SLIDE MATERIAL

to the

PAPER PHYSICS

PROJECT ADVISORY COMMITTEE

March 7-8, 2000

John Waterhouse, IPST PAC Liaison
Pierre Brodeur, IPST PAC
Doeung Choi, PAC Chairman
David Knox, Vice-PAC Chairman
Ross MacHattie, RAC Liaison
Kari Ebeling, Alt. RAC Liaison
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Project</th>
<th>Name</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>F008</td>
<td>Fundamentals of Acoustic Radiation</td>
<td>01</td>
</tr>
<tr>
<td>F007</td>
<td>On-Line Measurement of Paper Properties</td>
<td></td>
</tr>
<tr>
<td>F031</td>
<td>Non-contact Ultrasonic Stiffness Measurements</td>
<td></td>
</tr>
<tr>
<td>F020</td>
<td>Fundamentals of Dimensional Stability</td>
<td></td>
</tr>
<tr>
<td>F026</td>
<td>Fundamentals of Accelerated Creep</td>
<td></td>
</tr>
<tr>
<td>F023</td>
<td>Fundamentals of Micromechanics of Fiber Networks</td>
<td></td>
</tr>
<tr>
<td>F024</td>
<td>Improving the Refining of Chemical Pulps</td>
<td></td>
</tr>
<tr>
<td>F025</td>
<td>Fundamentals of Interfiber Bonding</td>
<td></td>
</tr>
<tr>
<td>F044</td>
<td>Liquid/Substrate Interactions</td>
<td></td>
</tr>
</tbody>
</table>
FUNDAMENTALS OF ACOUSTIC RADIATION PRESSURE

STATUS REPORT

FOR

PROJECT F008

Pierre Brodeur
Joseph Gerhardstein
Feler Bose
Jimmy Jong
Dolon Silimon

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
Mill Demonstration of Ultrasonic Whitewater Clarification

Objective (FY99-00)

To perform a mill demonstration of ultrasonic whitewater clarification (AST Clarification)
Background Information

- Project F008: To investigate fundamentals of acoustic radiation pressure effects on pulp suspensions and evaluate promising industrial applications.

- Over time, parallel projects to F008 were funded:
 - DOE (Agenda 2020 Program): Acoustic Separation Technology
 - State of Georgia (TIP Program): Dual Flocculation/Ultrasonic Clarification Method

- All resources are now combined to support the development of a 100 gpm pilot-scale Acoustic Separation Technology (AST) clarifier and perform a mill demonstration in collaboration with SP Newsprint in Dublin, GA.
Background Information

- Mill demonstration is scheduled to begin in May 2000.
- Combined Budget (FY99-00):
 - IPST: $141k
 - SEP: $50k
 - State of Georgia: $225k
 - DOE: $150k
 - TOTAL: $566k

Rationale for New Technology

- Water consumption during paper manufacturing is by all accounts significant:

 Approx. 200 tons of water are required to obtain 1 ton of paper

- Hence, water clarification needs are very important, especially for whitewater, which is the filtrate from the forming fabrics of paper machines

- Several methods are used to clarify whitewater (e.g., passive dissolved air systems or DAF, sand filtration)

- There is a need for lower cost, in-line clarification systems
Clarification Principles

The method is a two-step process:

1- Use of chemical flocculants to increase the particle size in a whitewater stream, and hence, create flocs

2- Use of ultrasonic forces to deflect flocs in such a way as to obtain two output streams:
 - clean water stream
 - floe-concentrated stream
Experimental Setup

Experimental Program

- Optimization of chemical flocculation using different flocculants at different dosages
- Clarification experiments as a function of flow velocity, acoustic intensity, ultrasonic frequency, and transducer area
Typical Real-time Observations

Whitewater Feed Consistency: 0.03%

Operating Frequency: 1.5 MHz

Flow Velocity: 0.2 m/s

Typical Real-time Observations

Whitewater Feed Consistency: 0.04%

Operating Frequency: 150 kHz

Flow Velocity: 0.1 m/s
Floc Deflection Angle θ vs. Flow Velocity U and Floc Migration Velocity v

$$\tan \theta = \frac{v}{U}$$

or

$$\frac{1}{\tan \theta} = \left(\frac{1}{v}\right) U$$

1/$\tan \theta$ vs. Flow Velocity for Different Acoustic Intensities at 150 kHz
Flow Migration Velocity vs. Acoustic Intensity at 150 kHz and 1.5 MHz

Clean Stream Removal Efficiency and Clarification Efficiency

\[\%\text{Clean Stream Removal Eff.} = 100\% \left(1 - \frac{C_{\text{stream}}}{C_{\text{feed}}} \right) \]

\[\%\text{Clarification Eff.} = 100\% \left(1 - \frac{C_{\text{stream}} - C_{\text{deam}}}{C_{\text{feed}} \left(1 - \frac{C_{\text{stream}}}{100}\right)} \right) \]
Observations

- Best results using flocculant system PEO/PFR
- Best deflection effect at 150 kHz
- Best clarification efficiency at 1.5 MHz
- Discrepancy between 150 kHz and 1.5 MHz results explained by the presence of undesirable secondary flows at 150 kHz
Projected Economic Benefits of a 6000 GPM Ultrasonic Clarifier

<table>
<thead>
<tr>
<th></th>
<th>Capital Cost ($k)</th>
<th>Operating Cost ($k/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAF</td>
<td>1,073</td>
<td>353</td>
</tr>
<tr>
<td>Ultras. Clar.</td>
<td>352</td>
<td>221</td>
</tr>
<tr>
<td>Benefit</td>
<td>721</td>
<td>132</td>
</tr>
</tbody>
</table>

(Based upon 1999 part costs)

Mill Demonstration

- Development of 100 gpm pilot clarifier
- Real-time observations using different whitewater streams
- Economic Analysis
Layout of Pilot Setup

Pilot Clarifier

Acoustic Separation Technology
Agenda 2020 Recycling Task Group
Conclusions

- Laboratory study of ultrasonic whitewater clarification is completed
- Economic assessment of technology looks very promising
- Development of 100 gpm pilot-scale clarifier for mill trials is underway
Acknowledgments

- IPST: Joe Gerhardstein, Jimmy Jong, Feler Bose, Dolon Silimon, Yulin Deng, Zegui Yan
- Beloit Pulping: Jack Milliken, David Grimes
- SP Newsprint: Jim Ramp

Acoustic Separation Technology
Agenda 2020 Recycling Task Group
ON-LINE MEASUREMENT OF PAPER PROPERTIES

STATUS REPORT

FOR

PROJECT F007

Mac Hall
Ted Jackson
Andy Brown

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
On-line Measurement Of Paper Properties

Project F007

Mac Hall
Ted Jackson
Andy Brown

Relevant Research Lines

Line 10 - Reduce energy / reducing reprocessing

Line 12 - Develop on-line sensors to relate manufacturing variables to process and product
On-line Measurement Of Paper Properties

FY 99-00 Funding

DFRC F007 - $56,000
DOE-OIT - $98,800

Project Participants with DOE-OIT
Cooperative Agreement
DE-FC02-95CE41156

- Institute of Paper Science & Technology
 - Atlanta, Georgia
- ABB Industrial Systems Inc
 - Columbus, Ohio
- Georgia-Pacific Corporation
 - Host Mill, Cedar Springs, Georgia
- Herty Foundation
 - Savannah, Georgia
On-line Measurement Of Paper Properties

Project Personnel

ABB Personnel:
Bradley Pankonin

G-P Cedar Springs Mill Personnel:
Doug Jimmerson

PAC Subcommittee:
Thomas Rodencal, Georgia-Pacific

Goals & Schedule

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Integrate ZD sensor with ABB data process system</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>2. Verify on-machine sensors (1) In-Plane (2) ZD</td>
<td>-----------</td>
<td>1</td>
<td>2</td>
<td>-----------</td>
</tr>
<tr>
<td>3. Determine correlation of ultrasonic measurements with mill grade specifications</td>
<td>---</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>4. On-machine measurement/process relationships</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
On-line Measurement Of Paper Properties

Status of Goals For FY99-00

1. This goal was cancelled when DOE/Agenda 2020 reduced previously approved project funding.

2. Demonstrated successful sensor operation for extended runs scanning linerboard at speeds up to 1800 ft/min.

4. Compared on-machine data with process variables selected from mill PI system.

Discussion

- Review of on-machine sensor system
- 69# & 55# Trials
- Cross Direction In-plane Stiffness, Ring Crush, & STFI Profiles
- ZD measurements relation to refining, calendering, & plybond
Sensor Overview - Lower Sensor Module
Rotates in Contact With Sheet

\[V = \frac{\Delta d}{\Delta t} \]

- Three transducer ultrasonic transit time (velocity) measurement
- Air motor assist reduces drag on the process
- C/D Shear and C/D Longitudinal transducer sets 180° apart with one measurement each every 9° of process

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
Process Variables Manipulated

1. Machine Speed
2. Rush/Drag
3. Number of Calendar Stack Nips
4. % Top Stock Coverage
5. Basis Weight
6. % Moisture
7. Base Refiner Load
8. Broke Flow
9. DLK Flow

Cedar Springs
On-Machine & Lab CD Longitudinal & Shear Stiffness - CD Profiles for 6 Reels (69#)

- ABB-CD
- ABB-SH
- IPST Lab-SH
- IPST Lab-CD

Reels: 25, 28, 31, 33, 35, & 37 (at different process conditions)

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
On-line Measurement Of Paper Properties
Observation for the Paper Physicist:

In-Plane Cross Direction Stiffness Profiles measured on-machine show greater "degree of frown" than Lab measurements on end-of-reel strips
Cedar Springs
On-Machine & Lab CD Extensional Stiffness & CD Ring Crush - Profiles for 6 Reels (55#)

Reels 3, 5, 7, 9, 11, & 14 (at different process conditions)

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
Cedar Springs
US-10088 (USF)

Scan Average ZD Transit Time (microseconds)

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
Average GP Plybond & IPST Lab Data vs On-Machine ZD Transit Time
for 25 Reels (Reels No. 24-52) (69#)
* GP Plybond * IPST 3.1100ZDT

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)

IPST Lab Burst vs On-Machine ZD Receiver Energy
for 25 Reels (Reels No. 24-52) (69#)

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
Process Variables Which Affect ZD Web Properties

- FURNISH
 - REFINING
- WET PRESSING
- WET STRAINING
 - CALENDERING

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
On-Machine Caliper & ZD Transit Time (55#)
Calendar change from 2+2 to 1+1 @ about 11:25 and back to 2+2 @ about 12:05

On-Machine Acoustic Impedance & ZD Stiffness (55#)
Calendar change from 2+2 to 1+1 @ about 11:25 and back to 2+2 @ about 12:05

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
On Machine Acoustic Impedance & ZD Specific Stiffness (69#)
Calendar change from 3+4 to 2+3 @ about 20:20
and back to 3+4 @ about 21:10

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)

PI Data (69#)
- Ref: 1&2 Ld (69#)
- Ref: 3&TL Ld (69#)

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
On-line Measurement Of Paper Properties

Summary of Results

The On-Machine ZD Sensor System works

ZD Measurement are sensitive to:
 Refining
 Calendering

ZD Measurement correlate with:
 ZDT (plybond)
 Burst (Mullen)
On-line Measurement of Paper Properties

Conclusions

- Sensitivity of ZD Measurements to ZD Tensile and Plybond show potential value to the mill because rolls that do not meet the Plybond specification have to be reprocessed. Significant saving may be obtained by acceptable first quality.
On-line Measurement Of Paper Properties
Conclusion/Recommendation

- Display of ZD data to operator both as time trend of scan average and contour map of scan-by-scan cross-web profiles could provide early warning of process upsets and constant visibility of product status, helping the operator maintain stable and efficient process operation.
NON-CONTACT LASER ULTRASONIC MEASUREMENTS

STATUS REPORT

FOR

PROJECT F031

John Waterhouse
Chuck Habeger
Emmanuel Lafond
Jimmy Jong
Ted Jackson
Joe Gerhardstein

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
NON-CONTACT LASER ULTRASONIC
STIFFNESS MEASUREMENTS
Project F031

Charles Habeger, Emmanuel Lafond, Jimmy Jong, Joe Gerhardstein, Ted Jackson,
John F. Waterhouse

March 7, 2000
IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)

PROJECT OBJECTIVE
Design and construct an automated laboratory laser-ultrasonic stiffness instrument

Relevant Research Lines:
 Improve the ratio of product performance to cost for pulp and paper products 25% by developing: models, algorithms, and functional samples of fibrous structures and coatings which describe and demonstrate improved convertibility and end-use performance; breakthrough papermaking and coating processes which can produce the innovative webs with greater uniformity than that achieved by current processes.

 Reduce pulp and paper product costs by 25% through increased productivity and improved pulp, paper, and product uniformity achieved with developments in sensors and process controls.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
PROJECT DELIVERABLES

1. Techniques for laser ultrasonic signal detection and analysis on paper.
2. An automated apparatus to do routine laboratory testing.

RELATED WORK

• DOE DE-FC07-97ID13578 (IPST Project No. 4184).

• Budget FY 00-00 Dues: $81,849
 DOE/OIT: $327,397
PROJECT SCHEDULE 4184

<table>
<thead>
<tr>
<th>TASK</th>
<th>Oct-97</th>
<th>Jul-00</th>
<th>Apr-00</th>
<th>Jul-00</th>
<th>Oct-00</th>
<th>Jul-01</th>
<th>Apr-01</th>
<th>Jul-01</th>
<th>Oct-01</th>
<th>Jul-01</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) table part</td>
<td></td>
</tr>
<tr>
<td>B) 2D base</td>
<td></td>
</tr>
<tr>
<td>C) Masc</td>
<td></td>
</tr>
<tr>
<td>D) Zehnder</td>
<td></td>
</tr>
<tr>
<td>E) Cognitive Pulse</td>
<td></td>
</tr>
<tr>
<td>F) photo-cell</td>
<td></td>
</tr>
<tr>
<td>G) Gas</td>
<td></td>
</tr>
<tr>
<td>H) Skeletal</td>
<td></td>
</tr>
<tr>
<td>I) 4/8 multiplexor</td>
<td></td>
</tr>
<tr>
<td>J) web terminator</td>
<td></td>
</tr>
<tr>
<td>K) decode 1</td>
<td></td>
</tr>
<tr>
<td>L) decode 2</td>
<td></td>
</tr>
<tr>
<td>M) flow oven</td>
<td></td>
</tr>
<tr>
<td>N) Instrument 1</td>
<td></td>
</tr>
<tr>
<td>O) oil bath 1</td>
<td></td>
</tr>
<tr>
<td>P) oil bath 2</td>
<td></td>
</tr>
<tr>
<td>Q) Superficial</td>
<td></td>
</tr>
<tr>
<td>R) Orientation</td>
<td></td>
</tr>
<tr>
<td>S) Sub. test</td>
<td></td>
</tr>
</tbody>
</table>

PROJECT SCHEDULE F031

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apr - June</td>
<td>July - Sept</td>
<td>Oct - Dec</td>
<td>Jan - Mar</td>
<td>Apr - June</td>
<td></td>
</tr>
<tr>
<td>1. Signal analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>methods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Instrument</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
4184 Online Laser Ultrasonics Update and F031-4184 Signal Analysis Work

Laser Ultrasonics Schematic

- Pulsed laser
- Signal generator
- Detection laser
- Photo-detector
- Half mirror
- Mirror
- Shock wave
- Paper web
Online Laser Ultrasonics Status

Excitation Sources

LBNL is experimenting with CO₂ laser excitation.

They are trying different frequencies and pulse width in an effort to get more energy into sheet with less marking.

Detection Interferometry

A) Lasson photo-emf system evaluated at IPST (deemed usable with minor paper marking, but not optimal)

B) Mach Zehnder scanning mirror system under development at LBNL

C) GaAs TWM interferometer with scanning mirror under development at IPST

In about 1 month, Emmanuel Lafond will finish GaAs assessment, travel to LBNL, work on Mach Zehnder.

Then, we will decide as to best interferometer for first trials.
In six months we expect to

1) Develop fiber optic distribution methods
2) Combine the best excitation with the best detection options
3) Integrate with ABB mounting and flutter control system
4) Experiment on a moving, open web

F031 Laboratory Instrument

Tasks

1) Develop a method of determining paper elastic parameters from laser-ultrasonic signals (overlaps with on-line efforts)
2) Configure lasers and optics (probably TWM GaAs system) for a laboratory unit
3) Build fiber optics delivery systems
4) Provide means for manipulation and application of sample to the laser-ultrasonic detector
5) Implement computer control manipulation and signal analysis
Ao Signal Analysis

Standard In-Plane Contact transducer methods
best detect symmetric ultrasonic plate waves.

1) motion is mainly in-plane
2) propagation is nondispersive
3) time-of-flight velocity measurements possible

Laser-ultrasonic transducer methods
best detect antisymmetric Ao plate waves.

1) motion are mainly out-of-plane
2) propagation is dispersive
3) time-of-flight velocity measurements improbable

Typical Ao Dispersion Curves for a Lightweight Paper and a Paperboard
The Ao dispersion curve is a complicated function of the elastic parameters in the plane of propagation.

At low frequency it depends mostly on bending stiffness of the plate.

At intermediate frequency it depends mostly on bending stiffness and out-of-plane shear rigidity.

At high frequency it becomes a surface wave.
We have developed a simple quadratic equation that gives the low frequency A_0 dispersion curve in terms of

bending stiffness / basis weight

and

out-of-plane shear rigidity / basis weight.
A $c t^{1/2}$ Dispersion Curve for a Paper Board
Compared with Bending and Bending Plus Shear Approximations

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
Experimental Determination of an Ao Dispersion Curves

1) capture signals at two separations
2) do Fourier analysis
3) look at phase as a function of frequency
4) "unwrap"
5) calculate phase velocity from phase at two separations

Fourier analysis allows phase differences to be determined within integer multiples of 2π.

"Unwrapping" means determining the correct 2π multiple

We do this from the shape of the possible $c/f^{1/2}$ dispersion curves
Experimental Bleached Paperboard c/f 1/2 Dispersion Curves
Assuming Different Unwrappings

Experimental Lightweight Paper c/f 1/2 Dispersion Curves
Assuming Different Unwrappings
A Least-Squared Fit of an Eqn. (1) Dispersion Curve
to Experimental Lightweight Paper Phase Velocities

A Least-Squared Fit of an Eqn. (1) Dispersion Curve
to Experimental Bleached Paperboard Phase Velocities
Comparison of contact and laser ultrasonic parameters

<table>
<thead>
<tr>
<th>Laser-Ultrasonic Measurements</th>
<th>Bending stiffness</th>
<th>Shear rigidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy paper</td>
<td>2.5 x 10^-4 Nm</td>
<td>2.0 x 10^4 N/m</td>
</tr>
<tr>
<td>board</td>
<td>1.6 x 10^-2 Nm</td>
<td>5.0 x 10^4 N/m</td>
</tr>
</tbody>
</table>

Guesses from Contact Ultrasonics and caliper

<table>
<thead>
<tr>
<th></th>
<th>Bending stiffness</th>
<th>Shear rigidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>copy paper</td>
<td>2.9 x 10^-4 Nm</td>
<td>1.9 x 10^4 N/m</td>
</tr>
<tr>
<td>board</td>
<td>1.6 x 10^-2 Nm</td>
<td>5.1 x 10^4 N/m</td>
</tr>
</tbody>
</table>
FUNDAMENTALS OF DIMENSIONAL STABILITY

STATUS REPORT

FOR

PROJECT FO20

Douglas Coffin
Barry Hojjatie
Kennisha Collins

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
Dimensional Stability: Fundamentals of Cockle

Spring PAC 2000

Douglas W. Coffin

Dimensional Stability

Project Personnel

Doug Coffin
Barry Hojjatle
Kennisha Collins

Dimensional Stability

Relevant Research Line

11 Convertibility and End-Use Performance

Improve the ratio of product performance to cost for pulp and paper products 25% by developing: models, algorithms and functional samples of fibrous structures and coatings, which describe and demonstrate improved convertibility and end-use performance.

IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)

Dimensional Stability

Research Objectives

Reduce the amount of paper rejected because of cockle by identifying the causes of cockle and determining corrective measures to prevent cockle.

To develop a science-based understanding of the dimensional stability of paper and paperboard.

IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)
Dimensional Stability

Project Deliverables

- Fundamental mechanism of cockle and review of buckling: FO20 Report 1, 2, 3
- Method to quantify cockle: (Shadow Moiré equipment, IPST)
- Report of Handsheet Studies
- Cockle Technical Guide

Spring 2000 Status

- Handsheet studies (In progress).
- Joint study with project F02102 (In progress).
- Summarize results and prepare final project report. (Not started)
Dimensional Stability

Milestones for 1999

- Improved Shadow Moiré system
- Controlled method of altering formation
- Improved drying methods with F02102 simulator
- Developed method to evaluate copier cockle

Overall Project Name

Schedule

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Apr</td>
<td>July</td>
<td>Oct</td>
<td>Jan</td>
<td>Apr</td>
<td>Jul</td>
<td>Oct</td>
</tr>
<tr>
<td>1. cockle during drying</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. cockle in covering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. joint work with F02102</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Analysis of results</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Final report</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)
Overall Project Name

Future Deliverables

- Report of handsheet studies
- Cockle Technical Guide
 - Identify different types of cockle
 - Identify mechanisms
 - Identify likely causes and remedies

Review of Progress for
March 1999 - March 2000
Outline

- Handsheet Studies
 - Formation (chemical and mechanical modification)
- Effect of Drying Strategy
 - Joint work with F02102
- Effect of Restraint
 - Stress analysis of a “baggy edge”

Handsheat Studies

- Objective: Investigate the effect of process and sheet variables on degree of cockle
 - Cockle developed during drying
 - Cockle developed after drying
Handsheets: Previous Findings

- Restraint during drying is a significant factor, increase restraint decrease cockle
- Cockle increased as formation worsened
- Cockle improved with lower drying temperature, increased grammage

Focused Study on Formation

- Effect of formation on severity of cockle
 - Formation controlled by chemicals
 - Formation controlled by mechanical means
- Cockle
 - During drying
 - After re-exposure to high RH
Chemical Modification of Formation

Equal mixture of Polyethylene Oxide (PEO) Phenolic Formaldehyde Resin (PFR)

![Graph showing variation of density](image)

Mechanical Modification of Formation

Increased forming consistency, delayed drainage

<table>
<thead>
<tr>
<th></th>
<th>Formation</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Forming</td>
<td>14.7</td>
<td>1.39</td>
</tr>
<tr>
<td>Modified forming</td>
<td>5.6</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Formation: Standard Deviation of grammage within sheet
S. D.: standard deviation of formation for several sheets

IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)
Making Initially Flat Sheets

Degree of Cockle (Standard Deviation of height, mils)

<table>
<thead>
<tr>
<th></th>
<th>Full Restraint</th>
<th>Partial Restraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Formation</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>Modified formation,</td>
<td>7, 3</td>
<td>21</td>
</tr>
</tbody>
</table>

Sheets with poor formation can be made flat
Problem: getting consistently dried flat sheets

Drying Study

- Joint work with F02102
- Sheets dried partly on drying simulator
 - uniform heat transfer
 - nonuniform heat transfer
- cockle severity versus exiting moisture
“Copy Paper” Furnish

- 70 gsm sheets
- 75% BHWK/25% BSWK; PCC (15%)
 Optical Brightener (2 lbs./ton), AKD (3 lbs./ton) Starch (12 lbs./ton), Retention Aid (2 lbs./ton)
- 450 CSF
- Tensile Ratio: about 2.0
- Initial Solids Level: 45% (via pressing)

Cockle versus Exiting Moisture Content

IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)
Summary of Findings

- Sheets restrained until dried had least cockle
- Sheets dried with nonuniform heat transfer had slightly more cockle
- Sheets partially dried on simulator had worst cockle

Possible Explanations

- Sheets that are partially dried on simulator have worst cockle because
 - Larger nonuniformities caused by heat
 - More rapid drying leads to larger stresses
A Look at *Baggy Edges*

- Occurrence of cockle greater at CD edges of web
- CD Edges sometimes appear baggy, loose, grainy
- Related to nonuniform shrinkage

Another *Baggy Edge*
Example with Nonflat Edge

Analysis of Problem

\[Q_{11}, Q_{22}, Q_{12}, Q_{66}, \beta_1, \beta_2, \Delta m < 0 \]
Approximate Stress Distribution

\[
\sigma_{MD} = -\Delta m \left[Q_{11} \beta_1 + Q_{12} \beta_2 + (Q_{12} \beta_1 + Q_{22} \beta_2) \Psi_1(x, y, Q_y, a, b) \right]
\]

\[
\sigma_{CD} = -\Delta m \left[Q_{12} \beta_1 + Q_{22} \beta_2 \right] \Psi_2(x, y, Q_y, a, b)
\]

\[
\sigma_{CD} = -\Delta m \left[Q_{12} \beta_1 + Q_{22} \beta_2 \right] \Psi_3(x, y, Q_y, a, b)
\]

Stresses proportional to change in moisture.
Function of MD, CD shrinkages and stiffnesses.

Note, relaxed condition of zero MD displacement along MD edge, prescribed zero strain instead.

IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)

CD Stresses in One Quadrant

Stress normalized to stress if fully restrained in CD.

IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)
MD Stresses in one Quadrant

Baggy Edge Findings

- CD stresses are much reduced along MD edges
- MD stress reduced along CD edges
- Edge dries under much less restraint
- As you reduce the open draw, reduce CD width of baggy edge
Consequence of Baggy Edge

- Because CD edges are under reduced MD and CD restraint
 - increased occurrence of cockle
 - excessive shrinkage causes rough surface
 - edges will have loose or baggy appearance

Summary

- Handsheets
 - All in place, except improve control of drying.
 - Joint work with F02102 going well, provides better control of drying.
 - Cockle Guide. Identifying cockles, wrinkles and the like. Developing simple analyses, looking for solutions.
FUNDAMENTALS OF ACCELERATED CREEP

STATUS REPORT

FOR

PROJECT F026

Charles Habeger
Douglas Coffin
Barry Hojjatie
Kennisha Collins
Miranda Bliss

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
F026 “Fundamentals of Accelerated Creep”
FY 99-00 $108,000 Research Lines: 11
DOE/0IT - none
Staff: Chuck Habeger, Doug Coffin, Barry Hojjatie, and Kennisha Collins

Objective:

- Establish that sorption induced stress gradients and intensification of creep at high load are the root cause of accelerated creep.

- Determine the influence of mechanical conditioning on the behavior of paper under sustained load.

PROJECT DELIVERABLES:
1. Published papers which convincingly argue that our mechanism is the universal explanation for accelerated creep.

2. Strategies for forming creep resistant papers.

PROJECT SCHEDULE:

<table>
<thead>
<tr>
<th>TASK</th>
<th>00 1st quarter</th>
<th>00 2nd quarter</th>
<th>00 3rd quarter</th>
<th>00 4th quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compression</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work hardening</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work hardening</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compression work hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual stress</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity explains</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
MAJOR ACCOMPLISHMENTS
SINCE LAST REPORT

Three papers (the fundamentals of accelerated creep, the effects of recycling on accelerated creep, and the influence of pulp blends and multi-ply sheet structure on accelerated creep) submitted for publication.

Developed a formal explanation for the transient loss tangent phenomenon using the same sorption-induced stress concentration approach. (publication in preparation).

Our accelerated creep work showed that residual stress play a major, unappreciated role in paper creep; therefore, we initiated a joint project with Oak Ridge National Laboratory to use X ray analysis to determine residual stresses in paper.

Demonstrated that work hardening by accelerated creep reduces accelerated creep and is resistant to mechanical relaxation.

Tensile Accelerated Creep Work Hardening

Results

(1) Creep work hardening produces a creep resistant paper, but does not reduce accelerated creep.
(2) Accelerated creep work hardening produces an accelerated creep resistant paper

Conclusion

It is possible to make papers that are stable in variable humidities without treatment to reduce moisture uptake
Creep Work Hardening
Overnight Relaxation

Accelerated Creep Work
Hardening
No Relaxation

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Internal Use Only)
Tensile accelerated creep work hardening

1) does not change tensile strength

2) increases tensile stiffness

3) reduces tensile stretch and TEA

4) may slightly reduce compression strength

Accelerated creep work hardened papers will not be stronger, but could be more creep rigid, and less prone to cyclic humidity box-lean failure.
Remaining Questions

1) How does tensile a.c. work hardening affect compression accelerated creep?

2) How does compression a.c. work hardening affect compression accelerated creep?

3) Can these potential benefits be realized from high-speed drying and/or wetting under load?

X-ray Paper Residual Stress Determinations
Joint Project will Oak Ridge National Laboratory

From our fundamental analysis of accelerated creep, we believe that residual stresses play an hitherto unappreciated role in the mechanical response of paper.

Especially true for nonlinear, long-time processes, residual stresses can greatly increase paper compliance

Example: paper in compression in middle and tension near surfaces
X-ray technique have been successfully used to determine residual stresses in metals.

Polymers don't have the necessary sharp, properly-placed x-ray peaks.

However, residual stresses have been measured in polymers with metallic crystal particle dopants.

Using x-ray equipment, expertise, and computational facilities at Oak Ridge National Laboratory, we will attempt to measure residual stresses in doped paper sheets.

This should be sensitive to through-sheet level residual stresses, but not intra-fiber or local between-fiber residual stress distributions.
Dopant Requirements

1) random orientation of crystal lattices
2) 1 to 10 micron crystallite size
3) load sharing with fibers
4) about 10-15% by weight concentration in a 1 mm thick sheet

Candidate Doping Techniques

1) lumen loading with metal particles
2) lumen loading of TiO₂ or CaCO₃ particles
3) cell wave precipitation of CaCO₃
4) Kymene induced attachment of metal particles to fiber surface
Research Plan

1) Produce doped sheets at IPST
2) Evaluate for x-ray peak quality and load sharing potential at ORNL
3) Choose the best doping technique, and calibrate peak location to fiber strain
4) Investigate the influence of sheet manufacture, moisture conditioning, and load conditioning on the residual stress distribution in paper

Loss Tangent Sorption Transients

We have argued vociferously that accelerated creep is a result of sorption induced stress concentrations.

When small amplitude sinusoidal loads are used to measured complex moduli during and after sorption, loss tangent are found to be unusually large.

This phenomenon is commonly associated with accelerated creep.
We believe that these loss tangent transients are also a result of sorption-induced stress concentrations.

We, Doug in particular, are developing a mathematical argument to demonstrate that part of the reported loss tangent transient phenomenon is an artifact of the experiment and that part is a real phenomenon coming from sorption-induced stress concentrations.

An intermediate iteration of this argument is included in the PAC report.

Accelerated Creep in Fibers

With some exceptions, fibers don't do accelerated creep, whereas structures made of fibers do.

We argue that this is because fibers are not susceptible to heterogeneity-driven-accelerated creep and they sorb too fast to experience moisture-gradient driven accelerated creep.

If sorption time and moisture cycle time are of the same order, fibers should do accelerated creep.
We are doing experiments on Nylon 6,6 fibers of different denier and at different humidity cycle times to demonstrate that accelerated creep will appear in fibers as fibers become larger and cycle times faster.

Preliminary results are encouraging.

But, we have had experimental difficulties with creep repeatability which we have solved.

However, difficulties with humidity control have not been resolved.
Creep of Nylon Fiber Denier 6, Cyclic RH
File: Ny6f3
Note: Nylon Fiber, Denier 6 subjected to P=7.7 gr at 90% for 2 hrs then conditioned (P=0 gr, RH = 90%) for about 2 hrs before this run.

Creep of Nylon Fiber Denier 40, Cyclic RH
File: Ny40f4
Note: Nylon Fiber, Denier 40 subjected to P=50.7 gr at 90% for 2 hrs then conditioned (P=0 gr, RH = 90%) for about 10 hrs before this run.
For this work, we are abandoning the fiber creep tester. We are modifying the paper creep tester (which has superior humidity control) to accommodate fiber testing.
MICROMECHANICS OF FIBER NETWORKS

STATUS REPORT

FOR

PROJECT F023

Martin Ostoja-Starzewski
Andrew N. Woods

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Spring PAC 2000

Martin Ostoja

IPST Personnel

Pl: Martin Ostoja,

Staff: A. Woods, T. Jackson

PAC Subcommittee

A. Colasurdo, W. Hamad, E. Stewart
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Research Line #11

Improve the ratio of product performance to cost for pulp and paper products 25% by developing: models, algorithms, and functional samples of fibrous structures and coatings which describe and demonstrate improved convertibility and end-use performance; breakthrough papermaking and coating processes which can produce innovative webs with greater uniformity than that achieved by current processes.

FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Project Deliverables

- Computer models and algorithms for:
 #1: 2-D and 3-D fiber network
 #2: Mechanics of a single fiber as an elastic, multi-layer composite
 #3: Statistical description of formation
 #4: Effects of formation on stress wave propagation in paper
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Spring PAC 2000

Martin Ostoja

FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

IPST Personnel

PI: Martin Ostoja,
Staff: A. Woods, T. Jackson
PAC Subcommittee
A. Colasurdo, W. Hamad, E. Stewart
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Research Line #11

Improve the ratio of product performance to cost for pulp and paper products 25% by developing: models, algorithms, and functional samples of fibrous structures and coatings which describe and demonstrate improved convertibility and end-use performance; breakthrough papermaking and coating processes which can produce innovative webs with greater uniformity than that achieved by current processes.

FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Project Deliverables

- Computer models and algorithms for:
 - #1: 2-D and 3-D fiber network
 - #2: Mechanics of a single fiber as an elastic, multi-layer composite
 - #3: Statistical description of formation
 - #4: Effects of formation on stress wave propagation in paper
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Fall '99 Status of Goals

Goal #1: Extension, optimization, and acceleration of the computer models: completed

Goal #2: Further verification of the fiber network model using laboratory experiments: partially completed

Goal #3: Investigation of optimal formation patterns for best mechanical properties of paper: partially completed

Goal #4 Investigation of the effect of strength additives on the overall strength of paper: completed

Goal #5: Inclusion of single fiber mechanics in the network model: completed

Goal #6: Correlation of mass distribution with crack damage patterns: investigated by the student

changed to: statistical description of formation

Goal #7: Biaxial tests and biaxial failure envelopes: changed to: wave propagation studies
FUNDAMENTALS OF
MICROMECHANICS OF FIBER NETWORKS

Related Work

Government funded projects that are linked to this project with fiscal year funding level: none

Other DFRC projects that are linked to this project with fiscal year funding level: none

Student projects that are linked to this project: Jaime Castro’s Ph.D. thesis

Government funded projects that are not linked to this project:

FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Deliverables Now Available

• All computer programs, and algorithms for fiber network mechanics
 • a member company can use computer programs and algorithms after a demonstration session
 • the benefit: rapid prediction of various material-structure properties

FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Capabilities of the Fiber Network Model

• MD-CD stiffness and strength/toughness: yes
• Z-direction stiffness and strength: in fall 2000
• Crack propagation in the network: yes
• Zero-span tensile: yes
• STFI (unless coupled with a finite element model): no
• Delamination: in 2001
• Viscoplasticity of network (creep): in 2001/02
• Effects of formation: yes
• Effects of mixing several fiber types: yes
• Effects of variability in fiber properties: yes
• Effects of additives: yes
Capabilities of the Fiber Network Model

2,500 fibers: handsheet machine made

Discussion: Experimental validation of network models

long fibers, bad formation short fibers, good formation
A decrease in stiffness and its scatter
Discussion: Effect of Z-displacements

i.e., treat paper as a 2-D or a 3-D body?

In-plane effective elastic properties for 3-D and 2-D analyses, normalized by the formulas of Cox (1952); averages for ten specimens.

Discussion: Effect of formation on paper mechanics

The difference between the deformation field from the computational mechanics approach and the affine (linear) displacement field is dependent on formation. The uniform strain assumption should not be expected to produce good paper strength predictions when network geometry is inhomogeneous, as it is with any but the mildest degree of flocculation.
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Discussion: Optimal thickness of paper for highest bending stiffness

1. Floe parameter $b = 2.0$
2. Floe parameter $b = 0.4$
Discussion: Effect of strength additives

i.e., include or neglect fiber-fiber bond flexibility?

Depending on the end-properties desired, it may be desirable to add flexibility to the fiber-fiber bonds. Specific effects on elasticity and strength may be predicted with the computer model: toughness increase, softening, ...
Fundamentals of Micromechanics of Fiber Networks

Discussion: Mechanics of a single fiber as an elastic, multi-layer composite

Determination of chiral effect in a fiber due to helically wound fibrils

\[
\begin{bmatrix}
F \\
M
\end{bmatrix} = \begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix} \begin{bmatrix}
\varepsilon \\
\beta
\end{bmatrix}
\]

Fundamentals of Micromechanics of Fiber Networks

Discussion: Statistical description of formation

Determination of statistical fluctuations of stiffness and strength of paper on scales of millimeters through tens of meters.

Cause: turbulence on the wire, ...

IPST Confidential Information - Not For Public Disclosure
(For IPST Member Company's Internal Use Only)
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Discussion: Sensitivity of wave propagation to paper formation

A multitude of scales:
- fibril-bundle structure randomness of single fiber's properties,
- fiber microstructure disorder of flocs' geometry,
- streaks imperfection on scales of meters in MD and CD,
- imperfection on scales of meters in MD and CD.

A need to understand these effects in:
- dynamic response of paper webs (flutter, runnability, ...),
- ultrasonic measurements.
\[
\frac{\partial^2 u}{\partial x^2} - \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = 0
\]

\[
\frac{\partial}{\partial x} [A(x)E(x)] \frac{\partial}{\partial x} u - \rho(x)A(x) \frac{\partial^2 u}{\partial t^2} = 0
\]

\[
\begin{align*}
K(x)A(x) & \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} w - \varphi \right] - \rho(x)A(x) \frac{\partial^2 w}{\partial t^2} = 0 \\
E(x)I(x) & \frac{\partial^2 \varphi}{\partial x^2} + K(x)A(x) \left[\frac{\partial}{\partial x} w - \varphi \right] - \rho(x)I(x) \frac{\partial^2 \varphi}{\partial t^2} = 0
\end{align*}
\]
Significance:

(i) Strong sensitivity of elastodynamic response to formation imperfections.
(ii) Different effects of imperfection in mass density than imperfection in stiffnesses or cross-sectional area. Depending on the wavelength, there is a tendency to diffuse the resonance frequency around that of the reference (idealized), homogenous material.

FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Goals For Fall 2000

#1: Inclusion of inelastic effects (shrinkage, drying, ...) in the single fiber model
 - analysis,
 - parametric studies via the fiber network program

#2: Dynamics of fiber and floc deposition on the wire as a basis of formation of paper

#3: Fine-tuning of correlation functions of statistical non-uniformity of paper webs by further experiments
FUNDAMENTALS OF MICROMECHANICS OF FIBER NETWORKS

Schedule

<table>
<thead>
<tr>
<th>GOAL</th>
<th>APR</th>
<th>MAY</th>
<th>JUN</th>
<th>JUL</th>
<th>AUG</th>
<th>SEPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal #1: Inclusion of inelastic effects (shrinkage, drying, ...) in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the single fiber model.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal #2: Dynamics of fiber and floc deposition on the wire as a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>basis of formation of paper.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goal #3: Fine-tuning of correlation functions of statistical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-uniformity of paper webs via further experiments.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Patent And Publications

- **Patents:** none
- **Planned publications:**
 - on all the subjects discussed
 - a conference paper on waves/formation
 - submitted to the 2000 Paper Physics Conference
IMPROVING THE REFINING OF CHEMICAL PULPS

STATUS REPORT

FOR

PROJECT F024

John Waterhouse
Hiroki Nanko

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
SLIDE SUMMARY AND NOTES

Slide 1

IMPROVING THE REFINING OF CHEMICAL PULPS
Project F024
John F. Waterhouse
Derek Page
Hiroki Nanko
Miranda Bliss
March 7, 2000

Slide 2

PROJECT OBJECTIVE

Determine how changes in fiber structure and the means to produce them, are related to improved paper machine productivity, paper quality, and reduced energy consumption.

Relevant Research Lines:

[Note this also impacts research line 10 Reduced net energy consumption]

Slide 3

PROJECT DELIVERABLES

1. Methodology for determining a pulp’s response to refining.

Slide 4

SUMMARY OF ACTIVITY
(October 1999 - March 2000)

- Measurement of a fibers propensity to “cutting”
- Used 12” Sprout-Waldron disk refiner to investigate fiber “cutting”
- Established a model for improving the (disk) refining process using the Invention Machine software

Slide 5

INTER-UNIT COOPERATION

Slide 6

F013 AND F024 PROJECT OBJECTIVES

Slide 7

COOPERATIVE PROJECT BETWEEN PULPING & BLEACHING AND PAPER PHYSICS UNITS

[Wet, Dry, & Re-wet Zero-span measurements comparing Kraft & Kraft-Oxygen delig. pulps]
Slide 8
VARIATION OF WET/DRY ZERO SPAN RATIO WITH KAPPA No. [CED]

Slide 9
VARIATION OF WET/DRY ZERO SPAN RATIO WITH KAPPA No. [DED]

Slide 10
CURL VARIATION WITH MIXER TYPE [Temperature 90 & 110°C]

Slide 11
CHANGE IN TENSILE INDEX WITH SEVERITY OF REFINING [after Kerekes]

Slide 12
CHANGE IN TENSILE INDEX WITH SEVERITY OF REFINING [after Croney]

Slide 13
FIBER LENGTH VARIATION WITH SPECIFIC EDGE LOAD
[Based on data of Kibblewhite, R.P. Fundamental Research Symposium 93]

Slide 14
SIMULATING PULPING & BLEACHING DEGRADATION PROCESSES
[BULK ACID HYDROLYSIS - 2.6 M HCl @ 2.5% T= 45°C]

Slide 15
FIBER STRENGTH DEPENDENCE ON CELL. CONTENT & DEGRADATION
[includes results for both vapor phase and bulk HCl treatment]

Slide 16
Variation of Wet/Dry Zero Span Ratio
with Bulk HCl Treatment

Slide 17
NEVER DRIED ZERO SPAN STRENGTH
[Note it is the fiber breaking load that is important in relationship to fiber "cutting"]

Slide 18
SPROUT-WALDRON 12” DISK REFINER - [Freeness Variation]

Slide 19
SPROUT-WALDRON 12” DISK REFINER - [FQA Fiber Length Variation]

Slide 20
SPROUT-WALDRON 12” DISK REFINER - [FQA Curl Variation]

Slide 21
SPROUT-WALDRON 12” DISK REFINER - [FAQ Fines Variation]

Slide 22
UNREFINED PULP FINES - Control 3.08 % Bulk HCl Treated 6.01%
[photomicrographs]
Slide 23
REFINED PULP FINES - Control 10.3% Bulk HCl Treated 28.1%
[Photomicrographs]

Slide 24
PULP AND FINES PROPERTIES - [Pulp & fines pH & fines Zeta Potential]

Slide 25
FIBER "CUTTING" MECHANISMS - [Iribane, J. & Schroeder, L.]

Slide 26
PROPERTIES OF SELECTED MILL PULPS

Slide 27
ZERO-SPAN PERFORMANCE OF A MILL PULP
[Wet & Dry Zero-span strengths from different pulp mill locations]

Slide 28
ZERO-SPAN PERFORMANCE OF A MILL PULP
[Wet/Dry Zero-span strengths from different pulp mill locations]

Slide 29
ZERO-SPAN PERFORMANCE OF A MILL PULP
[Zero-span strengths of ECF and TCF pulps & fiber characteristics]

Slide 30
SUMMARY OF FINDINGS
• Curl induced during pulping in a peg mixer occurs with kraft-oxygen delignified pulps.
• A significant reduction in never-dried zero-span strength is found with bulk HCl treatment.
• Significant "cutting" was found in the 12" S.W. Disk Refiner for a pulp subjected to 30 minutes HCl treatment.
• Significant reductions in never-dried zero-span strength were found when compared with dry zero-span strength for a number of mill pulps.

Slide 31
SUMMARY OF FINDINGS
• A measure of the loss in zero-span strength due to chemical and mechanical factors is the ratio of never-dried to dried zero-span strength.
• Never-dried fiber strength is proposed as being directly related to a fiber's propensity to "cutting" during refining.

Slide 32
FUTURE WORK
• Determine the impact of a pulp's propensity to "cutting" on water removal and paper property development for selected mill pulps.
• Evaluate the potential of using low consistency turbulent flow for producing desirable changes in fiber structure.
PROJECT OBJECTIVE

Determine how changes in fiber structure and the means to produce them, are related to improved paper machine productivity, paper quality, and reduced energy consumption.

Relevant Research Lines:
PROJECT DELIVERABLES

1. Methodology for determining a pulp’s response to refining.

SUMMARY OF ACTIVITY
(October 1999 - March 2000)

- Measurement of a fibers propensity to “cutting”
- Used 12” Sprout-Waldron disk refiner to investigate fiber “cutting”
- Established a model for improving the (disk) refining process using the Invention Machine software
INTER-UNIT CO-OPERATION

- Pulping and Bleaching (F013)
 Tom McDonough
 Chuck Courchene
 Craig Jackson

- Paper Physics (F024)
 John Waterhouse
 Derek Page
 Hiroki Nanko
 Miranda Bliss

F013 and F024 Project Objectives

- (F013) - To evaluate the effects of delignification processes and ECF bleaching on fiber properties, paper properties, and refining behavior.

- (F024) - Determine how changes in fiber structure and the means to produce them, are related to improved paper machine productivity, paper quality, and reduced energy consumption.
COOPERATIVE PROJECT BETWEEN PULPING & BLEACHING AND PAPER PHYSICS UNITS

Kraft versus Kraft-Oxygen Delignification

Unbleached Zero Span Strength Nm/g

<table>
<thead>
<tr>
<th>Material & Cook</th>
<th>Unbl Kappa no</th>
<th>Wet</th>
<th>Dry</th>
<th>Rewet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>N. P. chips ⇒ conventional kraft</td>
<td>110.1</td>
<td>104.7</td>
<td>122.5</td>
<td>112.4</td>
</tr>
<tr>
<td>N. P. chips ⇒ conventional kraft</td>
<td>98.1</td>
<td>120.6</td>
<td>129.8</td>
<td>140.6</td>
</tr>
<tr>
<td>N. P. chips ⇒ conventional kraft</td>
<td>17.1</td>
<td>114.7</td>
<td>114.5</td>
<td>140.0</td>
</tr>
<tr>
<td>kappa 30 ⇒ O oxygen</td>
<td>20.4</td>
<td>82.7</td>
<td>104.1</td>
<td>96.3</td>
</tr>
<tr>
<td>kappa 30 ⇒ O oxygen</td>
<td>15.7</td>
<td>89.4</td>
<td>104.1</td>
<td>107.9</td>
</tr>
<tr>
<td>kappa 30 ⇒ O oxygen</td>
<td>12.1</td>
<td>73.4</td>
<td>89.4</td>
<td>97.4</td>
</tr>
<tr>
<td>kappa 30 ⇒ O oxygen</td>
<td>10.7</td>
<td>69.2</td>
<td>87.3</td>
<td>95.7</td>
</tr>
</tbody>
</table>

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company’s Use Only)

VARIATION OF WET/DRY ZERO SPAN RATIO WITH KAPPA No.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company’s Use Only)
VARIATION OF WET/DRY ZERO SPAN RATIO WITH KAPPA No.

CURL VARIATION WITH MIXER TYPE

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
SEVERITY OF REFINING

CHANGE IN TENSILE INDEX WITH SEVERITY OF REFINING AT CONSTANT SPECIFIC ENERGY
(AFTER KEREKES, R.)

![Graph showing change in tensile index with severity of refining]

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)

Taken from Croney, C., Ouellet, D., & Kerekes, R.J.
5th International Paper & Board Industry Conference Scientific & Technical Advances in Refining, Vienna, Austria April, 1999

Figure 12: Change in breaking length as a function of Specific Energy per Impact (%) for hardwood and softwood pulps at P=170 kWh/t.

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
VARATION OF FIBER LENGTH REDUCTION WITH SPECIFIC EDGE LOAD
Based on data of Kibblewhite, R.P. Fundamental Research Symposium 93

![Graph showing variation of fiber length reduction with specific edge load]

SEL = Power/bar length/sec

SIMULATING PULPING & BLEACHING DEGRADATION PROCESSES

BULK ACID HYDROLYSIS
2.6 M HCl @ 2.5% T= 45°C
Fig. 1. Zero-span strength of well-bonded sheets of black spruce pulp plotted against cellulose content. The figures indicate % yield (Page et al. 1985).

Variation of Wet/Dry Zero Span Ratio with Bulk HCl Treatment

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
NEVER DRIED ZERO SPAN STRENGTH

![Graph showing Wet Z. Span Strength vs Number of Passes for Control and Bulk HCl.]

SPROUT-WALDRON 12" DISK REFINER FREENESS VARIATION

![Graph showing CSF mL. vs Number of Passes for Control and Bulk HCl.]

IPST Confidential Information - Not for Public Disclosure (For IPST Member Company's Use Only)
SPROUT-WALDRON 12" DISK REFINER
FQA FINES VARIATION

UNREFINED PULP FINES
Control 3.08 % Bulk HCl Treated 6.01%
REFINED PULP FINES
Control 10.3% Bulk HCl Treated 28.1%

PULP AND FINES PROPERTIES

<table>
<thead>
<tr>
<th>PASSES/SAMPLE</th>
<th>% FINES</th>
<th>Pulp pH</th>
<th>Fines pH</th>
<th>Zeta Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/ Untreated</td>
<td>3.08</td>
<td>5.46</td>
<td>5.72</td>
<td>-</td>
</tr>
<tr>
<td>13/Untreated</td>
<td>10.3</td>
<td>5.23</td>
<td>5.60</td>
<td>20.0</td>
</tr>
<tr>
<td>0/Bulk HCl</td>
<td>6.01</td>
<td>3.34</td>
<td>4.20</td>
<td>-</td>
</tr>
<tr>
<td>13/Bulk HCl</td>
<td>28.1</td>
<td>3.32</td>
<td>4.24</td>
<td>-8.2</td>
</tr>
</tbody>
</table>
Figure 11. Proposed paths of weak-point formation and resulting effects.
ZERO-SPAN PERFORMANCE OF A MILL PULP

![Graph showing zero-span strength vs. pulp viscosity (Nm/g)]

- **Dry**
- **Wet**

ZERO-SPAN PERFORMANCE OF A MILL PULP

![Graph showing zero-span ratio vs. pulp viscosity (Wet/Dry, Rewet/Dry)]
ZERO-SPAN PERFORMANCE OF A MILL PULP

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>PULP ECF 0 revs.</th>
<th>PULP ECF 3000 revs.</th>
<th>PULP TCF 0 revs.</th>
<th>PULP TCF 3000 revs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSF ml</td>
<td>672</td>
<td>404</td>
<td>654</td>
<td>354</td>
</tr>
<tr>
<td>ZS wet Nm/g</td>
<td>104.7</td>
<td>129.6</td>
<td>93.4</td>
<td>101.3</td>
</tr>
<tr>
<td>ZS dry Nm/g</td>
<td>111.6</td>
<td>168.5</td>
<td>117.4</td>
<td>144.4</td>
</tr>
<tr>
<td>ZS wet/ZS dry</td>
<td>0.938</td>
<td>0.770</td>
<td>0.705</td>
<td>0.702</td>
</tr>
<tr>
<td>Length wtd.</td>
<td>2.26</td>
<td>2.38</td>
<td>2.27</td>
<td>2.32</td>
</tr>
<tr>
<td>Curl arith.</td>
<td>0.107</td>
<td>0.057</td>
<td>0.110</td>
<td>0.057</td>
</tr>
<tr>
<td>% fines wtd</td>
<td>1.10</td>
<td>0.805</td>
<td>1.01</td>
<td>0.63</td>
</tr>
</tbody>
</table>

SUMMARY OF FINDINGS

- Curl induced during pulping in a peg mixer occurs with kraft-oxygen delignified pulps.
- A significant reduction in never-dried zero-span strength is found with bulk HCl treatment.
- Significant “cutting” was found in the 12” S.W. Disk Refiner for a pulp subjected to 30 minutes HCl treatment.
- Significant reductions in never-dried zero-span strength were found when compared with dry zero-span strength for a number of mill pulps.
SUMMARY OF FINDINGS

- A measure of the loss in zero-span strength due to chemical and mechanical factors is the ratio of never-dried to dried zero-span strength.
- Never-dried fiber strength is proposed as being directly related to a fiber’s propensity to “cutting” during refining.

FUTURE WORK

- Determine the impact of a pulp’s propensity to “cutting” on water removal and paper property development for selected mill pulps.
- Evaluate the potential of using low consistency turbulent flow for producing desirable changes in fiber structure.
FUNDAMENTALS OF INTERFIBER BONDING

STATUS REPORT

FOR

PROJECT F025

Hiroki Nanko
Shaobo Pan

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
Fundamentals of Interfiber Bonding (F-025)

Spring PAC 2000

Hiroki Nanko
Shaobo Pan

IPST Confidential Information - Not For Public
(For IPST Member Company’s Use Only)

Fundamentals of Interfiber Bonding

Project Personnel

• IPST Personnel
 Hiroki Nanko, PI
 Shaobo Pan, Staff

• PAC Subcommittee Personnel
 Anthony Colasurdo, Chair

IPST Confidential Information - Not For Public
(For IPST Member Company’s Use Only)
Fundamentals of Interfiber Bonding

Relevant Research Line

Line 11 – Improve the ratio of product performance to cost for pulp and paper products by 25%

Project Deliverables

- Microscopy techniques for visualizing papermaking polymers
- Strategy for improving the effectiveness of bonding agents
- Insight for designing new bonding agents
Fundamentals of Interfiber Bonding

Related Work

- Student Project:
 By Michelyn McNeal

 "Visualization of Guar Gum Adsorption to Pulp"

Fall '99 Status

- C-PAM visualization was completed
- Guar gum visualization was started
- C-starch visualization was started
- Examination of bond failure was planned
Fundamentals of Interfiber Bonding

Tasks/Status for Spring 2000

- Cationic guar gum visualization is near completion
- Cationic starch visualization is near completion
- Examination of bond failure will begin in summer

Fundamentals of Interfiber Bonding

Discussion

- Visualization of cationic starch adsorption
- Visualization of cationic guar gum adsorption
Cationic Starch

[Starch Structure]

Amylose

\[\text{Tertiary Aminoalkyl Ethers of Starch} \]

\[\text{Quaternary Ammonium Starch Ethers} \]

Amylopectin

Previous Results

Cationic Corn Starch (0.5%)
Previous Results

Cationic Corn Starch (0.5%)
Characteristics of Cationic Starch Adsorption (common features to corn and potato starches)

- Non-uniform adsorption to the fibrils
- Adsorption forming stretched strands
- Adsorption forming either loose or dense agglomerations

Short Strands with Dense Agglomerations (Corn)
Characteristics of Cationic Corn Starch Adsorption

Dosage: 1.0%
Charge density: 0.35% N
Mixing: level 3 for 1 minute

- Starch is adsorbed in a loosely agglomerated form
- Formation of short strands
Loose agglomerations and short strands

Long strands
Characteristics of Cationic Potato Starch Adsorption

Dosage: 1.0%
Charge density: 0.35% N
Mixing: level 3 for 1 minute

- Frequent formation of long strands (relative to corn starch).
- Adsorption of larger agglomerations than with cationic corn starch.
Effect of Mixing Conditions (Potato)

- Low shear / short time:
 long strands
 loose agglomerations

- Low shear / long time:
 shorter, fewer strands
 loose agglomerations

- High shear / long time:
 shorter, fewer strands
 dense agglomerations

Mixing: scale 3 for 1 min
Effect of Dosage (Potato)

Dosage: 0.5, 1.0, 1.5 %
Charge density: 0.35%N
Mixing: level 4 for 20 min

- 0.5% Dosage:
 - Short strand formation
 - Small agglomerations on the fibrils

- 1.0% Dosage:
 - Long strand formation
 - Higher coverage by small starch agglomerations

- 1.5% Dosage:
 - Increased frequency of long strand formation
 - Higher coverage by large agglomerations
Effect of Charge Density (Potato)

Dosage: 1.0 %
Charge density: 0.15, 0.29, 0.35%N
Mixing: level 4 for 20 min

- Strands become more agglomerated with increasing charge density
- Greater starch adsorption occurs at higher charge density

Charge density: 0.15% N
Conclusions

- Cationic starch is adsorbed in an agglomerated form.
- Agglomerated strands are non-linear and non-uniform.
- Increasing dosage increases the size of agglomeration.
- Increasing shear densifies the starch agglomerations.
- Potato starch is more readily adsorbed, forms longer strands and larger agglomerations than corn starch.
Guar Gum

Cationic Guar Gum Adsorption Behavior

- Mixing time
- Increasing shear
- Increasing dosage
Effect of Mixing Time
Dosage: 0.15% (3 #/T)
Propeller stirrer: 500 rpm

- 0.5 minute
- 1 minute
- 2 minutes

- Surface adsorption of guar increases with mixing time
- Strands become longer and thicker

0.5 Minute
Effect of Increasing Shear

Dosage: 0.15% (3 #/T)
Mixing Time: 2 minutes

- 200 rpm
- 500 rpm
- 1000 rpm

- From 200 to 500 rpm, guar adsorption increases and strands become thicker and less linear.
- Guar strands are rarely found after exposure to extreme shear
Effect of Increasing Dosage

Propeller Speed: 500 rpm
Mixing Time: 1 minute

- 0.05 % (1 #/T)
- 0.15 % (3 #/T)
- 0.25 % (5 #/T)
- 0.50 % (10 #/T)

- Guar adsorption increases with the dosage
- Strands become both longer and thicker
- Agglomerated guar becomes more prevalent
- At high doses, guar strands tend to form a network
Conclusions

- Cationic guar gum forms thin, linear, extended strands at low dosage.
- Strands thicken as the dosage increases.
- The strands form networks at high concentrations.

Ongoing Study

- Thick Stock Guar Addition Followed by Dilution
 - Mixing Time
 - Dosage
- Papermaking and Strength Testing
- Other Guar Derivatives
Fundamentals of Interfiber Bonding

General Conclusions

- The staining method developed for visualizing cationic polyacrylamide works well for cationic starches and guar.

- The influence of several conditions on the adsorption behavior of these bonding agents can be analyzed using this method.

Overall Project Name

Schedule

<table>
<thead>
<tr>
<th>Goals</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualize Starch</td>
<td>----</td>
<td>----</td>
<td>-x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Visualize Gums</td>
<td>----</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond Failure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(IPST Confidential Information - Not For Public
(For IPST Member Company's Use Only)
LIQUID SUBSTRATE INTERACTIONS

STATUS REPORT

FOR

PROJECT FO44

Wayne Robbins
Tabitha Horton

Institute of Paper Science and Technology
500 10th Street, N. W.
Atlanta, Georgia 30318
Liquid/Substrate Interactions
Spring PAC 2000

Principal Investigator: Wayne Robbins
Staff: Tabitha Horton

Relevant Research Line

Improve the ratio of product performance to cost for pulp and paper products 25% by developing:
+ models, algorithms, and functional samples of fibrous structures and coatings which describe and demonstrate improved convertibility and end-use performance
+ break-through papermaking and coating processes which can produce the innovative webs with greater uniformity than that achieved by current processes.
Relevant Research Line, cont.

Develop and implement relationships between materials & manufacturing variables AND paper structure, properties, & uniformity

Develop and implement relationships between paper structure, properties, & uniformity AND end use performance and convertibility

Improved papermaking processes

Improved converting processes

Deliverables

Model(s) describing how substrate properties affect interactions of liquid. (June 2001)

Including: inks (initial emphasis), size press liquids, coatings, among others (later).

Measurement techniques, direct and traceable, that can be used over more than one grade range. (June 2000)

Liquid application techniques that simulate full scale processes. (June 2000)
Additional Support

There is presently no support beyond the PAC funding for this project.

Background

The project was staffed and work was initiated by 30 September 1999.

GOALS FOR FY 99-00:

1) Complete a baseline literature review

2) Complete selection of substrate characterization methods.
FY 99-00 GOALS, cont.

3) Complete selection of liquid application techniques.

4) Evaluate the JMP Statistical Discovery program as a tool to evaluate major effects.

Progress Against Goals

Goal # 1: Complete baseline literature survey.

Status: Complete

Significant Findings:
1) No shortage of relevant theory!

2) Application of “theory to practice” is limited by one variable experiments or poor multivariable experimental design.
Progress Against Goals, cont.

Goal # 2: Complete selection of substrate characterization methods.

Status: In Progress

Significant Findings:

1) Both profilometric and interferometric methods of roughness determination are traceable, but the profilometric method is more representative of the bulk properties of the sheet.

2) The profilometric method appears sensitive over several grade ranges.

3) Surface roughness and contact angle, water appear confounded and sensitive to moisture content over a range of grades.
Work In Progress

1) Design and conduct an experiment to understand contact angle and roughness independently.

2) Establish the relationship between Apparent Density pore size distribution measurements.

3) Establish traceability for contact angle, water and single fiber contact angle measurements.

Progress Against Goals, cont.

Goal #3: Complete selection of liquid application techniques.

Status: In Progress

Significant Findings: None to date.
Work In Progress

A screening experiment was performed where substrate properties and liquid viscosity were varied.

Vanadium salted liquids were applied using gravure and Bristow Wheel liquid application techniques.

Analyses are in progress to establish the depth of penetration, and ultimately the substrate properties dominating liquid penetration.

Goal # 4: Evaluate the JMP Statistical Discovery program as a tool to identify major effects.

Status: Complete

Significant Findings:
1) The program was used successfully to evaluate a data set involving the printability of linerboard, and resulted in in identification of major and minor effects.
FY 00-01 Goals

Perform designed experiments using the independent variables:
1) Substrate
 - pore structure
 - roughness
 - surface energy
2) Liquid
 - viscosity
 - surface tension
 - volume

3) Liquid Application
 - pressure

In an effort to achieve early deliverables, substrate type, liquid volume, viscosity and pressure applications will be limited to uncoated paper and board printing applications.
Issues

1) Collection of roll quantity substrates that represent a range of grades that are printed using flexographic, offset and gravure methods.