2(MMS°)

Do MMS° and MMS° satisfy the convergence criteria?

Yes

Is the current solution satisfactory?

Yes

Stop

No

Modify MMS°

Figure 5-1. Macro-Flowchart for the Multi-Commodity Algorithm
MINMS, MINFOD, MINAC, MCNCASB, and MTESTMS. The programs are listed in Appendix H below.

Program MCNCASB, a two-phase solution procedure for problem MP2(MMS°), is the only multi-commodity program that differs significantly from its single-commodity counterpart. A basic flowchart of MCNCASB is shown in Figure 5-2 below. The primary difference between the single-commodity and multi-commodity programs is the need to maintain commodity identity throughout the latter. This includes the expanded O-D pairs, arc length, arc average and marginal disutility parameters, and arc flows. This need to maintain commodity identity for arc length and arc flow creates a significant core storage problem on the Cyber 74. In program CNCASNB these variables were maintained in core. However, in MCNCASB, they must be kept in mass (disk) storage. This, in turn, creates a new problem, that of excessive time spent in input-output (I-O) operations.

The network, including both nodes and arcs, used in the single-commodity implementation is also used in the multi-commodity implementation. Arc transport characteristic (ATC) functions are derived in the same manner with the actual commodity specific values of the ATC used as the base values. Time and time variance are assumed the same for all commodities. Note that this will yield a set of ATC functions for each arc and commodity. The O-D flow data set used in the multi-commodity implementation is the same as that used previously. However, the commodities, textile mill products, lumber and wood, and agricultural chemicals, must now retain their identity as well as their origin and destination. Finally, the commodity-specific modal split model
Start

Read: Expanded Network
Expanded O-D pairs
for each commodity
Maximum iterations
of Phase I

D

ICONV ← 0

Let k be the first commodity

Read the set of arc lengths
for commodity k

Let I be the first expanded
origin for commodity k

Construct the shortest path
tree from origin I

Assign flow of commodity k
originating at origin I

Is there another expanded
origin for commodity k?

Yes

Let I be the next expanded origin for commodity k

No

Let I be the first arc

(continued)
Read previous flow of commodity k on arc I

Is current flow equivalent to previous flow of commodity k on arc I?

No ➔ ICONV ← 1

Yes ➔ Let the current flow of commodity k on arc I become the previous flow

Write the previous flow of commodity k on arc I

Is there another arc?

No ➔ Is there another commodity?

Yes ➔ Let k be the next commodity

Let I be the next arc

(continued)
Is ICONV = 0?

No

Is algorithm in Phase I and have we reached maximum iterations?

No

Let I be the first arc

Read set of flows for arc I, one for each commodity

Is algorithm in Phase I?

No

Read marginal disutility parameters for arc I, one set for each commodity

Update the length of arc I for each commodity using parameters and flows

Is there another arc?

No

Let I be the next arc

Yes

Read set of average disutility parameters for arc I, one set for each commodity

Is algorithm in Phase I?

Yes

Begin Phase II

Yes

Yes

ji

Begin Phase II

Yes

Read set of average disutility parameters for arc I, one set for each commodity

Update the length of arc I for each commodity using parameters and flows

Is there another arc?

No

Let I be the next arc

Yes

Writes current 0-D disutility for each commodity and expanded 0-D pair

Stop

Figure 5-2. Flowchart for MCNCASB
parameters used are those given by Jones: [Jones, 1977]

\[
\begin{align*}
SIC 22: & \quad a_1 = -0.0287 \\
& \quad a_2 = -0.00012 \\
& \quad a_3 = -0.0013 \\
SIC 24: & \quad a_1 = -0.01 \\
& \quad a_2 = -0.000016 \\
& \quad a_3 = -0.0003 \\
SIC 287: & \quad a_1 = -0.01 \\
& \quad a_2 = -0.00033 \\
& \quad a_3 = -0.0004
\end{align*}
\]

Aggregate statistics relating to the size of the resulting problem are shown in Table 5-1 below.

3.2 Results

The battery of programs described in Section 3.1 above was used to obtain solutions to the problem described in the same section. The test runs were made in the same manner as those of the single-commodity problem. For a review of those test runs see Chapter IV, Section 2.1. Selected results from the test runs are given in Appendix F.

The multi-commodity methodology converged for all test runs. The minimum CPU time required for convergence was 1394 seconds, the maximum 2504 seconds, and the average 2092 seconds. The overall computation time
Table 5-1. Approximate Aggregate Statistics of Problem

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual transport facilities</td>
<td>2600</td>
</tr>
<tr>
<td>Arrows (after network expansion)</td>
<td>3000</td>
</tr>
<tr>
<td>Zones</td>
<td>120</td>
</tr>
<tr>
<td>Nodes (prior to expansion)</td>
<td>840</td>
</tr>
<tr>
<td>Nodes (after expansion)</td>
<td>1000</td>
</tr>
<tr>
<td>0-D pairs (prior to expansion)</td>
<td>63</td>
</tr>
<tr>
<td>0-D pairs (after expansion)</td>
<td>227</td>
</tr>
<tr>
<td>Transport commodity classes</td>
<td>3</td>
</tr>
<tr>
<td>Math programming commodity classes* (prior to expansion)</td>
<td>14</td>
</tr>
<tr>
<td>Math programming commodity classes* (after expansion)</td>
<td>56</td>
</tr>
</tbody>
</table>

*In the mathematical programming literature a commodity is usually defined by origin and by a set of arc costs (alternatively, by destination and by arc costs). The term commodity as used in this research is defined by arc costs only.

was the result of two factors:

1. The number of macro-iterations of the methodology.
2. The CPU time for each macro-iteration.

The minimum number of macro-iterations was two and the maximum three.

The minimum CPU time required for a macro-iteration was 238 seconds, the maximum 1008 seconds, and the average 730 seconds. The time required for a macro-iteration was determined by two factors:

1. The number of micro-iterations constituting the macro-iteration.
(2) The time required for each micro-iteration.

The minimum number of micro-iterations in a macro-iteration was two and the maximum was eight. As the methodology approached convergence, the number of micro-iterations per macro-iteration decreased. The average number of micro-iterations required for the first macro-iteration was 6.5, the average for the second was 5.8, and the average for the third was 4.6.

The average CPU time for a micro-iteration was 126 seconds.

Each micro-iteration consisted of a number of components:

1. For each commodity:
 a. Reading the current set of arc lengths for the commodity.
 b. Constructing the set of shortest path trees for the commodity and assigning commodity flow to the network.
 c. Writing the commodity flow for each arc.

2. Reading a set of 12 arc disutility parameters for each arc. Reading the latest set of commodity flows for each arc. Calculating the new sets of arc lengths, one set for each commodity. Writing the new sets of arc lengths.

A total of 56 trees were constructed in each micro-iteration.

Now, consider the effects of the factors listed in Table 4-1 on the rate of convergence. Note that since the number of micro-iterations required for convergence is roughly proportional to time, this number can be used as a measure of rate of convergence. Consider the effect of the first factor, the set of initial modal splits MS\(^0\). Micro-iterations are plotted against initial modal splits in Figure 5-3 below. Holding all other factors constant, the methodology converged at approximately the same rate, 3 macro-iterations and 16 to 20 micro-iterations,
Fig. 5.3. Initial Modal Split Versus Rate of Convergence
for most initial modal splits. Obvious exceptions involved the splits 1110 and 0110 which converged in 2 macro-iterations and 12 to 13 micro-iterations.

Second, consider the effect of the modal split updating parameter ALPHA. Results are shown in Table 5-2 below.

Table 5-2. Effect of ALPHA on Rate of Convergence

<table>
<thead>
<tr>
<th>Run</th>
<th>Set of Initial Arc Lengths</th>
<th>ALPHA</th>
<th>Macro-Iterations</th>
<th>Micro-Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>A</td>
<td>1.0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>25</td>
<td>A</td>
<td>0.8</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>23</td>
<td>B</td>
<td>1.0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>26</td>
<td>B</td>
<td>0.8</td>
<td>3</td>
<td>19</td>
</tr>
<tr>
<td>24</td>
<td>C</td>
<td>1.0</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>27</td>
<td>C</td>
<td>0.8</td>
<td>3</td>
<td>19</td>
</tr>
</tbody>
</table>

Note that changing ALPHA from 1.0 to 0.8 resulted in increases in the number of macro-iterations from two to three and in the number of micro-iterations from 13 to 19. Next, consider the effect of the third factor, the modal split convergence parameter EPSILON. From runs 28 and 29, it should be noted that as EPSILON was decreased from 0.02 to 0.01, the number of macro-iterations increased from 2 to 3 and the number of micro-iterations increased from 12 to 18. Runs 11 and 30 demonstrated little difference in convergence as EPSILON was decreased from 0.02 to 0.01.

Next, consider the effect of utilizing a Phase I type procedure
in the two-phase algorithm. From runs 1 through 6 it should be noted that its use had no effect on the number of macro-iterations required for convergence. All runs required 3 macro-iterations. The number of micro-iterations required for convergence are shown in Table 5-3 below. Several points should be noted:

(1) The use of a Phase I procedure increased the number of micro-iterations by approximately 50%.

(2) Although the use of the Phase I procedure decreased the number of Yaged type Phase II iterations required, the Phase I iterations more than made up for this decrease.

Finally, consider the effect of the initial set of arc lengths. Returning to Figure 5-3 above, it should be noted that this factor did not cause the rate of convergence to change greatly. The maximum change was 3 micro-iterations. Note also that no set of initial arc lengths uniformly hastened or impeded convergence.

Next, the solutions obtained from the test runs are analyzed with respect to three characteristics: total savings over current total disutility associated with the network (the objective), investment over the current minimum level, and user savings over current level. All values are given in terms of millions of equivalent annual dollars. The current values were estimated as:

Total disutility = 9,463
Investment = 269
User disutility = 9,194

The total savings associated with the solutions ranged from a minimum of 481 for run 3 to a maximum of 644 for run 22. Investment associated with solutions ranged from a minimum of 153 for run 14 to a
Table 5-3. Effect of Phase I Procedure on Rate of Convergence (Micro-Iterations)

<table>
<thead>
<tr>
<th>Macro-Iteration/</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phase I</td>
<td>Phase II</td>
<td>Total</td>
<td>Phase I</td>
</tr>
<tr>
<td>Initial Set of Arc Lengths</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>5</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>7</td>
<td>12</td>
<td>6</td>
</tr>
</tbody>
</table>
maximum of 169 for runs 11, 22, 25, and 30. User savings associated with solutions ranged from a minimum of 640 for run 3 to a maximum of 814 for run 22. The objective, total savings, is plotted against investment in Figure 5-4 below. Note that although the best solutions occurred in the upper half of the investment range, a number of poorer solutions did also. In general, there appears to be little relationship between investment and total savings. Investment is plotted against user savings in Figure 5-5 below. Again, solutions having the highest user savings occurred in the upper half of the investment range. However, high investment did not assure a high level of user savings. In general, the relationship between investment and user savings was not strong. Finally, total savings is plotted against user savings in Figure 5-6 below. The strong relationship between these two characteristics results from the fact that investment is relatively small compared to them. Thus, one closely approximates the other.

Total savings is plotted against the total number of micro-iterations in Figure 5-7 below. There appears to be little relationship between the two. Investment and user savings are plotted against the number of micro-iterations in Figures 5-8 and 5-9 respectively. Again, there appears to be little relationship between the characteristics and the rate of convergence.

Now, consider the effects of the factors listed in Table 4-1 on the characteristics' total savings, investment, and user savings. First, consider the effect of the set of initial modal splits MMS° and the set of initial arc lengths. Total savings is plotted against these factors in Figure 5-10 below. Several points should be noted:
Fig. 5.4. Total Savings Versus Investment, All Runs
Fig. 5.5. User Savings Versus Investment, All Runs
Fig. 5.6. Total Savings Versus User Savings, All Runs
Fig. 5.7. Micro-Iterations Versus Total Savings, All Runs
Fig. 5.8. Micro-Iterations Versus Investment
Fig. 5.9. Micro-Iterations Versus User Savings
Set of Initial Arc Lengths:

A - .
B - o
C - *

Total Savings

Fig. 5.10. Total Savings Versus Initial Modal Split
(1) The set of initial modal splits apparently had a strong effect on total savings for each set of initial arc lengths.

(2) No set of initial modal splits was superior or inferior for all sets of initial arc lengths.

(3) Several sets of modal splits resulted in approximately the same total savings for each set of initial arc lengths. These included:

 (a) Current, 0010, 0001

 (b) 1000, 1001

(4) The set of initial arc lengths had a strong effect on total savings for approximately half of the sets of initial modal splits.

(5) The set of initial arc lengths C was consistently inferior to sets A and B. Sets A and B resulted in approximately the same quality of solutions for each set of initial modal splits.

Investment is plotted against these factors in Figure 5-11 below.

Several points should be noted:

(1) Most sets of initial modal splits and arc lengths resulted in approximately the same level of investment.

(2) The 0010 set of initial modal splits resulted in lower investment levels for all sets of initial arc lengths.

(3) The set of initial arc lengths did not have a strong effect on the level of investment given a set of initial modal splits. The maximum range was 9.

User savings is plotted against these factors in Figure 5-12 below. Since user savings is closely related to total savings, the same observations can be made.

Next, consider the effect of the modal split updating parameter ALPHA. Comparing the characteristics of runs 22-24 with those of runs 25-27, it should be noted that for each set of initial arc lengths the methodology converged to the same solution, regardless of the value of
Set of Initial Arc Lengths:

A - •
B - o
C - *

Investment

Initial Modal Split

Fig. 5.11. Investment Versus Initial Modal Split
Set of Initial Arc Lengths:
A - *
B - o
C - *

User Savings

Fig. 5.12. User Savings Versus Initial Modal Split
Next, consider the effect of the modal split convergence parameter \(\text{EPSILON}\). The investments associated with runs 28 and 29 were equal, as were those of runs 11 and 30. However, as \(\text{EPSILON}\) decreased from .02 to .01, the user savings and total savings (and disutility) decreased substantially for both sets of runs. This phenomenon is an example of how the modal split constraints affect the value of the objective function.

Finally, consider the effect of the use of a Phase I procedure in the two-phase algorithm. The results are shown in Table 5-4 below.

Table 5-4. Solution Characteristics and Use of a Phase I Procedure

<table>
<thead>
<tr>
<th>Run</th>
<th>Set of Initial Arc Lengths</th>
<th>Phase I Used</th>
<th>Total Savings</th>
<th>Investment</th>
<th>User Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>No</td>
<td>515</td>
<td>158</td>
<td>673</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Yes</td>
<td>536</td>
<td>159</td>
<td>695</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>No</td>
<td>535</td>
<td>154</td>
<td>689</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>Yes</td>
<td>535</td>
<td>157</td>
<td>691</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>No</td>
<td>481</td>
<td>159</td>
<td>640</td>
</tr>
<tr>
<td>6</td>
<td>C</td>
<td>Yes</td>
<td>536</td>
<td>159</td>
<td>695</td>
</tr>
</tbody>
</table>

For the sets of initial arc lengths A and C, use of the Phase I procedure resulted in an improved objective. In general, use of the Phase I procedure resulted in a more uniform solution, higher investment, and higher user savings.

Previously, the solutions were analyzed with respect to some aggregate characteristics. Although the solutions appeared to differ
with respect to these characteristics, there was still some question as to whether the differences in solutions represented true investment and flow pattern differences. The purpose of this section is to examine this question in greater detail. The solutions of 2 test runs were analyzed:

(1) Run 22 - the best solution, relatively high investment
(2) Run 6 - a poor solution, relatively low investment

First, consider investment over minimum for each solution. Investment was 169 for run 22 and 159 for run 6. This may be separated by mode as shown in Table 5-5 below.

Table 5-5. Investment by Mode

<table>
<thead>
<tr>
<th></th>
<th>Highway</th>
<th>Railroad</th>
<th>Water</th>
<th>Intermodal Transfer</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 22</td>
<td>97</td>
<td>62</td>
<td>10</td>
<td>0</td>
<td>169</td>
</tr>
<tr>
<td>Run 6</td>
<td>86</td>
<td>62</td>
<td>10</td>
<td>0</td>
<td>159</td>
</tr>
</tbody>
</table>

Several points should be noted:

(1) Investment in intermodal transfer facilities was negligible for both runs.

(2) Investment in water facilities and rail facilities remained constant.

(3) Investment in highway facilities decreased substantially.

The investment in highway and rail facilities can be examined in greater detail as shown in Table 5-6 below.
Table 5-6. Investment by Mode and Type of Facility

<table>
<thead>
<tr>
<th></th>
<th>Highway</th>
<th>Rail</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loading</td>
<td>Line-</td>
</tr>
<tr>
<td>Run 22</td>
<td>.3</td>
<td>Haul</td>
</tr>
<tr>
<td></td>
<td>Transfer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>Trans-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unload-</td>
</tr>
<tr>
<td></td>
<td>.3</td>
<td>ing</td>
</tr>
<tr>
<td>Run 6</td>
<td>.3</td>
<td>Line-</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>Haul</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>Trans-</td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>Unload-</td>
</tr>
<tr>
<td></td>
<td>.3</td>
<td>ing</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>Line-</td>
</tr>
<tr>
<td></td>
<td>.9</td>
<td>Haul</td>
</tr>
<tr>
<td></td>
<td>.4</td>
<td>Trans-</td>
</tr>
</tbody>
</table>

It should be noted that the loss of highway investment occurred in line-haul facilities. Thus, the differences between solutions noted previously appear to be real and to be concentrated primarily on highway line-haul arcs. To examine these differences in still greater detail, the first 50 highway line-haul arcs in the arc list were selected for further examination. All 50 arcs were corridor arcs and thus subject to improvement. Investment and flow on these arcs are shown in Table 5-7 below. It should be noted that investment and flow patterns differ substantially between the two solutions.

With one major exception, the conclusions which can be drawn from the multi-commodity results parallel those of the single-commodity problem and, thus, will not be repeated. The one exception pertains to the CPU time required to generate a solution and its effect on the practicality of the methodology. While a solution for the single-commodity problem could be generated in an average of 1064 seconds, the equivalent time for the multi-commodity problem was 2092 seconds. This was an increase of 100 percent for a problem of the same size. The increase in CPU time was directly attributable to the large number of I-O operations required by the programmed version of the multi-commodity methodology.
Table 5-7. Investment and Flow on HW Line-Haul Arcs

<table>
<thead>
<tr>
<th>Origin</th>
<th>Dest.</th>
<th>Run 22</th>
<th>Run 6</th>
<th>Run 22</th>
<th>Run 6</th>
<th>Run 22</th>
<th>Run 6</th>
<th>Run 22</th>
<th>Run 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.3</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2.7</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
<td>3,457</td>
<td>3,460</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>0</td>
<td>3.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,886</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>4.3</td>
<td>4.1</td>
<td>0</td>
<td>0</td>
<td>1,386</td>
<td>1,387</td>
<td>14,140</td>
<td>7,755</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>0</td>
<td>2.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5,886</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>2.3</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>1,968</td>
<td>1,970</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>3.7</td>
<td>3.5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>14,140</td>
<td>7,755</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>15</td>
<td>2.9</td>
<td>2.9</td>
<td>0</td>
<td>0</td>
<td>3,226</td>
<td>3,230</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(continued)
Table 5-7 (cont'd)

<table>
<thead>
<tr>
<th>Origin</th>
<th>Dest.</th>
<th>Run 22</th>
<th>Run 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0</td>
<td>3.2</td>
<td>0</td>
<td>585</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>660</td>
<td>653</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>2.3</td>
<td>2.3</td>
<td>1,314</td>
<td>1,909</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>7,755</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The net result of this 100 percent increase in computation time is that it is not clear whether the methodology is an acceptable means of generating solutions to the multi-commodity problem. If computation times can be decreased substantially by adoption of additional simplifying assumptions and/or by programming the methodology in a more time-efficient manner, then the methodology may be acceptable. Otherwise, it remains highly suspect.

Continuing along the same line, there is some question as to whether the solutions obtained from the multi-commodity problem are sufficiently different from the corresponding solutions to the single-commodity problem to warrant the additional computation expense. In attempting to address this question, a pairwise comparison was made between the single-commodity and multi-commodity results for two different test runs. The two test runs selected for the comparison were run 22, which resulted in very good solutions, and run 6, which resulted in poor solutions. Investment and commodity flow for each of the same 50 highway arcs examined earlier are given for these test runs in Table 5-8 below. Several points should be noted:

1. For run 22 and the 50 arcs examined, although there were some deviations in investment and flow patterns, the basic investment and flow pattern remained the same.

2. For run 6 and the 50 arcs examined, the investment and flow patterns differed substantially between the single-commodity and multi-commodity solutions.

Thus, the results were inconclusive. One pair of solutions appeared similar while another pair differed substantially. One final speculation might be advanced on this subject: as the parameters of the ATC and modal split functions differ to a greater and greater degree between commodities, the investment and flow pattern differences between the single and multi-commodity solutions will increase.
Table 5-8. Investment and Flow on HW Line-Haul Arcs

<table>
<thead>
<tr>
<th>Origin</th>
<th>Dest.</th>
<th>Run 22 Invest.</th>
<th>Flow (≠ 1000)</th>
<th>Run 6 Invest.</th>
<th>Flow (≠ 1000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>S.C. M.C.</td>
<td>S.C. M.C.</td>
<td>S.C. M.C.</td>
<td>S.C. M.C.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.8</td>
<td>3,345</td>
<td>.3</td>
<td>633</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.8</td>
<td>3,345</td>
<td>3.7</td>
<td>13,764</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.3</td>
<td>1,921</td>
<td>2.3</td>
<td>1,921</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td>5.0</td>
<td>7,185</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td>5.1</td>
<td>6,579</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>3.3</td>
<td>4,323</td>
<td>3.3</td>
<td>4,342</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.3</td>
<td>4,323</td>
<td>3.3</td>
<td>4,342</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2.7</td>
<td>4,323</td>
<td>2.7</td>
<td>3,460</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
<td>3.9</td>
<td></td>
<td>5,886</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>4.4</td>
<td>27,849</td>
<td>4.1</td>
<td>9,142</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>2.5</td>
<td>5,886</td>
<td>2.6</td>
<td>6,579</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>2.5</td>
<td>5,886</td>
<td>2.6</td>
<td>6,579</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>3.5</td>
<td>2,464</td>
<td>3.5</td>
<td>2,474</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3.5</td>
<td>2,464</td>
<td>2.3</td>
<td>1,970</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
<td>3.8</td>
<td>25,879</td>
<td>3.5</td>
<td>7,755</td>
</tr>
<tr>
<td>9</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
Table 5-8 (cont'd)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>15</td>
<td>3.6</td>
<td>2.9</td>
<td>4,594</td>
<td>3,226</td>
<td>3.3</td>
<td>2.9</td>
<td>2,643</td>
<td>3,230</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td></td>
<td></td>
<td>8,340</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>7</td>
<td>1.8</td>
<td>0</td>
<td>838</td>
<td>660</td>
<td>1.8</td>
<td>0</td>
<td>838</td>
<td>653</td>
</tr>
<tr>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>1.5</td>
<td>.3</td>
<td>1,482</td>
<td>1,314</td>
<td>1.5</td>
<td>2.3</td>
<td>1,492</td>
<td>9,664</td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td>0</td>
<td>838</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER VI

THE APPROXIMATION OF PROBLEM P2(MS₀) BY A GENERAL
MULTI-COMMODITY FIXED CHARGE NETWORK FLOW PROBLEM: PROBLEM AP(MS₀)

In Chapter III, Section 2.3 Problem P2(MS₀) was formulated and
identified as the principal component in a single-commodity, multi-modal
transport network improvement methodology. Problem P2(MS₀) is an
uncapacitated, concave disutility transportation assignment problem. In
Chapter II, sections 2.4 and 2.5 a two-phase solution methodology was
developed for P2(MS₀). In Phase I the methodology attempts to locate
the general vicinity of a good local optimum. In Phase II the Yaged
Method is used to locate this local optimum. A significant objection to
this solution approach is that there is no basis on which to judge the
quality of the resulting solution, at least with respect to the global
optimum. Since no good lower bound was identified, one must repeat the
algorithm a number of times in order to increase confidence in the final
solution accepted. The purpose of this chapter is to describe a solu-
tion procedure which appears capable of providing a very good initial
solution of the Yaged Algorithm. It would also provide a practical
approximation to the lower bound of P2(MS₀). The basic strategy of the
procedure is to approximate problem P2(MS₀) with a general multi-commodity
fixed charge network flow problem and then solve a relaxation of the
fixed charge problem. Note that in this chapter multi-commodity refers
to multi-math programming commodity classes, which vary by origin.
1. Initial Formulations

Consider approximating the concave arc disutility functions (3-34), (3-35), and (3-36) shown Figure 3-7, 3-8, and 3-9 with a piecewise-linear underestimate. It should be noted that:

1. Category I arcs are represented exactly by a single linear segment.

2. Category II arcs can be naturally represented by three linear segments.

3. Category III arcs can be naturally represented by two linear segments.

Consider the most general case, that of the Category II arc. The natural underestimate of the concave arc disutility function by a piecewise linear function is shown in Figure 6-1 below. Note that the disutility axis has been shifted so that L_j, the lower bound on investment in arc j, is now zero.
Fig. 6-1. Piecewise Linear Underestimate to the Category II Arc Disutility Function
1.1 The Node-Arc Formulation

The node-arc formulation of the general multi-commodity fixed charge network flow problem now provides an approximation to Problem P2(MS°):

\[\text{NA(MS°): } \min_{f_{jk}, y_{jk}} \sum_{j \in A} \sum_{k=1}^{3} (c_{jk} \cdot f_{jk} + F \cdot y_{jk}) \] \hspace{1cm} (6-1)

s.t. \[\sum_{j \in \mathcal{V}_i} (\sum_{k=1}^{3} f_{jk}) - \sum_{j \in \mathcal{V}_i} (\sum_{k=1}^{3} f_{jk}) = h_{i}^f \quad \forall i \in N, r \in \mathcal{O} \] \hspace{1cm} (6-2)

\[f_{jk} = \sum_{r \in \mathcal{O}} f_{jk} \quad \forall j \in A, k \in \{1,2,3\} \] \hspace{1cm} (6-3)

\[f_{jk}^r = 0 \quad \forall j \in \mathcal{I}, r \in \mathcal{M}, k \in \{1,2,3\} \] \hspace{1cm} (6-4)

\[f_{jk} \geq 0 \quad \forall j \in A, r \in \mathcal{O}, k \in \{1,2,3\} \] \hspace{1cm} (6-5)

\[f_{jk} \leq M y_{jk} \quad \forall j \in A, k \in \{1,2,3\} \] \hspace{1cm} (6-6)

\[y_{jk} \in \{0,1\} \quad \forall j \in A, k \in \{1,2,3\} \] \hspace{1cm} (6-7)

\[\sum_{k=1}^{3} y_{jk} \leq 1 \quad \forall j \in A \] \hspace{1cm} (6-8)

where: \(f_{jk}^r \) = flow of commodity from origin \(r \) on arc \(j \), segment \(k \)

\(f_{jk} \) = flow on arc \(j \), segment \(k \)
\(y_{jk} = \text{logical variable corresponding to arc } j, \text{ segment } k \)

\[
y_{jk} = \begin{cases}
1 & \text{if segment is used} \\
0 & \text{otherwise}
\end{cases}
\]

\(c_{jk} = \text{variable cost on arc } j, \text{ segment } k \)

\(F_{jk} = \text{fixed cost on arc } j, \text{ segment } k \)

\[
F_{jk} = \begin{cases}
-x_{ri} & \text{if } i \in D_r \\
\sum_{j \in D_i} x_{rj} & \text{if } i = r \\
0 & \text{otherwise}
\end{cases}
\]

\(h_{ri}^r = \text{flow from origin } i \text{ to destination } j \)

\(M = \text{large constant, } >>>0 \)

\(A = \text{set of arcs} \)

\(W_i = \text{set of arcs originating at node } i \)

\(V_i = \text{set of arcs terminating at node } i \)

\(N = \text{set of nodes} \)

\(O = \text{set of origin nodes} \)

\(ITA = \text{set of intermodal transfer arcs} \)

\(SMO = \text{set of single mode origins} \)

\(D_r = \text{set of destinations for origin } r \)

Note that problem \(\text{NA(MS}^o) \) is a general multi-commodity fixed charge network flow problem with an effective network consisting of three times as many arcs as that of problem \(\text{P2(MS}^o) \). This results from the need to
represent each of the three linear segments for each arc. The objective (6-1) is an approximation to (3-5). Constraint sets (6-2), (6-3), (6-4), and (6-5) represent constraint sets (3-6), (3-7), (3-8), and (3-9) respectively. Constraint sets (6-6) and (6-7) force the payment of a segment's fixed cost whenever the segment carries positive flow. Constraint set (6-8) allows flow on at most one segment for any arc.

Solution procedure have not been developed for the general multi-commodity fixed charge network flow problem, [Rardin, 1978]. However, solution procedures have been developed for the node-arc formulation of the general single commodity fixed-charge network flow problem [Rardin, 1974; Rardin and Unger, 1976; Jarvis, Rardin, and Unger, 1977]. These integer programming procedures are not, however, capable of solving problems involving large-scale networks. The formulation NA(MS°) might still be useful in obtaining a good solution and lower bound for problem P2(MS°).

A strategy often used in branch-and-bound solution procedures is to relax the integrality constraints (6-7) and solve the resulting problem NAR(MS°). Thus, a reasonable heuristic solution strategy might be to solve problem NAR(MS°), which is now tractable, and translate the resulting solution into one feasible to problem P2(MS°). Thus, one would have a lower bound to P2(MS°) as well as a feasible solution. However, Choe has shown that the relaxation of the node-arc formulation of the general single commodity fixed charge network flow problem did not provide a very good lower bound for the problem [Choe, 1978]. Instead, he suggested an arc-path formulation. Since the lower bound obtained from a relaxation of the node-arc formulation of the single commodity
problem is poor, there is every reason to believe that this will also be true for the multi-commodity problem. Furthermore, a poor lower bound would tend to indicate that the corresponding solution feasible to problem \(P2(MS^o) \) would also be poor. Thus, it is useful to consider the arc-path formulation.

1.2 The Arc-Path Formulation

The arc-path formulation of the general multi-commodity fixed charge network flow problem provides the following approximation to problem \(P2(MS^o) \):

\[
\text{AP}(MS^o): \min \sum_{p \in P} c_p f_p + \sum_{j \in A} \left[\sum_{k=1}^{3} F_{jk} \cdot y_{jk} \right] \tag{6-9}
\]

s.t.

\[
\sum_{p \in P} f_p = t_s \quad \forall s \in R \tag{6-10}
\]

\[
f_p < t_s y_{jk} \quad \forall j \in A, k \in \{1,2,3\}, p \in p_j,k, p \in P_s \tag{6-11}
\]

\[
f_p > 0 \quad \forall p \in P \tag{6-12}
\]

\[
y_{jk} \in \{0,1\} \quad \forall j \in A, k \in \{1,2,3\} \tag{6-13}
\]

\[
\sum_{k=1}^{3} y_{jk} \leq 1 \quad \forall j \in A \tag{6-14}
\]

where:

\[
f_p = \text{flow on path } p
\]

\[
y_{jk} \quad \text{a logical variable corresponding to arc } j \text{ segment } k
\]

\[
y_{jk} = \begin{cases}
1 & \text{if there is positive flow on the segment} \\
0 & \text{otherwise}
\end{cases}
\]
\(c_p\) = variable cost on path \(p\)

\(F_{jk}\) = fixed cost on arc \(j\), segment \(k\)

\(t_s\) = total flow between 0-D pair \(s\)

\(P\) = set of all paths; this includes paths created by the different segments on a single arc.

\(A\) = set of arcs

\(P_s\) = set of paths connecting 0-D pair \(s\)

\(p_{j,k}\) = set of paths utilizing arc \(j\), segment \(k\)

As in the node-arc formulation, problem \(AP(MS^o)\) effectively has three times the number of arcs as \(P^2(MS^o)\). The objective (6-9) is an approximation of (3-5). Constraint set (6-10) forces all 0-D flow to be allocated to paths. Constraint sets (6-11) and (6-13) force the payment of a segment's fixed cost whenever some path utilizing the segment has positive flow. Constraint set (6-12) requires the non-negativity of all path flows, and set (6-14) allows flow on at most one segment for any arc.

Choe reviews the literature relating to this problem and develops a branch-and-bound solution procedure [Choe, 1977]. The branch-and-bound solution procedure is not capable of solving problems involving large-scale networks. Thus, consider the same heuristic solution strategy as before:

1. Relax constraints until the resulting problem becomes tractable.
2. Solve the resulting problem yielding a lower bound on \(P^2(MS^o)\).
3. Translate the solution to one feasible to \(P^2(MS^o)\).
As a first step, consider relaxing the integrality constraint set (6-13) to:

\[0 \leq y_{jk} \leq 1 \quad \forall j \in A, k \in \{1,2,3\} \quad (6-15) \]

Note that \(t_s \) is the maximum flow that can use some path \(p \) containing arc \(j \) segment \(k \). Thus, \(y_{jk} \) must be less than or equal to one at optimality. Otherwise, one could reduce \(y_{jk} \) to one, reducing the objective, and not affect the optimal flow pattern. Thus, (6-15) can be restated.

\[0 \leq y_{jk} \quad \forall j \in A, k \in \{1,2,3\} \quad (6-16) \]

As a second step, consider relaxing constraint set (6-14). Choe has shown that this set of constraints is redundant for problem AP(MS°). However, he has also demonstrated that when the integrality constraints (6-13) are relaxed, a member of (6-14) may be binding at optimality. Nevertheless, relax (6-14). The resulting problem APR(MS°) can be stated as:

APR(MS°): Min \(\sum_{p \in P} c_p f_p + \sum_{j \in A} [\sum_{k=1}^{3} f_{jk} \cdot y_{jk}] \)

s.t. \(\sum_{p \in P} f_p = t_s \quad \forall s \in R \)

\[f_p \leq t_s \cdot y_{jk} \quad \forall j \in A, k \in \{1,2,3\} \quad p \in P_{j,k}^p, p \in P_s \]

\[f_p, y_{jk} \geq 0 \]
Problem APR(MS°) has a very simple structure. However, the size of the problem is formidable. Consider a single physical path connecting an 0-D pair. Suppose the path is comprised of n arcs. Then there are 3^n parallel paths in problem APR(MS°) representing the one physical path. Each parallel path represents one distinct disutility structure for the physical path. When one considers that some physical paths may contain in excess of 100 arcs, it becomes immediately obvious that problem APR(MS°) is intractable. It is also obvious that the number of paths must be reduced if the problem is to be solved. This might be accomplished in several ways:

1. Select certain physical paths to be considered between each 0-D pair. Develop the set of parallel paths for each physical path, and use only these paths in the formulation.

2. For each 0-D pair select a subset of the entire set of parallel paths for inclusion in the analysis.

The first strategy has the advantage of reducing the total number of paths without destroying the disutility surfaces of the physical paths being considered. Remembering that some physical paths may contain in excess of 100 arcs, one should note that the first strategy still appears intractable. The second strategy has the advantage of reducing the total number of paths to the range of tractability. However, it has the disadvantage of arbitrarily modifying the disutility surfaces of each of the corresponding physical paths. An additional disadvantage of the first two strategies is that the resulting problem would no longer produce a lower bound to problem P2(MS°). Since
neither strategy appears particularly appealing, a completely new approach to the solution of problem $P2(MS^o)$ might be considered.

2. An Approximation to Problem $AP(MS^o)$

In the preceding section it was found that Problem $APR(MS^o)$ might not be an adequate means for the solution of problem $AP(MS^o)$ and, thus, problem $P2(MS^o)$. A major problem with this formulation was the segmentation of each arc to represent the disutility surface. This resulted in a very large number of parallel paths for each physical path. To eliminate this excessive number of parallel paths, the disutility surface implied by objective (6-9) and constraint sets (6-11), (6-13), and (6-14) must be modified.

2.1 A Simplified Case

To better understand the arc disutility surface implied by the objective (6-9) and constraint sets (6-11), (6-13), and (6-14), it is useful to analyze a simplified example. For some arc j:

1. Assume only two paths p_1 and p_2 use arc j.

2. Assume arc j is represented by only two segments instead of three.

First, consider Case I.

Case I. $t_1, t_2 > B_{j1}$

where:

t_i = maximum possible flow on path i

B_{j1} = breakpoint on arc j

$$B_{j1} = \frac{F_{j2} - F_{j1}}{C_{j1} - C_{j2}}$$
The disutility surface for a Case I arc is shown in Figure 6.2 below. The feasible space S_j consists of the convex hull formed by the extreme points:

- $A = (0, 0)$
- $G = (0, t_2)$
- $H = (t_1, 0)$
- $I = (t_1, t_2)$

The disutility surface over S_j consists of two planes. The first corresponds to the lower linear segment and is formed by the points A, E, and F.

- $A = (0, 0, 0)$
- $E = (0, B_{j1}, D_j(B_{j1}))$
- $F = (B_{j1}, 0, D_j(B_{j1}))$

where: $D_j(x) =$ the disutility associated with flow x

The second plane, corresponding to the upper linear segment, intersects the first plane along the line from E to F which corresponds to the breakpoint B_{j1}. The second plane is formed by the points B, D, C, F, and E.

- $B = (0, t_2, D_j(t_2))$
- $C = (t_1, 0, D_j(t_1))$
- $D = (t_1, t_2, D_j(t_1 + t_2))$

In considering any approximation to this disutility surface, several properties are desirable:

1. A reasonable fit to the existing surface.
2. Convexity, so that the approximation can be solved to optimality without resorting to arc segmentation.
3. An underestimate so that a lower bound to $P_2(MS^*)$ can be maintained.
f_i - flow on i^{th} path
D_j - disutility on arc j
• - point on disutility surface
○ - point in solution space S_j

Fig. 6-2. Case I arc Disutility Surface
Several convex underestimators to this surface come immediately to mind.

1. A plane passing through points A and D and making an equal angle to the f_1 and f_2 axes.

2. A plane passing through points A and D and also touching either point B or C.

Consider the performance of these estimators over the feasible space S_j.

Let:

\[D_j \] disutility on arc j shown in Figure 6-2.

\[\hat{D}_{ij} \] the ith estimator of D_j

Concerning the first estimator, $\hat{D}_{ij}^1 = D_j$ only at the extreme points A and I. For more distant points, $|\hat{D}_{ij}^1 - D_j|$ increases with maximum underestimate occurring along the line from point J to k.

\[J = (0, B_{j1}) \]

\[k = (B_{j1}, 0) \]

Concerning the second estimator, $\hat{D}_{ij}^2 = D_j$ at extreme points A, I, and either G or H. Assume $\hat{D}_{ij}^2 = D_j$ at point G. Consider the two subspaces of S_j formed by dividing S_j along the line from point A to I.

Then:

\[S_{ij}^1 = \{(f_1, f_2); \quad \frac{f_1}{t_1} \geq \frac{f_2}{t_2}\} \]

\[S_{ij}^2 = \{(f_1, f_2); \quad \frac{f_2}{t_2} \geq \frac{f_1}{t_1}\} \]
and:
\[\hat{D}_j^1 < \hat{D}_j^2 \quad \forall (f_1, f_2) \in S_j^2 \]
\[\hat{D}_j^2 < \hat{D}_j^1 \quad \forall (f_1, f_2) \in S_j^1 \]

In fact, it is evident that \(\hat{D}_j^2 \) is the best linear underestimator for \(D_j \) over the space \(S_j^2 \) and a very poor linear underestimator over the space \(S_j^1 \). The opposite can be shown when \(\hat{D}_j^2 = D_j \) at point \(H \). The first estimator provides somewhat of a compromise between the two extremes available with the second estimator.

It would be highly desirable to identify a third type of convex underestimator which possessed all of the desirable properties of the second estimator, but none of the undesirable properties. Call this estimator a Type III estimator. The primary properties of a Type III estimator \(D_j \) would be:

1. Convexity
2. \(\hat{D}_j < D_j \) at all points in \(S_j \).
3. Over each subspace of the form \(S_j^i \), \(\hat{D}_j \) is the best linear underestimator of \(D_j \).

\[S_j^1 = \{ f : \frac{f_i}{t_i} = \max_{p \in P_j} \frac{f_p}{t_p} \} \]

\[f = (f_1, \ldots, f_{|P_j|}) \]

\(p^j \) = set of paths using arc \(j \).
Several points should be noted concerning the third property:

1. For this property to be achievable, all points on the surface of \(D_j \) corresponding to the extreme points of \(S_j^i \) must lie in the same plane. Otherwise, there could be no best linear underestimator for \(D_j \) over \(S_j^i \).

2. The surface of \(D_j \) must form a hyperplane over the space \(S_j^i \), touching all points on the surface of \(D_j \) corresponding to the extreme points of \(S_j^i \). Otherwise, \(D_j \) could be made a better linear underestimator by doing this.

Fortunately, a Type III estimator exists for the case being considered. The surface of this estimator is superimposed on the original disutility surface in Figure 6-3 below. The surface of the estimator is formed by two planes. The first plane represents the surface over the region \(S_j^1 \) and is defined by the points A, C, and D. The second plane represents the surface over the region \(S_j^2 \) and is defined by the points A, B, and D. The two planes intersect along the line from A to D which corresponds to the region of the feasible space where:

\[
S_j^1 \cap S_j^2 \quad \text{or} \quad \frac{f_1}{t_1} = \frac{f_2}{t_2}
\]

The estimator can be expressed mathematically as:

\[
\hat{D}_j = c_{j2}(f_1 + f_2) + F_{j2} \cdot \text{Max} \left\{ \frac{f_1}{t_1}, \frac{f_2}{t_2} \right\} \quad (6-21)
\]

Theorem 6.1: \(\hat{D}_j \) is a Type III estimator for \(D_j \) for Case I arcs.

Proof:

It is well known that \(\hat{D}_j \) is convex.

Thus, it only remains to be shown that:

\[
\hat{D}_j \leq D_j \quad \forall \ 0 \leq f \leq t_1, \ 0 \leq f_2 \leq t_2
\]
f_i = flow on path i

D_j = disutility on arc j

Original Surface

Estimate

Fig. 6-3. Case I Arc Disutility Surface and Type III Estimator
and: \(\hat{D}_j = D_j \) for all extreme points of \(S^1_j \) and \(S^2_j \)

Now consider the math program:

\[
T: \quad \text{Min} \quad D_j(f_1, f_2) - \hat{D}_j(f_1, f_2) \tag{6-22}
\]

s.t. \(0 \leq f_1 \leq t_1 \) \tag{6-23}

\(0 \leq f_2 \leq t_2 \) \tag{6-24}

The objective of problem T is concave, since \(D_j \) is concave and \(\hat{D}_j \) is convex. The optimal solution of problem T must lie at an extreme point (EP) of the solution space (6-23) - (6-24). Note that an EP of this solution space corresponds to any combination of \(f_1 \) and \(f_2 \) at their upper and lower bounds.

This includes the points:

\[
(0,0) \\
(0, t_2) \\
(t_1, 0) \\
(t_1, t_2)
\]

Thus, if \(D_j < \hat{D}_j \) for some point in the solution space, it will also be true for some EP. Also, if it is not true for the EP, i.e., if \(D_j \geq \hat{D}_j \) for all EP then \(D_j \geq \hat{D}_j \) for all \((f_1, f_2) \) in the solution space.

Point \((0,0) \)

\[
\hat{D}_j = 0 = D_j
\]

Point \((0, t_2) \)

\[
\hat{D}_j = c_j t_2 + f_{j2} = D_j
\]
Point \((t_1, 0)\)
\[
\hat{D}_j = c_{j2} t_1 + F_{j2} = D_j
\]

Point \((t_1, t_2)\)
\[
\hat{D}_j = c_{j2} (t_1 + t_2) + F_{j2} = D_j
\quad \text{Q.E.D.}
\]

There are three additional simplified cases which must be considered:

Case II: \(t_2 \leq B_{j1}\)
\(t_1 > B_{j1}\)

Case III: \(t_1, t_2 \leq B_{j1}\)
\(t_1 + t_2 > B_{j1}\)

Case IV: \(t_1 + t_2 \leq B_{j1}\)

A similar Type III estimator can be found for each of these cases:

\[
D^{\text{II}}_j = [F_{j2} - F_{j1} - c_{j1} t_2 + c_{j2} (t_1 + t_2)] \cdot \frac{1}{t_1} \cdot f_1 + c_{j2} \cdot f_2
\]
\[
+ [F_{j1} + t_2 \cdot c_{j1} - c_{j2}]. \quad \text{Max} \left\{ \frac{f_1}{t_1}, \frac{f_2}{t_2} \right\}
\]
(6-25)

\[
D^{\text{III}}_j = [F_{j2} - F_{j1} + c_{j2} (t_1 + t_2) - c_{j1} t_2] \cdot \frac{1}{t_1} \cdot f_1
\]
\[
+ [F_{j2} - F_{j1} + c_{j2} (t_1 + t_2) - c_{j1} t_1] \cdot \frac{1}{t_2} \cdot f_2
\]
\[
+ [2F_{j1} - F_{j2} + c_{j1} (t_1 + t_2) - c_{j2} (t_1 + t_2)]. \quad \text{Max} \left\{ \frac{f_1}{t_1}, \frac{f_2}{t_2} \right\}
\]
(6-26)
\[\hat{D}^\text{IV}_j = \hat{D}^\text{IV}_j = c_j(t_1 + t_2) \]

(6-27)

The proofs follow that of Case I above. The original disutility surfaces and their Type III estimators are shown in Figures (6-4), (6-5), and (6-6) below.

2.2 The General Case

In the preceding section a Type III estimator was identified for a simplified arc disutility surface. However, there is some question as to whether the strategy will generalize. Consider the same situation as that given above, except let \(|p_i| \) paths use arc \(j \).

Case I: \(t_p > B_j \quad \forall \ p \in P^j \)

Let:
\[\hat{D}_j = c_{j2} \sum_{p \in P^j} f_p + F_{j2} \cdot \max_{p \in P^j} \frac{f_p}{t_p} \]

(6-28)

Theorem 6.2 \(\hat{D}_j \) is a Type III estimator for Case I.

Proof:

\(\hat{D}_j \) is convex

Thus, it remains to show that:

1. \(\hat{D}_j \leq D_j \quad \forall \ 0 \leq f_p \leq t_p \)
2. \(\hat{D}_j = D_j \quad \forall \ \text{extreme points of } S^j_i, i \in P^j \)

But 1 is true when:

\[\hat{D}_j \leq D_j \quad \forall \ P \]

For the 0 case:

\[\hat{D}_j = 0 = D_j \]
f_1 = flow on path i

D_j = disutility on arc j

Fig. 6-4. Case II Arc Disutility Surface and Type III Estimator
f_i = flow on path i

D_j = disutility on arc j

Fig. 6-5. Case III Arc Disutility Surface and Type III Estimator
\(f_i \) = flow on path \(i \)

\(D_j \) = disutility on arc \(j \)

Fig. 6-6. Case IV Arc Disutility Surface and Type III Estimator
For every other EP:

\[
\hat{D}_j = c_{j2} \sum_{p \in P_j} \hat{f}_p + F_{j2} = D_j
\]

where:

\[
\hat{f}_p = \begin{cases}
0 & \text{if } f_p = 0 \text{ in EP} \\
t_p & \text{if } f_p = t_p \text{ in EP}
\end{cases}
\]

Q.E.D.

For the remaining general cases a counterexample can be provided to demonstrate that a Type III estimator cannot always be found. Consider the case where:

\[
\begin{align*}
\tau_1 &= 10 \\
\tau_2 &= 3 \\
\tau_3 &= 2 \\
c_{j1} &= 2 \\
c_{j2} &= \frac{1}{2} \\
F_{j1} &= 0 \\
F_{j2} &= 6 \\
B_{j1} &= 4
\end{align*}
\]

Consider the region \(S_j^3 \) with EP:

\((0,0,0), (10,3,2), (0,0,2), (10,0,2), (0,3,2)\)

The corresponding points on the disutility surface are:

\((0,0,0), (10,3,2,13\frac{1}{2}), (0,0,2,4), (10,0,2,12), (0,3,2,8\frac{1}{2})\)

It can easily be shown that these points do not lie on the same hyperplane. Thus, a Type III estimator does not exist.
2.3 The Development of an Alternative Convex Underestimator

Section 2.1 developed a Type III estimator for a simplified arc disutility function. Section 2.2 noted that a Type III estimator could not be determined for the general case. In this section an alternative convex underestimator for the general case is presented and its properties are proven. Let:

\(t_s \) \(\equiv \) demand between O-D pair \(S \)

\(O_j \) \(\equiv \) the set of all O-D pairs with at least one path on arc \(j \)

\(B_{j1} \) \(\equiv \) first break point on arc \(j \)

\(B_{j2} \) \(\equiv \) second break point on arc \(j \)

\(c_{ji} \) \(\equiv \) slope of \(i^{th} \) segment on arc \(j \)

\(F_{ji} \) \(\equiv \) fixed cost of \(i^{th} \) segment on arc \(j \)

\(P_{j} \) \(\equiv \) set of paths using arc \(j \)

\(A \equiv \{ S: t_s < B_{j1} \} \)

\(B \equiv \{ S: B_{j1} < t_s < B_{j2} \} \)

\(C \equiv \{ S: t_s > B_{j2} \} \)

Consider the following underestimators:

\[
\hat{D}_j = d_j \sum_{p \in P_j} f_p + \max_{p \in P_j} \{e_{jp} f_p\}
\] \hspace{1cm} (6-29)

Where for some arc \(j \):
Case I: \(t_s \leq B_{j1} \quad \forall \ s \in 0_j \)

and \(\sum_{s \in 0_j} t_s \leq B_{j1} \)

\(d_j = c_{j1} \)

\(e_{jp} = \frac{f_{j1}}{t_p} \) \hspace{1cm} (6-30)

Case II: \(B_{j1} < t_s \leq B_{j2} \quad \forall \ s \in 0_j \)

and \(\sum_{s \in 0_j} t_s \leq B_{j2} \)

\(d_j = c_{j2} \)

\(e_{jp} = \frac{f_{j2}}{t_p} \) \hspace{1cm} (6-31)

Case III: \(t_s \geq B_{j2} \quad \forall \ s \in 0_j \)

\(d_j = c_{j3} \)

\(e_{jp} = \frac{f_{j3}}{t_p} \) \hspace{1cm} (6-32)

Case IV: either \(t_s \leq B_{j1} \quad \forall \ s \in 0_j \)

and

\(B_{j1} < \sum_{s \in 0_j} t_s \leq B_{j2} \)
or \(t_s < B_{jk} \)

and

\[B_{j1} < t_s < B_{j2} \]

and

\[\sum_{s \in O_j} t_s > B_{j2} \]

or \(t_s > B_{j2} \)

and

\[B_{j1} < t_s < B_{j2} \]

and

\[B \cup C = O_j \]
Case VI For all other arcs j:

$$d_j = c_{j3}$$

$$e_{jp} = \begin{cases} \frac{F_{j3}}{t_p} & \text{if } t_p \geq B_{j2} \\ \frac{F_{j2}}{t_p} + c_{j2} - c_{j3} & \text{if } t_p < B_{j2} \end{cases} \tag{6-34}$$

Theorem 6.3 \hat{D}_j is a convex underestimator of D_j. The proof of Theorem 6.3 is lengthy and is given in Appendix G. Several characteristics of this estimator can be determined from the proof:

1. For Case I, $\hat{D}_j = D_j$ over the entire feasible space S_j.
2. For Cases II and III, $\hat{D}_j = D_j$ for the extreme points of the subspaces S^i_j, $i \in P_j$. Thus, the estimators are Type III estimators.
3. \(\hat{D}_j = D_j \) at the zero flow point and at all other extreme points of \(S_j \) where one path flow is at its maximum and the rest are at their minimum.

4. \(\hat{D}_j \) may not equal \(D_j \) at the maximum flow point. This will depend on the arc and its path flow configuration.

5. \(\hat{D}_j \) may equal \(D_j \) at a number of other extreme points of \(S_j \). The actual number and type of these extreme points will depend on the arc and its path flow configuration.

2.4 Problem Q(\(\text{MS}^o \)): An Approximation to Problem AP(\(\text{MS}^o \))

In the preceding section a good convex underestimator was developed for the original disutility surface of problem AP(\(\text{MS}^o \)). Problem AP(\(\text{MS}^o \)) can now be approximated by:

\[
\text{APA}(\text{MS}^o): \quad \text{Min} \quad \sum_{j \in A} d_j + \sum_{p \in P^j} f_p + \max_{j \in P} \{ e_j f_p \} \\
\text{s.t.} \quad \sum_{p \in P} f_p = t_s \quad \forall s \in R \tag{6-37} \\
\quad f_p > 0 \quad \forall p \in P \tag{6-38}
\]

where:

- \(f_p \) = flow on path \(p \)
- \(t_s \) = required flow between O-D pair \(s \)
- \(d_j, e_j \) = parameters of convex underestimate
- \(A \) = set of arcs
- \(P \) = set of paths
- \(P^j \) = set of paths passing through arc \(j \)
Problem APA(MS°) can be formulated in the more traditional arc-path form as:

\[Q(MS°): \min \sum_{p \in P} c_p f_p + \sum_{j \in A} y_j \]

\[\text{s.t.} \sum_{p \in P_s} f_p = t_s \quad \forall s \in R \]

\[\sum_{j \in A, p \in P} f_j \leq \frac{y_j}{e_{jp}} \quad \forall j \in A, p \in P^j \]

\[f_p, y_j \geq 0 \quad \forall p \in P, j \in A \]

where:

\[c_p = \sum_{j \in A^p} d_j \]

\[A^p \equiv \text{the set of arcs comprising path } p \]

\[y_j \equiv \text{an arc } j \text{ capacity related variable} \]

\[u_s, v_{jp} \equiv \text{the related dual variables} \]

In the following section a decomposition approach is proposed for the solution of \(Q(MS°) \). As a preliminary to the section, note that constraint set \((6-40) \) can be rewritten as:

\[\sum_{p \in P_s} f_p \geq t_s \quad \forall s \in R \]
This is true since each constraint in (6-43) would have to be binding at optimality. Finally, constraint set (6-41) can be rewritten as:

$$e_{jp} f_p - y_j < 0 \quad \forall j \in A, p \in P^j$$ (6-44)

3. A Proposed Solution Procedure for Problem Q(MS°)

3.1 Problem DQ(MS°): The Dual of Problem Q(MS°)

In the previous section problem Q(MS°) has a large number of columns, but a much larger number of rows. This large number of rows constitutes the most serious difficulty in solving the problem. As is often done with problems of many rows, consider the dual of problem Q(MS°):

$$DQ(MS°): \text{Max } \sum_{s \in R} t_s u_s$$ (6-45)

$$[y_j] \text{ s.t. } \sum_{p \in P^j} v_{jp} < 1 \quad \forall j \in A$$ (6-46)

$$[f_p] u_s - \sum_{j \in A^p} e_{jp} v_{jp} < c_p \quad \forall s \in R, p \in P_s$$ (6-47)

$$u_s, v_{jp} > 0 \quad \forall s \in R, p \in P_s, j \in A^p$$ (6-48)

Problem DQ(MS°) has a very large number of columns and a large number of rows. Furthermore, constraint sets (6-47) and (6-48) are block diagonal by O-D pair. This is evident by noting that u_s is unique to O-D pair s and the v_{jp} are unique to the set of paths P_s which connect O-D pair s.
The Dantzig-Wolfe decomposition procedure can be used for problems of this type.

3.2 Dantzig-Wolfe Decomposition of DQ(MS°)

Consider the use of Dantzig-Wolfe decomposition in the solution of problem DQ(MS°). First, let the constraint set (6-46) form the set of linking constraints. Note that there will be one row in the master problem for each linking constraint. For problem DQ(MS°) there are |A| rows. Second, because of the block diagonal structure of constraint sets (6-47) and (6-48), one can use between one and |R| subproblems. Note that for each subproblem used, there will be one additional convexity constraint in the master problem. Since the number of rows in the master problem is already large |A|, it might be useful to utilize a single subproblem.

Let:

\[S = \{(\tilde{u}, \tilde{v}) : (6-47) \text{ and } (6-48) \text{ are satisfied}\} \]

\[w = (w_0, w_1) \quad > 0 \]

\[w_0 = (w_{01}, \ldots, w_{0|A|}) \]

\[w_{0i} \equiv \text{the dual variable of the master problem corresponding to arc } i \]

\[w_{1j} \equiv \text{the dual variable of the master problem corresponding to the convexity constraint} \]

The subproblem can now be stated as:

\[S(\text{MS}°) : \operatorname{Max} \sum_{s \in R} (t_{1s} + \sum_{p \in P_s} \sum_{j \in A_p} w_{0j} v_{jp}) - w_1 \]

\[\text{s.t. } (6-47), (6-48) \]
Constraint sets (6-47) and (6-48) are block diagonal by 0-D pair. Thus, since the objective (6-49) is linear, problem $S(MS^0)$ is separable into $|R|$ subproblems of the form:

$$S_s(MS^0): \text{Max } t u_s - \sum_{p \in P} \sum_{j \in A^p} w_{0j} v_{jp}$$

subject to

$$u_s - \sum_{j \in A^p} e_{jp} v_{jp} \leq c_p \quad \forall p \in P_s$$

$$u_s, v_{jp} \geq 0 \quad \forall p \in P_s, j \in A^p$$

Given the solutions to the $|R|$ subproblems $S_s(MS^0)$, the column which is a candidate to enter the basis of the master problem as well as its reduced cost coefficient can be determined.

Let:

- rcc reduced cost coefficient of column entering master problem
- Z_s^* the optimal value of the objective for the s^{th} subproblem

$$rcc = \sum_{s \in R} Z_s^* - w_1$$

If $rcc \leq 0$, then the current solution to the problem is optimal. If $rcc > 0$, then column a must enter the current basis of the master problem where:

$$\hat{a} = \frac{a}{1}$$

$$a_j = \sum_{p \in P} e_{jp} v_{jp}$$
Given the solution of $DQ(\text{MS}^o)$, one must still construct the solution of $Q(\text{MS}^o)$. From duality theory relating to the Dantzig-Wolfe decomposition procedure, it is well known that:

\begin{align}
 y^*_j &= w^*_o \\
 f^*_p &= \bar{f}^*_p
\end{align}

(6-56) (6-57)

where: f^*_p, y^*_j = the optimal solution of f_p, y_j from problem $Q(\text{MS}^o)$

\begin{align*}
 w^*_o &= \text{the optimal value of } w^*_o \text{ in the master problem} \\
 \bar{f}^*_p &= \text{the optimal value of } \bar{f}^*_p, \text{ a dual variable of problem } S_s(\text{MS}^o), \text{ (to be further defined in the following section)}
\end{align*}

3.3 The Solution of the Subproblem $S_s(\text{MS}^o)$

While problem $S_s(\text{MS}^o)$ could be solved by a linear programming algorithm, the simple structure indicates that a less sophisticated (and less time and storage consuming) algorithm might be developed.

Consider the dual of problem $S_s(\text{MS}^o)$

\begin{align}
 DS_s(\text{MS}^o): \quad \text{Min} \quad & \sum_{p \in P_s} c_p \bar{f}_p \\
 \text{s.t.} \quad & \sum_{p \in P_s} \bar{f}_p \geq t_s \\
 & \bar{f}_p < -\frac{w^*_o}{e_{jp}} \quad \forall p \in P_s, j \in A^p \\
 & \bar{f}_p \geq 0 \quad \forall p \in P_s
\end{align}

(6-58) (6-59) (6-60) (6-61)
It appears that DS\(_{S}(MS^O)\) could be solved by inspection if it were feasible. However, infeasibility may be a problem. Note that the maximum flow on any path \(p\) is simply:

\[
\bar{f}_{\text{Max}} = \min_{j \in A^p} \frac{W_{0j}}{e_{jp}}
\]

Thus, \(DS(S)(MS^O)\) is infeasible whenever:

\[
t_s > \sum_{p \in P_s} \bar{f}_{\text{Max}}
\]

When \(DS(S)(MS^O)\) is infeasible, \(S(S)(MS^O)\) is unbounded. When this occurs, an extreme ray (ER) from problem \(S(S)(MS^O)\) must be returned to the master problem. Obtaining the ER would not be difficult if one were using LP to solve \(S(S)(MS^O)\), however, the use of LP is not desirable.

To avoid this problem, consider a redundant path \(A_s\) in addition to each set \(P_s\) in problem \(Q(MS^O)\). Call the resulting problem \(Q(MS^O)\). Let the dual of \(Q(MS^O)\) be \(DQ(MS^O)\). Then \(DQ(MS^O)\) is equivalent to \(DQ(MS^O)\) with the following redundant constraint set:

\[
c_{A_s} > \max_{p \in P_s} \left\{c_p + \sum_{j \in A_p} e_{jp}\right\}
\]
The subproblem for $DQ(MS^o)$, $S(MS^o)$, is then equivalent to $S(MS^o)$ with the added constraint set (6-63). The $|R|$ subproblems separated from $S(MS^o)$, $S(MS^o)$, are equivalent to $S_s(MS^o)$ with the added constraints:

$$u_s < c_{A_s}$$

The dual of subproblem $S(MS^o)$ can be stated as

$$DS_s(MS^o): \text{Min} \sum_{p \in P_s} c_p \bar{r}_p + c_{A_s} \bar{f}_{A_s} \quad (6-64)$$

s.t. $$\sum_{p \in P_s} \bar{r}_p + \bar{f}_{A_s} > t_s \quad (6-65)$$

$$\bar{r}_p \leq \frac{w_{O_j}}{e_{j_p}} \quad \forall p \in P_s, j \in A^p \quad (5-66)$$

$$\bar{f}_p > 0, \bar{f}_{A_s} > 0 \quad \forall p \in P_s \quad (6-67)$$

Note that $DS_s(MS^o)$ is now feasible and subproblem $S_s(MS^o)$ is bounded.

The following algorithm can be used to solve problem $DS_s(MS^o)$

1. Arrange the paths in order of increasing c_p.

 Let: $i = 1$

 $RF = t_s$

2. Determine $\bar{r}_1^{\text{Max}} = \text{Min} \frac{w_{O_j}}{e_{j_p}} \quad j \in A^i$

3. Let: $\bar{f}_{1}^{*} = \text{Min} \{RF, \bar{f}_{1}^{\text{Max}}\}$

4. If $\bar{f}_{1}^{*} = RF$, let: $\bar{f}_{i+1}^{*},...,\bar{f}_{|P_s|}^{*} = 0$ and $f_{A_s}^{*} = 0$
 STOP
 Otherwise, go to step 5.

5. Let: $RF = RF - \bar{f}_{1}^{*}$

6. If $i = |P_s|$, let: $f_{A_s}^{*} = RF$
 STOP
 Otherwise, go to step 7.

7. $i = i+1$, Go to step 2.

The flow pattern produced by the algorithm is feasible since all flow is assigned to paths. It is optimal since flow is assigned in order of increasing unit cost. The algorithm will terminate in a maximum of $|P_s|$ iterations.

Finally, the optimal solution to problem $DS_s(MS^o)$ must be used to develop the optimal solution to subproblem $S_s(MS^o)$. This can be accomplished in the following manner:

1. If $\bar{f}_{A_s} = 0$, let path q be the last path assigned flow in the ordered arc list. Let $u_{s}^{*} = c_q$

 a. For any path $p \ni c_p < c_q$:

 i. For any one (possibly the first) constraining arc j, let:
For all other arcs j, let:

\[v^*_j = 0 \quad (6-69) \]

b. For any path $p \ni c \geq c_q$, let:

\[v^*_j = 0 \quad (6-70) \]

2. If $\bar{f}^*_s > 0$, let $u^*_s = \frac{c}{A_s}$, for each path p:

a. For any one (possibly the first) constraining arc j, let:

\[v^*_j = \frac{c_A - c_p}{e_{jp}} \]

b. For all other arcs j, let:

\[v^*_j = 0 \]

This solution is feasible to problem $\bar{s}_s^\mathcal{M}^0$ and the complementary primal and dual solutions to the subproblem satisfy the complementary slackness conditions. Thus, the Kuhn-Tucker conditions are satisfied, and the proposed solution must be optimal.

4. Problems Associated With the Proposed Solution Procedure

The solution procedure proposed for problem $Q(MS^0)$ has a number of significant drawbacks. First, even after eliminating all parallel paths, there remain a very large number of physical
paths connecting each O-D pair. Thus, it may still be necessary

to eliminate a large number of physical paths to assure tracta-

bility.

This might be accomplished analytically by the following procedure:

1. Find the shortest path between each O-D pair where arc
 length is defined as arc disutility given minimum
 investment.
 Let: \(d_s \equiv \) length of shortest path between O-D pair \(s \).

2. Eliminate all paths between O-D pair \(s \) whose length is
 greater than \(d_s \), where arc length is defined as arc
 disutility given maximum investment.

This procedure will still require a great deal of computation.

Perhaps an equally satisfactory method of path elimination is the
"eyeball" procedure. Since one is dealing with a physical network
with few or no special peculiarities, the "eyeball" method is
particularly attractive. However, one should note that when using an
"eyeball" method, one is no longer theoretically guaranteed a lower
bound on the original problem. Thus, one would have a practical lower
bound rather than a theoretical lower bound.

A second drawback of the procedure is the need to maintain a
master problem basis of size \(|A| + 1\). A complicating factor is that
the master problem basis will probably be dense. Third, when using
the Dantzig-Wolfe decomposition procedure on the dual, feasibility
of the primal is not reached until optimality. Each iteration of the
master problem provides an increasing lower bound on the optimal value
of the primal objective. Thus, if convergence were slow near optimality, then one could iterate many times before obtaining a feasible solution to $Q(MS^o)$. There are two possible approaches to the solution of this problem:

1. Cease iteration of the decomposition procedure.

 A lower bound exists for the solution.

 Take the current primal solution, which is infeasible, and translate it into a feasible solution. The quality of the feasible solution can be verified by comparison with the lower bound.

2. Use a dual-simplex method to solve the master problem [Lasdon, 1978], this will assure primal feasibility at each iteration of the decomposition procedure. Thus, the algorithm can be terminated at any time yielding a primal feasible solution, but no lower bound. A significant drawback of this approach is that the resulting subproblem becomes a linear fractional program. Using a typical formulation to solve the fractional program, the special structure of the subproblem would be lost, and one might need to resort to LP. Jacobsen has recommended an algorithm developed by Abadie and Williams for the solution of linear fractional programs with special structure [Jacobsen, 1967; Abadie and Williams, 1963]. The algorithm solves a sequence of LP's, each having the same constraint structure, but with different objectives. Thus, the price one
would pay for primal feasibility is the solution of a number of subproblems of the form \(\tilde{S}_s(MS^0) \) at each iteration of the decomposition procedure.

5. Summary

In this chapter problem \(P2(MS^0) \) was approximated by a general multi-commodity fixed charge network flow problem. The approach was similar to that used by Jarvis, Rardin, and Unger in dealing with a single commodity problem [Jarvis, Rardin, Unger, 1977]. From the work of Choe it was inferred that the solution of a relaxed arc-path formulation would provide a lower bound superior to that of the node-arc formulation [Choe, 1977]. However, it was also determined that the relaxed arc-path formulation was intractable due to the immense number of parallel paths representing a single physical path. To reduce this number to one, it was determined that another approximation to the disutility surface was required. A number of potential estimators were analyzed, and a new type of estimator, Type III, was defined and found to be desirable. Type III estimators were identified for arcs with certain simplified structures. However, it was found that Type III estimators did not exist for the general case. Lacking a Type III estimator, another less desirable estimator was identified and its properties proven. Finally, a solution procedure based on the Dantzig-Wolfe Decomposition Principle was proposed for the resulting problem. The subproblem for this procedure was found to possess a simple structure amenable to a very simple solution technique.
CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

1. Conclusions

1.1. The Single Commodity Problem

A number of conclusions can be drawn from the research relating to the single-commodity multi-modal freight transport network improvement problem. These include:

1. Existing multi-modal improvement formulations and solution procedures are inadequate for the specific purposes of this research. Specific weaknesses include limited applicational settings, inability to handle large-scale problems, and questionable simplifying assumptions.

2. The new formulation models the general network improvement problem while making few questionable simplifying assumptions. Distinctive features of the formulation include a mode abstract multinominal logit modal split model and convex arc transport characteristic improvement functions. Two of the most questionable assumptions are that there is only one transport commodity class and that the arc transport characteristics are not affected by arc flows.

3. The proposed new formulation is very difficult to solve. Since the objective is non-convex, the only methods which can guarantee a global optimal solution are integer
procedures such as branch and bound. Since integer procedures cannot solve problems involving large-scale networks, a heuristic solution methodology is developed.

4. A solution methodology is developed based on Steenbrink's continuous optimal adjustment heuristic and the solution of a concave disutility transportation assignment problem [Steenbrink, 1974]. In very test run the methodology converges to a solution, which is guaranteed to be feasible to the original problem and "good" in the sense that it is the result of a suboptimization process. The solution need not be unique. Finally, the methodology cannot be guaranteed to converge to a global optimal solution.

5. The general solution methodology can be used with any mode-abstract modal split model.

6. The proposed methodology is easily extendible to some specific cases where the arc transport characteristics are functions of arc flow.

7. The algorithm which is developed and tested for the solution of the concave disutility transportation assignment problem is based on the heuristic local optimum-seeking procedure proposed by Yaged [Yaged, 1971]. A second algorithm is proposed, which uses Dantzig-Wolfe decomposition to solve an Arc-Path formulation of the general multi-commodity fixed charge network flow problem.
8. The solution methodology is viable. Although solution times are long, this is not unusual for problems of this size or design-construction projects of this scale. Solution times might be shortened considerably by proper selection of methodology parameters. Solution times, might be further shortened by as much as 50% by eliminating Phase I portion of the two phase algorithm. However, this may cause an appreciable deterioration in solution quality.

9. Any reasonable search procedure developed for this methodology must consider varying both the set of initial modal splits and the set of initial arc lengths. The results of any search procedure can be plotted on a total savings – investment graph, and, after defining the maximum savings envelope over investment, the decision maker might then select the preferred combination of investment and total savings.

10. The tendency of solutions to cluster around certain points tends to indicate the presence of local optimal solutions to the problem.

1.2 The Multi-Commodity Problem

A number of conclusions can be drawn from the research relating to the multi-commodity extension of the problem:
11. No significant research results have been published concerning the improvement of multi-modal networks with more than one transport commodity class.

12. The proposed multi-commodity formulation eliminates one of the questionable assumptions discussed in conclusion 2 above and, thus, is a more realistic model of the problem. The rest of conclusion 2 and conclusion 3 also hold for the multi-commodity formulation.

13. The methodology for the single commodity problem is extended to generate solutions to the multi-commodity problem. The resulting multi-commodity methodology has characteristics similar to those discussed in conclusions 4, 5, and 6 above.

14. The Yaged Algorithm is extended to generate local optimal solutions to the multi-commodity, concave disutility transportation assignment problem.

15. With one major exception, conclusions drawn from the multi-commodity results parallel those of the single commodity problem, conclusions 8, 9, and 10 above. The single exception is that the multi-commodity methodology requires a substantial amount of CPU time to generate a single solution, approximately twice that required for the corresponding single commodity problem. Thus, there
is a valid question as to whether the proposed multi-commodity methodology is a viable vehicle for generating solutions to the multi-commodity problem.

16. Limited comparisons between single-commodity and multi-commodity solutions to the same general problem suggest that, at least for some starting solutions, the final solutions may not differ enough to warrant the additional expense required to solve the multi-commodity problem. However, this may be a function of the uniformity of the transport commodity classes being considered as well as the initial starting solutions.

2. Recommendations for Future Research

Prior to concluding this research effort, it should be noted that a number of important questions remain unanswered and a number of important issues remain unaddressed. The purpose of this section is to identify these questions and issues and indicate potential directions for future research efforts.

In Chapter II a number of assumptions were made in order to simplify the problem. However, several of these assumptions are known to be questionable. First, it was assumed that there was only one transport commodity class using the network. This was later relaxed to include multiple commodities, and a solution methodology was developed. Results obtained from test runs were not encouraging however, with the principal difficulty being lengthy computation
times. In general, these times were twice those required to generate comparable single commodity solutions. Lengthy CPU times were directly attributable to the large number of I-O generations necessitated by the large storage requirements of the solution methodology coupled with the relatively small core storage capacity of the CYBER 74 computing system. Potential research relating to this problem includes:

1. Revise the computer programs assuming additional core storage availability and evaluate the effect on solution times. Note that most variables would be maintained in core storage.

2. Revise the computer programs to make them more time and storage efficient and evaluate the effect on solution times. In particular, the network algorithms can be made much more efficient and to provide for restart capability [Rardin, 1978].

3. Identify additional simplifying assumptions, implement these assumptions, and evaluate their effect on solution times. One such assumption might be that all commodities use the same paths.

4. Evaluate the use of the single commodity problem solution as an approximation to that of the multi-commodity problem.

A second questionable assumption was that the arc transport characteristics (ATC) were not affected by arc flow. Subsequent analysis showed that if the proposed methodology were used to solve
a problem where an initial arc fixed cost and/or arc investment
were shared proportionately by users, the decomposition procedure
might still be useful in solving the resulting problem. Analysis also
showed that if the assumption negating ATC congestion effects were
relaxed, the resulting problem would be inconsistent. Potential
research relating to this problem includes: investigate the
development of a consistent formulation which would include congestion.
Note that such a formulation must extend the concept of maximum
utility modal paths and modal split.

A third questionable assumption was that the various transport
facilities could be separated into a number of functional independent,
uni-directional facilities. Potential research relating to this
assumption includes:

1. Examine the various types of physical transport facilities
 and determine which are separable into independent functional
 uni-directional facilities and which must be considered as a
 unit.

2. Revise the methodology to include these interdependencies.
 Note that this should cause little problem since the Yaged
 Algorithm was originally intended for use with undirected
 arcs.

In the development of the general methodology, a number of
modifiable components and parameters were identified, Potential
research relating to these include:

1. Revise the computer programs so that they may use the
alternate modal split convergence criteria proposed in Chapter III, Section 1.2. Evaluate the performance of the methodology using these criteria.

2. Investigate the development of lower bounds on the objective of the problem which are tighter than those proposed in Chapter III, Section 1.2. Note that a tight lower bound would greatly facilitate the decision to terminate the overall methodology.

3. Lacking a good lower bound, identify reasonable non-lower bound-based decision rules which could be used to terminate the overall methodology. Evaluate their performance. Note that one such rule is postulated in Chapter IV, Section 2.4.

4. Evaluate the performance of the two phase algorithm versus the Yaged algorithm in solving the concave disutility transportation assignment problem.

5. Investigate methods which could be used to generate sets of initial arc lengths for use in the two phase (or Yaged) algorithm. Evaluate the performance of the methods. One reasonable method might be to let the initial length associated with a line haul arc be proportional to the physical length of the arc.

6. Implement the procedure developed in Chapter VI to solve the concave disutility transportation assignment problem. Evaluate its performance with respect to that of the two phase algorithm.
APPENDICES
APPENDIX A

SINGLE COMMODITY PROGRAMS

1. NETED
2. INFOD
3. INMS
4. INAC
5. SMS
6. CNCASNB
7. TESTMS
C PROGRAM NET ED DEVELOPS THE EXPANDED NETWORK USED IN THE CONCAVE
ASSIGNMENT ROUTINE.

"TAPE 6=INPUT, TAPE 0=OUTPUT"

INTEGER 1,2,3,4,5,6,7,8
REAL (155.2), 0, P (1152), A (3086.3), D (50)

DIMENSION M (128, 1), M (128), F (150), F (204) = 0, LA (3080)

READ (1, 100) ((MZ (I, J), J = 1, 3), I = 1, Z)
IN = 1

DO 1 I = 1, Z
 M (I) = 0
 DO 2 J = 1, 3
 M (I) = M (I) + MZ (I, J)
 CONTINUE
 P (I) = IN
 IN = IN + 3 * M (I) + 2
 CONTINUE

N = IN - 1

DO 3 I = 1, N
 POD (1, 2) = 0
 CONTINUE

N = 1

DO 4 I = 1, Z
 O = M (I)
 P (IN) = NA
 DO 5 J = 1, 3
 A (NA, J) = NN + J
 A (NA, J) = M (I)
 CONTINUE

IZ = 0

DO 6 K = 1, 3
 IF (MZ (I, K), EQ. 0) GO TO 6
 IZ = IZ + 2

IF (IZ, EQ. 0) GO TO 30
GO TO 32
MODE = KM
GO TO 32

50 CONTINUE

NA = NA + 1

READ (1, 100) ((D (J, J), J = 1, 3), M (I))

DO 7 J = 1, 3
 IF (D (J, J), EQ. 0) GO TO 7
 POD (NA, 1) = M (I)
 POD (NA, 1) = M (I)

CONTINUE

N = NN + 1

DO 9 I = 1, 3
 IF (MZ (I, J), EQ. 0) GO TO 10
 P (IN) = NA
 A (NA, 2) = NN

CONTINUE

999 END
A(NA,2) = NN + 0
A(NA,3) = 0
LA(NA) = 3 + J
NA = NA + 1
POD(NN,1) = NOD
DO 11 K = 1, M
 IF(D(K), EQ. 0) GO TO 12
 IF(MZ(D(K), J), EQ. 0) GO TO 13
 DO(NOD) = PZ(D(K), J) + 1
 ODC(NOD + K, J + 1) = NOD
 NOD = NOD + 1
11 CONTINUE
10 DO 9 L = 1, M
 IF(D(L), EQ. 0) GO TO 9
 ODC(NOD + L, J + 1) = 0
9 CONTINUE
13 ODC(NOD + K, J + 1) = 0
12 NN = NN + 1
10 GO TO 9
DO 14 L = 1, M
 IF(D(L), EQ. 0) GO TO 14
 ODC(NOD + L, J + 1) = 0
14 CONTINUE
19 P(NN) = NA
IZ = 0
DO 33 K = 1, M
 IF(MZ(I, K), EQ. 0) GO TO 33
 IZ = IZ + 1
 IF(IZ, EQ. J) GO TO 34
 GO TO 33
33 CONTINUE
30 DO 35 K = K1, K2
 A(NA,1) = NN
 A(NA,2) = K
 IF(K, EQ. NN - 0) GO TO 21
 A(NA,3) = 1
 IZ = 0
35 DO 36 KM = 1, 3
 IF(MZ(I, KM), EQ. 0) GO TO 36
 IZ = IZ + 1
 IF(IZ, EQ. J) GO TO 37
 GO TO 36
34 KDE = KM
35 CONTINUE
36 DO 20 K = K1, K2
 A(NA,1) = NN
 A(NA,2) = K
 IF(K, EQ. NN - 0) GO TO 21
 A(NA,3) = 1
 IZ = 0
20 DO 36 KM = 1, 3
 IF(MZ(I, KM), EQ. 0) GO TO 36
 IZ = IZ + 1
 IF(IZ, EQ. J) GO TO 37
 GO TO 36
```fortran
37  MODE1=KM
GO TO 38
CONTINUE

38  IF(MODE.EQ.1.AND.MODE1.EQ.2) GO TO 39
IF(MODE.EQ.2.AND.MODE1.EQ.1) GO TO 39
IF(MODE.EQ.1.AND.MODE1.EQ.3) GO TO 40
IF(MODE.EQ.3.AND.MODE1.EQ.1) GO TO 40

39  LA(NA)=15
GO TO 22
LA(NA)=13
GO TO 22

40  LA(NA)=14
GO TO 22

21  A(NA,3)=0
LA(NA)=9+MODE

22  NA=NA+1
CONTINUE
A(NA,1)=NN
A(NA,2)=PZ(I+1)-1
A(NA,3)=0
LA(NA)=15+MODE
NA=NA+1
POD(NN,1)=NOD
NN=NN+1
CONTINUE
P(NN)=NA
POD(NN,2)=NOD
NN=NN+1
CONTINUE
P(NN)=NA
POD(NN,2)=NOD
POD(NN,2)=0
ARC=NA-1
IP=NO-1
WRITE(1,100) ND, IP
WRITE(1,100) (ODC(I,J),J=1,4),I=1,ND
WRITE(1,100) (FODC(I),I=1,ND)
WRITE(2,100) N,ARC,2,IP
WRITE(2,100) (A(I,J),J=1,3),I=1,ARC
WRITE(2,100) (PI1,I=1,IP)
WRITE(2,100) (OD(I),I=1,IP)
WRITE(2,100) (POD(I,J),J=1,2),I=1,IN)
WRITE(8,100) ARC
STOP
100  FORMAT(20I-)
101  FORMAT(80I1)
102  FORMAT(8F10.0)
END
```
PROGRAM INFOC SETS UP THE INITIAL FOD VECTOR, D-D DEMAND
BY MODE, USING AN INITIAL ESTIMATE OF MODAL SPLIT.

PROGRAM INFOC(OUTPUT, TAPE 1, TAPE 4, TAPE 14, TAPE 5=OUTPUT)

INTEGER DODC(1400,4)
REAL MS(4)
DIMENSION FODC(1400), FODT(1600)
READ(1,100) NO, IP
READ(1,100) (FODC(I,J), J=1,4, I=1, NO)
DO 1 J=1, NO
READ(1,105) (MS(J), J=1,4)
DO 2 J=1,4
IF (FODC(I,J) .GE. 0) GO TO 2
CONTINUE
1 CONTINUE
WRITE(5,102) FODC(I), I = 1, IP
STOP
100 FORMAT (20I4)
102 FORMAT (10D10.0)
105 FORMAT (4F4.2)
END

PROGRAM INMS R AND C ML Y DETERMINES AN INITIAL SET OF MODAL SPLITS.

PROGRAM INMS(INPUT, OUTPUT, TAPE 7, TAPE 11, TAPE 16, TAPE 5=INPUT,

INTEGER O;D
REAL MS(4)
READ(5,1000) ISEE0
CALL RANDT(ISEED)
READ(7,100) I
READ(7,101) (M2(I,J), J=1,3, I=1,120)
DO 1 J=1,3
R(J+1) = RANDF(N)
IF (M2(I,J)+R(J) .LE. 0) GO TO 2
CONTINUE
1 CONTINUE
WRITE(15,100) O, D
P(I) = RANDF(N)
DO 2 J=1,3
IF (M2(I,J)+R(J) .LE. 0) GO TO 2
CONTINUE
2 CONTINUE
DO 4 J=1,4
P(J+1) = RANDF(N)
CONTINUE
DO 5 J=1,4
P(J+1) = RANDF(N)
CONTINUE
5 CONTINUE
WRITE(14,105) MS(J), J=1,4
CONTINUE
STOP
100 FORMAT (20I4)
101 FORMAT (10D10.0)
105 FORMAT (4F4.2)
1000 FORMAT (I15)
END
Program INAC Randomly Generates an Initial Set of Arc Costs

Program INAC (Input, Output, Tape 13, Tape 5=Input, Tape 6=Output)

```fortran
DIMENSION A(3080)

CALL RANSET (ISEED)

CONTINUE

WRITE (13,103) (A(I),I=1,N)

STOP

120 FORMAT (14,15)

183 FORMAT (3F10.5)

END

**Program SMS Develops a Set of Maximal Modal Splits**

According to the input vector W(J), 19 W(J)=1,

the program SMS retrieves an equal modal shape

**Program SMS (Input, Output, Tape 14, Tape 16, Tape 5=Input, Tape 6=Output)**

```fortran
DIMENSION W(120,3),M(4)
REAL W(4)
READ (5,101) (W(I),I=1,4)
READ (7,101) (M(Z(I,J),J=1,3),I=1,120)
READ (18,100),N,D
TC=0
DU = 1,14
MS(J) = 0
CONTINUE

IF (W(J,EQ.0).EQ.1) GO TO 2
IF (M(Z(J,-1)).EQ.0.OR.M(Z(J,0)).EQ.0) GO TO 2
CONTINUE

2 CONTINUE

IF (W(J,EQ.0).EQ.0) GO TO 4

IF (W(J,EQ.1).EQ.1.Z(J)EQ.1) GO TO 4
IF (M(Z(J,-1)).EQ.0.OR.M(Z(J,0)).EQ.0) GO TO 3
CONTINUE

3 CONTINUE

GO TO 5
4 MS(J) = 1
5 WRITE (14,105) (MS(J),J=1,4)
CONTINUE

STOP

100 FORMAT (20J4)

END
```
PROGRAM CNCASNE IS A CONCAVE ASSIGNMENT ROUTINE BASED ON THE
VAGGED METHOD OF DETERMINING A LOCAL OPTIMAL SOLUTION.

PROGRAM CNCASNE (OUTPUT=400B, TAPE2=400B, TAPE3=400B, TAPE4=400B,
TAPE5=INPUT, TAPE6=OUTPUT)

REAL IP, IPM
INTEGER ARC, A, P, CC, POD, DE, T
COMMON POD1(200), EC(200), T(2000), E(1152), S(1152), T(1152), D(1152)
DIMENSION FI(3080), COD(1152), R(12)

READ(2,100)N, ARC, Z, IP
READ(1,100)(P(I),I=1,N1), T(I)
N1=N+1
READ(2,100)(P(I),I=1,N)
READ(3,100)(COD(I),I=1,N)
READ(4,100)(F0D(I),I=1,N)
READ(5,100)(FI(I),I=1,ARC)

ICOUNT=1
IY=0
IF (ICOUNT.EQ.1) IY=IY+1
DC 1 I=1,ARC
F(I)=0.
CONTINUE

II=POD(I)
II=POD(I+1)-1
IF(IY.GT.II) GO TO 2
DC 3 J=1
CONTINUE

DE=0
DC 4 J=1,II
DO =0
CONTINUE

IF (POD(I,2).EQ.1) GO TO 5
DC TO 6
GOTO 1
CONTINUE

CALL SPTR(I,DE,10)
CONTINUE

IF(IY.EQ.1) GO TO 45
WRITE(6,2000)
CONTINUE

IF (IY.EQ.0) AND (ICOUNT.EQ.1) IY=1
DC 50 I=1,ARC
F(I)=0.
IF(IY.EQ.1) IY=1
CONTINUE

IF (IY.EQ.0) GO TO 50
DC 51 I=1,ARC
F(I)=0.
CONTINUE

IF (IY.EQ.1) GO TO 53
SUBROUTINE SPTR IS A SHORTEST PATH TREE ROUTINE

SUBROUTINE SPTR (O, DE, IQ)
INTEGER O, DE, T, B, FS, P, S(3080, 2), D, A, OQ, PQC
COMMON FOC(230), AC(3080), F(3080), A(3080, 3), P(1152),
& QC(230), PQC(1152, 2), COD(230), N, TC(1152), T(1152), D(1152)
DIMENSION SC(13080)
O = 1
I = 1, A

CONTINUE

ITOT = 0
TC(1) = 0.
B = 0.
I = 2
FS = 1
L = 2
IA = P(I, B)
IB = P(B + 1) - 1
IF (IB + 1 - IA) EQ. 0) GO TO 2
DO 3 I = IA, IB
3 IF (I.EQ. 0) GO TO 4
S(I, 1) = I
S(I, 2) = 0
SC(IS) = TC(B) + AC(I)
S(L, 2) = IS
L = IS
IS = IS + 1  
GO TO 3

IF (A(I, J, 3) .EQ. 1) GO TO 3
GO TO 5
CONTINUE

K = 0
J = FS
CM = 10

IF (TC(A(S(I, J, 1), 2)) .GE. 0.) GO TO 7
IF (SC(J) .GE. CM) GO TO 7
MJ = J
CM = SC(J)
K = J
J = SC(J)
IF (J .NE. 0) GO TO 9
GO TO 3
IF (J .EQ. FS) GO TO 10
IF (J .NE. LI) GO TO 11

S(K, 2) = S(J, 2)
GO TO 9

FS = S(J, 2)
J = S(J, 2)
GO TO 11

TC = A(S(MJ, 1), 2)
T(I) = S(MJ, 1)
TC(ID) = SC(MJ)
IF (G(ID) .EQ. 0) GO TO 12
ITOT = ITOT + 1
IF (ITOT .EQ. DE) GO TO 13
B = 1
IT = 1
GO TO 14

CALL ASNFLW(0, IT)
RETURN
END

SUBROUTINE ASNFLW(0, IT)
INTEGER 0, PO(2), CD(2), T(2)
COMMON FOC, 2, POD, CO, T, A, D
DIMENSION FL(1)
I1 = PO(0, 1)
I2 = PO(0, 1) + 1
DO 1 I = 1, K
FL(I) = 0.
1 CONTINUE

DO 2 I = I1, I2
FL(OD(I)) = FOD(I)
2 CONTINUE

I2 = IT - 1
DO 3 I = I1, I2
I = IT - I + 1
L = T(I)
J = A(L, 2)
F(L) = F(L) + FL(K)
FL(J) = FL(J) + FL(K)
IF (D(K) .EQ. 0) GO TO 3
CC(0D(K)) = TC(K)
3 CONTINUE

RETURN
END
PROGRAM TESTMS TESTS THE ASSUMED MODAL SPLIT AGAINST THE ESTIMATED MODEL SPLIT.

INTEGER ID,OD,I0,IN,IN
REAL MS0,MS1,MS2,MS3,MS4,MS5,MS6

DIMENSION FODC(100),COD(1600),FOD(1600)

READ(0,0)ID
READ(1,100)ND,IP
READ(1,100)COD(I,J),J=1,ND,I=1,IP
READ(3,102)FOD(I,J),J=1,IP

DO 1 J=1,ND

IF (COD(I,J).EQ.0) GO TO 2

CONTINUE
DU=EXP(Al*COD(ODC(I,J))) GO TO 11

DO 5 J=1,IP

IF (COD(I,J).EQ.0) GO TO 6

DU=DU*EXP(Al*COD(ODC(I,J))) GO TO 3

CONTINUE
DO 10 J=1,IP

IF (COD(I,J).EQ.0) GO TO 11

DU=DU*EXP(Al*COD(ODC(I,J))) GO TO 3

CONTINUE
DU=DU*EXP(Al*COD(ODC(I,J)))/DU

IF (M351EQ.0) GO TO 11

END
APPENDIX B

ZONE STRUCTURE

1. Corridor Zones
2. Non-BEA External Zones
3. Zones Comprised of Integral BEAs
<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Nodal City</th>
<th>APDC*</th>
<th>Included Counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>Jacksonville, FL</td>
<td>APDC 1, Fl.</td>
<td>Baker, Clay, Duval, Nassau, Putnam, St. Johns</td>
</tr>
<tr>
<td>4.</td>
<td>Waycross, Ga.</td>
<td>Slash Pine</td>
<td>Atkinson, Bacon, Brantley, Charlton, Clinch, Coffee, Pierce, Ware</td>
</tr>
<tr>
<td>7.</td>
<td>Macon, Ga.</td>
<td>Middle Ga.</td>
<td>Bibb, Crawford, Houston, Jones, Monroe, Peach, Twiggs</td>
</tr>
<tr>
<td>8.</td>
<td>Cordele, Ga.</td>
<td>Middle Flint</td>
<td>Crisp, Dooly, Marion, Macon, Schley, Sumter, Taylor, Webster</td>
</tr>
<tr>
<td>10.</td>
<td>Lagrange, Ga.</td>
<td>Chattahoochee-</td>
<td>Carroll, Coweta, Heard, Meriwether, Troup</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plint</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>Columbus, Ga.</td>
<td>Lower Chattahoochee Valley</td>
<td>Muscogee, Quitman, Randolph, Stewart, Talbot, Ga., Lee, Russell, Al.</td>
</tr>
<tr>
<td>12.</td>
<td>Anniston, Al.</td>
<td>APDC 4</td>
<td>Calhoun, Chambers, Cherokee, Clay, Cleburne, Cosa, Erowah, Randolph, Talladega, Tallapoosa</td>
</tr>
<tr>
<td>13.</td>
<td>Montgomery, Al.</td>
<td>APDC 9+</td>
<td>Autauga, Dallas, Elmore, Montgomery, Perry</td>
</tr>
<tr>
<td>14.</td>
<td>Troy, Al.</td>
<td>APDC 5</td>
<td>Bullock, Butler, Crenshaw, Lowndes, Macon, Pike</td>
</tr>
<tr>
<td>15.</td>
<td>Dothan, Al.</td>
<td>APDC 7</td>
<td>Barbour, Coffee, Covington, Dade, Geneva, Henry, Houston</td>
</tr>
<tr>
<td>16.</td>
<td>Decatur, Al.</td>
<td>APDC 11</td>
<td>Cullman, Lawrence, Morgan, Blount, Chilton, Jefferson, St. Clair, Shelby, Walker</td>
</tr>
<tr>
<td>17.</td>
<td>Birmingham, Al.</td>
<td>APDC 1</td>
<td>Colbert, Franklin, Lauderdale, Marion, Winston</td>
</tr>
<tr>
<td>18.</td>
<td>Florence, Al.</td>
<td>APDC 1</td>
<td>Bibb, Greene, Fayette, Hale, Lamar, Pickens, Tuscaloosa</td>
</tr>
<tr>
<td>19.</td>
<td>Tuscaloosa, Al.</td>
<td>APDC 2</td>
<td>Alcorn, Benton, Marshall, Prentiss, Tippah, Tishomingo</td>
</tr>
<tr>
<td>20.</td>
<td>Corinth, Ms.</td>
<td>N.E. Ms.</td>
<td></td>
</tr>
</tbody>
</table>

*Area Planning and Development Commission or equivalent comprehensive planning agency.*
<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Nodal City</th>
<th>APDC*</th>
<th>Included Counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.</td>
<td>Tupelo, Ms.</td>
<td>3 Rivers</td>
<td>Calhoun, Chickasaw, Itawamba, Lafayette, Lee, Monroe, Pontotoc, Union</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Noxubee, Oktibbeh, Webster</td>
</tr>
<tr>
<td>22.</td>
<td>Columbus, Ms.</td>
<td>Golden Triangle</td>
<td>Clay, Choctaw, Lowndes, Coahoma, DeSoto, Quitman, Panola, Tate, Tunica</td>
</tr>
<tr>
<td>23.</td>
<td>Clarksdale, Ms.</td>
<td>No. Delta</td>
<td>Carroll, Crockett, Dyer, Gibson, Henry, Lake, Obion, Weakley</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chester, Decatur, Hardeman, Hardin, Haywood, Henderson, McNairy, Madison, Wayne</td>
</tr>
<tr>
<td>24.</td>
<td>Dyersburg, Ten.</td>
<td>N.W. APDC-</td>
<td>Fayette, Lauderdale, Shelby, Tipton</td>
</tr>
<tr>
<td>25.</td>
<td>Jackson, Tn.</td>
<td>SW APDC+</td>
<td>Clay, Craighead, Crittenden, Cross, Greene, Lawrence, Lee, Ms., Phillips, Foinsett, Randolph, St. Francis</td>
</tr>
<tr>
<td>26.</td>
<td>Memphis, Tn.</td>
<td>Memphis Delta</td>
<td>Floyd, Lauderdale, Shelby, Tipton</td>
</tr>
<tr>
<td>27.</td>
<td>Jonesboro, Ak.</td>
<td>East</td>
<td>Greene, Lawrence, Lee, Ms., Phillips, Foinsett, Randolph, St. Francis</td>
</tr>
<tr>
<td>29.</td>
<td>Harrison, Ak.</td>
<td>White River</td>
<td>Baxter, Boone, Carroll, Marion, Newton, Searcy</td>
</tr>
<tr>
<td>30.</td>
<td>Sikeston, Mo.</td>
<td>Bootheel</td>
<td>Bankhead, Mississippi, New Madrid, Pemiscott, Scott, Stoddard</td>
</tr>
<tr>
<td>33.</td>
<td>Lebanon, Mo.</td>
<td>Lake of the Ozarks</td>
<td>Cameron, Laclede, Miller, Morgan, Pulaski</td>
</tr>
<tr>
<td>34.</td>
<td>Marshall, Mo.</td>
<td>Mo. Valley</td>
<td>Carroll, Chariton, Saline</td>
</tr>
<tr>
<td>35.</td>
<td>Sedalia, Mo.</td>
<td>Show-Me</td>
<td>Johnson, Lafayette, Pettis</td>
</tr>
<tr>
<td>36.</td>
<td>Springfield, Mo.</td>
<td>Lakes Country</td>
<td>Barry, Christian, Dade, Dallas, Greene, Lawrence, Polk, Stone, Taney, Webster</td>
</tr>
<tr>
<td>40.</td>
<td>Joplin, Mo.</td>
<td>Ozark Gateway</td>
<td>Barton, Jasper, McDonald, Newton</td>
</tr>
</tbody>
</table>
## 2. NON BEA EXTERNAL ZONES

**BEAs Disrupted:** 33, 34, 40, 41, 42, 43, 44, 45, 46, 47, 111, 112, 114, 115, 116, 117

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Nodal City</th>
<th>BEA</th>
<th>Included Counties</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Milledgeville, Ga.</td>
<td></td>
<td>Oconee APDC, Ga: Baldwin, Hancock, Jasper, Putnam, Washington, Wilkerson</td>
</tr>
<tr>
<td>50</td>
<td>St. Louis, Mo.</td>
<td>BEA 114 minus:</td>
<td>Laclede, Pulaski, Reynolds, Texas, Mo.</td>
</tr>
<tr>
<td>60</td>
<td>Little Rock, Ak.</td>
<td>BEA 117 minus:</td>
<td>White River APDC, Ak. (See zone 28 for omitted counties)</td>
</tr>
</tbody>
</table>
### 3. ZONES COMPRISED OF INTEGRAL BEAS

<table>
<thead>
<tr>
<th>Zone No.</th>
<th>Nodal City</th>
<th>BEAs</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>Augusta, Ga.</td>
<td>32</td>
</tr>
<tr>
<td>45</td>
<td>Chattanooga, Tn.</td>
<td>48</td>
</tr>
<tr>
<td>47</td>
<td>Nashville, Tn.</td>
<td>49</td>
</tr>
<tr>
<td>48</td>
<td>Evansville, In.</td>
<td>55</td>
</tr>
<tr>
<td>51</td>
<td>Quincy, Il.</td>
<td>113</td>
</tr>
<tr>
<td>54</td>
<td>Des Moines, Ia.</td>
<td>80, 81, 104, 105, 106</td>
</tr>
<tr>
<td>55</td>
<td>Omaha, Ne.</td>
<td>102, 103, 107, 108</td>
</tr>
<tr>
<td>57</td>
<td>Wichita, Ks.</td>
<td>109, 110</td>
</tr>
<tr>
<td>58</td>
<td>Tulsa, Ok.</td>
<td>119</td>
</tr>
<tr>
<td>59</td>
<td>Ft. Smith, Ok.</td>
<td>118</td>
</tr>
<tr>
<td>61</td>
<td>Greenville, Ms.</td>
<td>134</td>
</tr>
<tr>
<td>62</td>
<td>Jackson, Ms.</td>
<td>135</td>
</tr>
<tr>
<td>63</td>
<td>Meridian, Ms.</td>
<td>136</td>
</tr>
<tr>
<td>64</td>
<td>Mobile, Al.</td>
<td>137</td>
</tr>
<tr>
<td>65</td>
<td>Pensacola, Fl.</td>
<td>39</td>
</tr>
<tr>
<td>66</td>
<td>Tallahassee, Fl.</td>
<td>38</td>
</tr>
<tr>
<td>68</td>
<td>Miami, Fl.</td>
<td>35, 36</td>
</tr>
<tr>
<td>69</td>
<td>Boston, Ma.</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>70</td>
<td>Albany, N.Y.</td>
<td>6, 7</td>
</tr>
<tr>
<td>71</td>
<td>Buffalo, N.Y.</td>
<td>8, 9, 10</td>
</tr>
<tr>
<td>72</td>
<td>New York, N.Y.</td>
<td>14, 15</td>
</tr>
<tr>
<td>73</td>
<td>Scranton, Pa.</td>
<td>12, 13</td>
</tr>
<tr>
<td>74</td>
<td>Harrisburg, Pa.</td>
<td>11, 16</td>
</tr>
<tr>
<td>75</td>
<td>Pittsburgh, Pa.</td>
<td>66, 67</td>
</tr>
<tr>
<td>76</td>
<td>Washington, D. C.</td>
<td>17, 18</td>
</tr>
<tr>
<td>77</td>
<td>Roanoke, Va.</td>
<td>19, 20</td>
</tr>
<tr>
<td>78</td>
<td>Richmond, Va.</td>
<td>21</td>
</tr>
<tr>
<td>79</td>
<td>Charlotte, N.C.</td>
<td>25, 26</td>
</tr>
<tr>
<td>80</td>
<td>Raleigh, N.C.</td>
<td>23, 24</td>
</tr>
<tr>
<td>81</td>
<td>Greenville, S.C.</td>
<td>27, 28</td>
</tr>
<tr>
<td>82</td>
<td>Columbia, S.C.</td>
<td>29, 30</td>
</tr>
<tr>
<td>83</td>
<td>Knoxville, Tn.</td>
<td>50</td>
</tr>
<tr>
<td>84</td>
<td>Charleston, W.V.</td>
<td>51, 52, 65</td>
</tr>
<tr>
<td>85</td>
<td>Cincinnati, Oh.</td>
<td>53, 54, 62</td>
</tr>
<tr>
<td>86</td>
<td>Dayton, Oh.</td>
<td>61, 63, 69</td>
</tr>
<tr>
<td>87</td>
<td>Cleveland, Oh.</td>
<td>68</td>
</tr>
<tr>
<td>88</td>
<td>Detroit, Mi.</td>
<td>71, 72, 74</td>
</tr>
<tr>
<td>89</td>
<td>Indianapolis, In.</td>
<td>56, 59, 60</td>
</tr>
<tr>
<td>90</td>
<td>Chicago, Il.</td>
<td>76, 77, 78, 79</td>
</tr>
<tr>
<td>91</td>
<td>Milwaukee, Wi.</td>
<td>82, 83, 84, 85, 86</td>
</tr>
<tr>
<td>92</td>
<td>St. Paul, Mn.</td>
<td>88, 89, 90, 91</td>
</tr>
<tr>
<td>93</td>
<td>Billings, Mn.</td>
<td>94, 95, 100, 101, 150</td>
</tr>
<tr>
<td>94</td>
<td>Denver, Co.</td>
<td>147, 148, 149</td>
</tr>
<tr>
<td>95</td>
<td>Oklahoma City, Ok.</td>
<td>120, 121</td>
</tr>
<tr>
<td>96</td>
<td>Texarkana, Tx.</td>
<td>131</td>
</tr>
<tr>
<td>97</td>
<td>Shreveport, La.</td>
<td>132, 133</td>
</tr>
<tr>
<td>98</td>
<td>New Orleans, La.</td>
<td>138</td>
</tr>
<tr>
<td>99</td>
<td>Tampa, Fl.</td>
<td>37</td>
</tr>
<tr>
<td>100</td>
<td>Amarillo, Tx.</td>
<td>122, 123</td>
</tr>
<tr>
<td>Zone No.</td>
<td>Nodal City</td>
<td>BEAs</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>101</td>
<td>Dallas, Tx.</td>
<td>127, 130</td>
</tr>
<tr>
<td>102</td>
<td>El Paso, Tx.</td>
<td>124, 145, 163</td>
</tr>
<tr>
<td>103</td>
<td>Austin, Tx.</td>
<td>128, 129</td>
</tr>
<tr>
<td>104</td>
<td>San Antonio, Tx.</td>
<td>125, 126, 142, 143, 144</td>
</tr>
<tr>
<td>105</td>
<td>Houston, Tx.</td>
<td>139, 140, 141</td>
</tr>
<tr>
<td>106</td>
<td>Salt Lake City, Ut.</td>
<td>151, 160</td>
</tr>
<tr>
<td>107</td>
<td>Phoenix, Ar.</td>
<td>162</td>
</tr>
<tr>
<td>108</td>
<td>Albuquerque, NM</td>
<td>146</td>
</tr>
<tr>
<td>109</td>
<td>Seattle, Wa.</td>
<td>153, 154, 155, 156</td>
</tr>
<tr>
<td>110</td>
<td>San Francisco, Ca.</td>
<td>166, 167, 168, 171</td>
</tr>
<tr>
<td>111</td>
<td>Los Angeles, Ca.</td>
<td>161, 164, 165</td>
</tr>
<tr>
<td>112</td>
<td>Charleston, S.C.</td>
<td>31</td>
</tr>
<tr>
<td>113</td>
<td>Duluth, Mn.</td>
<td>87</td>
</tr>
<tr>
<td>114</td>
<td>Springfield, Il.</td>
<td>57, 58</td>
</tr>
<tr>
<td>115</td>
<td>Toledo, Oh.</td>
<td>70, 75</td>
</tr>
<tr>
<td>116</td>
<td>Columbus, Oh.</td>
<td>65</td>
</tr>
<tr>
<td>117</td>
<td>Portland, Or.</td>
<td>152, 157, 158, 159, 169, 171</td>
</tr>
<tr>
<td>118</td>
<td>Fargo, ND</td>
<td>92, 93, 96, 97, 98, 99</td>
</tr>
<tr>
<td>119</td>
<td>Grand Rapids, Mi.</td>
<td>73</td>
</tr>
<tr>
<td>120</td>
<td>Norfolk, Va.</td>
<td>22</td>
</tr>
</tbody>
</table>
APPENDIX C

LINE-HAUL ARCS

1. Highway Arcs
2. Rail Arcs
3. Water Arcs
### HIGHWAY ARCS

<table>
<thead>
<tr>
<th>Arc</th>
<th>Orig.</th>
<th>Dest.</th>
<th>Dist.</th>
<th>Time</th>
<th>La. Routes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>68</td>
<td>74</td>
<td>4 1-95</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>49</td>
<td>65</td>
<td>2 US-64</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>41</td>
<td>70</td>
<td>76</td>
<td>4 1-95</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>66</td>
<td>163</td>
<td>177</td>
<td>4 1-10</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>67</td>
<td>49</td>
<td>53</td>
<td>4 US301 S-24</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>68</td>
<td>447</td>
<td>379</td>
<td>4 1-95</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>108</td>
<td>144</td>
<td>2 US-220US-02</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>5</td>
<td>72</td>
<td>96</td>
<td>2 US-69</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>8</td>
<td>130</td>
<td>170</td>
<td>2 1-16 US-1US280</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>41</td>
<td>53</td>
<td>58</td>
<td>4 1-16</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>42</td>
<td>47</td>
<td>63</td>
<td>2 US-25</td>
</tr>
<tr>
<td>12</td>
<td>4</td>
<td>2</td>
<td>70</td>
<td>104</td>
<td>2 US-23</td>
</tr>
<tr>
<td>13</td>
<td>4</td>
<td>6</td>
<td>01</td>
<td>01</td>
<td>2 US-04</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>8</td>
<td>111</td>
<td>139</td>
<td>2 US-02 1-75</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>9</td>
<td>113</td>
<td>151</td>
<td>2 US-02 1-75</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>41</td>
<td>94</td>
<td>120</td>
<td>2 US-1-75</td>
</tr>
<tr>
<td>17</td>
<td>5</td>
<td>1</td>
<td>146</td>
<td>175</td>
<td>2 US441US341</td>
</tr>
<tr>
<td>18</td>
<td>5</td>
<td>2</td>
<td>121</td>
<td>153</td>
<td>2 1-16 US-1</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>7</td>
<td>52</td>
<td>57</td>
<td>4 1-16</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
<td>8</td>
<td>92</td>
<td>123</td>
<td>2 US441US280</td>
</tr>
<tr>
<td>21</td>
<td>5</td>
<td>47</td>
<td>85</td>
<td>113</td>
<td>2 US319 US-1</td>
</tr>
<tr>
<td>22</td>
<td>5</td>
<td>43</td>
<td>47</td>
<td>63</td>
<td>2 US441</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>2</td>
<td>75</td>
<td>82</td>
<td>4 1-75 1-10</td>
</tr>
<tr>
<td>24</td>
<td>6</td>
<td>8</td>
<td>88</td>
<td>96</td>
<td>4 1-75</td>
</tr>
<tr>
<td>25</td>
<td>6</td>
<td>9</td>
<td>89</td>
<td>107</td>
<td>2 US-02 1-75</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>66</td>
<td>71</td>
<td>82</td>
<td>2 US-04</td>
</tr>
<tr>
<td>27</td>
<td>6</td>
<td>67</td>
<td>131</td>
<td>101</td>
<td>4 1-75</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td>43</td>
<td>31</td>
<td>46</td>
<td>2 8-49</td>
</tr>
<tr>
<td>29</td>
<td>7</td>
<td>44</td>
<td>78</td>
<td>85</td>
<td>4 1-75</td>
</tr>
<tr>
<td>30</td>
<td>8</td>
<td>7</td>
<td>56</td>
<td>61</td>
<td>4 1-75</td>
</tr>
<tr>
<td>31</td>
<td>8</td>
<td>11</td>
<td>87</td>
<td>116</td>
<td>2 US280</td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td>4</td>
<td>34</td>
<td>51</td>
<td>20-257</td>
</tr>
<tr>
<td>33</td>
<td>9</td>
<td>11</td>
<td>77</td>
<td>104</td>
<td>2 US-02 5-55US280</td>
</tr>
<tr>
<td>34</td>
<td>9</td>
<td>66</td>
<td>90</td>
<td>131</td>
<td>2 US19US319</td>
</tr>
<tr>
<td>35</td>
<td>10</td>
<td>44</td>
<td>49</td>
<td>53</td>
<td>4 1-85</td>
</tr>
<tr>
<td>36</td>
<td>11</td>
<td>7</td>
<td>90</td>
<td>131</td>
<td>2 US-69</td>
</tr>
<tr>
<td>37</td>
<td>11</td>
<td>10</td>
<td>54</td>
<td>105</td>
<td>4 US-105</td>
</tr>
<tr>
<td>38</td>
<td>12</td>
<td>10</td>
<td>69</td>
<td>95</td>
<td>2 US431B-244</td>
</tr>
<tr>
<td>39</td>
<td>12</td>
<td>13</td>
<td>88</td>
<td>96</td>
<td>2 US231</td>
</tr>
<tr>
<td>40</td>
<td>12</td>
<td>17</td>
<td>61</td>
<td>66</td>
<td>4 1-20</td>
</tr>
<tr>
<td>41</td>
<td>12</td>
<td>44</td>
<td>86</td>
<td>93</td>
<td>4 1-20</td>
</tr>
<tr>
<td>42</td>
<td>12</td>
<td>45</td>
<td>111</td>
<td>129</td>
<td>2 US431 1-59</td>
</tr>
<tr>
<td>43</td>
<td>12</td>
<td>46</td>
<td>90</td>
<td>131</td>
<td>2 US431</td>
</tr>
<tr>
<td>44</td>
<td>13</td>
<td>9</td>
<td>150</td>
<td>200</td>
<td>2 US-62</td>
</tr>
<tr>
<td>Arc</td>
<td>Orig. Dest. Dist. Time</td>
<td>La. Routes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>51 116 155 170 185 195</td>
<td>2US-61</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>52 119 122 125 136 153</td>
<td>2US-61US-54</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>53 116 119 122 133 146</td>
<td>4 I-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>54 117 120 123 134 147</td>
<td>2US-36 I-35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>55 115 118 121 132 145</td>
<td>2US-61 4 I-80 1-74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>56 327 355 3 I-00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>57 252 274 2 I-35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>58 141 144 121 2 US-75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>59 159 172 175 196 209</td>
<td>4TNPK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>60 175 196 207 228 249</td>
<td>2US-75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>61 101 124 264 4US-69 1-40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>62 154 167 180 193 206</td>
<td>4 I-40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>63 150 151 201 204 207</td>
<td>2US-65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>64 120 113 2 I-208US-61</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>65 219 238 4 I-20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>66 93 101 109 117 125</td>
<td>4 I-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>68 144 157 198 221</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>69 62 67 104 121 158</td>
<td>4 I-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>70 165 184 211 238 265</td>
<td>4 I-10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>71 283 300 327 344 361</td>
<td>4 I-99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>72 246 330 347 364 381</td>
<td>4 I-99 1-91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>73 190 207 224 241 258</td>
<td>4 I-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>74 180 196 212 229 246</td>
<td>4 I-70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>75 233 250 267 284 301</td>
<td>4 I-93</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>76 170 188 205 222 239</td>
<td>4 I-81 1-98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>77 130 148 165 182 200</td>
<td>4 I-94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>78 270 325 380 435</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>79 110 128 146 164 182</td>
<td>4 I-79</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>80 97 115 133 151 169</td>
<td>4 I-90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>81 259 285 311 337 363</td>
<td>4 I-75 1-90 1-94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>82 293 319 345 371 397</td>
<td>4 I-77</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>83 281 307 333 359 385</td>
<td>4 I-86 1-90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>84 203 229 255 281 307</td>
<td>4 I-76 4 I-80 1-94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>85 201 227 253 279 305</td>
<td>4 I-76 4 I-80 1-94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>86 199 225 251 277 303</td>
<td>4 I-80 1-94 2-135US-24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>87 293 319 345 371 397</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>88 281 307 333 359 385</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>89 203 229 255 279 305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>141</td>
<td>90 201 227 253 277 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>91 199 225 251 277 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>143</td>
<td>92 199 225 251 277 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>144</td>
<td>93 199 225 251 277 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>145</td>
<td>94 199 225 251 277 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>95 199 225 251 277 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>147</td>
<td>96 199 225 251 277 303</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The natural text appears to be a list of coordinates or distances, possibly related to a map or a set of instructions, but without additional context, it's hard to provide a meaningful interpretation. The numbers seem to be formatted in a way that suggests they could be latitude and longitude coordinates or some other form of location data.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>345</td>
<td>1 2 67 35 40 23</td>
<td>309</td>
<td>1 3 63 171 12 10 16</td>
</tr>
<tr>
<td>345</td>
<td>1 4 48 12 10 23</td>
<td>309</td>
<td>1 13 64 170 35 40 16 24</td>
</tr>
<tr>
<td>347</td>
<td>1 7 76 12 10 23</td>
<td>371</td>
<td>1 13 65 150 12 10 16</td>
</tr>
<tr>
<td>348</td>
<td>2 67 70 45 100 23</td>
<td>371</td>
<td>1 14 11 84 12 10 24</td>
</tr>
<tr>
<td>349</td>
<td>2 68 346 45 40 11</td>
<td>392</td>
<td>1 14 15 60 12 10 24</td>
</tr>
<tr>
<td>350</td>
<td>2 99 210 35 24 23</td>
<td>393</td>
<td>1 16 17 85 35 40 16</td>
</tr>
<tr>
<td>351</td>
<td>3 4 101 12 10 24</td>
<td>394</td>
<td>1 16 18 43 28 24 24</td>
</tr>
<tr>
<td>352</td>
<td>3 7 112 12 10 24</td>
<td>395</td>
<td>1 16 46 24 28 24 24</td>
</tr>
<tr>
<td>353</td>
<td>3 12 54 12 10 24</td>
<td>396</td>
<td>1 16 47 121 35 40 16 16</td>
</tr>
<tr>
<td>354</td>
<td>4 2 76 35 40 23</td>
<td>397</td>
<td>1 17 18 129 12 10 24</td>
</tr>
<tr>
<td>355</td>
<td>4 6 61 12 10 23</td>
<td>398</td>
<td>1 17 19 56 35 40 24 16</td>
</tr>
<tr>
<td>356</td>
<td>4 108 35 40 23</td>
<td>400</td>
<td>1 17 20 149 28 24 13</td>
</tr>
<tr>
<td>357</td>
<td>4 9 112 12 10 23</td>
<td>401</td>
<td>1 17 21 130 35 40 27</td>
</tr>
<tr>
<td>358</td>
<td>5 7 54 12 10 23</td>
<td>402</td>
<td>1 17 22 118 12 10 24</td>
</tr>
<tr>
<td>359</td>
<td>6 2 110 28 24 24</td>
<td>403</td>
<td>1 17 45 143 28 24 24</td>
</tr>
<tr>
<td>360</td>
<td>6 8 86 20 24 24</td>
<td>404</td>
<td>1 18 20 54 28 24 24</td>
</tr>
<tr>
<td>361</td>
<td>6 13 134 12 10 23</td>
<td>405</td>
<td>1 18 47 126 12 10 16</td>
</tr>
<tr>
<td>362</td>
<td>6 67 108 12 10 24</td>
<td>406</td>
<td>1 19 22 60 12 10 13</td>
</tr>
<tr>
<td>363</td>
<td>7 8 62 28 24 24</td>
<td>407</td>
<td>1 19 63 26 35 40 24</td>
</tr>
<tr>
<td>364</td>
<td>7 101 28 24 24</td>
<td>408</td>
<td>2 20 21 50 12 20 13 13</td>
</tr>
<tr>
<td>365</td>
<td>7 43 33 12 10 12</td>
<td>409</td>
<td>2 20 25 57 35 40 13</td>
</tr>
<tr>
<td>366</td>
<td>7 44 88 35 40 24 24 4</td>
<td>410</td>
<td>2 20 26 94 28 24 24 13</td>
</tr>
<tr>
<td>367</td>
<td>9 9 36 10 12 24</td>
<td>411</td>
<td>2 21 22 65 12 20 13 13</td>
</tr>
<tr>
<td>368</td>
<td>9 10 123 35 20 23</td>
<td>412</td>
<td>2 21 63 104 35 40 27</td>
</tr>
<tr>
<td>369</td>
<td>9 11 95 12 10 23</td>
<td>413</td>
<td>2 22 61 169 12 20 13 13</td>
</tr>
<tr>
<td>370</td>
<td>8 13 170 12 10 23</td>
<td>414</td>
<td>2 22 63 99 12 20 13 13</td>
</tr>
<tr>
<td>371</td>
<td>8 41 168 12 10 23</td>
<td>415</td>
<td>2 22 65 60 12 10 27</td>
</tr>
<tr>
<td>372</td>
<td>8 44 138 35 20 23</td>
<td>416</td>
<td>2 23 26 76 12 20 13 13</td>
</tr>
<tr>
<td>373</td>
<td>9 7 106 35 24 24</td>
<td>417</td>
<td>2 23 61 63 12 30 13 13</td>
</tr>
<tr>
<td>374</td>
<td>9 11 77 28 24 24</td>
<td>418</td>
<td>2 24 49 124 35 80 13 13</td>
</tr>
<tr>
<td>375</td>
<td>9 15 72 12 10 24</td>
<td>419</td>
<td>2 25 24 48 28 24 13 13</td>
</tr>
<tr>
<td>376</td>
<td>9 66 99 12 10 23</td>
<td>420</td>
<td>2 25 47 153 35 40 16 16</td>
</tr>
<tr>
<td>377</td>
<td>10 12 114 35 40 23</td>
<td>421</td>
<td>2 26 24 70 28 24 13 13</td>
</tr>
<tr>
<td>378</td>
<td>10 44 69 12 10 2</td>
<td>422</td>
<td>2 26 28 89 12 10 16</td>
</tr>
<tr>
<td>379</td>
<td>11 17 171 28 24 24</td>
<td>423</td>
<td>2 26 60 135 28 24 28</td>
</tr>
<tr>
<td>380</td>
<td>11 44 120 12 20 24 24 4</td>
<td>424</td>
<td>2 26 62 214 28 24 13</td>
</tr>
<tr>
<td>381</td>
<td>11 66 163 12 10 23</td>
<td>425</td>
<td>2 27 26 68 35 40 27</td>
</tr>
<tr>
<td>382</td>
<td>12 17 84 35 80 16 24 23</td>
<td>426</td>
<td>2 27 28 90 35 40 27 19</td>
</tr>
<tr>
<td>383</td>
<td>12 44 89 35 35 24 4</td>
<td>427</td>
<td>2 27 31 62 35 40 19</td>
</tr>
<tr>
<td>384</td>
<td>12 45 122 12 10 24</td>
<td>428</td>
<td>2 27 32 105 35 40 27</td>
</tr>
<tr>
<td>385</td>
<td>13 10 104 12 10 31</td>
<td>429</td>
<td>2 27 96 304 35 40 28</td>
</tr>
<tr>
<td>386</td>
<td>13 14 51 12 10 23</td>
<td>430</td>
<td>2 28 26 90 28 24 19</td>
</tr>
<tr>
<td>387</td>
<td>13 17 97 35 40 16 24</td>
<td>431</td>
<td>2 28 60 31 35 40 19</td>
</tr>
<tr>
<td>388</td>
<td>13 19 104 12 10 13</td>
<td>432</td>
<td>3 28 142 35 40 27</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-------</td>
<td>------------</td>
</tr>
<tr>
<td>433</td>
<td>30</td>
<td>49</td>
<td>29</td>
</tr>
<tr>
<td>434</td>
<td>31</td>
<td>30</td>
<td>44</td>
</tr>
<tr>
<td>435</td>
<td>31</td>
<td>50</td>
<td>130</td>
</tr>
<tr>
<td>436</td>
<td>32</td>
<td>36</td>
<td>113</td>
</tr>
<tr>
<td>437</td>
<td>33</td>
<td>50</td>
<td>182</td>
</tr>
<tr>
<td>438</td>
<td>34</td>
<td>51</td>
<td>155</td>
</tr>
<tr>
<td>439</td>
<td>34</td>
<td>52</td>
<td>55</td>
</tr>
<tr>
<td>440</td>
<td>35</td>
<td>52</td>
<td>60</td>
</tr>
<tr>
<td>441</td>
<td>36</td>
<td>33</td>
<td>57</td>
</tr>
<tr>
<td>442</td>
<td>36</td>
<td>39</td>
<td>83</td>
</tr>
<tr>
<td>443</td>
<td>36</td>
<td>40</td>
<td>65</td>
</tr>
<tr>
<td>444</td>
<td>37</td>
<td>54</td>
<td>170</td>
</tr>
<tr>
<td>445</td>
<td>37</td>
<td>55</td>
<td>127</td>
</tr>
<tr>
<td>446</td>
<td>38</td>
<td>34</td>
<td>80</td>
</tr>
<tr>
<td>447</td>
<td>38</td>
<td>35</td>
<td>94</td>
</tr>
<tr>
<td>448</td>
<td>38</td>
<td>36</td>
<td>104</td>
</tr>
<tr>
<td>449</td>
<td>38</td>
<td>37</td>
<td>60</td>
</tr>
<tr>
<td>450</td>
<td>38</td>
<td>39</td>
<td>103</td>
</tr>
<tr>
<td>451</td>
<td>39</td>
<td>53</td>
<td>87</td>
</tr>
<tr>
<td>452</td>
<td>38</td>
<td>56</td>
<td>65</td>
</tr>
<tr>
<td>453</td>
<td>39</td>
<td>57</td>
<td>227</td>
</tr>
<tr>
<td>454</td>
<td>39</td>
<td>58</td>
<td>195</td>
</tr>
<tr>
<td>455</td>
<td>39</td>
<td>35</td>
<td>92</td>
</tr>
<tr>
<td>456</td>
<td>40</td>
<td>28</td>
<td>310</td>
</tr>
<tr>
<td>457</td>
<td>40</td>
<td>39</td>
<td>63</td>
</tr>
<tr>
<td>458</td>
<td>40</td>
<td>38</td>
<td>115</td>
</tr>
<tr>
<td>459</td>
<td>40</td>
<td>59</td>
<td>175</td>
</tr>
<tr>
<td>460</td>
<td>41</td>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>461</td>
<td>41</td>
<td>3</td>
<td>75</td>
</tr>
<tr>
<td>462</td>
<td>41</td>
<td>4</td>
<td>97</td>
</tr>
<tr>
<td>463</td>
<td>41</td>
<td>5</td>
<td>118</td>
</tr>
<tr>
<td>464</td>
<td>41</td>
<td>60</td>
<td>361</td>
</tr>
<tr>
<td>465</td>
<td>41</td>
<td>61</td>
<td>1</td>
</tr>
<tr>
<td>466</td>
<td>42</td>
<td>43</td>
<td>93</td>
</tr>
<tr>
<td>467</td>
<td>42</td>
<td>44</td>
<td>159</td>
</tr>
<tr>
<td>468</td>
<td>42</td>
<td>51</td>
<td>129</td>
</tr>
<tr>
<td>469</td>
<td>42</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>470</td>
<td>44</td>
<td>45</td>
<td>136</td>
</tr>
<tr>
<td>471</td>
<td>45</td>
<td>46</td>
<td>98</td>
</tr>
<tr>
<td>472</td>
<td>47</td>
<td>45</td>
<td>151</td>
</tr>
<tr>
<td>473</td>
<td>47</td>
<td>48</td>
<td>160</td>
</tr>
<tr>
<td>474</td>
<td>48</td>
<td>50</td>
<td>166</td>
</tr>
<tr>
<td>475</td>
<td>48</td>
<td>90</td>
<td>269</td>
</tr>
<tr>
<td>476</td>
<td>47</td>
<td>50</td>
<td>130</td>
</tr>
<tr>
<td>477</td>
<td>51</td>
<td>50</td>
<td>129</td>
</tr>
<tr>
<td>478</td>
<td>52</td>
<td>50</td>
<td>130</td>
</tr>
<tr>
<td>Arc</td>
<td>Orig. Dest.</td>
<td>Dist.</td>
<td>Speed Cap.</td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>525</td>
<td>75 87 131 35 216 21</td>
<td>5 6</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>75 116 191 35 72 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>527</td>
<td>76 77 227 35 40 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>528</td>
<td>76 78 117 45 200 24 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td>77 84 225 35 72 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>530</td>
<td>78 77 174 35 80 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>531</td>
<td>78 79 279 35 40 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>532</td>
<td>78 80 159 35 40 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>533</td>
<td>78 84 369 35 40 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>534</td>
<td>79 80 156 35 40 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>535</td>
<td>79 81 98 45 100 23 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>536</td>
<td>80 41 375 35 40 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>537</td>
<td>81 44 154 145 100 24 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>538</td>
<td>82 79 103 20 24 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>539</td>
<td>82 80 203 35 40 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>540</td>
<td>82 81 111 12 20 24 23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>83 44 197 28 24 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>542</td>
<td>83 45 111 35 80 24 24 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>543</td>
<td>83 47 216 12 10 16 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>544</td>
<td>83 79 269 20 24 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>545</td>
<td>84 85 204 45 100 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>546</td>
<td>85 46 229 28 48 16 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>547</td>
<td>85 50 338 28 24 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>548</td>
<td>85 93 292 35 80 24 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>549</td>
<td>85 90 281 35 40 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>550</td>
<td>86 85 55 45 100 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>551</td>
<td>86 87 109 35 144 21 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>552</td>
<td>86 90 248 35 40 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>553</td>
<td>87 90 340 35 256 20 3 21 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>554</td>
<td>88 90 272 35 72 21 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>555</td>
<td>89 47 298 12 10 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>556</td>
<td>89 50 240 35 40 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>557</td>
<td>89 85 169 35 40 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>558</td>
<td>89 114 197 35 40 21 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>559</td>
<td>89 114 197 35 40 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>560</td>
<td>90 49 344 35 72 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>561</td>
<td>90 50 284 35 40 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>562</td>
<td>90 51 272 45 100 3 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>563</td>
<td>90 54 358 35 184 7 17 8 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>90 91 86 45 100 7 17 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>565</td>
<td>90 90 396 35 40 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>566</td>
<td>92 91 327 45 72 25 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>567</td>
<td>93 109 903 35 40 3 3 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>568</td>
<td>94 106 570 35 112 9 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>569</td>
<td>95 57 172 35 80 8 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>570</td>
<td>95 100 274 12 10 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>571</td>
<td>96 101 182 45 30 29 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>572</td>
<td>96 103 460 28 24 19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>573</td>
<td>97 62 218 12 10 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td>Orig.</td>
<td>Dest.</td>
<td>Dist.</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>623</td>
<td>60</td>
<td>98</td>
<td>337</td>
</tr>
<tr>
<td>624</td>
<td>61</td>
<td>62</td>
<td>101</td>
</tr>
<tr>
<td>625</td>
<td>23</td>
<td>01</td>
<td>80</td>
</tr>
<tr>
<td>626</td>
<td>26</td>
<td>23</td>
<td>120</td>
</tr>
<tr>
<td>627</td>
<td>24</td>
<td>26</td>
<td>115</td>
</tr>
<tr>
<td>628</td>
<td>49</td>
<td>24</td>
<td>160</td>
</tr>
<tr>
<td>629</td>
<td>50</td>
<td>49</td>
<td>120</td>
</tr>
<tr>
<td>630</td>
<td>51</td>
<td>50</td>
<td>147</td>
</tr>
<tr>
<td>631</td>
<td>92</td>
<td>51</td>
<td>526</td>
</tr>
<tr>
<td>632</td>
<td>56</td>
<td>59</td>
<td>162</td>
</tr>
<tr>
<td>633</td>
<td>59</td>
<td>60</td>
<td>230</td>
</tr>
<tr>
<td>634</td>
<td>60</td>
<td>61</td>
<td>154</td>
</tr>
<tr>
<td>635</td>
<td>52</td>
<td>50</td>
<td>179</td>
</tr>
<tr>
<td>636</td>
<td>34</td>
<td>53</td>
<td>74</td>
</tr>
<tr>
<td>637</td>
<td>38</td>
<td>34</td>
<td>109</td>
</tr>
<tr>
<td>638</td>
<td>37</td>
<td>38</td>
<td>82</td>
</tr>
<tr>
<td>639</td>
<td>55</td>
<td>37</td>
<td>160</td>
</tr>
<tr>
<td>640</td>
<td>25</td>
<td>49</td>
<td>222</td>
</tr>
<tr>
<td>641</td>
<td>20</td>
<td>25</td>
<td>60</td>
</tr>
<tr>
<td>642</td>
<td>18</td>
<td>20</td>
<td>50</td>
</tr>
<tr>
<td>643</td>
<td>16</td>
<td>18</td>
<td>48</td>
</tr>
<tr>
<td>644</td>
<td>46</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>645</td>
<td>45</td>
<td>46</td>
<td>141</td>
</tr>
<tr>
<td>646</td>
<td>83</td>
<td>45</td>
<td>104</td>
</tr>
<tr>
<td>647</td>
<td>47</td>
<td>49</td>
<td>304</td>
</tr>
<tr>
<td>648</td>
<td>48</td>
<td>47</td>
<td>241</td>
</tr>
<tr>
<td>649</td>
<td>85</td>
<td>48</td>
<td>322</td>
</tr>
<tr>
<td>650</td>
<td>75</td>
<td>85</td>
<td>470</td>
</tr>
<tr>
<td>651</td>
<td>84</td>
<td>85</td>
<td>263</td>
</tr>
<tr>
<td>652</td>
<td>90</td>
<td>50</td>
<td>365</td>
</tr>
<tr>
<td>653</td>
<td>19</td>
<td>64</td>
<td>215</td>
</tr>
<tr>
<td>654</td>
<td>22</td>
<td>19</td>
<td>125</td>
</tr>
<tr>
<td>655</td>
<td>21</td>
<td>22</td>
<td>75</td>
</tr>
<tr>
<td>Arc</td>
<td>Orig.</td>
<td>Dest.</td>
<td>Dist.</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>656</td>
<td>20</td>
<td>21</td>
<td>55</td>
</tr>
<tr>
<td>657</td>
<td>17</td>
<td>19</td>
<td>224</td>
</tr>
<tr>
<td>658</td>
<td>13</td>
<td>64</td>
<td>434</td>
</tr>
<tr>
<td>659</td>
<td>15</td>
<td>65</td>
<td>100</td>
</tr>
<tr>
<td>660</td>
<td>11</td>
<td>15</td>
<td>200</td>
</tr>
<tr>
<td>661</td>
<td>42</td>
<td>41</td>
<td>150</td>
</tr>
<tr>
<td>662</td>
<td>79</td>
<td>72</td>
<td>180</td>
</tr>
<tr>
<td>663</td>
<td>71</td>
<td>70</td>
<td>342</td>
</tr>
<tr>
<td>664</td>
<td>69</td>
<td>72</td>
<td>265</td>
</tr>
<tr>
<td>665</td>
<td>72</td>
<td>120</td>
<td>440</td>
</tr>
<tr>
<td>666</td>
<td>120</td>
<td>76</td>
<td>197</td>
</tr>
<tr>
<td>667</td>
<td>120</td>
<td>112</td>
<td>460</td>
</tr>
<tr>
<td>668</td>
<td>112</td>
<td>41</td>
<td>121</td>
</tr>
<tr>
<td>669</td>
<td>41</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>670</td>
<td>1</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>671</td>
<td>2</td>
<td>68</td>
<td>371</td>
</tr>
<tr>
<td>672</td>
<td>68</td>
<td>99</td>
<td>369</td>
</tr>
<tr>
<td>673</td>
<td>99</td>
<td>66</td>
<td>220</td>
</tr>
<tr>
<td>674</td>
<td>66</td>
<td>65</td>
<td>253</td>
</tr>
<tr>
<td>675</td>
<td>65</td>
<td>64</td>
<td>81</td>
</tr>
<tr>
<td>676</td>
<td>64</td>
<td>90</td>
<td>166</td>
</tr>
<tr>
<td>677</td>
<td>90</td>
<td>115</td>
<td>417</td>
</tr>
<tr>
<td>678</td>
<td>115</td>
<td>110</td>
<td>351</td>
</tr>
<tr>
<td>679</td>
<td>110</td>
<td>117</td>
<td>635</td>
</tr>
<tr>
<td>680</td>
<td>117</td>
<td>109</td>
<td>361</td>
</tr>
<tr>
<td>681</td>
<td>71</td>
<td>97</td>
<td>176</td>
</tr>
<tr>
<td>682</td>
<td>87</td>
<td>88</td>
<td>108</td>
</tr>
<tr>
<td>683</td>
<td>88</td>
<td>91</td>
<td>569</td>
</tr>
<tr>
<td>684</td>
<td>89</td>
<td>113</td>
<td>726</td>
</tr>
<tr>
<td>685</td>
<td>113</td>
<td>726</td>
<td>10</td>
</tr>
<tr>
<td>686</td>
<td>91</td>
<td>90</td>
<td>85</td>
</tr>
<tr>
<td>687</td>
<td>115</td>
<td>98</td>
<td>54</td>
</tr>
<tr>
<td>688</td>
<td>87</td>
<td>115</td>
<td>96</td>
</tr>
<tr>
<td>689</td>
<td>72</td>
<td>76</td>
<td>270</td>
</tr>
</tbody>
</table>

**WATER ARCS**
APPENDIX D

TEST RUN ARC PARAMETERS
## TEST RUN ARC PARAMETERS

### Arc Type

<table>
<thead>
<tr>
<th>Arc Type</th>
<th>Loading-Unloading</th>
<th>Line-Haul</th>
<th>Inter-modal Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c_j$</td>
<td>100,000</td>
<td>50,000</td>
<td>100,000</td>
</tr>
<tr>
<td>$t_j$</td>
<td>100,000</td>
<td>50,000</td>
<td>100,000</td>
</tr>
<tr>
<td>$v_j$</td>
<td>100,000</td>
<td>50,000</td>
<td>100,000</td>
</tr>
<tr>
<td>$f_c$</td>
<td>.5</td>
<td>.6</td>
<td>.4</td>
</tr>
<tr>
<td>$f_t$</td>
<td>.5</td>
<td>.6</td>
<td>.4</td>
</tr>
<tr>
<td>$f_v$</td>
<td>.5</td>
<td>.6</td>
<td>.4</td>
</tr>
<tr>
<td>$L_j$</td>
<td>1,000</td>
<td>1,000</td>
<td>1,000</td>
</tr>
<tr>
<td>$U_j$</td>
<td>95,000</td>
<td>49,000</td>
<td>95,000</td>
</tr>
</tbody>
</table>

where:

- $f_c$: fraction of cost subject to improvement
- $f_t$: fraction of time subject to improvement
- $f_v$: fraction of variability subject to improvement
APPENDIX E

O-D FLOW DATA SET
## O-D Flow Data Set

<table>
<thead>
<tr>
<th>Origin</th>
<th>Destination</th>
<th>Mode</th>
<th>Tons, annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>41</td>
<td>1</td>
<td>264,165</td>
</tr>
<tr>
<td>11</td>
<td>42</td>
<td>2</td>
<td>60,528</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>1</td>
<td>452,457</td>
</tr>
<tr>
<td>11</td>
<td>44</td>
<td>1</td>
<td>2,471,294</td>
</tr>
<tr>
<td>11</td>
<td>45</td>
<td>1</td>
<td>41,359</td>
</tr>
<tr>
<td>41</td>
<td>11</td>
<td>1</td>
<td>41,359</td>
</tr>
<tr>
<td>41</td>
<td>41</td>
<td>2</td>
<td>4,326,592</td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>1</td>
<td>16,178</td>
</tr>
<tr>
<td>41</td>
<td>43</td>
<td>2</td>
<td>29,622</td>
</tr>
<tr>
<td>41</td>
<td>44</td>
<td>1</td>
<td>6,910</td>
</tr>
<tr>
<td>41</td>
<td>45</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>42</td>
<td>11</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>42</td>
<td>41</td>
<td>2</td>
<td>6,910</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
<td>1</td>
<td>16,178</td>
</tr>
<tr>
<td>42</td>
<td>43</td>
<td>2</td>
<td>29,622</td>
</tr>
<tr>
<td>42</td>
<td>44</td>
<td>1</td>
<td>6,910</td>
</tr>
<tr>
<td>42</td>
<td>45</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>43</td>
<td>11</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>43</td>
<td>41</td>
<td>2</td>
<td>6,910</td>
</tr>
<tr>
<td>43</td>
<td>42</td>
<td>1</td>
<td>16,178</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>2</td>
<td>29,622</td>
</tr>
<tr>
<td>43</td>
<td>44</td>
<td>1</td>
<td>6,910</td>
</tr>
<tr>
<td>43</td>
<td>45</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>44</td>
<td>11</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>44</td>
<td>41</td>
<td>2</td>
<td>6,910</td>
</tr>
<tr>
<td>44</td>
<td>42</td>
<td>1</td>
<td>16,178</td>
</tr>
<tr>
<td>44</td>
<td>43</td>
<td>2</td>
<td>29,622</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
<td>1</td>
<td>6,910</td>
</tr>
<tr>
<td>44</td>
<td>45</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>45</td>
<td>11</td>
<td>1</td>
<td>3,827,172</td>
</tr>
<tr>
<td>45</td>
<td>41</td>
<td>2</td>
<td>6,910</td>
</tr>
<tr>
<td>45</td>
<td>42</td>
<td>1</td>
<td>16,178</td>
</tr>
<tr>
<td>45</td>
<td>43</td>
<td>2</td>
<td>29,622</td>
</tr>
<tr>
<td>45</td>
<td>44</td>
<td>1</td>
<td>6,910</td>
</tr>
</tbody>
</table>
APPENDIX F

ADDITIONAL RESULTS OF TEST RUNS

1. Layout of runs in terms of a factorial design
2. Test run results for single-commodity problem
3. Test run results for multi-commodity problem
Table F-1. Layout of Runs in Terms of a Factorial Design

<table>
<thead>
<tr>
<th>Initial Arc Lengths</th>
<th>A</th>
<th></th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I Used</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>EPSILON</td>
<td>.02</td>
<td>.01</td>
<td>.02</td>
</tr>
<tr>
<td>ALPHA</td>
<td>1.</td>
<td>.8</td>
<td>1.</td>
</tr>
<tr>
<td>Current</td>
<td>4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Splits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td>16</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1001</td>
<td>19</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1110</td>
<td>22</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>0110</td>
<td>28</td>
<td>-</td>
<td>29</td>
</tr>
</tbody>
</table>

(continued)
Table F-1 (cont'd)

<table>
<thead>
<tr>
<th>Initial Arc Lengths/</th>
<th>B</th>
<th>C</th>
<th>Initial Arc Lengths/</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase I Used/</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>EPSILON/</td>
<td>.02</td>
<td>.01</td>
<td>.02</td>
<td>.01</td>
<td>.02</td>
</tr>
<tr>
<td>ALPHA/</td>
<td>1.0</td>
<td>.8</td>
<td>1.0</td>
<td>.8</td>
<td>1.0</td>
</tr>
<tr>
<td>Current</td>
<td>2</td>
<td>-</td>
<td>6</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>1000</td>
<td>-</td>
<td>-</td>
<td>9</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0100</td>
<td>-</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0010</td>
<td>-</td>
<td>-</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Initial Modal Splits</td>
<td>0001</td>
<td>-</td>
<td>18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1001</td>
<td>-</td>
<td>-</td>
<td>21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1110</td>
<td>-</td>
<td>-</td>
<td>24</td>
<td>27</td>
<td>-</td>
</tr>
<tr>
<td>0110</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table F-2. Test Run Results for Single-Commodity Problem

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>632</td>
<td>3</td>
<td>9</td>
<td>15,376</td>
<td>466</td>
<td>14,911</td>
<td>1,250</td>
<td>197</td>
<td>1,446</td>
</tr>
<tr>
<td>2</td>
<td>736</td>
<td>3</td>
<td>11</td>
<td>15,427</td>
<td>488</td>
<td>14,939</td>
<td>1,199</td>
<td>219</td>
<td>1,418</td>
</tr>
<tr>
<td>3</td>
<td>679</td>
<td>3</td>
<td>10</td>
<td>15,436</td>
<td>489</td>
<td>14,947</td>
<td>1,190</td>
<td>220</td>
<td>1,410</td>
</tr>
<tr>
<td>4</td>
<td>1,102</td>
<td>3</td>
<td>18</td>
<td>15,366</td>
<td>456</td>
<td>14,910</td>
<td>1,260</td>
<td>187</td>
<td>1,447</td>
</tr>
<tr>
<td>5</td>
<td>982</td>
<td>3</td>
<td>16</td>
<td>15,371</td>
<td>456</td>
<td>14,915</td>
<td>1,255</td>
<td>187</td>
<td>1,442</td>
</tr>
<tr>
<td>6</td>
<td>1,089</td>
<td>3</td>
<td>18</td>
<td>15,456</td>
<td>460</td>
<td>14,996</td>
<td>1,170</td>
<td>191</td>
<td>1,361</td>
</tr>
<tr>
<td>7</td>
<td>1,182</td>
<td>3</td>
<td>20</td>
<td>15,308</td>
<td>484</td>
<td>14,823</td>
<td>1,318</td>
<td>215</td>
<td>1,537</td>
</tr>
<tr>
<td>8</td>
<td>1,130</td>
<td>3</td>
<td>19</td>
<td>15,342</td>
<td>476</td>
<td>14,866</td>
<td>1,284</td>
<td>207</td>
<td>1,491</td>
</tr>
<tr>
<td>9</td>
<td>1,147</td>
<td>3</td>
<td>19</td>
<td>15,483</td>
<td>480</td>
<td>15,004</td>
<td>1,143</td>
<td>211</td>
<td>1,353</td>
</tr>
<tr>
<td>10</td>
<td>1,162</td>
<td>3</td>
<td>19</td>
<td>15,330</td>
<td>479</td>
<td>14,851</td>
<td>1,296</td>
<td>210</td>
<td>1,506</td>
</tr>
<tr>
<td>11</td>
<td>1,126</td>
<td>3</td>
<td>18</td>
<td>15,412</td>
<td>477</td>
<td>14,934</td>
<td>1,214</td>
<td>208</td>
<td>1,423</td>
</tr>
<tr>
<td>12</td>
<td>1,173</td>
<td>3</td>
<td>19</td>
<td>15,467</td>
<td>480</td>
<td>14,987</td>
<td>1,159</td>
<td>211</td>
<td>1,370</td>
</tr>
<tr>
<td>13</td>
<td>1,204</td>
<td>3</td>
<td>20</td>
<td>15,366</td>
<td>468</td>
<td>14,898</td>
<td>1,260</td>
<td>199</td>
<td>1,459</td>
</tr>
<tr>
<td>14</td>
<td>1,209</td>
<td>3</td>
<td>20</td>
<td>15,371</td>
<td>468</td>
<td>14,903</td>
<td>1,255</td>
<td>199</td>
<td>1,454</td>
</tr>
<tr>
<td>15</td>
<td>1,108</td>
<td>3</td>
<td>18</td>
<td>15,365</td>
<td>468</td>
<td>14,897</td>
<td>1,261</td>
<td>199</td>
<td>1,460</td>
</tr>
<tr>
<td>16</td>
<td>1,209</td>
<td>3</td>
<td>20</td>
<td>15,346</td>
<td>477</td>
<td>14,869</td>
<td>1,280</td>
<td>208</td>
<td>1,488</td>
</tr>
<tr>
<td>17</td>
<td>1,213</td>
<td>3</td>
<td>20</td>
<td>15,346</td>
<td>477</td>
<td>14,869</td>
<td>1,280</td>
<td>208</td>
<td>1,488</td>
</tr>
<tr>
<td>18</td>
<td>1,106</td>
<td>3</td>
<td>18</td>
<td>15,427</td>
<td>466</td>
<td>14,960</td>
<td>1,199</td>
<td>197</td>
<td>1,397</td>
</tr>
<tr>
<td>19</td>
<td>1,210</td>
<td>3</td>
<td>20</td>
<td>15,323</td>
<td>483</td>
<td>14,841</td>
<td>1,303</td>
<td>214</td>
<td>1,516</td>
</tr>
<tr>
<td>20</td>
<td>1,155</td>
<td>3</td>
<td>19</td>
<td>15,345</td>
<td>476</td>
<td>14,869</td>
<td>1,281</td>
<td>207</td>
<td>1,488</td>
</tr>
<tr>
<td>21</td>
<td>1,152</td>
<td>3</td>
<td>19</td>
<td>15,486</td>
<td>481</td>
<td>15,006</td>
<td>1,140</td>
<td>212</td>
<td>1,351</td>
</tr>
<tr>
<td>22</td>
<td>792</td>
<td>2</td>
<td>13</td>
<td>15,321</td>
<td>485</td>
<td>14,836</td>
<td>1,305</td>
<td>216</td>
<td>1,521</td>
</tr>
<tr>
<td>23</td>
<td>742</td>
<td>2</td>
<td>12</td>
<td>15,422</td>
<td>476</td>
<td>14,946</td>
<td>1,204</td>
<td>207</td>
<td>1,411</td>
</tr>
<tr>
<td>24</td>
<td>788</td>
<td>2</td>
<td>13</td>
<td>15,367</td>
<td>483</td>
<td>14,885</td>
<td>1,259</td>
<td>214</td>
<td>1,472</td>
</tr>
<tr>
<td>25</td>
<td>1,111</td>
<td>3</td>
<td>18</td>
<td>15,319</td>
<td>485</td>
<td>14,834</td>
<td>1,307</td>
<td>216</td>
<td>1,523</td>
</tr>
<tr>
<td>26</td>
<td>1,061</td>
<td>3</td>
<td>17</td>
<td>15,422</td>
<td>476</td>
<td>14,945</td>
<td>1,204</td>
<td>207</td>
<td>1,412</td>
</tr>
<tr>
<td>27</td>
<td>1,115</td>
<td>3</td>
<td>18</td>
<td>15,365</td>
<td>483</td>
<td>14,882</td>
<td>1,261</td>
<td>214</td>
<td>1,475</td>
</tr>
<tr>
<td>28</td>
<td>785</td>
<td>2</td>
<td>13</td>
<td>15,354</td>
<td>481</td>
<td>14,873</td>
<td>1,272</td>
<td>212</td>
<td>1,484</td>
</tr>
<tr>
<td>29</td>
<td>1,107</td>
<td>3</td>
<td>18</td>
<td>15,354</td>
<td>481</td>
<td>14,873</td>
<td>1,272</td>
<td>212</td>
<td>1,484</td>
</tr>
<tr>
<td>30</td>
<td>1,086</td>
<td>3</td>
<td>18</td>
<td>15,412</td>
<td>477</td>
<td>14,934</td>
<td>1,214</td>
<td>208</td>
<td>1,423</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
<td>------------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1,394</td>
<td>3</td>
<td>11</td>
<td>8,948</td>
<td>427</td>
<td>8,521</td>
<td>515</td>
<td>158</td>
<td>673</td>
</tr>
<tr>
<td>2</td>
<td>1,515</td>
<td>3</td>
<td>12</td>
<td>8,928</td>
<td>423</td>
<td>8,505</td>
<td>535</td>
<td>154</td>
<td>689</td>
</tr>
<tr>
<td>3</td>
<td>1,636</td>
<td>3</td>
<td>13</td>
<td>8,982</td>
<td>428</td>
<td>8,554</td>
<td>481</td>
<td>159</td>
<td>640</td>
</tr>
<tr>
<td>4</td>
<td>2,233</td>
<td>3</td>
<td>18</td>
<td>8,927</td>
<td>426</td>
<td>8,503</td>
<td>536</td>
<td>157</td>
<td>695</td>
</tr>
<tr>
<td>5</td>
<td>2,243</td>
<td>3</td>
<td>18</td>
<td>8,928</td>
<td>426</td>
<td>8,499</td>
<td>536</td>
<td>157</td>
<td>691</td>
</tr>
<tr>
<td>6</td>
<td>2,295</td>
<td>3</td>
<td>18</td>
<td>8,927</td>
<td>428</td>
<td>8,499</td>
<td>536</td>
<td>157</td>
<td>695</td>
</tr>
<tr>
<td>7</td>
<td>2,132</td>
<td>3</td>
<td>17</td>
<td>8,863</td>
<td>427</td>
<td>8,436</td>
<td>600</td>
<td>158</td>
<td>758</td>
</tr>
<tr>
<td>8</td>
<td>2,145</td>
<td>3</td>
<td>17</td>
<td>8,864</td>
<td>427</td>
<td>8,436</td>
<td>599</td>
<td>158</td>
<td>758</td>
</tr>
<tr>
<td>9</td>
<td>2,028</td>
<td>3</td>
<td>16</td>
<td>8,927</td>
<td>432</td>
<td>8,495</td>
<td>536</td>
<td>163</td>
<td>699</td>
</tr>
<tr>
<td>10</td>
<td>2,504</td>
<td>3</td>
<td>20</td>
<td>8,892</td>
<td>430</td>
<td>8,462</td>
<td>571</td>
<td>161</td>
<td>732</td>
</tr>
<tr>
<td>11</td>
<td>2,129</td>
<td>3</td>
<td>17</td>
<td>8,885</td>
<td>438</td>
<td>8,447</td>
<td>578</td>
<td>169</td>
<td>747</td>
</tr>
<tr>
<td>12</td>
<td>2,061</td>
<td>3</td>
<td>17</td>
<td>8,903</td>
<td>430</td>
<td>8,472</td>
<td>560</td>
<td>161</td>
<td>722</td>
</tr>
<tr>
<td>13</td>
<td>2,377</td>
<td>3</td>
<td>19</td>
<td>8,929</td>
<td>423</td>
<td>8,506</td>
<td>534</td>
<td>154</td>
<td>688</td>
</tr>
<tr>
<td>14</td>
<td>2,203</td>
<td>3</td>
<td>18</td>
<td>8,931</td>
<td>422</td>
<td>8,509</td>
<td>532</td>
<td>153</td>
<td>685</td>
</tr>
<tr>
<td>15</td>
<td>2,459</td>
<td>3</td>
<td>20</td>
<td>8,930</td>
<td>423</td>
<td>8,507</td>
<td>533</td>
<td>154</td>
<td>687</td>
</tr>
<tr>
<td>16</td>
<td>2,013</td>
<td>3</td>
<td>16</td>
<td>8,927</td>
<td>432</td>
<td>8,495</td>
<td>536</td>
<td>163</td>
<td>699</td>
</tr>
<tr>
<td>17</td>
<td>2,145</td>
<td>3</td>
<td>17</td>
<td>8,927</td>
<td>432</td>
<td>8,495</td>
<td>536</td>
<td>163</td>
<td>699</td>
</tr>
<tr>
<td>18</td>
<td>2,132</td>
<td>3</td>
<td>17</td>
<td>8,927</td>
<td>432</td>
<td>8,495</td>
<td>536</td>
<td>163</td>
<td>695</td>
</tr>
<tr>
<td>19</td>
<td>2,383</td>
<td>3</td>
<td>19</td>
<td>8,864</td>
<td>427</td>
<td>8,437</td>
<td>599</td>
<td>158</td>
<td>757</td>
</tr>
<tr>
<td>20</td>
<td>2,403</td>
<td>3</td>
<td>19</td>
<td>8,864</td>
<td>427</td>
<td>8,437</td>
<td>599</td>
<td>158</td>
<td>757</td>
</tr>
<tr>
<td>21</td>
<td>2,144</td>
<td>3</td>
<td>17</td>
<td>8,927</td>
<td>432</td>
<td>8,495</td>
<td>536</td>
<td>163</td>
<td>695</td>
</tr>
<tr>
<td>22</td>
<td>1,649</td>
<td>2</td>
<td>13</td>
<td>8,819</td>
<td>438</td>
<td>8,380</td>
<td>644</td>
<td>169</td>
<td>814</td>
</tr>
<tr>
<td>23</td>
<td>1,626</td>
<td>2</td>
<td>13</td>
<td>8,830</td>
<td>429</td>
<td>8,401</td>
<td>633</td>
<td>160</td>
<td>793</td>
</tr>
<tr>
<td>24</td>
<td>1,624</td>
<td>2</td>
<td>13</td>
<td>8,878</td>
<td>429</td>
<td>8,450</td>
<td>585</td>
<td>160</td>
<td>744</td>
</tr>
<tr>
<td>25</td>
<td>2,432</td>
<td>3</td>
<td>19</td>
<td>8,819</td>
<td>438</td>
<td>8,381</td>
<td>644</td>
<td>169</td>
<td>813</td>
</tr>
<tr>
<td>26</td>
<td>2,409</td>
<td>3</td>
<td>19</td>
<td>8,830</td>
<td>429</td>
<td>8,402</td>
<td>633</td>
<td>160</td>
<td>792</td>
</tr>
<tr>
<td>27</td>
<td>2,425</td>
<td>3</td>
<td>19</td>
<td>8,879</td>
<td>429</td>
<td>8,451</td>
<td>585</td>
<td>160</td>
<td>743</td>
</tr>
<tr>
<td>28</td>
<td>1,543</td>
<td>2</td>
<td>12</td>
<td>8,836</td>
<td>433</td>
<td>8,403</td>
<td>627</td>
<td>164</td>
<td>791</td>
</tr>
<tr>
<td>29</td>
<td>2,335</td>
<td>3</td>
<td>18</td>
<td>8,919</td>
<td>433</td>
<td>8,486</td>
<td>544</td>
<td>164</td>
<td>708</td>
</tr>
<tr>
<td>30</td>
<td>2,131</td>
<td>3</td>
<td>17</td>
<td>8,912</td>
<td>438</td>
<td>8,474</td>
<td>551</td>
<td>169</td>
<td>720</td>
</tr>
</tbody>
</table>
APPENDIX G
APPENDIX G

Theorem 6.3

\( \hat{D}_j \) is a convex underestimator of \( D_j \).

Proof. A number of cases and subcases must be considered:

Let \( \phi_j = 0_j \)

(1) \( t_s < B_j, \quad \forall s \in \phi_j \)

(a) \( \sum_{s \in \phi_j} t_s < B_{j1} \) (Case I)

(b) \( B_{j1} < \sum_{s \in \phi_j} t_s < B_{j2} \) (Case IV)

(c) \( \sum_{s \in \phi_j} t_s > B_{j2} \) (Case VI)

(2) \( B_{j1} < t_s < B_{j2}, \quad \forall s \in \phi_j \)

(a) \( \sum_{s \in \phi_j} t_s < B_{j2} \) (Case II)

(b) \( \sum_{s \in \phi_j} t_s > B_{j2} \) (Case V)

(3) \( t_s > B_{j2}, \quad \forall s \in \phi_j \) (Case III)

(4) \( t_s < B_{j1}, \quad \forall s \in \phi_j \cap A \)
\begin{align*}
B_{j1} & \leq t_s \leq B_{j2} & \forall s \in \phi_j \cap B \\
\text{(a)} & \sum_{s \in \phi_j} t_s \leq B_{j2} & \text{(Case IV)} \\
\text{(b)} & \sum_{s \in \phi_j} t_s > B_{j2} & \text{(Case VI)} \\
\text{(5)} & t_s \leq B_{j1} & \forall s \in \phi_j \cap A \\
\text{(6)} & t_s > B_{j2} & \forall s \in \phi_j \cap C & \text{(Case VI)} \\
\text{(7)} & B_{j1} < t_s \leq B_{j2} & \forall s \in \phi_j \cap B \\
\text{(Case V)} & t_s > B_{j2} & \forall s \in \phi_j \cap C \\
\text{Case I} & \text{For some arc } j: \\
& t_s \leq B_{j1} & \forall s \in \phi_j \\
\text{and} \sum_{s \in \phi_j} t_s \leq B_{j1}
\end{align*}
Let: \( \hat{D}_j = c_{j1} \sum_{p \in P_j} f_p + F_{j1} \max_{p \in P_j} \{ t_p / f_p \} \)

Proof. \( \hat{D}_j \) is convex.

Consider the math program:

\[
T: \quad \min_{\bar{f}} D_j(\bar{f}) - \hat{D}_j(\bar{f})
\]

\[
\text{s.t. } 0 \leq f_p \leq t_p \quad \forall p \in P_j
\]

The objective is concave since \( D_j \) is concave and \( \hat{D}_j \) is convex. The optimal solution of \( T \) must lie at an EP of the solution space. Note that an EP is any point: \((a_{j1}, \ldots, a_{j/pj/})\)

where:

\[
a_{jp} = \begin{cases} 
0 & \text{or} \\
t_p & \text{(1)}
\end{cases}
\]

Thus, if \( D_j < \hat{D}_j \) for some point in the solution space, it will also hold for some EP. Also, if it is not true for the EP; i.e., if \( D_j \geq \hat{D}_j \) for all EP, then \( D_j \geq \hat{D}_j \) for all \( \bar{f} \in s \).

For the \( \bar{0} \) point:

\[
\hat{D}_j = 0 = D_j
\]

For all other EP, the following holds:
\[ \hat{D}_j = c_{j1} \sum_{p \in P_j} a_{jp} + F_{j1} = D_j \]

\[ \therefore \text{Theorem 6.3 holds for Case 1.} \]

Q.E.D.

Cases II and III are proven in a similar manner.

Case IV

For some arc \( j \):

either

\[ t_s \leq B_{j1} \quad \forall s \in \phi_j \]

and

\[ B_{j1} < \sum_{s \in \phi_j} t_s \leq B_{j2} \]

or

\[ t_s < B_{j1} \quad \forall s \in \phi_j \cap A \]

and

\[ B_{j1} \leq t_s \leq B_{j2} \quad \forall s \in \phi_j \cap B \]

and

\[ \sum_{s \in \phi_j} t_s \leq B_{j2} \]

Let:

\[ \hat{D}_j = c_{j2} \sum_{p \in P_j} f + \max \{ e_j f \} \]

where:
\[ e_{jp} = \begin{cases} \frac{F_{j2}}{t_p} & \text{if } t_p \geq B_{jl} \\ \frac{F_{j1}}{t_p} + c_{jl} - c_{j2} & \text{if } t_p < B_{jl} \end{cases} \]

**Proof.** For the \( \tilde{0} \) point:

\[ \hat{D}_j = 0 = D_j \]

The remaining EP can be subdivided:

**Set 1.** Those EP \( \exists \sum_{p \in \mathcal{P}_j} a_{jp} < B_{jl} \)

**Set 2.** Those EP \( \exists \sum_{p \in \mathcal{P}_j} a_{jp} \geq B_{jl} \)

Regarding Set 1, the following must hold:

\[ D_j = c_{jl} \sum_{p \in \mathcal{P}_j} a_{jp} + F_{jl} \]

\[ \hat{D}_j = c_{j2} \sum_{p \in \mathcal{P}_j} a_{jp} + F_{jl} + (c_{jl} - c_{j2})a_{j\text{Max}} \]

where:

\[ e_{j\text{Max}}^a_{j\text{Max}} = \max_{p \in \mathcal{P}_j} \{e_{jp}, f_p\} \]

But

\[ a_{j\text{Max}} \leq \sum_{p \in \mathcal{P}_j} a_{jp} \]
\[
\hat{D}_j \leq c_{j2} \sum_{p \in P_j} a_{jp} + F_{j1} + (c_{j1} - c_{j2}) \sum_{p \in P_j} a_{jp}
\]

\[
\leq c_{j1} \sum_{p \in P_j} a_{jp} + F_{j1} = D_j
\]

Regarding Set 2, the following must hold:

\[
\hat{D}_j = c_{j2} \sum_{p \in P_j} a_{jp} + F_{j2}
\]

\[
\hat{D}_j = c_{j2} \sum_{p \in P_j} a_{jp} + \max_{p \in P_j} \{ e_{p} a_{jp} \}
\]

There are two possibilities regarding \( \hat{D}_j \):

**Possibility 1.** The maximum involves some path \( q \in B \)

\[
\hat{D}_j = c_{j2} \sum_{p \in P_j} a_{jp} + F_{j2} = D_j
\]

**Possibility 2.** The maximum involves some path \( q \in A \)

\[
D_j = c_{j2} \sum_{p \in P_j} a_{jp} + F_{j1} + (c_{j1} - c_{j2}) a_{jq}
\]

But

\[
a_{jq} \leq B_{j1} = \frac{F_{j2} - F_{j1}}{c_{j1} - c_{j2}}
\]
\[ \hat{D}_j \leq c_{j2} \sum_{p \in P_j} a_{jp} + F_{j1} + F_{j2} - F_{j1} = D_j \]

Q.E.D.

Case V is proven in a similar fashion.

**Case VI**

For all other arcs \( j \):

Let:  
\[ \hat{D}_j = c_{j3} \sum_{p \in P_j} f + \max \{ e_{jp}, f \} \]

where:

\[
e_{jp} = \begin{cases} 
\frac{F_{j1}}{t_p} & \text{if } t_p \geq B_{j2} \\
\frac{F_{j1}}{t_p} + c_{j1} - c_{j3} & \text{if } t_p < B_{j1} \\
\frac{F_{j2}}{t_p} + c_{j2} - c_{j3} & \text{if } B_{j1} \leq t_p \leq B_{j2} 
\end{cases}
\]

**Proof.** For the \( \bar{0} \) point:

\[ \hat{D}_j = 0 = D_j \]

The remaining EP can be subdivided:

**Set 1.** Those EP \( \exists \sum_{p \in P_j} a_{jp} < B_{j1} \)

**Set 2.** Those EP \( \exists B_{j1} \leq \sum_{p \in P_j} a_{jp} < B_{j2} \)

**Set 3.** Those EP \( \exists \sum_{p \in P_j} a_{jp} \geq B_{j2} \)
Regarding Set 1, the following must hold:

\[
\hat{D}_j = c_{j1} \sum_{p \in P_j} a_{jp} + F_{j1}
\]

\[
\hat{D}_j = c_{j3} \sum_{p \in P_j} a_{jp} + F_{j1} + (c_{j1} - c_{j3})a_{jMax}
\]

But,
\[
a_{jMax} \leq \sum_{p \in P_j} a_{jp}
\]

\[
\therefore \hat{D}_j \leq c_{j3} \sum_{p \in P_j} a_{jp} + F_{j1} + (c_{j1} - c_{j3}) \sum_{p \in P_j} a_{jp}
\]

\[
\leq c_{j1} \sum_{p \in P_j} a_{jp} + F_{j1} = D_j
\]

Regarding Set 2, the following must hold:

\[
\hat{D}_j = c_{j2} \sum_{p \in P_j} a_{jp} + F_{j2}
\]

\[
\hat{D}_j = c_{j3} \sum_{p \in P_j} a_{jp} + \text{Max}_{p \in P_j} \{e_{jp}a_{jp}\}
\]

There are two possibilities regarding \(\hat{D}_j\):

**Possibility 1.** The maximum involves some path \(q \in A\)

\[
\hat{D}_j = c_{j3} \sum_{p \in P_j} a_{jp} + F_{j1} + (c_{j1} - c_{j3})a_{jq}
\]
But, 
\[ a_{jq} \leq B_{j1} = \frac{F_{j2} - F_{j1}}{c_{j1} - c_{j2}} \]
\[ = \frac{c_{j2} - c_{j3}}{c_{j1} - c_{j3}} \cdot \frac{F_{j2} - F_{j1}}{c_{j1} - c_{j2}} + \frac{F_{j2} - F_{j1}}{c_{j3} - c_{j2}} \cdot \frac{c_{j1} - c_{j2}}{c_{j1} - c_{j3}} \]
\[ \leq \frac{c_{j2} - c_{j3}}{c_{j1} - c_{j3}} \sum_{p \in P_j} a_{jp} + \frac{F_{j2} - F_{j1}}{c_{j1} - c_{j3}} = U \]

since 
\[ B_{j1} \leq \sum_{p \in P_j} a_{jp} \]

Thus, 
\[ \hat{D}_j \leq c_{j3} \sum_{p \in P_j} a_{jp} + F_{j1} + (c_{j1} - c_{j3})U \]
\[ \leq c_{j2} \sum_{p \in P_j} a_{jp} + F_{j2} = D_j \]

**Possibility 2.** The maximum involves some path \( q \in B \)

\[ \hat{D}_j = c_{j3} \sum_{p \in P_j} a_{jp} + F_{j2} + (c_{j2} - c_{j3})a_{jq} \]

But 
\[ a_{jq} \leq \sum_{p \in P_j} a_{jp} \]

\[ \therefore D_j \leq c_{j3} \sum_{p \in P_j} a_{jp} + F_{j2} + (c_{j2} - c_{j3}) \sum_{p \in P_j} a_{jp} \]
\[ \leq c_{j2} \sum_{p \in P_j} a_{jp} + F_{j2} = D_j \]
Regarding Set 3, the following must hold:

\[ D_j = c_{j3} \sum_{p \in Pj} a_{jp} + F_{j3} \]

\[ \hat{D}_j = c_{j3} \sum_{p \in Pj} a_{jp} + \max \{ e_{jp} a_{jp} \} \]

There are three possibilities regarding \( \hat{D}_j \):

**Possibility 1.** The maximum involves some path \( q \in A \)

\[ \hat{D}_j = c_{j3} \sum_{p \in Pj} a_{jp} + F_{j1} + (c_{j1} - c_{j3}) a_{jq} \]

But, \( a_{jq} \leq B_{j1} \leq B_{j2} \leq B_{j3} = \frac{F_{j3} - F_{j1}}{c_{j1} - c_{j3}} \)

\[ \therefore \hat{D}_j \leq c_{j3} \sum_{p \in Pj} a_{jp} + F_{j1} + (c_{j1} - c_{j3}) \frac{F_{j3} - F_{j1}}{c_{j1} - c_{j3}} \]

\[ \leq c_{j3} \sum_{p \in Pj} a_{jp} + F_{j3} = D_j \]

**Possibility 2.** The maximum involves some path \( q \in B \)

\[ \hat{D}_j = c_{j3} \sum_{p \in Pj} a_{jp} + F_{j2} + (c_{j2} - c_{j3}) a_{jq} \]
\[ a_{jq} \leq b_{j2} = \frac{F_{j3} - F_{j2}}{c_{j2} - c_{j3}} \]

\[ D_j \leq c_{j3} \sum_{p \in P_j} a_{jp} + F_{j2} + (c_{j2} - c_{j3}) \frac{F_{j3} - F_{j2}}{c_{j2} - c_{j3}} \]

\[ \leq c_{j3} \sum_{p \in P_j} a_{jp} + F_{j3} = D_j \]

**Possibility 3.** The maximum involves some path \( q \in C \)

\[ \hat{D}_j = c_{j3} \sum_{p \in P_j} a_{jp} + F_{j3} = D_j \]

Q.E.D.
APPENDIX H

MULTI-COMMODITY LISTINGS

1. MNETED
2. MMS
3. MINFOD
4. MINAC
5. MTESTMS
6. MCNCASB
C PROGRAM MNETED DEVELOPS THE EXPANDED NETWORK USED IN THE CONCAVE
MULI-COMMODITY ASSIGNMENT ROUTINE.
PROGRAM MNETED (UNIT=12,809,TAPE1=999,TAPE2=993,TAPE3=403,TAPE4=405)
INTEGER Z,MZ(12),POD(1155:2),PO(1192),AP(53),ARC,0(52)
DIMENSION MZ(12),3,11260),P(150),POC(40),L(3850)
READ(7:100)Z,MZ,MA,NC1
READ(7:100)((MZ(I,J),J=l,3),I=1,Z)
IN=1
DO 3 I=1,2
M(I)=O
DO 2 J=1,3
M(I)=M(I)+MZ(I,J)
2 CONTINUE
IN=IN+3*M(I)+2
CONTINUE
PZ(J+1)=IN
3 CONTINUE
N=IN-
DO 1 I=1,N
PO(DIJ,2)=O
CONTINUE
N0=O
NO=O
NA=O
MOD=O
DO 1 I=1,Z
PO(2N,2)=O
CONTINUE
NA=NA+1
DO 1 I=1,3
IF(MZ(I,3M(I),E=0)GO TO 30
IF(iZ.EQ.J)GO TO 31
GO TO 30
CONTINUE
31 NA=NA+1
GO TO 5
CONTINUE
30 L0=MOD
CONTINUE
NA=NA+1
DO 1 I=1,3
IF(iI.Z,E=O)GO TO 7
DO (NO(J)+1)=PO(J)+1
CONTINUE
5 NA=NA+1
CONTINUE
READ(7:100)((D(J),J=1,MO)
READ(7:100)((PO(D(J),J=I,MO)
READ(7:100)((P(D(J),J=I,MO)
CONTINUE
GO TO 7
CONTINUE
NO=NO+1
CONTINUE
GO TO 8
CONTINUE
GO TO 1
GO TO 8
IF(MZ(I,J)·EQ.0)GO TO 10
P(NN)=NA
A(NA,1)=NN
A(NA,2)=NN+0
A(NA,3)=0
LA(NA)=3+J
K(NN,1)=N
DO 11 K=1,M
IF(D(K),·EQ.0)GO TO 12
IF(MZ(D(K),J)·EQ.0)GO TO 13
D(N0D,1)=D(D(K)+1)-1
D(N0D,2)=E3(K)
D(N0D+K,J+1)=N0D
N0D=N0D+1
GO TO 10
10 CONTINUE
11
12 NN=NN+1
GO TO 9
13 D0 14 L=1,M
IF(D(L),·EQ.0)GO TO 9
D0(N0D+L,J+1)=U
14 CONTINUE
9 CONTINUE
N0D=N0D+N0D
D0 15 J=1,3
READ(7,100)(AR(K),K=1,MA)
IF(MZ(I,J)·EQ.0)GO TO 15
P(NN)=NA
D0 16 K=1,MA
IF(AR(K)·EQ.0)GO TO 17
A(NA,1)=NN
IC=0
D0 18 L=1,J
IC=IC+MZ(AR(K),L)
CONTINUE
A(NA,2)=PZ(AR(K))+2*M(AR(K)+1)
A(NA,3)=0
LA(NA)=3+J
NA=NA+1
CONTINUE
17 P00(NN,1)=N0D
NN=NN+1
15 CONTINUE
K2=NN-0
D0 19 J=1,3
P(NN)=NA
IZ=0
D0 33 K=1,3
IF(MZ(I,KM)·EQ.0)GO TO 33
1Z=IZ+1
IF(MZ(IP,NN)·EQ.0)GO TO 21
A(NA,1)=NN
A(NA,2)=K
IF(K·EQ.KN)GO TO 33
A(NA,3)=1
IZ=0
D0 36 K=1,3
IF(MZ(I,KM) .EQ. 0) GO TO 36
   IZ = IZ + 1
IF(MZ(I,K-1+1) .EQ. 0) GO TO 37
GO TO 36

MODE = KM
GO TO 38

CONTINUE

IF(MODE .EQ. 1 .AND. MODE1 .EQ. 2) GO TO 39
IF(MODE .EQ. 1 .AND. MODE1 .EQ. 1) GO TO 40
IF(MODE .EQ. 1 .AND. MODE1 .EQ. 3) GO TO 40

LA(NA) = 15
GO TO 22

LA(NA) = 13
GO TO 22

A(NA,3) = 0
LA(NA) = 15 + MODE

CONTINUE

A(NA,1) = NA
A(NA,2) = PZ(I+1) - 1
A(NA,3) = 0
LA(NA) = 15 + MODE
NA = NA + 1

POD(INA+1) = NOC

CONTINUE

NN = NN + 1

POD(INN+1) = NOC

CONTINUE

POD(INN+2) = NOC

ARC = NA + 1
IP = NC1 + 1
WRITE(2,160)NA, IP, NC1
WRITE(2,160)POD(I,J), J = 1, 3, I = 1, ND
WRITE(2,160)POD(I,J), J = 1, 3, I = 1, ND
WRITE(2,160)POD(I,J), J = 1, 3, I = 1, ND
WRITE(2,160)POD(I,J), J = 1, 3, I = 1, ND
WRITE(2,160)POD(I,J), J = 1, 3, I = 1, ND
WRITE(2,160)POD(I,J), J = 1, 3, I = 1, ND
WRITE(8,100)ARC
WRITE(8,100)NA
STOP

FORMAT (30I-)
FORMAT (9D11)
FORMAT (8F10.0)
END
PROGRAM MMS DEVELOPS A SET OF EXTREME MODAL SPLITS
ACCORDING TO THE INPUT VECTOR M(I). IF M(I) = 1,
THEN MODE J RECEIVES AN EQUAL MODAL SHARE.
PROGRAM MMS: INPUT, OUTPUT, TAPE1, TAPE2, TAPE3, TAPE4, TAPE5, TAPE6 = OUTPUT

INTEGER 0, D
DIMENSION HZ(120, 3), M(4)
REAL MS(4)
READ(5, 101) (M(I), I = 1, 4)
READ(7, 100) N
READ(7, 101) ((MZ(I, J), J = 1, 3), I = 1, 120)

DO 1 I = 1, 3
D(I) = (18.100) N, 0, 0
DC = 0
DC 6 J = 1, 4
IF (M(I), EQ. 1) IC = 0
CONTINUE
DO 2 J = 2, 4
IF (MZ(J, J-1) EQ. 0) GO TO 2
CONTINUE
IF (IC, EQ. 0) GO TO 4
IC = 1
IC = IC * 1
CONTINUE
IF (M(I), EQ. 1) MS(1) = 1./IC
DO 3 J = 2, 4
IF (MZ(J-1) EQ. 0) MS(1) = 1./IC
CONTINUE
IF (IC, EQ. 0) GO TO 4
IC = 1
CONTINUE
IF (M(I), EQ. 1) MS(1) = 1./IC
DO 4 J = 1, 4
IF (MZ(J) EQ. 0) GO TO 4
CONTINUE
WRITE(18, 105) (MS(J), J = 1, 4)
CONTINUE
STOP
FORMAT (201 *)
FORMAT (8011)
FORMAT (*F4.2)
END

PROGRAM MINFOO SETS UP THE INITIAL FOD VECTOR, C=0 DEMAND
BY MODE, USING AN INITIAL ESTIMATE OF MODAL SPLIT.
PROGRAM MINFOO(OUTPUT, TAPE1, TAPE2, TAPE3, TAPE4, TAPE5 = OUTPUT)

INTEGER DDC(1600, 5)
REAL MS(4)
DIMENSION FODC(600), FOD(2000)
READ(1, 100) (DODC(I, J), J = 1, 5), I = 1, ND
READ(1, 100) (FODC(I), I = 1, ND)
DO 1 I = 1, ND
READ(4, 105) (MS(J), J = 1, 4)
DO 2 J = 1, 4
IF (DODC(J) EQ. 0) GO TO 2
FODC(FODC(J-1), J) = FODC(J) * MS(J)
CONTINUE
WRITE(4, 102) (FODC(I), I = 1, IF)
STOP
FORMAT (201 *)
FORMAT (8011)
FORMAT (*F4.2)
END
PROGRAM MINAC RANDOMLY GENERATES AN INITIAL SET OF ARC COSTS.

PROGRAM MINAC INPLT,OUTPLT,TAPE13,TAPE5=INPUT,TAPE6=OUTPUT

DIMENSION AC(10)
READ(5,127)NC,N,ISEED
CALL PANS(ISEED)
DC 1 I=1,NC
DO 2 J=1,NC
AC(J)=RANFTTT1 2 CONTINUE
MPITE(13,1Z1)(AC(K),K=1,NC)
1 CONTINUE
STOP
WRITE(13,121)(AC(K),K=1,NC)
122 FORMAT(10F10.5)
END

PROGRAM MTE51MS TESTS THE ASSUMED MODAL SPLIT AGAINST THE ESTIMATED MODAL SPLIT.

INTEGER OD:(COO,5) REAL MSO, MSE , MS
DO , A )
READ(1,100)ND,IP,NC
READ(1,101,)EPS,AL,(A1Z(D,I = 1,NC) REAU(l,l0u)((0DC(I,J),J=1,NC))
READ(1,102)(FOO(I),J=1,NC) MS=0
DO JL_J = JUH3
AL = AIZ (ODC(I, = )) MI = 0
DO 2 J=1,- 1 IF(AB5(C00(03C(I,1))-COD(ODC(I,J)).L£.0.0)GO TO 3
CONTINUE
D'J = EXP(Al»C3D(0DC(I,l)))
AL = AL + E/P(A.»COD(ODC(I,J))) CONTINUE
00 fc J=1,-
WRITE(1E,l03)((M3(I,J),J=i,-),I=1,ND) STOP
2 FORMAT(2F3.1,10F8.6)
PROGRAM HCNCAS? IS A MULTI-COMMODITY CONCAVE ASSIGNMENT ROUTINE.

PROGRAM MCNCASEIOUT = <.C0B,TAPE?-t+a06,TAFE3=<+0 06 ,TAP'i.=u00B,

REAL IFH
INTEGER ARC,2,A,P,OD,POO,C,OE ,T

DIMENSION C(3) ,R<10,3>,Fl(10) ,ACZ(10)
READ(12,1001) (AT1(I,J),J=1,3),I=1,ARC
READ(*.,103) (FOCCI),I=1,IF>
READ(5 ,100)ICOUN
ICOUN=1

IF (ICOU.LT.1)IY=IY*l DC
60 = 1,NC
F1(I) = 0.
61 1=1,ARC
WRITE(19,120)(F1(J),J=1,NC)
CONTINUE DC 2 1=1,N I1=PCD(I,1)

IF (II.GT.12)GO TO 2 DC 3 J=1,N D (J) = 0
DE = DE+1 CONTINUE
IF (DE.EQ.0)GO TO 2 C CNTINUE JTE=JTE*1
GO TO 63 ' REWIND 19

READ(19,120) (F1(J),J=1,NC)
IF(AtE=JTE)-FCI1-)_T..Ol)GO TOT —
GO TO 8 C CNTINUE JTE=JTE*1
GO TO 63 ' REWIND 19
REWIND 21
DO 9 I=1,ARC
READ(19,120)(F1(J),J=1,NC)
F1(IU)=F1(I)
WRITE(21,120)(F1(J),J=1,NC)
CONTINUE
REWIND 19
REWIND 21
DC 99 I=1,ARC
READ(21,120)(F1(J),J=1,NC)
WRITE(19,120)(F1(J),J=1,NC)
CONTINUE
READ的心理,GO TO 10
WRITE(6,2000)
FORMAT(=,=)
WRITE(6,2001)
FORMAT(=,=)
REWIND
CONTINUE
IF(IY.EQ.1)GO TO 12
IY=1
GC TO 11
IF(IY.EQ.1)GO TO 98
IY=1
ICOUN=ICOUN+1
REWIND 22
DC 14 I=1,ARC
AS=0.
BS=0.
CS=0.
FS=0.
READ(12,110)(C(J),J=1,3),((P(J,K),K=1,3),J=1,NC)
READ(19,120)(F1(J),J=1,NC)
DC 15 J=1,NC
AS=AS+R(J,1)*F1(J)
BS=BS+R(J,2)*F1(J)
CS=CS+R(J,3)*F1(J)
FS=FS+F1(J)
CONTINUE
KAS=0.
IF((FS.LT.1.)GO TO 16
IF((AS.LT.3.000000000000001)GC TO 16
HI=-BS-1)/2.*AS
IF(HI.LE.C(1))GO TO 16
IF(HI.GE.C(2))GO TO 17
IPM=HI
GC TO 18
IPM=C(1)
KAS=1
GC TO 13
IPM=C(2)
IF(IY.EQ.1)GO TO 19
DO 20 J=1,NC
ACZ(J)=C(J)*((P(J,1)*IPM**2+P(J,2)*IPM+R(J,3))
IF(KAS.EQ.1)GO TO 20
ACZ(J)=ACZ(J)+C(J)*((IPM-C(1))/FS
CONTINUE
GC TO 21
DC 22 J=1,NC
SUBROUTINE SFTR IS A SHORTEST PATH TREE ROUTINE

SUBROUTINE SFTR(0,DE,T)
INTEGER 0,DE,T,B,FS,P,S(3080,2).D,A,OD,POC
COMMON T0D(130),AC(3080),F(3080),A(3080,3),P(1152),
EOD(130),21,P0D(1152,2),COD(130),K,T0T(1152),T(1152),D(1152),
DIMENSION SC(3080)

DC 1 I=1,N
DC 0 T0T=0
DC K=0
DC T0D(0,0)

IF (B-GO TO 1
IF (E=1-GO TO 2
IF (E=1-GO TO 3
IF (B=1-GO TO 4
IF (E=1-GO TO 5
IF (E=1-GO TO 6
IF (E=1-GO TO 7
IF (E=1-GO TO 8
IF (E=1-GO TO 9
IF (E=1-GO TO 10
IF (E=1-GO TO 11
IF (E=1-GO TO 12
IF (E=1-GO TO 13
IF (E=1-GO TO 14
IF (E=1-GO TO 15
IF (E=1-GO TO 16
IF (E=1-GO TO 17
IF (E=1-GO TO 18
IF (E=1-GO TO 19
IF (E=1-GO TO 20
IF (E=1-GO TO 21
IF (E=1-GO TO 22
IF (E=1-GO TO 23
IF (E=1-GO TO 24
IF (E=1-GO TO 25
IF (E=1-GO TO 26
IF (E=1-GO TO 27
IF (E=1-GO TO 28
IF (E=1-GO TO 29
IF (E=1-GO TO 30
IF (E=1-GO TO 31
IF (E=1-GO TO 32
IF (E=1-GO TO 33
IF (E=1-GO TO 34
IF (E=1-GO TO 35
IF (E=1-GO TO 36
IF (E=1-GO TO 37
IF (E=1-GO TO 38
IF (E=1-GO TO 39
IF (E=1-GO TO 40
IF (E=1-GO TO 41
IF (E=1-GO TO 42
IF (E=1-GO TO 43
IF (E=1-GO TO 44
IF (E=1-GO TO 45
IF (E=1-GO TO 46
IF (E=1-GO TO 47
IF (E=1-GO TO 48
IF (E=1-GO TO 49
IF (E=1-GO TO 50
IF (E=1-GO TO 51
IF (E=1-GO TO 52
IF (E=1-GO TO 53
IF (E=1-GO TO 54
IF (E=1-GO TO 55
IF (E=1-GO TO 56
IF (E=1-GO TO 57
IF (E=1-GO TO 58
IF (E=1-GO TO 59
IF (E=1-GO TO 60
IF (E=1-GO TO 61
IF (E=1-GO TO 62
IF (E=1-GO TO 63
IF (E=1-GO TO 64
IF (E=1-GO TO 65
IF (E=1-GO TO 66
IF (E=1-GO TO 67
IF (E=1-GO TO 68
IF (E=1-GO TO 69
IF (E=1-GO TO 70
IF (E=1-GO TO 71
IF (E=1-GO TO 72
IF (E=1-GO TO 73
IF (E=1-GO TO 74
IF (E=1-GO TO 75
IF (E=1-GO TO 76
IF (E=1-GO TO 77
IF (E=1-GO TO 78
IF (E=1-GO TO 79
IF (E=1-GO TO 80
IF (E=1-GO TO 81
IF (E=1-GO TO 82
IF (E=1-GO TO 83
IF (E=1-GO TO 84
IF (E=1-GO TO 85
IF (E=1-GO TO 86
IF (E=1-GO TO 87
IF (E=1-GO TO 88
IF (E=1-GO TO 89
IF (E=1-GO TO 90
IF (E=1-GO TO 91
IF (E=1-GO TO 92
IF (E=1-GO TO 93
IF (E=1-GO TO 94
IF (E=1-GO TO 95
IF (E=1-GO TO 96
IF (E=1-GO TO 97
IF (E=1-GO TO 98
IF (E=1-GO TO 99
IF (E=1-GO TO 100

CONTINUE


```fortran
272

J = FS

IF (IC(A(I,J),1) .GE. 0) GO TO 6
IF (IC(A(I,J),2)) GO TO 7

IF (J .GE. 1) GO TO 10

K = J

S(K,2) = S(J,2)

IF (J .NE. FS) GO TO 8

GO TO 9

L = K

IF (D(K) .EQ. 0) GO TO 12

GO TO 11

CALL ASNFLW(C,IT)

RETURN

C

SUBROUTINE ASNFLW ASSIGNS THE FLOW TO THE NETWORK

SUBROUTINE ASNFLW (IT)

INTEGER D, POE, CO, I, IT, P

COMMON F230, AC(3060), F(3060), A(3080), T(1152), D(1152), T(1152), D(1152), IU

DIMENSION FL(1152)

D = 1

T(1) = 0

CONTINUE

DE 2 I = I+1

CONTINUE

IF (G(J,I) .NE. IU) GO TO 2

FL(I) = POE(I)

CONTINUE

DE 3 I = I+1

CONTINUE

IF (D(K) .EQ. 0) GO TO 13

CONTINUE

RETURN

END
```

C

SUBROUTINE ASNFLW ASSIGNS THE FLOW TO THE NETWORK

SUBROUTINE ASNFLW (IT)

INTEGER D, POE, CO, I, IT, P

COMMON F230, AC(3060), F(3060), A(3080), T(1152), D(1152), T(1152), D(1152), IU

DIMENSION FL(1152)

D = 1

T(1) = 0

CONTINUE

DE 2 I = I+1

CONTINUE

IF (G(J,I) .NE. IU) GO TO 2

FL(I) = POE(I)

CONTINUE

DE 3 I = I+1

CONTINUE

IF (D(K) .EQ. 0) GO TO 13

CONTINUE

RETURN

END
BIBLIOGRAPHY


3. Bazaraa, M. S. and Shetty, C. M., Nonlinear Programming, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Ga., 1975.


Dr. Mullens received a B.S. in Industrial Engineering from Mississippi State University in 1973. He entered Georgia Institute of Technology on a Presidents Fellowship and received his M.S. with a Systems Option in 1976. At this time he became actively involved in the Multi-State Transportation Corridor Research Program, remaining active until graduation. Dr. Mullens successfully defended his dissertation on October 19, 1978 and received his Ph.D. in Operations Research in March 1979. He is currently employed as an Operations Research Scientist by Detroit Diesel Allison Division of General Motors.