AN ANALYSIS OF A CLASS OF LANCHESTER-TYPE
WARFARE MODELS

A THESIS
Presented to
The Faculty of the Division of Graduate Studies
By
Dennis Milton White

In Partial Fulfillment
of the Requirements for the Degree
Master of Science in the School of Industrial
and Systems Engineering

Georgia Institute of Technology
June, 1977
AN ANALYSIS OF A CLASS OF LANCHESTER-TYPE
WARFARE MODELS

Approved:

Richard D. Wright, Chairman

Leslie G. Callahan

Gunter P. Sharp

Date approved by Chairman 2 June 72
ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to Professor Richard D. Wright, my advisor and true friend. He was a constant source of inspiration, advice, and guidance throughout this thesis research and my stay at Georgia Tech. I would also like to express my appreciation to the other members of my thesis committee, Dr. Leslie G. Callahan and Dr Gunter P. Sharp, for their numerous helpful suggestions on the content and scope of this study.

Special thanks are in order to Allen McMillon for the encouragement and motivation he provided during this study.

To my wife, Lynnette, sons, Scott and Bobby, and daughter Diana, I say "thank you" for your understanding of the long hours required of this endeavor, which has prevented me from fulfilling the normal responsibilities of a husband and father.

Finally, to Barbara Petersen and husband, Major Lawrence Petersen, I wish to express my appreciation for the excellent typing and editing of this thesis.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. ii
LIST OF ILLUSTRATIONS ... v
Chapter

I. INTRODUCTION .. 1
 Problem
 Objective

II. LANCHESTER EQUATIONS .. 3
 Original Development
 Extension of Lanchester Theory
 Recent Developments

III. GENERAL LANCHESTER MODEL 14
 Model Equation Development
 Ammunition Constraint Functions
 Ammunition Resupply
 Artillery Fire Support
 Battle Termination Rules
 Measures of Effectiveness
 Model Verification

IV. BATTLE ENGAGEMENT RESULTS 29
 The Base Run
 Surrenders and Desertions
 The Gamma Function
 Engagements With Artillery Fire Support
 Engagements With Ammunition Constraint
 and Resupply

V. CONCLUSIONS AND RECOMMENDATIONS 49
 Conclusions
 Recommendations
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPENDIX A</td>
<td>53</td>
</tr>
<tr>
<td>APPENDIX B</td>
<td>57</td>
</tr>
<tr>
<td>APPENDIX C</td>
<td>83</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Deterministic vs Stochastic Models</td>
<td>11</td>
</tr>
<tr>
<td>2. Comparison of Results from Deterministic and Stochastic Attrition Models</td>
<td>12</td>
</tr>
<tr>
<td>3. Causal Diagram: Lanchester Model</td>
<td>16</td>
</tr>
<tr>
<td>4. Parameters for Lanchester Model</td>
<td>18</td>
</tr>
<tr>
<td>5. Function For Rounds Fired Per Soldier Per Minute</td>
<td>20</td>
</tr>
<tr>
<td>6. Function For Improved Fire Efficiency and Target Selection</td>
<td>22</td>
</tr>
<tr>
<td>7. Parameter Values for Base Run</td>
<td>30</td>
</tr>
<tr>
<td>8. Results of Base Run</td>
<td>31</td>
</tr>
<tr>
<td>9. Graph of BINF, RINF, BAMM, RAMM and MOE (10) for Base Run</td>
<td>33</td>
</tr>
<tr>
<td>10. Graph of MOE(1), MOE(2), MOE(3) and MOE(4) for Base Run</td>
<td>34</td>
</tr>
<tr>
<td>11. Graph of MOE(5), MOE(6), MOE(7), MOE(8) and MOE(9) for Base Run</td>
<td>35</td>
</tr>
<tr>
<td>12. Battle Termination Time as a Function of Gamma and Force Size</td>
<td>37</td>
</tr>
<tr>
<td>13. Model Sensitivity to Gamma</td>
<td>38</td>
</tr>
<tr>
<td>14. Battle Outcomes as a Result of Surrenders and Desertions Continued</td>
<td>40</td>
</tr>
<tr>
<td>15. Battle Outcomes With Supporting Artillery</td>
<td>43</td>
</tr>
<tr>
<td>Figure</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>16. Engagements With Short Ammunition Resupply Times</td>
<td>45</td>
</tr>
<tr>
<td>17. Engagements With RED Ammunition Resupply Only</td>
<td>47</td>
</tr>
<tr>
<td>18. Equal Force Size Engagements With RED Ammunition Resupply Only</td>
<td>48</td>
</tr>
</tbody>
</table>
CHAPTER I

INTRODUCTION

Problem

There has been a recent resurgence of interest in Lanchester-type warfare models by military analysts. In addition, there is a growing interest at Georgia Tech. in the use of analog or syndetic analog-digital computer methods for studying parametrically by solving the dynamics of combat analytically intractable Lanchester-type models. It was hoped that a hybrid computer would be installed at Georgia Tech. within the time span of this thesis work, in order to begin a preliminary investigation as to the feasibility of analog-digital simulation of these types of models.

Objective

The objective of this thesis is to create a general digital model of Lanchester-type equations of infantry combat engagements that includes:

1. Time delays for artillery fire support.
2. Ammunition constraints on fire effectiveness.
3. Resupply of ammunition with associated delays.
This model can be used to experiment with, to show the sensitivity of various MOEs to changes in some of 40 model parameters, and to illustrate the magnitude of the computational tasks and the potential for syndetic calculations, coupled with convenient displays of results. This thesis can be a base for further investigation into Lanchester-type warfare models.

Beyond reviewing the existing literature, in itself an important task, this thesis will contribute to the structure of Lanchester-type models by including ammunition inventory constraints. It is clear that the dynamics of battle do depend on ammunition supply and constraints, and the model presented here is the first to consider these factors.
CHAPTER II
LANCHESTER EQUATIONS

Original Development

The first mathematical analysis of the relationship between opposing forces in combat was made by F. W. Lanchester (24) in 1916, and is known as Lanchester Equations of Warfare. These models are simultaneous differential equations which describe the loss rates of the opposing sides over time. Lanchester's original work was formulated to depict combat between two homogeneous forces in order to justify the principle of concentration of forces under modern conditions of "aimed fire". Two laws were formulated by Lanchester, the Linear Law and the Square Law.

Linear Law

Lanchester's linear law applies to either individual duels between members of opposing forces or combat situations where firepower is randomly directed on an area known to be occupied by the opposing force.

In the case of individual duels, the differential models are:
\[\frac{dB}{dt} = -KN \quad (1) \]

\[\frac{dR}{dt} = -JN \]

where

\[\frac{dB}{dt}, \frac{dR}{dt} = \text{the attrition rate of the BLUE and RED forces, respectively, with respect to time,} \]

\[J, K = \text{the coefficient of effectiveness of the BLUE and RED forces, respectively, and} \]

\[N = \text{the number of duels per unit of time}. \]

In the case of randomly directed firepower, the differential models are:

\[\frac{dB}{dt} = -KB(t)R(t) \quad (2) \]

\[\frac{dR}{dt} = -JB(t)R(t) \]

where \(B(t) \) and \(R(t) \) are the number of surviving units of BLUE and RED forces, respectively, at time \(t \).

Equations (1) is a special case of Equations (2) where \(B(t) = R(t) = 1 \) in an individual duel and Equations (2) becomes:
When the number of duels per unit of time are considered, Equations (1) are obtained.

The solution to Equations (2) is:

\[B(t) = B_0 e^{(K R_0 - J B_0) t - J B_0} \]

\[R(t) = R_0 e^{(J B_0 - K R_0) t - K R_0} \]

where

- \(B_0 \) = initial size of BLUE FORCE.
- \(R_0 \) = initial size of RED force.

The solution to Equations (2) with time eliminated is:

\[J (B_0 - B) = K (R_0 - R) \]

The above solution (2'') is also a solution to Equations (1), and indicates that there is no particular advantage in concentrating forces. That is, the effect of force size is linear.
Lanchester (24) stated that two sides are equally matched when the ratio of their attrition is equal to the ratio of their numerical strengths, or

\[\frac{dB}{dR} = \frac{B}{R} \]

By substituting the values for dB and dR from Equations (1) into the above equality results in:

\[\frac{K}{J} = \frac{B}{R} \]

This implies that for the linear law, two opposing forces are equally matched when the ratio of their numerical strength is equal to the reciprocal of the ratio of their effectiveness.

Square Law

Lanchester's square law applies to the case where the opposing forces are exposed to each other and execute aimed fire at a given rate with given single-shot hit probability. In this case it is assumed that each participant can fire at any member of the opposing force.

The differential models for this case are:

\[\frac{dB}{dt} = -KR(t) \quad (3) \]
\[\frac{dR}{dt} = -JB(t) \]

The solution to Equations (3) is:

\[B(t) = B_0 \cosh t \sqrt{JK} - R_0 \sqrt{K/J} \sinh t \sqrt{JK} \quad (3') \]

\[R(t) = R_0 \cosh t \sqrt{JK} - B_0 \sqrt{J/K} \sinh t \sqrt{JK} \]

The solution to Equations (3) with time eliminated is:

\[J(B_0^2 - B^2) = K(R_0^2 - R^2) \quad (3'') \]

The condition for equality of fighting strength is seen to be:

\[\frac{K}{J} = \frac{B^2}{R^2} \]

This implies that two opposing forces are equally matched when the square of the ratio of their numerical strengths is equal to the reciprocal of the ratio of their effectiveness. Thus, for the square law, it is more advantageous to increase the number of participants in a battle than it is to increase by the same factor the effectiveness of weapons.
Shortcomings of Original Models

Although Lanchester certainly sparked the interest in the mathematical modeling of combat, there were many shortcomings to his original models. Taylor (39) sums up these shortcomings as:

1. Coefficients constant over time.
2. No movement of forces (e.g. advance or retreat).
3. Considers homogeneous forces only.
4. Battle termination conditions not given.
5. Deterministic, not probabilistic.
6. No replacements or withdrawals.
7. Target acquisition force level independent.
8. Fire allocation not explicitly considered.
9. No consideration of noncombat losses (e.g. surrenders, desertions).
10. No logistic considerations.
11. No way of predicting Lanchester attrition-rate coefficients.
12. Suppressive effects of weapons not considered.
13. Effects of terrain not considered.

Extension of Lanchester Theory

Since Lanchester's original work in 1914, military analysts have employed simple deterministic differential equation models to obtain insights into the dynamics of combat, even though combat between two military forces
is a complex random process. World War II provided a major stimulus for military scientists to expand, test, and use the primordial Lanchester models employing analytical solution methodologies and using field data.

Many of the shortcomings in Lanchester's original models have been investigated. For example, the idea of time varying attrition-rate coefficients has been investigated by Barfoot (2), Bonder (3, 4), Karr (20), Snow (32), Taylor (33, 36), and others by estimating the coefficients from weapon system performance data. Clark (10) developed attrition-rate coefficient estimates using statistical (maximum likelihood) estimation from Monte Carlo simulation output.

Work has been done by Helmbold (18) and Weiss (42, 43) concerning battle termination conditions. Their conclusions were that the force levels alone are not the significant variables for predicting battle outcome as one might be led to believe.

In the area of the probabilistic nature of combat between two forces, rather than the deterministic case, as was in Lanchester's original work, many authors (4, 6, 7, 8, 10, 20, 25, 31, 41) have added contributions to this field. The general conclusions, as depicted by Taylor (39), are that biases exist between the deterministic and stochastic models, with the stochastic model being more realistic.
Figure 1 shows the difference in model formulation between the deterministic and stochastic models. Figure 2 shows the bias that results between the two models.

Kisi and Hirose (22) and Schaffer (29) have done much to contribute to the study of Lanchester equations depicting ambush engagements. Schaffer includes in his model, the morale and discipline coefficients associated with surrenders and desertions (noncombat losses) from both the combat forces and the reserve replacement forces.

Recent Developments

The development of large capacity digital computer technology in the 50's and 60's made possible the modeling and simulating of large numbers of physical and tactical variables, and resulted in a variety of specialized stochastic simulations. Relatively little attention was directed at improving Lanchester models. By the early 1970's, there was increased concern as to the efficiency and cost of these large-scale, stochastic simulations. Lanchester-type models were thought of as suggesting a useful means of aggregating the myriad of combat environmental variables into attrition-rate coefficients and force levels. In addition to the adaption of the Lanchester-type model to complementing the present generation of large-scale simulations, there appears to be an increased interest in extending them to analyze
<table>
<thead>
<tr>
<th>DETERMINISTIC MODEL</th>
<th>STOCHASTIC MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{dB}{dt} = -JR)</td>
<td>(\frac{dn}{dt} = -Jn + J \sum_{n=0}^{N_0} nP(t,0,n))</td>
</tr>
<tr>
<td>(\frac{dR}{dt} = -KB)</td>
<td>(\frac{dm}{dt} = -Km + K \sum_{m=0}^{M_0} mP(t,m,0))</td>
</tr>
</tbody>
</table>

where

- \(B(t), R(t) \) are force levels
- \(\bar{m}(t), \bar{n}(t) \) are average force levels

Initial values:

- \(B(t=0) = B_0, R(t=0) = R_0 \)
- \(\bar{m}(t=0) = m_0, \bar{n}(t=0) = n_0 \)

Figure 1: Deterministic vs Stochastic Models
Figure 2: Comparison of Results from Deterministic and Stochastic Attrition Models
problems of replenishment, fire direction and tactical situations involving troop movement and both direct and indirect firing.

Theoretical work by Schaffer, Taylor, Weiss, and others (1, 5, 9, 14, 19, 21, 23, 29, 33, 36, 44) has again extended the classical Lanchester formulation by including simple attrition factors (e.g. desertion or withdrawal), the effect of suppressing fire, battle termination rules, and time-varying parameters with simple form. These models have been constrained to allow closed-form analytical solution. Current work by Willis (45), for example, has begun to deal with more complex models which trade analytical tractibility for increased realism. Sources of complexity are highly non-linear equations for force attrition, non-linear output measures, and the \(n \times n \) problem (combat involving more than two homogeneous forces).

The current mathematical interests in Lanchester-type equations are trying to predict battle outcomes from initial time rates, developing generalized \(\cosh / \sinh \) functions for the solution to time-varying coefficients, and the area of differential games.

For the reader’s future reference, a selected bibliography on Lanchester-type models of warfare is included. Most of these references are journal articles that have appeared in the open literature, but represent a fairly complete list in the area.
CHAPTER III

GENERAL LANCHESTER MODEL

Model Equation Development

There have been many different Lanchester-type models developed for the analysis of combat engagements, with rarely any two alike. After reviewing the literature on existing models, it was decided to start by using Lanchester's original model for the square law as in Equations (3). To this model was added:

1. Losses due to surrenders and desertions.
2. Rate of fire for infantry weapons.
3. Suppression factors due to opposing artillery fire.
4. A gamma function to allow for switching from aimed fire to area fire.
5. Ammunition constraint functions on fire effectiveness.

A general causal diagram depicting this model is shown in Figure 3. After taking Lanchester's original model and adding the above listed functions, the following set of equations were constructed to represent this model:
\[\frac{dB}{dt} = -K(1-S_B)B(t)\gamma r_B f(A_B) - D_B - \alpha_B W_B B(t) \] (4)

\[\frac{dR}{dt} = -J(1-S_R)R(t)\gamma r_R f(A_R) - D_R - \alpha_R W_R R(t) \]

where

\(J, K \) = the coefficient of effectiveness of the BLUE and RED forces, respectively,

\(S_B, S_R \) = suppression factor for BLUE and RED forces due to opposing fire,

\(B(t), R(t) \) = number of surviving BLUE and RED forces at time \(t \),

\(B(t)^\gamma, R(t)^\gamma \) = form of the law, where \(\gamma = 0 \) is the square law and \(\gamma = 1 \) is the linear law,

\(r_B, r_R \) = rate of fire (rounds per minute) for BLUE and RED forces,

\(f(A_B), f(A_R) \) = ammunition constraint functions for BLUE and RED forces,

\(D_B, D_R \) = losses due to surrenders and desertions for the BLUE and RED forces,

\(\alpha_B, \alpha_R \) = coefficients of effectiveness for the supporting artillery fire for the BLUE and RED forces, and

\(W_B, W_R \) = number of supporting artillery weapons for the BLUE and RED forces.
Figure 3. Causal Diagram: Lanchester Model
There is no general solution available for the above model; however, accurate solutions can be obtained through the use of high speed digital simulation. A computer program for the solution and analysis of this model was written in FORTRAN, and a complete listing of the model is in Appendix C.

This model has 40 parameters that can be varied by the user at the start of each run. For a series of battle engagements, the parameters can be made either permanent or temporary. A permanent parameter change remains in effect for the entire series of runs, whereas a temporary parameter change, applies only to the current run. A history of the 40 parameters is shown in Figure 4. The parameters and their values will be discussed later in this chapter, as will the different parts of the model equations, with the exception of the losses due to surrenders and desertions, which will be discussed in Chapter IV.

Ammunition Constraint Functions

Before military engagement, prior planning must be conducted in ammunition logistics to include both the amount of ammunition to be carried per soldier, and the resupply of ammunition if necessary. The amount of ammunition carried per soldier is called the "basic load" (parameters 21 and 22), and is normally standard for each soldier for a particular type of weapon. The weight of the
1. SOLUTION STEP SIZE
2. PRINT PERIOD
3. PLOT PERIOD
4. VARIABLE STEP SIZE MAX %
5. ENC BATTLE FORCE RATIO
6. INITIAL BLUE INFANTRY
7. INITIAL RED INFANTRY
8. GAMMA DENSITY CORRECTION
9. RED AMMO CRIT MIN INV
10. BLUE AMMO CRIT MIN INV
11. BASE EFF BLUE INF FIRE
12. BASE EFF RED INF FIRE
13. BASE EFF BLUE ARTY FIRE
14. BASE EFF RED ARTY FIRE
15. BASE RATE FIRE RED INF
16. BASE RATE FIRE BLUE INF
17. RED S+D PER RED CASUAL
18. BLUE S+C PER BLUE CASUAL
19. RED S+D DUE FORCE RATIO
20. BLUE S+D DUE FORCE RATIO
21. INT BLUE AMMO PER MAN
22. INT RED AMMO PER MAN
23. DELAY CALL BLUE ARTY
24. DELAY CALL RED ARTY
25. % RED SUPF OF BLUE INF
26. % BLUE SUPP OF RED INF
27. NUM BLUE ARTY TUBES
28. NUM RED ARTY TUBES
29. BLUE INF TV EFF AT ZERO
30. BLUE INF TV EFF TC
31. RED INF TV EFF AT ZERO
32. RED INF TV EFF TC
33. BLUE AMMO CONS FIRE EFF
34. RED AMMO CONS FIRE EFF
35. BLUE RORD PT AMMO/MAN
36. RED RORD PT AMMO/MAN
37. BLUE ORD UP TO AMMO/MAN
38. RED ORD UP TO AMMO/MAN
39. BLUE AMMO DELAY TIME
40. RED AMMO DELAY TIME

Figure 4. Parameters for Lanchester Model
ammunition is the biggest factor in determining the basic load.

This model incorporates two functions associated with the ammunition constraints. First is the number of rounds fired per minute per soldier (parameters 15 and 16). If there is plenty of ammunition, each soldier would probably fire a fairly constant number of rounds per minute for the duration of the engagement. However, at some point in the engagement, as the ammunition supply gets lower, the soldier will start firing at a slower rate per minute in fear of depleting his ammunition supply completely. This model considers this point in terms of a critical ratio in minutes of ammunition (parameters 9 and 10) remaining per soldier. This "critical ratio" can be varied as a parameter in the model, and is approximated by the exponential distribution in the form of:

\[A_B, A_R = 1 - e^{-\frac{d}{e}} \]

where

\(d = \) the ratio of remaining ammunition per man,
\(e = \) the critical ratio of ammunition per man.

Figure 5 shows a graph of this function.

The second function associated with ammunition constraints is the function for target selection and fire efficiency. As the ammunition supply reaches the critical
Figure 5. Function For Rounds Fired Per Soldier Per Minute
ratio, the soldier will not only fire fewer rounds per minute; but he will also be more selective in his target, and therefore, the probability of a hit per round fired increases. This function is also approximated by the exponential distribution in the form of:

\[1 - (1-X)e^{\frac{-d}{e}} \]

where

\(X \) = maximum efficiency of firepower with \(d \) and \(e \) the same as defined in the previous function.

A graph of this function is shown in Figure 6.

Ammunition Resupply

In the ammunition resupply sector, there are six parameters that can be specified for each engagement. First, it must be determined at what point in the engagement should the ammunition be ordered. This is specified in terms of the amount of ammunition remaining per man (parameters 35 and 36). Once the ammunition reorder point is reached, the amount of ammunition to order must be determined (parameters 37 and 38). There is then a delay time associated with the receipt of the ammunition after it has been ordered (parameters 39 and 40).
Figure 6. Function for Improved Fire Efficiency and Target Selection
Artillery Fire Support

The engagement using this model can be accomplished with or without artillery fire support. If there is going to be artillery fire support for the BLUE or RED or both, it is specified as parameters in the model. This is in terms of the number of artillery tubes available for each of the forces (parameters 27 and 28), and the base effectiveness of the firepower (parameters 13 and 14). Once an engagement starts, there is a delay in the time the artillery support is requested and the time it becomes effective (parameters 23 and 24). This delay time can also be varied by the user at the start of each engagement.

Battle Termination Rules

For this model, there are three conditions which will terminate the battle, when any of the conditions are met. First, the battle will terminate if the force ratio reaches a predetermined value. This value is one of the parameters and can be specified at the start of each run. The computation of this battle termination rule is as follows:

$$\frac{B(t)}{B_0(t)} < \beta$$
where

$$\frac{R(t)}{R_0(t)} < \beta$$

$$\beta = \text{ending force ratio specified as a parameter.}$$

The second battle termination rule is met if one of the forces has only one man left. The third battle termination rule is based on the amount of ammunition remaining per man. If the ammunition is depleted to only one round per man, the battle is terminated.

Measures of Effectiveness

To assist in analyzing the results of the battle engagements, 10 different Measures of Effectiveness (MOE) were established. Each of the MOE's are computed continually throughout the length of the battle. The following is a list and explanation of each of the MOE's:

1. MOE (1) is the number of BLUE infantry lost and is calculated by:

 $$B_0(t) - B(t)$$

 where

 $$B_0(t) = \text{starting BLUE force size at time } t=0,$$ and
\(B(t) = \) surviving BLUE force size at time \(t \).

2. \(\text{MOE (2)} \) is the number of RED infantry lost and is calculated by:

\[
R_{o}(t) - R(t)
\]

where

\(R_{o}(t) = \) starting RED force size at time \(t=0 \), and
\(R(t) = \) surviving RED force size at time \(t \).

3. \(\text{MOE (3)} \) is the present BLUE infantry lost and is calculated by:

\[
100 \left(\frac{B_{o}(t)-B(t)}{B_{o}(t)} \right)
\]

4. \(\text{MOE (4)} \) is the percent RED infantry lost and is calculated by:

\[
100 \left(\frac{R_{o}(t)-R(t)}{R_{o}(t)} \right)
\]

5. \(\text{MOE (5)} \) is the difference in percent lost between the BLUE and RED forces and is calculated by:

\[
100 \left(\frac{B_{o}(t)-B(t)}{B_{o}(t)} \right) - 100 \left(\frac{R_{o}(t)-R(t)}{R_{o}(t)} \right)
\]
6. MOE (6) is the ratio of the number of BLUE to RED forces lost and is calculated by:

\[\frac{B_0(t) - B(t)}{R_0(t) - R(t)} \]

7. MOE (7) is the ratio of the percent of the original forces lost for the BLUE to RED and is calculated by:

\[\frac{(100) \left(\frac{B_0(t) - B(t)}{B_0(t)} \right)}{(100) \left(\frac{R_0(t) - R(t)}{R_0(t)} \right)} \]

8. MOE (8) is the difference in the number of BLUE and RED forces lost and is calculated by:

\[B_0(t) - B(t) - R_0(t) - R(t) \]

9. MOE (9) is the surviving BLUE to RED force ratio and is calculated by:

\[\frac{B(t)}{R(t)} \]
10. MOE (10) is the fractional reduction in BLUE to RED force ratio and is calculated by:

\[
\frac{B_0(t)}{R_0(t)} - \frac{B_0(t)}{R_0(t)}
\]

After each battle, the values for all 10 MOE's are both printed and plotted at user specified intervals throughout the length of the battle. This allows for easy analysis of battle outcome.

Model Verification

Verification of the model was accomplished using several techniques. First, the starting force size and the attrition coefficients were set equal for both the BLUE and RED forces, and the engagement was run. This engagement resulted in a draw, with both sides attrited exactly the same. This indicated that the processing portion of the model, that integrates the differential equations, is functioning correctly. Next, the print period (parameter 2) was set to print the results every integration step size, and a line by line hand calculation of the 10 MOE's was conducted to insure that the
results were accurate.

Another verification check that was used, was to adjust the initial model parameters and attrition coefficients to those of a model used by Schaffer (29) and compare the results of the two engagements. The results of these two comparison runs were the same except for a small variation in battle termination time, which was a result of different battle termination rules between the two models.

The model encompasses two different techniques for the integration step size. One is a user specified constant integration step size and the other is a numerical integration algorithm that automatically selects, adjusts and varies the integration step size based on the previous step size. An analysis was made between the two techniques, and it was found that there is a small advantage in using the variable step size in terms of computer execution time.
CHAPTER IV

BATTLE ENGAGEMENT RESULTS

The Base Run

For the purpose of a starting point, a base run of the model was established. This allows a reference point for the analysis of future engagements using parameter variations in the model. In the base run, there is no ammunition constraints or resupply of ammunition, no artillery fire support, and no attrition due to surrenders and desertions. The parameter values of the model for the base run are shown in Figure 7, and were determined from previous experience and Army doctrine.

The starting force size for this run is 75 BLUE infantry (BINF) and 50 RED infantry (RINF). The engagement lasted 19.75 minutes and the BINF was the winner. Figure 8 is a printout of the results of the base run engagement. The first column of Figure 8 is the time of the engagement, and column's two through eleven list the different MOE values with respect to time. Columns two and three also lists the surviving BLUE and RED forces (BINF and RINF) respectively, at time t. Columns 10 and 11 also lists the remaining total ammunition supply for the BLUE (BAMM) and RED (RAMM) forces respectively, at time t.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLUTION STEP SIZE</td>
<td>0.250</td>
</tr>
<tr>
<td>PRINT PERIOD</td>
<td>2.000</td>
</tr>
<tr>
<td>PLOT PERIOD</td>
<td>1.000</td>
</tr>
<tr>
<td>VARIABLE STEP SIZE MAX %</td>
<td>0.000</td>
</tr>
<tr>
<td>ENI BATTLE FORCE RATIO</td>
<td>0.020</td>
</tr>
<tr>
<td>INITIAL BLUE INFANTRY</td>
<td>75.000</td>
</tr>
<tr>
<td>INITIAL RED INFANTRY</td>
<td>50.000</td>
</tr>
<tr>
<td>GAMMA DENSITY CORRECTION</td>
<td>0.000</td>
</tr>
<tr>
<td>RED AMMO CRIT MIN INV</td>
<td>1.000</td>
</tr>
<tr>
<td>BLUE AMMO CRIT MIN INV</td>
<td>1.000</td>
</tr>
<tr>
<td>BASE EFF BLUE INF FIRE</td>
<td>0.001</td>
</tr>
<tr>
<td>BASE EFF RED INF FIRE</td>
<td>0.001</td>
</tr>
<tr>
<td>BASE EFF BLUE ARTY FIRE</td>
<td>0.050</td>
</tr>
<tr>
<td>BASE EFF RED ARTY FIRE</td>
<td>0.050</td>
</tr>
<tr>
<td>BASE RATE FIRE RED INF</td>
<td>40.000</td>
</tr>
<tr>
<td>BASE RATE FIRE BLUE INF</td>
<td>40.000</td>
</tr>
<tr>
<td>REC S+D PER REC CASUAL</td>
<td>0.000</td>
</tr>
<tr>
<td>BLUE S+D PER BLUE CASUAL</td>
<td>0.000</td>
</tr>
<tr>
<td>RED S+D DUE FORCE RATIO</td>
<td>0.000</td>
</tr>
<tr>
<td>BLUE S+D DUE FORCE RATIO</td>
<td>0.000</td>
</tr>
<tr>
<td>INT BLUE AMMO PER MAN</td>
<td>1.000</td>
</tr>
<tr>
<td>INT RED AMMO PER MAN</td>
<td>1.000</td>
</tr>
<tr>
<td>DELAY CALL BLUE ARTY</td>
<td>10.000</td>
</tr>
<tr>
<td>DELAY CALL RED ARTY</td>
<td>0.000</td>
</tr>
<tr>
<td>% RED SUPP OF BLUE INF</td>
<td>0.000</td>
</tr>
<tr>
<td>% BLUE SUPP OF RED INF</td>
<td>0.000</td>
</tr>
<tr>
<td>NUM BLUE ARTY TUBES</td>
<td>0.000</td>
</tr>
<tr>
<td>NUM RED ARTY TUBES</td>
<td>0.000</td>
</tr>
<tr>
<td>BLUE INF TV EFF AT ZERO</td>
<td>1.000</td>
</tr>
<tr>
<td>BLUE INF TV EFF TC</td>
<td>1.000</td>
</tr>
<tr>
<td>RED INF TV EFF AT ZERO</td>
<td>1.000</td>
</tr>
<tr>
<td>RED INF TV EFF TC</td>
<td>1.000</td>
</tr>
<tr>
<td>BLUE AMMO CONS FIRE EFF</td>
<td>1.000</td>
</tr>
<tr>
<td>RED AMMO CONS FIRE EFF</td>
<td>1.000</td>
</tr>
<tr>
<td>BLUE RORO PT AMMO/MAN</td>
<td>0.000</td>
</tr>
<tr>
<td>RED RORO PT AMMO/MAN</td>
<td>0.000</td>
</tr>
<tr>
<td>BLUE ORD UPTO AMMO/MAN</td>
<td>10000.000</td>
</tr>
<tr>
<td>RED ORD UPTO AMMO/MAN</td>
<td>10000.000</td>
</tr>
<tr>
<td>BLUE AMMO DELAY TIME</td>
<td>0.000</td>
</tr>
<tr>
<td>RED AMMO DELAY TIME</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Figure 7. Parameter Values for Base Run
<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>75.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0</td>
<td>99.99</td>
<td>99.99</td>
<td>0.</td>
<td>1.50</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>71.</td>
<td>44.</td>
<td>6</td>
<td>5.</td>
<td>12.</td>
<td>-7.</td>
<td>.65</td>
<td>.43</td>
<td>-2.</td>
<td>1.61</td>
<td>-0.08</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>68.</td>
<td>39.</td>
<td>11</td>
<td>10.</td>
<td>23.</td>
<td>-13.</td>
<td>.62</td>
<td>.42</td>
<td>-4.</td>
<td>1.76</td>
<td>-1.17</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>65.</td>
<td>33.</td>
<td>17</td>
<td>13.</td>
<td>34.</td>
<td>-20.</td>
<td>.60</td>
<td>.40</td>
<td>-7.</td>
<td>1.96</td>
<td>-0.30</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>62.</td>
<td>28.</td>
<td>22</td>
<td>17.</td>
<td>44.</td>
<td>-27.</td>
<td>.57</td>
<td>.38</td>
<td>-9.</td>
<td>2.22</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>60.</td>
<td>23.</td>
<td>27</td>
<td>19.</td>
<td>54.</td>
<td>-34.</td>
<td>.54</td>
<td>.36</td>
<td>-12.</td>
<td>2.60</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>59.</td>
<td>18.</td>
<td>32</td>
<td>22.</td>
<td>63.</td>
<td>-41.</td>
<td>.52</td>
<td>.34</td>
<td>-15.</td>
<td>3.19</td>
<td>-1.12</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>57.</td>
<td>14.</td>
<td>36</td>
<td>23.</td>
<td>72.</td>
<td>-49.</td>
<td>.43</td>
<td>.32</td>
<td>-19.</td>
<td>4.17</td>
<td>-1.78</td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>56.</td>
<td>9.</td>
<td>41</td>
<td>25.</td>
<td>82.</td>
<td>-57.</td>
<td>.45</td>
<td>.30</td>
<td>-22.</td>
<td>6.13</td>
<td>-3.08</td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>56.</td>
<td>5.</td>
<td>45</td>
<td>25.</td>
<td>91.</td>
<td>-65.</td>
<td>.42</td>
<td>.28</td>
<td>-26.</td>
<td>11.84</td>
<td>-6.89</td>
<td></td>
</tr>
</tbody>
</table>

Figure 8. Results of Base Run
In addition to the printout of engagement results, the model plots the results using three separate graphs. Figures 9, 10, and 11 are the plots for the base run. The plots produced by the model are all easy to interpret and self-explanatory. The variables to be plotted are defined at the top of the graph and the scales are listed across the top. Time starts at the left top and goes down the left side.

The Gamma Function

As was stated earlier, the value of gamma in Equations (4) determine the form of the Lanchester law. If $\gamma = 0$, the equations reduce to the square law. If $\gamma = 1$, the equations depict the linear law. For values of between 0 and 1, the equations represent a condition which is neither representative of the square law nor the linear law; but may be representative of some intermediate case. Schmieman (30) refers to this condition as a battle consisting of many small engagements with some engagements satisfying the requirements of the square law, while others, satisfy the requirements of the linear law. Then collectively, the battle should satisfy an intermediate condition, and an optimum value of γ between $\gamma = 0$ and $\gamma = 1$ should best represent the overall battle. For values of $\gamma = 1$, Equations (4) depict the condition referred to by Petterson (26) and Weiss (41) as the "logarithmic law".
Figure 9. Graph of BINF, RINF, MOE10=0, BAMM=Y, RAMM=Z

RUN NUMBER 1
LANCHESTER INFANTRY MODEL w/ARTY, RESUP, DELAY, TV COEFF, INV CONST

BINF=8, RINF=R, MOE10=0, BAMM=Y, RAMM=Z

<table>
<thead>
<tr>
<th>Time</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE10</th>
<th>BAMM</th>
<th>RAMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.38E+02</td>
<td>0.10E+01</td>
<td>0.38E+06</td>
<td>0.75E+02</td>
<td>0.75E+06</td>
</tr>
</tbody>
</table>

Graph for Base Run
Figure 10. Graph of MOE (1), MOE (2), MOE (3) and MOE (4) for Base Run
RUN NUMBER 1

LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CONST

MOE(5) = 5, MOE(6) = 6, MOE(7) = 7, MOE(8) = 8, MOE(9) = 9

<table>
<thead>
<tr>
<th>Time</th>
<th>MOE(5)</th>
<th>MOE(6)</th>
<th>MOE(7)</th>
<th>MOE(8)</th>
<th>MOE(9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.00</td>
<td>76</td>
<td>9</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>76</td>
<td>9</td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td>76</td>
<td>5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 11. Graph of MOE(5), MOE(6), MOE(7), MOE(8) for Base Run
In this situation, a side's losses increase with the force committed. Peterson suggests that this probably is due to the fact that the vulnerability of a force, as a target, increases directly with the force committed; but that their effectiveness in delivering firepower increases at a somewhat lesser rate.

To investigate the sensitivity of this model to changes in γ, the base run was replicated 33 times varying γ from zero to one by increments of one tenth for BLUE starting force sizes of 75, 65 and 50; while keeping the RED starting force size constant at 50. The results of these engagements are shown in the table in Figure 12 and the graph in Figure 13. These results confirm Lanchester's (24) original theory of concentration of forces for the square law; that is, that it is more advantageous to increase the number of participants in a battle, than it is to increase by the same factor the effectiveness of weapons.

Surrenders and Desertions

Following some work of Schaffer (29), this model considers the losses due to surrenders and desertions. In Equations (4), surrenders and desertions were indicated by the functions D_B and D_R for the BLUE and RED forces, respectively. These functions are defined as follows:

$$D_B = a_B C_B + b_B (R_B - 1)^2$$
<table>
<thead>
<tr>
<th>γ</th>
<th>Battle Time (Min)</th>
<th>γ</th>
<th>Battle Time (Min)</th>
<th>γ</th>
<th>Battle Time (Min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.0</td>
<td>19.75</td>
<td>.0</td>
<td>25.00</td>
<td>.0</td>
<td>97.50</td>
</tr>
<tr>
<td>.1</td>
<td>15.00</td>
<td>.1</td>
<td>19.25</td>
<td>.1</td>
<td>80.50</td>
</tr>
<tr>
<td>.2</td>
<td>11.50</td>
<td>.2</td>
<td>15.00</td>
<td>.2</td>
<td>67.25</td>
</tr>
<tr>
<td>.3</td>
<td>9.00</td>
<td>.3</td>
<td>11.75</td>
<td>.3</td>
<td>57.00</td>
</tr>
<tr>
<td>.4</td>
<td>7.00</td>
<td>.4</td>
<td>9.25</td>
<td>.4</td>
<td>48.75</td>
</tr>
<tr>
<td>.5</td>
<td>5.75</td>
<td>.5</td>
<td>7.50</td>
<td>.5</td>
<td>42.25</td>
</tr>
<tr>
<td>.6</td>
<td>4.50</td>
<td>.6</td>
<td>6.25</td>
<td>.6</td>
<td>37.00</td>
</tr>
<tr>
<td>.7</td>
<td>3.75</td>
<td>.7</td>
<td>5.25</td>
<td>.7</td>
<td>32.75</td>
</tr>
<tr>
<td>.8</td>
<td>3.00</td>
<td>.8</td>
<td>4.50</td>
<td>.8</td>
<td>29.00</td>
</tr>
<tr>
<td>.9</td>
<td>2.75</td>
<td>.9</td>
<td>4.00</td>
<td>.9</td>
<td>26.00</td>
</tr>
<tr>
<td>1.0</td>
<td>2.25</td>
<td>1.0</td>
<td>3.50</td>
<td>1.0</td>
<td>23.50</td>
</tr>
</tbody>
</table>

Figure 12. Battle Termination Time as a Function of Gamma and Force Size
Figure 13. Model Sensitivity to Gamma
\[D_R = a_R C_R + b_R \left(\frac{B}{R} - 1 \right)^2 \]

where

- \(a_B \) = coefficient of BLUE surrenders and desertions per BLUE casualty,
- \(a_R \) = coefficient of RED surrenders and desertions per RED casualty,
- \(C_B, C_R \) = casualty rate for BLUE and RED forces, respectively,
- \(b_B, b_R \) = BLUE and RED surrender and desertion coefficient, respectively, due to force ratio.

As noted above, the rate of friendly surrenders and desertions depends on both the friendly casualty rate and the difference between the friendly force ratio and unity. The coefficients for the surrenders and desertions are what Schaffer refers to as "discipline and morale" of the troops involved in the engagement.

A series of engagements were run by varying both the coefficient for surrenders and desertions and the initial force ratio. The results of these engagements are shown in Figure 14. It is interesting to note that the results of these engagements are the same as those of Schaffer's with the exception of battle termination times, with no variation greater than one minute. This is also another good verification check on the internal processing portion of the model.
Figure 14. Battle Outcomes as a Result of Surrenders and Desertions

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>(b_B=b_R=0)</th>
<th>(b_B=0, b_R=1)</th>
<th>(b_B=1, b_R=0)</th>
<th>(b_B=1, b_R=1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_B) (a_R)</td>
<td>Winner Time (Min)</td>
<td>Winner Time (Min)</td>
<td>Winner Time (Min)</td>
<td>Winner Time (Min)</td>
</tr>
<tr>
<td>0.0 0.0</td>
<td>BLUE 19.8</td>
<td>BLUE 9.3</td>
<td>BLUE 19.8</td>
<td>BLUE 9.3</td>
</tr>
<tr>
<td>0.0 0.5</td>
<td>BLUE 12.3</td>
<td>BLUE 6.8</td>
<td>BLUE 12.3</td>
<td>BLUE 6.8</td>
</tr>
<tr>
<td>0.0 1.0</td>
<td>BLUE 9.0</td>
<td>BLUE 5.3</td>
<td>BLUE 9.0</td>
<td>BLUE 5.3</td>
</tr>
<tr>
<td>0.5 0.0</td>
<td>BLUE 23.0</td>
<td>BLUE 10.5</td>
<td>BLUE 23.0</td>
<td>BLUE 10.5</td>
</tr>
<tr>
<td>0.5 0.5</td>
<td>BLUE 13.3</td>
<td>BLUE 7.3</td>
<td>BLUE 13.3</td>
<td>BLUE 7.3</td>
</tr>
<tr>
<td>0.5 1.0</td>
<td>BLUE 9.5</td>
<td>BLUE 5.5</td>
<td>BLUE 9.5</td>
<td>BLUE 5.5</td>
</tr>
<tr>
<td>1.0 0.0</td>
<td>BLUE 30.0</td>
<td>BLUE 13.0</td>
<td>BLUE 30.3</td>
<td>BLUE 13.0</td>
</tr>
<tr>
<td>1.0 0.5</td>
<td>BLUE 14.5</td>
<td>BLUE 7.8</td>
<td>BLUE 14.5</td>
<td>BLUE 7.8</td>
</tr>
<tr>
<td>1.0 1.0</td>
<td>BLUE 10.0</td>
<td>BLUE 6.0</td>
<td>BLUE 10.0</td>
<td>BLUE 6.0</td>
</tr>
</tbody>
</table>

\(R_0 = 50 \)

\(B_0 = 75 \)
Engagements With Artillery Fire Support

This model has the capability of incorporating supporting artillery fire for the BLUE or RED force, or both. As was stated in Chapter III, the number of artillery tubes per force is specified as a parameter in the model, along with the delay time associated with receiving the fire support, once an engagement starts. Following some work by Willis (45), this model also has artillery suppression factors. These are in terms of percent suppression by RED artillery of surviving BLUE force and percent suppression by BLUE artillery of surviving RED force. The suppression factors effect the rate of attrition due to opposing infantry fire. For example, if RED artillery was deployed against the BLUE force, it would produce BLUE casualties; but it would also cause a decrease in the number of BLUE casualties per minute from RED infantry fire. This happens because the BLUE force is somewhat suppressed, because of the incoming RED artillery rounds, and are less vulnerable as targets to the RED infantry fire as they were before the artillery support began.

Figure 15 is a table of selected battle outcomes with supporting artillery fire. The starting force size was

\[B_0 = 75 \]
\((B_0 = 75, R_0 = 50) \)

<table>
<thead>
<tr>
<th>NUMBER OF TUBES</th>
<th>DELAY TIME (MIN)</th>
<th>WINNER</th>
<th>TIME (MIN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE RED</td>
<td>BLUE RED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1</td>
<td>10 5</td>
<td>BLUE</td>
<td>28.75</td>
</tr>
<tr>
<td>0 2</td>
<td>10 5</td>
<td>RED</td>
<td>50.50</td>
</tr>
<tr>
<td>0 3</td>
<td>10 5</td>
<td>RED</td>
<td>25.00</td>
</tr>
<tr>
<td>1 1</td>
<td>10 5</td>
<td>BLUE</td>
<td>16.50</td>
</tr>
<tr>
<td>1 2</td>
<td>10 5</td>
<td>BLUE</td>
<td>22.25</td>
</tr>
<tr>
<td>1 3</td>
<td>10 5</td>
<td>BLUE</td>
<td>35.25</td>
</tr>
<tr>
<td>1 4</td>
<td>5 5</td>
<td>RED</td>
<td>24.25</td>
</tr>
<tr>
<td>2 1</td>
<td>5 5</td>
<td>BLUE</td>
<td>11.75</td>
</tr>
<tr>
<td>2 2</td>
<td>5 5</td>
<td>BLUE</td>
<td>14.25</td>
</tr>
<tr>
<td>2 3</td>
<td>5 5</td>
<td>BLUE</td>
<td>18.00</td>
</tr>
<tr>
<td>2 4</td>
<td>5 5</td>
<td>RED</td>
<td>45.25</td>
</tr>
<tr>
<td>3 1</td>
<td>5 5</td>
<td>BLUE</td>
<td>9.25</td>
</tr>
<tr>
<td>3 2</td>
<td>5 5</td>
<td>BLUE</td>
<td>10.50</td>
</tr>
<tr>
<td>3 3</td>
<td>5 5</td>
<td>BLUE</td>
<td>12.25</td>
</tr>
</tbody>
</table>

Figure 15. Battle Outcomes With Supporting Artillery
\[R_0 = 50 \]

The number of tubes per side was varied to see at what point the RED force would win the battle. The results show that with two or more artillery tubes for the RED force and none for the BLUE force, the RED force is the winner. The results also indicate that the RED force wins with four artillery tubes, when the BLUE force has two or less.

Engagements With Ammunition Constraint and Resupply

As was stated in Chapter III, there are six model parameters associated with the ammunition resupply sector. By varying these parameters, there are many combinations available for investigating engagement outcomes associated with ammunition constraint and resupply.

Many engagement runs were conducted by varying the initial force size, number of supporting artillery weapons, and the ammunition sector parameters. Figure 16 lists the results of engagement outcomes with unequal initial force sizes \((R_0=75, R_0=50) \) and short delay times for ammunition resupply. Since both forces could get replacement ammunition in a short time span (six minutes for the BLUE force and four minutes for the RED force, all the
(B_o = 75, R_o = 50)

<table>
<thead>
<tr>
<th>NUMBER OF ARTY TUBES</th>
<th>WINNER</th>
<th>TIME (MIN)</th>
<th>REASON FOR WIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE 0</td>
<td>RED 1</td>
<td>BLUE</td>
<td>30.50</td>
</tr>
<tr>
<td>BLUE 0</td>
<td>RED 2</td>
<td>RED</td>
<td>48.00</td>
</tr>
<tr>
<td>BLUE 0</td>
<td>RED 3</td>
<td>RED</td>
<td>25.75</td>
</tr>
<tr>
<td>BLUE 1</td>
<td>RED 1</td>
<td>BLUE</td>
<td>17.75</td>
</tr>
<tr>
<td>BLUE 1</td>
<td>RED 2</td>
<td>BLUE</td>
<td>23.75</td>
</tr>
<tr>
<td>BLUE 1</td>
<td>RED 3</td>
<td>BLUE</td>
<td>37.00</td>
</tr>
<tr>
<td>BLUE 2</td>
<td>RED 1</td>
<td>BLUE</td>
<td>12.75</td>
</tr>
<tr>
<td>BLUE 2</td>
<td>RED 2</td>
<td>BLUE</td>
<td>15.50</td>
</tr>
<tr>
<td>BLUE 2</td>
<td>RED 3</td>
<td>BLUE</td>
<td>19.50</td>
</tr>
<tr>
<td>BLUE 3</td>
<td>RED 1</td>
<td>BLUE</td>
<td>10.00</td>
</tr>
<tr>
<td>BLUE 3</td>
<td>RED 2</td>
<td>BLUE</td>
<td>10.75</td>
</tr>
<tr>
<td>BLUE 3</td>
<td>RED 3</td>
<td>BLUE</td>
<td>12.50</td>
</tr>
</tbody>
</table>

NOTE: BLUE Ammo Delay Time = 6 minutes
RED Ammo Delay Time = 4 minutes
Initial Ammo Per Man = 300 rounds (BLUE and RED)
Recorder Point Ammo Per Man = 200 rounds (BLUE and RED)

Figure 16. Engagements With Short Ammunition Resupply Times
engagements ended because of attrition rather than ammunition shortage. The only time the RED force was the victor was when they possessed two or more supporting artillery weapons and the BLUE force had none.

Figure 17 shows the engagement results when the initial force size was again unequal ($B_0=75, R_0=50$) and the delay times for ammunition resupply were four minutes for the RED force and 20 minutes for the BLUE force. The RED force became the victor in most of the cases, because the BLUE force expended its ammunition supply. The BLUE force was the victor only when they possessed equal or superior artillery fire support.

Figure 18 shows the engagement results with equal initial force size ($B_0=50, R_0=50$) and the delay time for ammunition resupply was again four minutes for the RED force and 20 minutes for the BLUE force. The RED force was the victor in most all cases except when the BLUE force possessed three supporting artillery weapons. Appendix B gives the model outputs (both plots and prints) for the engagements listed in Figure 18.
\((B_0 = 75, R_0 = 50) \)

<table>
<thead>
<tr>
<th>NUMBER OF ARTY TUBES</th>
<th>WINNER</th>
<th>TIME (MIN)</th>
<th>REASON FOR WIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE</td>
<td>RED</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>RED</td>
<td>13.75</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>RED</td>
<td>17.50</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>RED</td>
<td>25.75</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>RED</td>
<td>13.50</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>RED</td>
<td>16.50</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>RED</td>
<td>22.25</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>BLUE</td>
<td>13.25</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>BLUE</td>
<td>16.00</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>RED</td>
<td>20.25</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>BLUE</td>
<td>10.00</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>BLUE</td>
<td>10.75</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>BLUE</td>
<td>12.50</td>
</tr>
</tbody>
</table>

NOTE: BLUE Ammo Delay Time = 20 minutes
RED Ammo Delay Time = 4 minutes
Initial Ammo Per Man = 300 rounds (BLUE and RED)
Reorder Point Ammo Per Man = 200 rounds (BLUE and RED)

Figure 17. Engagements With RED Ammunition Resupply Only
\[(B_0 = 50, R_0 = 50)\]

<table>
<thead>
<tr>
<th>NUMBER OF ARTY TUBES</th>
<th>WINNER</th>
<th>TIME (MIN)</th>
<th>PERCENT ORIGINAL FORCE LOST</th>
<th>REASON FOR WIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLUE RED</td>
<td></td>
<td></td>
<td>BLUE</td>
<td>RED</td>
</tr>
<tr>
<td>0 1 RED</td>
<td></td>
<td>15.50</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>0 2 RED</td>
<td></td>
<td>19.50</td>
<td>98</td>
<td>28</td>
</tr>
<tr>
<td>0 3 RED</td>
<td></td>
<td>14.50</td>
<td>98</td>
<td>19</td>
</tr>
<tr>
<td>1 1 RED</td>
<td></td>
<td>14.50</td>
<td>54</td>
<td>64</td>
</tr>
<tr>
<td>1 2 RED</td>
<td></td>
<td>19.50</td>
<td>78</td>
<td>65</td>
</tr>
<tr>
<td>1 3 RED</td>
<td></td>
<td>23.00</td>
<td>98</td>
<td>60</td>
</tr>
<tr>
<td>2 1 RED</td>
<td></td>
<td>14.00</td>
<td>45</td>
<td>83</td>
</tr>
<tr>
<td>2 2 RED</td>
<td></td>
<td>17.75</td>
<td>65</td>
<td>85</td>
</tr>
<tr>
<td>2 3 RED</td>
<td></td>
<td>25.25</td>
<td>83</td>
<td>86</td>
</tr>
<tr>
<td>3 1 BLUE</td>
<td></td>
<td>13.75</td>
<td>39</td>
<td>94</td>
</tr>
<tr>
<td>3 2 BLUE</td>
<td></td>
<td>16.75</td>
<td>57</td>
<td>96</td>
</tr>
<tr>
<td>3 3 BLUE</td>
<td></td>
<td>21.75</td>
<td>71</td>
<td>98</td>
</tr>
</tbody>
</table>

NOTE: BLUE Ammo Delay Time = 20 minutes
RED Ammo Delay Time = 4 minutes
Initial Ammo Per Man = 300 rounds (BLUE and RED)
Reorder Point Ammo Per Man = 200 rounds (BLUE and RED)

Figure 18. Equal Force Size Engagements With RED Ammunition Resupply Only
CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

This thesis has presented a general digital model for use in solving a class of Lanchester-type warfare models. The model includes such factors as time delays, effects of surrenders and desertions, and artillery fire support. In addition, it has extended the Lanchester theory by the addition of ammunition constraints and resupply.

Over 2,000 battle engagements were executed with the model. The results proved both interesting and informative. The model was very sensitive in the choice of gamma (the parameter associated with switching from the square law to the linear law, as gamma is varied from zero to one) for initial unequal opposing force sizes; but less sensitive as the ratio of the initial force sizes approached unity. This supports Lanchester's idea of concentration of forces, but differs somewhat from the results of Schmieman's (30) study.

A series of engagements were conducted with ammunition constraints and resupply, including engagements with and without artillery fire support. Battle outcomes
were listed for various cases and the results showed the effect of ammunition delay times. Even though one side was initially outnumbered 1.5 to 1, the smaller force size could be the victor by having a quick effective resupply of ammunition. The results could be examined to determine the trade off between ammunition resupply times the number of supporting artillery weapons.

The model produces a convenient display of results through both printing and plotting that are easy to understand and interpret. This gives the capability for a variety of analyses of the engagement's results.

Recommendations

This model offers the potential for further study of Lanchester-type warfare equations. With 40 parameters available for user specified values, it provides an almost infinite number of possibilities for different engagements that could be studied. Additional research is needed in the area of experimental design of engagement runs with this model. Clearly, a 15 parameter variation each at five levels, for example, would require 5^{15} separate runs. In order to optimize for the minimum number of required runs, some kind of effective experimental design would have to be developed. The potential for factorial design or response surface methodology should be investigated by someone knowledgeable in these areas.
Because of the structure of this model, it lends itself to a fairly easy adaption to a syndetic analog-digital computer that could be used to investigate further, this class of equations at a substantially lower cost. The implementation of this model to an analog-digital computer would require four integrations (BLUE infantry, RED infantry, BLUE ammunition, and RED ammunition), several function generators (e.g. ammunition constraints, etc.), and 40 potentiometers for the parameters. The combination of fast analog computation time, coupled with an automated display, could be very valuable. For example, it could allow for multiple MOEs through time on the same display, or a comparative display of MOEs versus a range of parameters. This type of capability would certainly allow an easier analysis of the behavior of the model.

Although this thesis investigated the behavior of the model for small scale encounters, it could certainly be expanded for use with larger force size engagements, to include the addition of the replacement of forces, based on the attrition rates and length of engagements.

Another recommendation would be to investigate engagement outcomes between two battles, using the same parameter values for each case, but having different battle termination rules. For example, let one engagement end when one of the forces loses all of its men;
then, run the engagement again with a termination rule that says, "stop the engagement when one force has 80% of its troops remaining." In other words, the commander is only willing to suffer a 20% loss before he withdraws from the engagement. By doing a comparison of this nature, the results may show different winners, because of the length of the engagements and the ammunition constraint functions.

Beyond academic interests to investigate parameter sensitivity questions still open (e.g. delay times, resupply policies, etc.), a large scale model such as this can be used to address real problems. The design of United States Army combat units in Europe, for example, is an obvious application. The procedure would include estimating the model parameters to optimize them in order to respond to potential Soviet threat, given that fairly accurate estimates were available on USSR unit size, force mixers, weapon capabilities, discipline and morale, etc.
APPENDIX A

LISTING OF SYMBOLS AND NOTATIONS
\[\frac{dB}{dt}, \frac{dR}{dt}, \frac{dB}{dt} = \text{the attrition rate of the BLUE and RED forces, respectively, with respect to time,} \]

\[B_0, R_0 = \text{the number of BLUE and RED forces at time } t=0, \]

\[J, K = \text{the coefficient of effectiveness for the BLUE and RED forces, respectively,} \]

\[N = \text{the number of duels per unit of time,} \]

\[B(t)^\gamma, R(t)^\gamma = \text{the form of law, where } \gamma = 0 \text{ is the square law and } \gamma = 1 \text{ is the linear law,} \]

\[S_B, S_R = \text{the suppression factor for BLUE and RED forces due to opposing fire,} \]

\[B(t), R(t) = \text{the number of surviving BLUE and RED forces at time } t, \]

\[r_B, r_R = \text{the rate of infantry fire (rounds per minute) for BLUE and RED forces,} \]

\[D_B, D_R = \text{the losses due to surrenders and desertions for the BLUE and RED forces,} \]
\(a_B \) = the coefficient of BLUE surrenders and desertions per BLUE casualty,

\(a_R \) = the coefficient of RED surrenders and desertions per RED casualty,

\(C_B, C_R \) = the casualty rate for BLUE and RED forces,

\(b_B, b_R \) = the BLUE and RED surrender and desertion coefficient due to the force ratio,

\(\alpha_B, \alpha_R \) = the coefficient of effectiveness for the supporting artillery fire for the BLUE and RED forces,

\(W_B, W_R \) = the number of supporting artillery weapons for the BLUE and RED forces,

\(f(A_B), f(A_R) \) = the ammunition constraint function for the BLUE and RED forces,

\(d \) = the ratio of remaining ammunition per man,

\(e \) = the critical ratio of ammunition per man,
β = the battle ending force ratio, and

B_0, R_0 = initial force size at $t=0$.
APPENDIX B

FORTRAN LISTING OF GENERAL

LANCHESTER-TYPE

WARFARE MODEL
MASTER CONTROL LINK FOR GENERAL LANCHESTER MODEL

```plaintext
IMPLICIT REAL(A-Z)
INTEGER NRUN, I, J, INDEX, NPARAM, IFLAG(040), ITYPE
INTEGER IRUN, ISTOF, ICP, ISCAL, INOTE
DIMENSION PARM(040), ORIG(040), CP(040)
DIMENSION TEXT(040, 4)
INTEGER NSPOOL, LETTER(15), MESSAG(11), NAME(15)
REAL SCALE(15, 2)
COMMON / NRUN, NSPOOL, LETTER, SCALE, MESSAG, NAME
COMMON / PARM/ U, FRTPER, FLTPER, VAFSTP, ENDFR, GINFZ, RINFZ, GAMMA, RAMCON
COMMON / PARM/ HAMCON, BINFEE, RINFEE, BOTH, ROPTH, RSHOTE, BSHOTE
COMMON / PARM/ RSOFR, RSGOR, RSGOC, RSGFR, RSGOR, BAPIN, RAPIN, BOTH, ROTHST
COMMON / PARM/ RREF, BRSF, BOTH, ROTH, RITVEZ, BIVET, RITVEZ, RIVET
COMMON / PARM/ RAMCEF, RAMCEF, BRTAP, RFTAP, BRIPT, BRIPT, BAP1N, RAP1N, RAMCON
COMMON / PARM/ RSHOT, RSHOE, RSH0E, RSHOE, RSH0E, RSHOE, RSH0E, RSHOE
COMMON / PARM/ RSHOF, RSHOE, RSH0E, RSHOE, RSH0E, RSHOE, RSH0E, RSHOE
COMMON / PARM/ RHEOT, RHEOT, RHEOT, RHEOT, RHEOT, RHEOT, RHEOT, RHEOT
EQUIVALENCE ( PARM(1), CT )
DATA IRUN, ISTOP, ICP, 1C/4HRUN, 4HSTOP, 4HCP, 4HC /
DATA INOTE, I1CAL/4HNOTE, 4HSCALE/
DATA(TEXT(1, J), J=1, 4)/6HSOULTI, 6HCON ST, 6HP SIZE, 6H /
DATA(TEXT(2, J), J=1, 4)/6HPRINT, 6HTIMED, 5H, 6H /
DATA(TEXT(3, J), J=1, 4)/6HVALUES, 5H, 6H /
DATA(TEXT(4, J), J=1, 4)/6HVARIAB, 6HLE ST, 6HP SIZE, 6H MAX. /
DATA(TEXT(5, J), J=1, 4)/6HEND BA, 6HTIME, 6HVALUE, 6HSHATIO /
DATA(TEXT(6, J), J=1, 4)/6HINITIA, 6HBLU, 6H INFAN, 6HTRY /
DATA(TEXT(7, J), J=1, 4)/6HINITIA, 6HNEERD, 6H NFANT, 6HTRY /
DATA(TEXT(8, J), J=1, 4)/6HGCAMGA, 6HCONSIT, 6H CUR, 6HCTHIO /
DATA(TEXT(9, J), J=1, 4)/6HCLAD AN, 6HMCU, 6HT MIN, 6HINV /
DATA(TEXT(10, J), J=1, 4)/6HBLU, 6H GAMMA, 6H HIT MIN, 6H MVN /
```

Notes:
- The program is written in Fortran and includes definitions for various integer and real arrays.
- It sets up common blocks for various parameters and constants.
- The code includes data declarations for text variables and functions, such as `TEXT` and `FUNCTION`.
- The program appears to be part of a larger system, possibly for simulation or modeling, given the context of the comments and variable names.
DATA(TEXT(11, J), J=1, 4)/6HBASE E, 6HFF BLU, 6HE INF, 6HFIRE /
DATA(TEXT(12, J), J=1, 4)/6HBASE E, 6HFF RED, 6H INF F, 6HFIRE /
DATA(TEXT(13, J), J=1, 4)/6HBASE E, 6HFF BLU, 6HE ARTY, 6H FIRE /
DATA(TEXT(14, J), J=1, 4)/6HBASE E, 6HFF RED, 6H ARTY, 6HFIRE /
DATA(TEXT(15, J), J=1, 4)/6HBASE R, 6HATE FI, 6HRE RED, 6H INF /
DATA(TEXT(16, J), J=1, 4)/6HBASE R, 6HATE FI, 6HRE BLU, 6HE INF /
DATA(TEXT(17, J), J=1, 4)/6HRED S+, 6HD PER, 6HRED CA, 6HSUAL /
DATA(TEXT(18, J), J=1, 4)/6HBLUE S, 6H+ D PER, 6H BLUE, 6HCASUAL /
DATA(TEXT(19, J), J=1, 4)/6HRED S+, 6HD PER, 6HK ZE, 6H RED /
DATA(TEXT(20, J), J=1, 4)/6HBLUE S, 6H+ D PER, 6H FORCE, 6H RATIO /
DATA(TEXT(21, J), J=1, 4)/6HINT BL, 6HUE ART, 6H PER M, 6HMAN /
DATA(TEXT(22, J), J=1, 4)/6HINT RE, 6HDO AMMO, 6H PER, 6HMAN /
DATA(TEXT(23, J), J=1, 4)/6HDELAY , 6HCALL 3, 6HUE AR, 6HTY /
DATA(TEXT(24, J), J=1, 4)/6HDELAY , 6HCALL A, 6HCRED ART, 6HY /
DATA(TEXT(25, J), J=1, 4)/6H+ RED, 6HSUPP 0, 6HFF BLUE, 6H INF /
DATA(TEXT(26, J), J=1, 4)/6H+ RED, 6HCRED ART, 6HY /
DATA(TEXT(27, J), J=1, 4)/6HNUM BL, 6HUE ART, 6HY TUBE, 6HS /
DATA(TEXT(28, J), J=1, 4)/6HNUM RE, 6HDO AMMO, 6H PER, 6HMAN /
DATA(TEXT(29, J), J=1, 4)/6HBLUE I, 6HNF TV , 6HEFF AT, 6H ZERO /
DATA(TEXT(30, J), J=1, 4)/6HBLUE I, 6HNF TV , 6HEFF TC, 6H /
DATA(TEXT(31, J), J=1, 4)/6HRED IN, 6HFF TV E, 6HFF AT, 6HZERO /
DATA(TEXT(32, J), J=1, 4)/6HRED IN, 6HFF TV E, 6HFF TC, 6H /
DATA(TEXT(33, J), J=1, 4)/6HBLUE A, 6HMMO 0, 6HNS FIR, 6HEFF /
DATA(TEXT(34, J), J=1, 4)/6HRED AM, 6HMMO CON, 6HNS FIRE, 6H EFF /
DATA(TEXT(35, J), J=1, 4)/6HBLUE R, 6HORD PR, 6H AMMO, 6HMAN /
DATA(TEXT(36, J), J=1, 4)/6HRED RO, 6HORD PR, 6HAMMO, 6HMAN /
DATA(TEXT(37, J), J=1, 4)/6HBLUE 0, 6HORD UP, 6H+ T, 6HMAN /
DATA(TEXT(38, J), J=1, 4)/6HORD OK, 6H+ UP T, 6HUR AMMO, 6H/MAN /
DATA(TEXT(39, J), J=1, 4)/6HBLUE A, 6HMMO DE, 6HLAY T, 6HEME /
DATA(TEXT(40, J), J=1, 4)/6HRED AM, 6HMMO DEL, 6HAY TIM, 6HE /
SPECIFICATION OF BASE PARAMETERS

****A FEW WILL BE CHANGED IN EACH RERUN****

NRUN=0
RUN NUMBER
NPARM=040
NUMBER OF PARAMETERS

MESAG(1)=6HLANCHE
MESAG(2)=6HSTER 1
MESAG(3)=6HNFANTR
MESAG(4)=6HY MODE
MESAG(5)=6HL W/AR
MESAG(6)=6HTY,RES
MESAG(7)=6HUP,DEL
MESAG(8)=6HAY,TV
MESAG(9)=6HCOEFF
MESAG(10)=6HINV CC
MESAG(11)=6HNST

SPECIFICATION OF CONTROL PARAMETERS FOR PROGRAM OPERATION

DT=.25
FIXED STEP SIZE (EULER INTEGRATION)
VARSTP=.
VARIABLE STEP SIZE INDICATOR. IF NON-ZERO STEP WILL BE SET OF GUARANTEE NO MORE THAN VARSTP PERCENT CHANGE PER INTERVAL IN EACH STATE VARIABLE
PRTPER=2
PRINT INTERVAL
PLTPER=1
PLOT INTERVAL
ENDFR=.02
END OF BATTLE OCCURS AT THIS FORCE RATIO

SPECIFICATION OF CONSTANTS
BINFZ=75,
RINFZ=50.

INITIAL VALUES FOR INFANTRY FORCES
BAPIN=10000.

INITIAL ROUNDS PER MAN BLUE INF
RAPIN=10000.

INITIAL ROUNDS PER MAN RED INF
GAMMA=0.

DENSITY CORRECTION, ZERO FOR SQUARE LAW
RAMCON=1.
BAMCON=1.

TIME CONSTANTS FOR AMMO CONSTRAINT ON FIRE RATES
BINFBF=.001
RINFBF=.001

BASE EFFECTIVENESS—PROB KILL PER ROUND GIVEN PLENTY AMMO
BOTHBE=.95
ROTHBE=.30

BASE AUXILIARY EFFECTIVENESS
RSHOTB=40.
BSHOTB=40.

BASE RATE OF FIRE PER SOLDIER PER TIME
BOTHST=10.
ROTHST=5.

STARTING TIMES OF AUXILIARY FIRE
RSDFRG=0.
Surrenders and Desertions Per Casualty
RSUDFR=0.
BSDDFR=0.

Surrenders and Desertions Due to Force Ratio Imbalance
RSBF=0.
BSRF=0.

Fraction Suppression of Inf Fire Due to Opposing Aux Fire
BOTH=0.
ROTH=0.

Auxillary Fire Elements (e.g., Tubes)
BITVEZ=1.
RITVEZ=1.

Relative Inf. Fire Time Varying Eff. at Time Zero
BITVES=1.
RITVES=1.

Relative Inf. Fire Time Varying Eff. Time Constant
BAMCEF=1.0
RAMCEF=1.0

Max. Factor Increase in Fire Eff. with Small Ammo Inv
BRTAP=0.
RRTAP=0.

Re-Order Points for Ammo When Ammo/MAN This Value
BRUPT=BAPIN
RRUPT=RAPIN

Re-Order Up to This Amount Ammo/MAN
BEL=0.
REDL=0.

Delay Times for Receiving Ammo Resupply Orders
STANDARD SCALES FOR PLOT OUTPUT

DO 300 I=1,15

300 SCALE(I,1)=0.
XX=AMAX1(BINFZ,RINFZ)
SCALE(1,2)=XX
SCALE(2,2)=XX
YY=AMAX1(EAPIN*BINFZ,RAPIN*RINFZ)
SCALE(3,2)=YY
SCALE(4,2)=YY
SCALE(5,2)=BINFZ
SCALE(6,2)=RINFZ
SCALE(7,2)=100.
SCALE(8,2)=100.
SCALE(9,1)=-100.
SCALE(9,2)=100.
SCALE(10,2)=1.
SCALE(11,2)=1.
SCALE(12,1)=-AX
SCALE(12,2)=AX
SCALE(13,2)=10.
SCALE(14,1)=-3.
SCALE(14,2)=1.
NAME(1)=6H BINF
NAME(2)=6H RINF
NAME(3)=6H BMM
NAME(4)=6H RMM
NAME(5)=6HM0E(1)
NAME(6)=6HM0E(2)
NAME(7)=6HM0E(3)
NAME(8)=6HM0E(4)
NAME(9)=6HM0E(5)
NAME(10)=6HM0E(6)
NAME(11) = 6HMGE(7)
NAME(12) = 6HMGE(8)
NAME(13) = 6HMGE(9)
NAME(14) = 6M MOE10

CANNOT USE DATA STATEMENT FOR COMMUNED ARRAY

LETTER(1) = 1H8
LETTER(2) = 1HR
LETTER(3) = 1HY
LETTER(4) = 1HZ
LETTER(5) = 1H1
LETTER(6) = 1H2
LETTER(7) = 1H3
LETTER(8) = 1H4
LETTER(9) = 1H5
LETTER(10) = 1H6
LETTER(11) = 1H7
LETTER(12) = 1H8
LETTER(13) = 1H9
LETTER(14) = 1H0

*************** END OF PARAMETER SPECIFICATION ***************

STORE VALUES IN VECTOR ORIG

DO 11 I = 1, NPARM
 IFLAG(I) = L
 CF(I) = PARM(I)
 ORIG(I) = PARM(I)

11
LIST MASTER PARAMETERS AT TOP OF RUN

WRITE(6,120) MESAG
120 FORMAT(*1*/20X,*ORIGINAL PARAMETERS*/5X,11A6//)
 DO 121 I=1,NPARM
121 WRITE(6,122) I, (TEXT(I,J), J=1,4), ORIG(I)
122 FORMAT(10X,I2,2X,4A6,* = *,F11.3)

SETUP A NEW PARAMETRIC RUN

3 NRUN=NRUN+1
 WRITE(6,113) NRUN,MESAG
113 FORMAT(*1*/2GX,*RUN NUMBER * . IV/5X • 11A6 /)
 IF(NRUN .EQ. 1) GO TO 16

RESTORE ORIGINAL VALUES OF PARAMETERS

 DO 10 I=1,NPARM
10 PARM(I)=CP(I)

LIST PERMANENT CHANGES CURRENTLY ACTIVE

 DO 15 I=1,NPARM
15 CONTINUE
13 CONTINUE
17 RETURN
17 WRITE(6,108)
108 FORMAT(/2X,* NEW PARAMETER CHANGES */)
C
16 READ(5,998) ITYPE,INDEX,VALUE,UPPER
998 FORMAT(44,12,2F10.0)
IF(ITYPE .EQ. INOTE) GO TO 16
IF(ITYPE .EQ. IRUN) GO TO 2
IF(ITYPE .EQ. ISTOP) GO TO 1
IF(ITYPE .EQ. ISCAL) GO TO 30
C
IF(INDEX .GT. 0 .AND. INDEX .LE. NPARM) GO TO 20
WRITE(6,102) INDEX
102 FORMAT(5X,* ILLEGAL PARAMETER NUMBER* 15)
GO TO 16
C
20 IF(ITYPE .EQ. ICP) GO TO 22
C
TEMPORARY CHANGE
IFLAG(INDEX)=0
CF(INDEX)=ORIG(INDEX)
PARM(INDEX)=VALUE
GO TO 23
C
PERMANENT CHANGE
22 IFLAG(INDEX)=1
CF(INDEX)=VALUE
PARM(INDEX)=VALUE
C
23 WRITE(6,111) INDEX,(TEXT(INDEX,J),J=1,4),PARM(INDEX),ORIG(INDEX)
111 FORMAT(5X,*PARAMETER *,13,2X,4A6/25X,*NEW VALUE *,F11.3,
1* REPLACES *,F11.3/)
C
AUTOMATIC CHANGE OF BINF/RINF AND BAMM/RAMM SCALES

IF(INDEX .NE. 6 .AND. INDEX .NE. 7) GO TO 500

NEW BINFZ OR RINFZ
XX=AMAX1(BINFZ,RINFZ)
SCALE(1,2)=XX
SCALE(2,2)=XX
GO TO 501

IF(INDEX .NE. 21 .AND. INDEX .NE. 22) GO TO 16

CHANGE BAMM/RAMM SCALES

YY=AMAX1(BINFZ*RAPIN,RINFZ*RAPIN)
SCALE(3,2)=YY
SCALE(4,2)=YY
GO TO 16

SCALE CHANGES—THESE CHANGES PERMANENT—

IF(INDEX .LE. 1 .OR. INDEX .GT. 14) GO TO 33
WRITE(6,31) INDEX,NAMEx(INDEX),VALUE,UPPER,(SCALE(INDEX,1),I=1,2)

31 FORMAT(5X,*NEW PERMANENT SCALE SET FOR *,13,1X,A6/10X,*(*,
1 E9.2,* *,E9.2,*)) REPLACES (*,E9.2,* *,E9.2,*)
SCALE(INDEX,1)=VALUE
SCALE(INDEX,2)=UPPER
GO TO 16

33 WRITE(6,34) INDEX
34 FORMAT(10X,*BAD SCALE INDEX* ,I10)
GO TO 16

STOP

CALL LANCH
IF(ASPOOL .EQ. 0) GO TO 3
CALL PLCTO(101,102,114,103,104,0)
CALL PLCTO(105,106,107,108,0,0)
CALL PLOTG(109,110,111,112,113,0)
GO TO 3
END

SUBROUTINE LANCH
IMPLICIT REAL(A-Z)
INTEGER NRUN,NSPOOL,LETTER(15),MESAG(11),NAME(15)
REAL SCALE(15,2)
INTEGER II, JJ, JSWIT
DIMENSION MOE(1L),SUPPLY(4,50,2),SARRIV(4),SONORD(4)
COMMON / NRUN,NSPOOL,LETTER,SCALE,MESAG,NAME
COMMONT /PRMT,PRMT,FRTPER,FLTPER,VARSTP,ENDFR,DINFZ,RINFZ,GAMMA,RAMCON
COMMON /PRMT/GAMCON,DINFBE,RINFBE,BOTHBE,RUTHBE,RSHOBB,BSHOBB
COMMON /PRMT/RSDFRC,RSCPBC,RSDDFR,RSCDFR,RRAPIN,RRAPIN,ROTHST,ROTHST
COMMON /PRMT/KSBF,BSKF,BOTH,ROTH,BITVEZ,BITVES,RTVEZ,RTVES
COMMON /PRMT/AMCEF,AMCEF,BRTAP,KRTAP,RRUPT,KRUPT,DOEL,REC

JSWIT=0
END OF RUN CONDITION INDICATOR
NSPOOL=0
NUMBER OF LINES OF PLOT SPOOLED
REWIND 99
NXTFRT=0.
IF(FRTPER .EQ. L.) NXTFRT=99999.
NEXT PRINT TIME
NXTFLT=0.
IF(PLTPER .EQ. L.) NXTFLT=99999.
NEXT PLOT TIME.
INITIALIZATION OF STATE VARIABLES

\[R_{INF} = R_{INFZ} \]
\[B_{INF} = B_{INFZ} \]
\[F_{ZERO} = B_{INFZ} / R_{INFZ} \]

INITIAL FORCE RATIO

\[B_{AMM} = B_{APIN} * B_{INFZ} \]
\[R_{AMM} = R_{APIN} * R_{INFZ} \]

INITIAL AMMUNITION INVENTORIES

\[\text{TIME} = 0.0 \]

INITIALIZE SUPPLY VECTORS

\[\text{DO 500 } II = 1, 4 \]
\[\text{SNOORD}(II) = 0.0 \]
\[\text{DO 500 } JJ = 1, 51 \]
\[\text{SUPPLY}(II, JJ, 1) = 0.0 \]

AMOUNT OF RESUPPLY

\[\text{SUPPLY}(II, JJ, 2) = 99999.0 \]

TIME OF SUPPLY

\[500 \text{ CONTINUE} \]

WRITE(6, 103)

GO TO 210

CALCULATE DERIVATIVES

EXOGENOUS COMPONENTS OF DERIVATIVES

1 CONTINUE
ENCOCENOUS COMPONENTS OF DERIVATIVES

\[RABOTH = \text{ROTH} \times \text{BOTH} \times \text{RINF} \times \text{STEP}(1, \text{ROTHST} - \text{TIME}) \]

\[BAROTH = \text{ROTH} \times \text{ROTH} \times \text{BINF} \times \text{STEP}(1, \text{ROTHST} - \text{TIME}) \]

\[RSBINF = \text{STEP}(\text{RSBF}, \text{ROTHST} - \text{TIME}) \]

\[BSRINF = \text{STEP}(\text{BSRF}, \text{ROTHST} - \text{TIME}) \]

--- RATE OF ATTRITION DUE TO AUXILIARY FIRE

\[\text{BFIRES} = \text{BINF} \times \text{SHOT}(\text{BAMM} / \text{BINF}, \text{BAMCON} \times \text{BSHOT}) \times \text{BSHOTB} \]

\[\text{RFIRES} = \text{RINF} \times \text{SHOT}(\text{RAMM} / \text{RINF}, \text{RAMCON} \times \text{RSHOT}) \times \text{RSHOTB} \]

--- ROUND FIRE PER SOLIDER PER TIME

\[\text{BARINF} = \text{RINFBE} \times (1 - \text{RSBINF}) \times (\text{BINF} \times \text{GAMMA}) \times \text{RFIRES} \]

1 FAAIM(\text{RAMM}/\text{RINF}, \text{RAMCEF}, \text{RAMCON}) \times \text{TVEFF(\text{TIME}, \text{RITVEZ}, \text{RITVES})}

\[\text{RABINF} = \text{BINFBE} \times (1 - \text{RSBINF}) \times (\text{RINF} \times \text{GAMMA}) \times \text{RFIRES} \]

1 FAAIM(\text{BAMM}/\text{BINF}, \text{BAMCEF}, \text{BAMCON}) \times \text{TVEFF(\text{TIME}, \text{RITVEZ}, \text{RITVES})}

--- RATE OF ATTRITION DUE TO OPPOSING INFANTRY FIRE

\[\text{RINFSO} = \text{RSDFRC} \times \text{RABINF} \]

IF(\text{BINF}/\text{RINF} \leq 1.) GO TO 701

\[\text{RINFSO} = \text{RINFSO} + \text{RSDFRC} \times (\text{BINF} / \text{RINF} - 1.) \times 2 \]

701 \[\text{BINFSD} = \text{BISDFC} \times \text{BARINF} \]

IF(\text{RINF}/\text{BINF} \leq 1.) GO TO 702

\[\text{BINFSD} = \text{BINFSD} + \text{BSDFCR} \times (\text{RINF} / \text{BINF} - 1.) \times 2 \]

702 CONTINUE

--- LOSSES FROM SURRENDERS AND DESERTIONS

DO 590 II = 1, 4

590 SARRIV(II) = 0.

--- RESUPPLY ARRIVING FOR \text{BINF}, \text{RINF}, \text{BAMM}, \text{RAMM}

\[\text{NEXTST} = \text{AMIN}(\text{SUPPLY}(1,1,2), \text{SUPPLY}(2,1,2), \text{SUPPLY}(3,1,2), \text{SUPPLY}(4,1,2)) \]

--- TIME OF NEXT RESUPPLY

--- UPDATE STATE VARIABLES
GET TOTAL DERIVATIVES

\[\text{QRINF} = -\text{RINF} - \text{RINF} - \text{RINF} - \text{RABOTH} \]
\[\text{DBINF} = -\text{BINF} - \text{BINF} - \text{BINF} - \text{BAROTH} \]
\[\text{DBAMM} = -\text{BFires} \]
\[\text{DRAMM} = -\text{RFires} \]

SELECT INTEGRATION STEP SIZE

IF \(\text{VARSTP} \cdot \text{EQ.} \cdot 0. \) GO TO 801

VARIABLE STEP SIZE

\[\text{MAXPC} = \text{AMAX1} \left(\text{ABS} \left(\frac{\text{DRINF}}{\text{RINF}} \right), \text{ABS} \left(\frac{\text{DBINF}}{\text{BINF}} \right), \text{ABS} \left(\frac{\text{DRAMM}}{\text{RAMM}} \right), \text{ABS} \left(\frac{\text{DBAMM}}{\text{BAMM}} \right) \right) \]
\[\text{QDT} = \frac{\text{VARSTP}}{\text{MAXPC}} \]

IF \(\text{QDT} \cdot \text{LT.} \cdot 0.05 \) QOT = 0.05

IF \(\text{TIME} + \text{QDT} \cdot \text{GT.} \cdot \text{NXTFLT} \) QOT = \(\text{NXTFLT} - \text{TIME} \)

IF \(\text{TIME} + \text{QQT} \cdot \text{LT.} \cdot \text{NXTPLT} \) QOT = \(\text{NXTPLT} - \text{TIME} \)

CHECK FOR START-UP OF AUXILLARY FIRE

IF \(\text{TIME} \cdot \text{LT.} \cdot \text{BOTHST} \cdot \text{AND.} \cdot \text{TIME} + \text{QDT} \cdot \text{GT.} \cdot \text{BOTHST} \) QOT = \(\text{BOTHST} - \text{TIME} \)

IF \(\text{TIME} \cdot \text{LT.} \cdot \text{ROTHST} \cdot \text{AND.} \cdot \text{TIME} + \text{QDT} \cdot \text{GT.} \cdot \text{ROTHST} \) QOT = \(\text{ROTHST} - \text{TIME} \)

CHECK FOR RESUPPLY

IF \(\text{NEXTST} \cdot \text{EQ.} \cdot 99999. \) GO TO 802

IF \(\text{TIME} + \text{QDT} \cdot \text{LT.} \cdot \text{NEXTST} \) GO TO 802

YES THERE IS TO BE RESUPPLY

QOT = \(\text{NEXTST} - \text{TIME} \)

DO 561 \(\text{II} = 1, 4 \)

IF \(\text{SUPPLY} \left(\text{II}, 1, 2 \right) \cdot \text{GT.} \cdot \text{NEXTST} \) GO TO 561

\[\text{SARRIV} \left(\text{II} \right) = \text{SUPPLY} \left(\text{II}, 1, 1 \right) \]
\[\text{SONORD} \left(\text{II} \right) = \text{SONORD} \left(\text{II} \right) - \text{SARRIV} \left(\text{II} \right) \]
DO 583 JJ=1,49
SUPPLY(II,JJ,1)=SUPPLY(II,JJ+1,1)
SUPPLY(II,JJ,2)=SUPPLY(II,JJ+1,2)
SUPPLY(II,50,1)=0.
SUPPLY(II,50,2)=99999.
583 CONTINUE
GO TO 531
C
C FIXED STEP SIZE
801 QCT=DT
IF(NEXTST .EQ. 99999.) GO TO 302
C RESUPPLY ARRIVING--YES IF TIME IS WITHIN DT/2.
DO 560 II=1,4
IF((ABS(SUPPLY(II,1,2))-TIME-ET) .GT. DT/2.) GO TO 560
II RESUPPLY
SAFLV(II)=SUPPLY(II,1,1)
SONORD(II)=SONORD(II)-SARRIV(II)
DO 564 JJ=1,49
SUPPLY(II,JJ,1)=SUPPLY(II,JJ+1,1)
SUPPLY(II,JJ,2)=SUPPLY(II,JJ+1,2)
SUPPLY(II,50,1)=0.
SUPPLY(II,50,2)=99999.
564 CONTINUE
C
C INTEGRATE
802 BINF=BINF+(QCT)*DBINF+SARRIV(1)
RINF=RINF+(QCT)*DRINF+SARRIV(2)
BAMM=BAMM+(QCT)*DBAMM+SARRIV(3)
RAMM=RAMM+(QCT)*DRAMM+SARRIV(4)
TIME=TIME+QCT
RESUPPLY SECTOR

CHECK BLUE AMMO RESUPPLY
IF(BAMM/BINF+SQR(3)/BINF .GT. BRTAP) GO TO 1000
RE-ORDER FOR BLUE
DO 1010 JJ=1,50
IF(SUPPLY(3, JJ, 1) .NE. 0) GO TO 1010
SUPPLY(3, JJ, 1) = BRUPT*BINF-BAMM
SUPPLY(3, JJ, 2) = BDEL+TIME
SQR(3) = BRUPT*BINF-BAMM
GO TO 1000
1010 CONTINUE
1012 WRITE (6, 1011)
1011 FORMAT (*) TOO BAD, RESUPPLY VECTOR FILLED*)
STOP

CHECK RED RESUPPLY
1000 IF(RAMM/RINF+SQRD(4)/RINF .GT. RRTAP) GO TO 1030
DO 1020 JJ=1,50
RE-ORDER RED AMMO
IF(SUPPLY(4, JJ, 1) .NE. 0) GO TO 1020
SUPPLY(4, JJ, 1) = BRUPT*RINF-RAMM
SUPPLY(4, JJ, 2) = RDEL+TIME
SQRD(4) = SQRD(4) + BRUPT*RINF-RAMM
GO TO 1030
1020 CONTINUE
GO TO 1112

CONTINUE
CONTINUE
CALCULATE AND PRINT MOES
TIME TO CALCULATE?

C WATCH OUT FOR DIFFERENT RULES FIXED AND VARIABLE STEP
IF(VARSTP .EQ. 0.) GO TO 773

C --- HERE IS TEST FOR VARIABLE STEP INTEGRATION
IF(TIME .NE. NXTPRT .AND. TIME .NE. NXTPLT) GO TO 200
GO TO 210

C 773 IF(ABS(TIME-NXTPRT) .GT. DT/2. .AND.
1 ABS(TIME-NXTPLT) .GT. DT/2.) GO TO 200

C IT IS TIME TO CALCULATE AND PRINT OUTPUT

210 MOE(1)=BINFZ-BINF
C NUMBER OF BLUE INFANTRY LOST
MOE(2)=RINFZ-RINF
C NUMBER OF RED INFANTRY LOST
MOE(3)=100.*MOE(1)/BINFZ
C PERCENT BLUE INFANTRY LOST.
MOE(4)=100.*MOE(2)/RINFZ
C PERCENT RED INFANTRY LOST
MOE(5)=MOE(3)-MOE(4)
C DIFFERENCE IN PERCENT LOST
IF(MOE(2) .LT. .001) MOE(6)=99.99
IF(MOE(2) .GE. .001) MOE(6)=MOE(1)/MOE(2)
C RATIO OF NUMBER INFANTRY LOST
IF(MOE(4) .LT. .001) MOE(7)=99.99
IF(MOE(4) .GE. .GOD MOE(7) =MOE(3)/MOE(4)
C RATIO OF PERCENT ORIGINAL INFANTRY LOST
MOE(8)=MOE(1)-MOE(2)
C DIFFERENCE IN NUMBER OF INFANTRY LOST
IF(RINF .LT. 1.) MOE(9)=BINF
IF(RINF .GE. 1.) MOE(9)=BINF/RINF
C SURVIVING FORCE RATIO
IF(RINF .LT. 1.) MOE(10)=99.99
IF(RINF .GT. 1.) MOE(10) = (FZERO - MOE(9))/FZERO

C FRACTIONAL REDUCTION IN FORCE RATIO

C

IF(JSWIT .EQ. 1) GO TO 212
IF(FRTPER .EQ. 0.) GO TO 220
IF(VARSTF .EQ. 0.) GO TO 774
IF(TIME .NE. NXTFRT) GO TO 220
GO TO 230

774 IF(ABS(TIME-NXTFRT) .GT. DT/2.) GO TO 220
230 WRITE(6,100) TIME, BINF, RINF, BAMM, RAMM
WRITE(6,201) MOE
NXTFRT = TIME + FRTPER

C

220 IF(PLTPER .EQ. 0.) GO TO 200
IF(VARSTF .EQ. 0.) GO TO 775
IF(TIME .NE. NXTPLT) GO TO 200
GO TO 231

775 IF(ABS(NXTPLT-TIME) .GT. DT/2.) GO TO 200
231 NSPOOL = NSPOOL + 1
WRITE(99) TIME, BINF, RINF, BAMM, RAMM, (MOE(I), I = 1, 10)
NXTPLT = TIME + PLTPER

C BATTLE TERMINATION SECTOR

200 IF(RINF/RINFZ .LT. ENDFR .OR. BINF/BINFZ .LT. ENDFR) GO TO 211
IF(RINF .LE. 1. .OR. BINF .LE. 1.) GO TO 211
IF(BAMM .GT. BINF .AND. FAMM .GT. RINF) GO TO 1

211 IF(NXTFRT-PRTPER .EQ. TIME) RETURN
JSWIT = 1
GO TO 210

212 WRITE(6,100) TIME, BINF, RINF, BAMM, RAMM
WRITE(6,201) MOE
RETURN
C
END
C
FUNCTION TVEFF (TIME, VZERO, VTC)

FUNCTION FOR TIME VARYING MULT. EFFECT ON INF FIRE EFF
TVEFF = 1. - (1. - VZERO) * EXP (- TIME / VTC)
RETURN
END
C
FUNCTION FAAIM (RATIO, XMAXEF, CRITRT)

FUNCTION FOR MULT EFF ON AMMO CONST ON FIRE EFFICIENCY
XX = - RATIO / CRITRT
IF (XX .LT. -3.) GO TO 1
FAAIM = 1. - (1. - XMAXEF) * EXP (XX)
RETURN
1 FAAIM = 1.
RETURN
END
C
FUNCTION FSHOTT (RATIO, CRTRAT)
XX = - RATIO / CRTRAT
IF (XX .LT. -10.) GO TO 1
FSHOTT = 1. - EXP (XX)
RETURN
1 FSHOTT = 1.
RETURN
END
C
FUNCTION STEP (STH, STH1)
STEP=0.
IF(STT .GE. 0.) STEP=STH
RETURN
END

SUBROUTINE PLOT0(11,12,13,14,15,16)

C PLOT GRAPH OUTPUT ROUTINE

C INTEGER LINE(101),LSP(5,10),NLS(5),LNS(14),LABEL(24)
INTEGER LETTER(15),MESAG(11),NAME(15)
REAL SCALE(15,2)
INTEGER ILIST(6),IFLAG(6),SINDEX(6)
INTEGER DOT,SPC,CM,MIN,LN,WID
REAL DATA(14)
COMMON /NRUN,NSPOOL,LETTER,SCALE,MESAG,NAME
DATA DOT,SPC,CM,MIN/1H.,1H.,1H.,1H.,1H.,1H./

C GET NVAR = NUMBER OF VARIABLES THIS PLOT
ILIST(1)=11
ILIST(2)=12
ILIST(3)=13
ILIST(4)=14
ILIST(5)=15
ILIST(6)=16

NVAR=0
DO 1 I=1,6
IF(ILIST(I) .EQ. 0) GO TO 1
NVAR=NVAR+1
ILIST(I)=ILIST(I)-100
1 CONTINUE
IF(NVAR .EQ. 0) RETURN
C
LCT=1
ZZLEN=48.
LEN=49
WIO=12
REWIND 99
WRITE(6,2) NRUN, MESAG
2 FORMAT(*10/20X, *RUN NUMBER *, I4/5X, 11A6/*)

C
SCALE HEADINGS
DO 13 J=1, 24
13 LABEL(J)=6H
K=0
DO 10 I=1, NVAR
II=ILIST(I)
K=K+1
LABEL(K)=NAME(II)
K=K+1
LABEL(K)=1H=
K=K+1
LABEL(K)=LETTER(II)
IF(NVAR .EQ. I) GO TO 10
K=K+1
LABEL(K)=COM
10 CONTINUE
WRITE(6,12) LABEL
12 FORMAT(3X,6(A6,3A1))
C
DO 26 I=1, 6
26 IFLAG(I)=0
DO 21 I=1, NVAR
II=ILIST(I)
 IF(IFLAG(I) .NE. 0) GO TO 21

C

 XLOW=SCALE(I,1)
 XHIGH=SCALE(I,2)
 XMID=(XHIGH+XLOW)/2,
 DO 22 J=2,6
 SINDEX(J)=SPC
 SINDEX(1)=LETTER(I)
 IF(I .EQ. NVAR) GO TO 25
 KK=2
 IBOT=I+1
 DO 23 K=IBOT,NVAR
 IF(XLOW .NE. SCALE(ILIST(K),1)) GO TO 23
 IF(XHIGH .NE. SCALE(ILIST(K),2)) GO TO 23
 SINDEX(KK)=LETTER(ILIST(K))
 IFLAG(K)=1
 KK=KK+1
 CONTINUE

C

 WRITE(G,28) XLOW,XMID,XHIGH,SINDEX

C

 CONTINUE

C

 DO 1210 NCOUNT=1,NSPOOL

C

 READ SPOOLED DATA FOR ONE PLOT PERIOD
 READ (99) TIME,DATA

C
C BLANK OUT LINE IMAGE
DO 1030 I=1,LEN
 LINE(I)=SPC
1030 CONTINUE
C
C NUMBER OF SUPERPOSITIONS THIS LINE
C PLACE PLOT CHARACTERS FOR EACH OF NVAR VARIABLES
DO 1090 N=1,NVAR
 TEMP=(DATA(ILIST(N))-(SCALE(ILIST(N),1))/(SCALE(ILIST(N),2)-
 1 SCALE(ILIST(N),1))
 TEMP=TEMP+ZZLEN+1.5
 I=TEMP
 IF(I .GT. LEN) GO TO 1090
 IF(I .LE. L) GO TO 1090
 IF(LINE(I) .EQ. SFC) GO TO 1030
C HAVE A SUPERPOSITION
 IF(NSP .EQ. 0) GO TO 1060
C
DO 1050 M=1,NSP
 IF(LSP(M,1) .EQ. LINE(I)) GO TO 1070
1050 CONTINUE
C
1060 NSP=NSP+1
 LSP(NSP,1)=LINE(I)
 LSP(NSP,2)=LETTER(ILIST(N))
 NLS(NSP)=2
 GO TO 1090
C
C MANY SUPERPOSITIONS IN THIS COLUMN
1070 \ J=\text{NLS}(M)+1
\text{LSP}(M,J)=\text{LETTER(ILIST}(N))
\text{NLS}(M)=J
\text{GO TO 1090}

C

1080 \text{LINE(I)}=\text{LETTER(ILIST}(N))
1090 \text{CONTINUE}

C

\text{END OF LOOP TO PLACE NVAR VARIABLES}

C

K=1
\text{NEXT ELEMENT OF LNS() TO BE FILLED}
\text{IF}(\text{NSP .EQ. } J) \text{ GO TO 1130}

C

\text{LOOP TO FILL IN LNS}
\text{DO 1120 } L=1,\text{NSP}
\text{IF}(K, \text{EQ. } 1) \text{ GO TO 1160}
\text{LNS}(K)=\text{COM}
K=K+1
1100 \ J=\text{NLS}(L)

C

\text{DO 1110 } I=1,J
\text{LNS}(K)=\text{LSP}(L,I)
1110 K=K+1

C

1120 \text{CONTINUE}

C

\text{END OF LOOP TO FILL IN LNS}
1130 \text{DO 1140 } I=K,14
LNS(I)=SFC

1140 CONTINUE

C
C EMBED DOTS EVERY WID SLOTS
DO 1150 I=1,LEN,WID
 IF(LINE(I) .EQ. SFC) LINE(I)=DOT
1150 CONTINUE

C
LCT=LCT-1
IF(LCT .EQ. 0) GO TO 1180
IF(NCOUNT .EQ. NSPOOL) GO TO 1180

C
DONT FILL IN DASHES
WRITE(6,1170) (LINE(J),J=1,LEN),SFC,LNS
1170 FORMAT(7X,116A1)
GO TO 1210

C
FILL IN DASHES
1190 DO 1190 I=3,99,2
 IF(LINE(I) .EQ. SFC) LINE(I)=MIN
1190 CONTINUE
LCT=10
WRITE(6,1200) TIME,(LINE(J),J=1,LEN),SFC,LNS
1200 FORMAT(F7.2,116A1)

C
1210 CONTINUE
RETURN
END
APPENDIX C

MODEL OUTCOMES FOR SELECTED ENGAGEMENTS
ORIGINAL PARAMETERS

LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SO\LUTION STEP SIZE</td>
<td>0.250</td>
</tr>
<tr>
<td>2 PRINT PERIOD</td>
<td>2.000</td>
</tr>
<tr>
<td>3 PLOT PERIOD</td>
<td>1.000</td>
</tr>
<tr>
<td>4 VARIABLE STEP SIZE MAX %</td>
<td>0.000</td>
</tr>
<tr>
<td>5 ENC BATTLE FORCE RATIO</td>
<td>0.020</td>
</tr>
<tr>
<td>6 INITIAL BLUE INFANTRY</td>
<td>75.000</td>
</tr>
<tr>
<td>7 INITIAL RED INFANTRY</td>
<td>50.000</td>
</tr>
<tr>
<td>8 GAMMA DENSITY CORRECTION</td>
<td>0.000</td>
</tr>
<tr>
<td>9 RED AMMO CRIT MIN INV</td>
<td>1.000</td>
</tr>
<tr>
<td>10 BLUE AMMO CRIT MIN INV</td>
<td>1.000</td>
</tr>
<tr>
<td>11 BASE EFF BLUE INF FIRE</td>
<td>0.001</td>
</tr>
<tr>
<td>12 BASE EFF RED INF FIRE</td>
<td>0.001</td>
</tr>
<tr>
<td>13 BASE EFF BLUE ARTY FIRE</td>
<td>0.050</td>
</tr>
<tr>
<td>14 BASE EFF RED ARTY FIRE</td>
<td>0.050</td>
</tr>
<tr>
<td>15 BASE RATE FIRE RED INF</td>
<td>40.000</td>
</tr>
<tr>
<td>16 BASE RATE FIRE BLUE INF</td>
<td>40.000</td>
</tr>
<tr>
<td>17 RED S+D PER REG CASUAL</td>
<td>0.000</td>
</tr>
<tr>
<td>18 BLUE S+D PER BLUE CASUAL</td>
<td>0.000</td>
</tr>
<tr>
<td>19 RED S+D DUE FORCE RATIO</td>
<td>0.000</td>
</tr>
<tr>
<td>20 BLUE S+D DUE FORCE RATIO</td>
<td>0.000</td>
</tr>
<tr>
<td>21 INT BLUE AMMO PER MAN</td>
<td>10000.00</td>
</tr>
<tr>
<td>22 INT RED AMMO PER MAN</td>
<td>10000.00</td>
</tr>
<tr>
<td>23 DELAY CALL BLUE ARTY</td>
<td>10.000</td>
</tr>
<tr>
<td>24 DELAY CALL RED ARTY</td>
<td>5.000</td>
</tr>
<tr>
<td>25 % RED SUPP OF BLUE INF</td>
<td>0.000</td>
</tr>
<tr>
<td>26 % BLUE SUPP OF RED INF</td>
<td>0.000</td>
</tr>
<tr>
<td>27 NUM BLUE ARTY TUBES</td>
<td>0.000</td>
</tr>
<tr>
<td>28 NUM RED ARTY TUBES</td>
<td>0.000</td>
</tr>
<tr>
<td>29 BLUE INF TV EFF AT ZERO</td>
<td>1.000</td>
</tr>
<tr>
<td>30 BLUE INF TV EFF TC</td>
<td>1.000</td>
</tr>
<tr>
<td>31 RED INF TV EFF AT ZERO</td>
<td>1.000</td>
</tr>
<tr>
<td>32 RED INF TV EFF TC</td>
<td>1.000</td>
</tr>
<tr>
<td>33 BLUE AMMO CONS FIRE EFF</td>
<td>1.000</td>
</tr>
<tr>
<td>34 RED AMMO CONS FIRE EFF</td>
<td>1.000</td>
</tr>
<tr>
<td>35 BLUE RORD PT AMMO/MAN</td>
<td>0.000</td>
</tr>
<tr>
<td>36 RED RORD PT AMMO/MAN</td>
<td>0.000</td>
</tr>
<tr>
<td>37 BLUE RORD UP TO AMMO/MAN</td>
<td>10000.00</td>
</tr>
<tr>
<td>38 RED RORD UP TO AMMO/MAN</td>
<td>10000.00</td>
</tr>
<tr>
<td>39 BLUE AMMO DELAY TIME</td>
<td>0.000</td>
</tr>
<tr>
<td>40 RED AMMO DELAY TIME</td>
<td>0.000</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>6</td>
<td>Initial Blue Infantry</td>
</tr>
<tr>
<td>21</td>
<td>Int Blue Ammo Per Man</td>
</tr>
<tr>
<td>22</td>
<td>Int Red Ammo Per Man</td>
</tr>
<tr>
<td>35</td>
<td>Blue Ord Ft Ammunition/Man</td>
</tr>
<tr>
<td>36</td>
<td>Red Ord Ft Ammunition/Man</td>
</tr>
<tr>
<td>37</td>
<td>Blue Ord Up To Ammunition/Man</td>
</tr>
<tr>
<td>38</td>
<td>Red Ord Up To Ammunition/Man</td>
</tr>
<tr>
<td>39</td>
<td>Blue Ammunition Delay Time</td>
</tr>
<tr>
<td>40</td>
<td>Red Ammunition Delay Time</td>
</tr>
<tr>
<td>TIME</td>
<td>BINF</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
</tr>
<tr>
<td>0.00</td>
<td>50.00</td>
</tr>
<tr>
<td>2.00</td>
<td>42.00</td>
</tr>
<tr>
<td>4.00</td>
<td>34.00</td>
</tr>
<tr>
<td>6.00</td>
<td>29.00</td>
</tr>
<tr>
<td>8.00</td>
<td>26.00</td>
</tr>
<tr>
<td>10.00</td>
<td>23.00</td>
</tr>
<tr>
<td>12.00</td>
<td>20.00</td>
</tr>
<tr>
<td>14.00</td>
<td>17.00</td>
</tr>
<tr>
<td>15.50</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td>15.00</td>
</tr>
</tbody>
</table>
RUN NUMBER 1
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CONST

8 INF=8, RINF=R, MOE10=0, DARM=Y, RAMM=Z

0.00

0.00

10.00

15.00Y
NEW PARAMETER CHANGES

PARAMETER 28 NUM RED ARTY TUBES
NEW VALUE 2.00
REPLACES 0.00

<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF MOE1</th>
<th>RINF MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
<th>BAMP</th>
<th>RAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>0</td>
<td>0</td>
<td>0.99</td>
<td>99.99</td>
<td>0</td>
<td>0.99</td>
<td>0</td>
<td>0.00</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>2.00</td>
<td>37.</td>
<td>46.</td>
<td>25</td>
<td>7</td>
<td>3.59</td>
<td>3.59</td>
<td>9</td>
<td>8.00</td>
<td>6.00</td>
<td>11135.</td>
<td>11135.</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>27.</td>
<td>44.</td>
<td>12</td>
<td>33</td>
<td>3.72</td>
<td>3.72</td>
<td>17</td>
<td>66.2</td>
<td>38.</td>
<td>7535.</td>
<td>7535.</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>21.</td>
<td>42.</td>
<td>59</td>
<td>42</td>
<td>3.64</td>
<td>3.64</td>
<td>21</td>
<td>49.4</td>
<td>51.</td>
<td>4213.</td>
<td>4213.</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>18.</td>
<td>40.</td>
<td>65</td>
<td>45</td>
<td>3.37</td>
<td>3.37</td>
<td>23</td>
<td>44.9</td>
<td>.56</td>
<td>14765.</td>
<td>14765.</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>11.</td>
<td>38.</td>
<td>77</td>
<td>53</td>
<td>3.23</td>
<td>3.23</td>
<td>27</td>
<td>.38</td>
<td>.70</td>
<td>6496.</td>
<td>6496.</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>6.</td>
<td>37.</td>
<td>63</td>
<td>56</td>
<td>3.26</td>
<td>3.26</td>
<td>29</td>
<td>.23</td>
<td>.77</td>
<td>5511.</td>
<td>5511.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Grade</th>
<th>Soil</th>
<th>Water</th>
<th>Air</th>
<th>Percent of Grade</th>
<th>Percent of Soil</th>
<th>Percent of Water</th>
<th>Percent of Air</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.00</td>
<td>6.37</td>
<td>44.15</td>
<td>89.27</td>
<td>62.33</td>
<td>3.33</td>
<td>3.33</td>
<td>31.15</td>
<td>.15</td>
<td>2742.</td>
</tr>
<tr>
<td>18.00</td>
<td>3.36</td>
<td>47.14</td>
<td>94.27</td>
<td>67.34</td>
<td>3.44</td>
<td>3.44</td>
<td>33.08</td>
<td>.08</td>
<td>11637.</td>
</tr>
<tr>
<td>19.50</td>
<td>1.36</td>
<td>49.14</td>
<td>98.28</td>
<td>71.36</td>
<td>3.56</td>
<td>3.56</td>
<td>35.02</td>
<td>.02</td>
<td>9464.</td>
</tr>
</tbody>
</table>
RUN NUMBER 2
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CCNST

BINF=B, RINF=R, MOE10=C, BAMM=Y, RAMM=Z

<table>
<thead>
<tr>
<th>Time</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE10</th>
<th>BAMM</th>
<th>RAMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>BINF</td>
<td>RINF</td>
<td>MOE1</td>
<td>MOE2</td>
<td>MOE3</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>2.00</td>
<td>33.</td>
<td>47.</td>
<td>3.</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>4.00</td>
<td>21.</td>
<td>44.</td>
<td>57.</td>
<td>11.</td>
<td>67.</td>
</tr>
<tr>
<td>6.00</td>
<td>35.</td>
<td>71.</td>
<td>35.</td>
<td>3</td>
<td>46.</td>
</tr>
<tr>
<td>8.00</td>
<td>11.</td>
<td>42.</td>
<td>77.</td>
<td>16.</td>
<td>41.</td>
</tr>
<tr>
<td>10.00</td>
<td>3.</td>
<td>41.</td>
<td>84.</td>
<td>18.</td>
<td>66.</td>
</tr>
<tr>
<td>12.00</td>
<td>5.</td>
<td>41.</td>
<td>90.</td>
<td>19.</td>
<td>71.</td>
</tr>
<tr>
<td>14.50</td>
<td>1.</td>
<td>40.</td>
<td>98.</td>
<td>19.</td>
<td>79.</td>
</tr>
<tr>
<td>Time</td>
<td>B</td>
<td>R</td>
<td>MOE10</td>
<td>BAMM</td>
<td>RAMM</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td>0.25E+02</td>
<td>0.50E+02</td>
<td>0.30E+01</td>
</tr>
<tr>
<td>10.00</td>
<td></td>
<td></td>
<td>0.15E+05</td>
<td>0.10E+01</td>
<td>0.10E+01</td>
</tr>
<tr>
<td>14.00</td>
<td></td>
<td></td>
<td>0.15E+05</td>
<td>0.10E+01</td>
<td>0.10E+01</td>
</tr>
</tbody>
</table>

RUN NUMBER 3
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CONST

BINF=B, RINF=R, MGE10=0, BAMM=Y, RAMM=Z
NEW PARAMETER CHANGES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>New Value</th>
<th>Replaces</th>
<th>Old Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Num Blue Arty Tubes</td>
<td>1.000</td>
<td>REPLACES</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>Num Red Arty Tubes</td>
<td>1.000</td>
<td>REPLACES</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.00</td>
<td>50.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>99.99</td>
<td>99.99</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>42.00</td>
<td>42.00</td>
<td>0.00</td>
<td>17.00</td>
<td>17.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00</td>
<td>35.00</td>
<td>35.00</td>
<td>15.00</td>
<td>31.00</td>
<td>31.00</td>
<td>0.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6.00</td>
<td>50.00</td>
<td>42.00</td>
<td>21.00</td>
<td>21.00</td>
<td>40.00</td>
<td>42.00</td>
<td>-2.00</td>
<td>.35</td>
<td>.35</td>
<td>-1.00</td>
<td>-0.04</td>
<td>-0.04</td>
</tr>
<tr>
<td>8.00</td>
<td>28.00</td>
<td>44.00</td>
<td>22.00</td>
<td>26.00</td>
<td>44.00</td>
<td>52.00</td>
<td>-8.00</td>
<td>.85</td>
<td>.85</td>
<td>-4.00</td>
<td>1.17</td>
<td>-0.17</td>
</tr>
<tr>
<td>10.00</td>
<td>26.00</td>
<td>20.00</td>
<td>24.00</td>
<td>30.00</td>
<td>47.00</td>
<td>60.00</td>
<td>-13.00</td>
<td>.73</td>
<td>.73</td>
<td>-6.00</td>
<td>1.32</td>
<td>-0.32</td>
</tr>
<tr>
<td>12.00</td>
<td>25.00</td>
<td>18.00</td>
<td>25.00</td>
<td>32.00</td>
<td>50.00</td>
<td>63.00</td>
<td>-13.00</td>
<td>.80</td>
<td>.80</td>
<td>-6.00</td>
<td>1.34</td>
<td>-0.34</td>
</tr>
</tbody>
</table>
RUN NUMBER 4
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CST

BINF=B, RINF=R, MOE1U=0, BAMB=Y, RARM=Z

<table>
<thead>
<tr>
<th>Time</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1U</th>
<th>BAMB</th>
<th>RARM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.01</td>
<td>0.25E+02</td>
<td>-0.30E+01</td>
<td>0.10E+01</td>
<td>0.10E+01</td>
<td>0.15E+05</td>
</tr>
<tr>
<td>0.02</td>
<td>0.75E+04</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

0.00, BRYZ
Y B BR YZ
0.01, BRYZ
Y B BR YZ
0.02, BRYZ
Y B BR YZ

10.00, BRYZ
Y B BR YZ
14.00Y, BRYZ
Y B BR YZ
NEW PARAMETER CHANGES

PARAMETER 27 **NUM RED ARTY TUBES**
NEW VALUE **1.000** **REPLACES** **0.000**

PARAMETER 28 **NUM BLUE ARTY TUBES**
NEW VALUE **2.000** **REPLACES** **0.000**

<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MCE2</th>
<th>MCE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MCE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>1500.</td>
<td>50.</td>
<td>1500.</td>
<td>0.99</td>
<td>.99</td>
<td>99.99</td>
<td>99.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>37.</td>
<td>42.</td>
<td>11462.</td>
<td>13.</td>
<td>8.</td>
<td>6.54</td>
<td>6.54</td>
<td>4.</td>
<td>.90</td>
<td>.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>29.</td>
<td>35.</td>
<td>8823.</td>
<td>22.</td>
<td>15.</td>
<td>1.51</td>
<td>1.51</td>
<td>8.</td>
<td>.79</td>
<td>.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>22.</td>
<td>30.</td>
<td>6862.</td>
<td>28.</td>
<td>20.</td>
<td>1.41</td>
<td>1.41</td>
<td>8.</td>
<td>.73</td>
<td>.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>20.</td>
<td>26.</td>
<td>5196.</td>
<td>30.</td>
<td>24.</td>
<td>1.24</td>
<td>1.24</td>
<td>6.</td>
<td>.77</td>
<td>.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>18.</td>
<td>22.</td>
<td>3652.</td>
<td>32.</td>
<td>28.</td>
<td>1.13</td>
<td>1.13</td>
<td>4.</td>
<td>.82</td>
<td>.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>16.</td>
<td>20.</td>
<td>2327.</td>
<td>34.</td>
<td>30.</td>
<td>1.13</td>
<td>1.13</td>
<td>4.</td>
<td>.81</td>
<td>.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>15.00</td>
<td>19.00</td>
<td>35.00</td>
<td>31.00</td>
<td>70.00</td>
<td>62.00</td>
<td>8.13</td>
<td>1.13</td>
<td>1.13</td>
<td>4.00</td>
<td>.78</td>
<td>.22</td>
</tr>
<tr>
<td>16.00</td>
<td>13.00</td>
<td>18.00</td>
<td>37.00</td>
<td>32.00</td>
<td>73.00</td>
<td>64.00</td>
<td>9.15</td>
<td>1.15</td>
<td>1.15</td>
<td>5.00</td>
<td>.74</td>
<td>.26</td>
</tr>
<tr>
<td>18.00</td>
<td>12.00</td>
<td>16.00</td>
<td>38.00</td>
<td>32.00</td>
<td>76.00</td>
<td>64.00</td>
<td>12.18</td>
<td>1.18</td>
<td>1.18</td>
<td>6.00</td>
<td>.67</td>
<td>.33</td>
</tr>
<tr>
<td>19.50</td>
<td>11.00</td>
<td>16.00</td>
<td>39.00</td>
<td>32.00</td>
<td>78.00</td>
<td>65.00</td>
<td>14.21</td>
<td>1.21</td>
<td>1.21</td>
<td>7.00</td>
<td>.61</td>
<td>.39</td>
</tr>
</tbody>
</table>
RUN NUMBER 5
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CONST

BINF=3, RINF=R, MUE10=0, BAHM=Y, RAMM=Z

\[0.00, \quad ... \quad 0.00, \quad ... \quad 10.00, \quad ... \quad 19.00, \quad ... \quad \]

\[0.25E+02 \quad 0.50E+02 \quad B \quad Y \quad Z\]
\[-0.30E+01 \quad -0.10E+01 \quad 0.10E+01 \quad D \quad Y \quad Z\]
\[0.75E+04 \quad 0.15E+05 \quad D \quad Y \quad Z\]

\[0.00, \quad ... \quad 0.00, \quad ... \quad 10.00, \quad ... \quad 19.00, \quad ... \quad \]

\[B \quad Y \quad Z \quad R \quad B \quad Y \quad Z\]
\[X \quad Y \quad Z \quad R \quad B \quad Y \quad Z\]
\[Z \quad Y \quad B \quad R \quad Z \quad Y \quad B \quad R\]
\[Y \quad Z \quad B \quad R \quad Y \quad Z \quad B \quad R\]
\[Y \quad Z \quad B \quad R \quad Y \quad Z \quad B \quad R\]
\[Y \quad Z \quad B \quad R \quad Y \quad Z \quad B \quad R\]
NEW PARAMETER CHANGES

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>27 NUM BLUE ARTY TUBES</th>
<th>NEW VALUE</th>
<th>1.000</th>
<th>REPLACES</th>
<th>0.000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>26 NUM RED ARTY TUBES</th>
<th>NEW VALUE</th>
<th>3.000</th>
<th>REPLACES</th>
<th>0.000</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.00</td>
</tr>
<tr>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>34.</td>
<td>42.</td>
<td>6.</td>
<td>33.</td>
<td>16.</td>
<td>17.</td>
<td>2.05</td>
<td>2.05</td>
<td>8.</td>
<td>0.80</td>
<td>0.20</td>
<td>1.12</td>
</tr>
<tr>
<td>16.</td>
<td>0.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>34.</td>
<td>42.</td>
<td>16.</td>
<td>17.</td>
<td>0.</td>
<td>2.05</td>
<td>2.05</td>
<td>8.</td>
<td>0.80</td>
<td>0.20</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>22.</td>
<td>36.</td>
<td>56.</td>
<td>28.</td>
<td>28.</td>
<td>1.97</td>
<td>1.97</td>
<td>14.</td>
<td>0.61</td>
<td>0.39</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>28.</td>
<td>14.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00</td>
<td>22.</td>
<td>36.</td>
<td>56.</td>
<td>28.</td>
<td>28.</td>
<td>1.97</td>
<td>1.97</td>
<td>14.</td>
<td>0.61</td>
<td>0.39</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>16.</td>
<td>31.</td>
<td>69.</td>
<td>38.</td>
<td>31.</td>
<td>1.81</td>
<td>1.81</td>
<td>15.</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>19.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.00</td>
</tr>
<tr>
<td>6.00</td>
<td>16.</td>
<td>31.</td>
<td>69.</td>
<td>38.</td>
<td>31.</td>
<td>1.81</td>
<td>1.81</td>
<td>15.</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>3.00</td>
<td>13.</td>
<td>27.</td>
<td>73.</td>
<td>46.</td>
<td>27.</td>
<td>1.59</td>
<td>1.59</td>
<td>14.</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>23.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.00</td>
</tr>
<tr>
<td>8.00</td>
<td>13.</td>
<td>27.</td>
<td>73.</td>
<td>46.</td>
<td>27.</td>
<td>1.59</td>
<td>1.59</td>
<td>14.</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>23.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>0.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.00</td>
</tr>
<tr>
<td>10.00</td>
<td>11.</td>
<td>23.</td>
<td>53.</td>
<td>24.</td>
<td>1.45</td>
<td>1.45</td>
<td>12.</td>
<td>0.49</td>
<td>0.51</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39.</td>
<td>27.</td>
<td>77.</td>
<td>53.</td>
<td>24.</td>
<td>1.45</td>
<td>1.45</td>
<td>12.</td>
<td>0.49</td>
<td>0.51</td>
<td>0.51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>10.</td>
<td>22.</td>
<td>56.</td>
<td>25.</td>
<td>1.45</td>
<td>1.45</td>
<td>13.</td>
<td>0.43</td>
<td>0.57</td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>26.</td>
<td>56.</td>
<td>25.</td>
<td>1.45</td>
<td>1.45</td>
<td>13.</td>
<td>0.43</td>
<td>0.57</td>
<td>0.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Hour</td>
<td>Temperature</td>
<td>Humidity</td>
<td>Pressure</td>
<td>Wind Speed</td>
<td>Wind Direction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>8</td>
<td>22</td>
<td>42</td>
<td>26</td>
<td>37</td>
<td>1.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>6</td>
<td>21</td>
<td>44</td>
<td>29</td>
<td>29</td>
<td>1.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>5</td>
<td>20</td>
<td>45</td>
<td>30</td>
<td>32</td>
<td>1.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>3</td>
<td>26</td>
<td>47</td>
<td>30</td>
<td>34</td>
<td>1.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>2</td>
<td>20</td>
<td>48</td>
<td>30</td>
<td>37</td>
<td>1.61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>23.00</td>
<td>1</td>
<td>20</td>
<td>49</td>
<td>30</td>
<td>38</td>
<td>1.63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RUN NUMBER 6
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CONST

<table>
<thead>
<tr>
<th>Time</th>
<th>BINF=R, RINF=Z, MOE10=0, BAMM=Y, RAMM=Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>.25E+02 - .50E+02 BZ Y</td>
</tr>
<tr>
<td>.30E+01</td>
<td>- .10E+01 BZ R</td>
</tr>
<tr>
<td>0.00</td>
<td>.75E+04 BZ Y</td>
</tr>
<tr>
<td>10.00</td>
<td>BZ R</td>
</tr>
<tr>
<td>20.00</td>
<td>BZ R</td>
</tr>
<tr>
<td>23.00</td>
<td>BZ R</td>
</tr>
</tbody>
</table>

Legend:
- B: Infantry
- Z: Artillery
- Y: Resup
- R: Delay
- C: TV Coeff
- YZ: Inv Const

Note: The diagram represents the movement of infantry and artillery units over time, with specific events and changes indicated at each time step.
<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.0</td>
<td>50.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1500.0</td>
<td>1500.0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>42.0</td>
<td>37.0</td>
<td>16.0</td>
<td>25.0</td>
<td>-9.0</td>
<td>0.65</td>
<td>0.65</td>
<td>11301.0</td>
<td>11462.0</td>
<td>1.12</td>
<td>-1.12</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>35.0</td>
<td>25.0</td>
<td>29.0</td>
<td>45.0</td>
<td>-15.0</td>
<td>0.66</td>
<td>0.66</td>
<td>6197.0</td>
<td>6423.0</td>
<td>-5.27</td>
<td>-5.27</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>31.0</td>
<td>20.0</td>
<td>38.0</td>
<td>59.0</td>
<td>-22.0</td>
<td>0.63</td>
<td>0.63</td>
<td>5566.0</td>
<td>6673.0</td>
<td>1.54</td>
<td>-1.54</td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>30.0</td>
<td>14.0</td>
<td>40.0</td>
<td>71.0</td>
<td>-31.0</td>
<td>0.57</td>
<td>0.57</td>
<td>3158.0</td>
<td>5474.0</td>
<td>1.08</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>23.0</td>
<td>10.0</td>
<td>40.0</td>
<td>80.0</td>
<td>-38.0</td>
<td>0.53</td>
<td>0.53</td>
<td>1217.0</td>
<td>4430.0</td>
<td>2.90</td>
<td>-1.90</td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>29.0</td>
<td>9.0</td>
<td>44.0</td>
<td>83.0</td>
<td>-39.0</td>
<td>0.53</td>
<td>0.53</td>
<td>226.0</td>
<td>3755.0</td>
<td>3.23</td>
<td>-2.23</td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>27.0</td>
<td>8.0</td>
<td>42.0</td>
<td>83.0</td>
<td>-38.0</td>
<td>0.54</td>
<td>0.54</td>
<td>25.0</td>
<td>3063.0</td>
<td>3.23</td>
<td>-2.23</td>
<td></td>
</tr>
</tbody>
</table>
RUN NUMBER 7
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CCNST

8 INF=B, RINF=R, MOE10=0, BANN=Y, RANN=Z

<table>
<thead>
<tr>
<th>Time</th>
<th>B</th>
<th>R</th>
<th>O</th>
<th>B</th>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>.25E+02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-30E+01</td>
<td>.10E+01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.</td>
<td>.75E+04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>B</th>
<th>R</th>
<th>O</th>
<th>B</th>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>10.00</td>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>B</th>
<th>R</th>
<th>O</th>
<th>B</th>
<th>R</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
NEW PARAMETER CHANGES

PARAMETER 27 NUM BLUE ARTY TUBES
NEW VALUE 2.000 REPLACES 0.000

PARAMETER 26 NUM RED ARTY TUBES
NEW VALUE 2.000 REPLACES 0.000

<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>99.99</td>
<td>99.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2.00</td>
<td>38.</td>
<td>38.</td>
<td>12.</td>
<td>12.</td>
<td>25.</td>
<td>25.</td>
<td>0.</td>
<td>1.00</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>4.00</td>
<td>29.</td>
<td>20.</td>
<td>22.</td>
<td>22.</td>
<td>43.</td>
<td>43.</td>
<td>0.</td>
<td>1.00</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>6.00</td>
<td>23.</td>
<td>21.</td>
<td>27.</td>
<td>29.</td>
<td>54.</td>
<td>58.</td>
<td>-3.</td>
<td>.94</td>
<td>.94</td>
<td>-2.</td>
<td>1.06</td>
<td>-0.08</td>
</tr>
<tr>
<td>8.00</td>
<td>21.</td>
<td>16.</td>
<td>29.</td>
<td>34.</td>
<td>57.</td>
<td>69.</td>
<td>-12.</td>
<td>.83</td>
<td>.83</td>
<td>-6.</td>
<td>1.37</td>
<td>-0.37</td>
</tr>
<tr>
<td>10.00</td>
<td>20.</td>
<td>11.</td>
<td>30.</td>
<td>39.</td>
<td>59.</td>
<td>77.</td>
<td>-18.</td>
<td>.77</td>
<td>.77</td>
<td>-9.</td>
<td>1.80</td>
<td>-0.80</td>
</tr>
<tr>
<td>12.00</td>
<td>20.</td>
<td>9.</td>
<td>30.</td>
<td>41.</td>
<td>61.</td>
<td>81.</td>
<td>-20.</td>
<td>.75</td>
<td>.75</td>
<td>-10.</td>
<td>2.66</td>
<td>-1.06</td>
</tr>
<tr>
<td></td>
<td>14.00</td>
<td>16.00</td>
<td>17.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>19.31</td>
<td>18.32</td>
<td>18.32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.42</td>
<td>9.42</td>
<td>8.42</td>
<td></td>
</tr>
<tr>
<td>62.64</td>
<td>64.64</td>
<td>65.65</td>
<td></td>
</tr>
<tr>
<td>83.75</td>
<td>84.75</td>
<td>65.76</td>
<td></td>
</tr>
<tr>
<td>-21.75</td>
<td>-21.76</td>
<td>-20.76</td>
<td></td>
</tr>
<tr>
<td>.75 .75</td>
<td>.75 .75</td>
<td>.76 .76</td>
<td></td>
</tr>
<tr>
<td>-11.60</td>
<td>-10.26</td>
<td>-10.22</td>
<td></td>
</tr>
<tr>
<td>2.27 2.27</td>
<td>2.33 2.33</td>
<td>2.29 2.29</td>
<td></td>
</tr>
<tr>
<td>-1.27</td>
<td>-1.33</td>
<td>-1.29</td>
<td></td>
</tr>
</tbody>
</table>
NEW PARAMETER CHANGES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Old Value</th>
<th>New Value</th>
<th>Replaces</th>
<th>Old Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>0.000</td>
<td>2.000</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.000</td>
<td>3.000</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>99.99</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
</tr>
<tr>
<td>2.00</td>
<td>34.</td>
<td>38.</td>
<td>16.</td>
<td>12.</td>
<td>33.</td>
<td>25.</td>
<td>8.</td>
<td>1.33</td>
<td>1.33</td>
<td>4.</td>
<td>.89</td>
<td>1.1</td>
</tr>
<tr>
<td>4.00</td>
<td>23.</td>
<td>29.</td>
<td>27.</td>
<td>21.</td>
<td>55.</td>
<td>43.</td>
<td>12.</td>
<td>1.20</td>
<td>1.29</td>
<td>6.</td>
<td>.78</td>
<td>.22</td>
</tr>
<tr>
<td>6.00</td>
<td>17.</td>
<td>22.</td>
<td>33.</td>
<td>26.</td>
<td>67.</td>
<td>56.</td>
<td>11.</td>
<td>1.20</td>
<td>1.20</td>
<td>5.</td>
<td>.75</td>
<td>.25</td>
</tr>
<tr>
<td>8.00</td>
<td>15.</td>
<td>17.</td>
<td>35.</td>
<td>33.</td>
<td>70.</td>
<td>66.</td>
<td>4.</td>
<td>1.05</td>
<td>1.05</td>
<td>2.</td>
<td>.89</td>
<td>.11</td>
</tr>
<tr>
<td>10.00</td>
<td>14.</td>
<td>13.</td>
<td>36.</td>
<td>37.</td>
<td>72.</td>
<td>75.</td>
<td>-2.</td>
<td>.97</td>
<td>.97</td>
<td>-1.</td>
<td>1.09</td>
<td>-0.9</td>
</tr>
<tr>
<td>12.00</td>
<td>13.</td>
<td>11.</td>
<td>37.</td>
<td>39.</td>
<td>74.</td>
<td>77.</td>
<td>-3.</td>
<td>.96</td>
<td>.96</td>
<td>-2.</td>
<td>1.14</td>
<td>-0.14</td>
</tr>
<tr>
<td>Time</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td>Value 8</td>
<td>Value 9</td>
<td>Value 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.00</td>
<td>12.00</td>
<td>10.00</td>
<td>38.00</td>
<td>40.00</td>
<td>76.00</td>
<td>79.00</td>
<td>-3.00</td>
<td>.96</td>
<td>.96</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.00</td>
<td>11.00</td>
<td>9.00</td>
<td>39.00</td>
<td>41.00</td>
<td>77.00</td>
<td>81.00</td>
<td>-4.00</td>
<td>.95</td>
<td>.95</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.00</td>
<td>11.00</td>
<td>9.00</td>
<td>39.00</td>
<td>41.00</td>
<td>79.00</td>
<td>83.00</td>
<td>-4.00</td>
<td>.95</td>
<td>.95</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20.00</td>
<td>10.00</td>
<td>8.00</td>
<td>40.00</td>
<td>42.00</td>
<td>50.00</td>
<td>84.00</td>
<td>-4.00</td>
<td>.95</td>
<td>.95</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.00</td>
<td>9.00</td>
<td>7.00</td>
<td>41.00</td>
<td>43.00</td>
<td>61.00</td>
<td>86.00</td>
<td>-4.00</td>
<td>.95</td>
<td>.95</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24.00</td>
<td>9.00</td>
<td>7.00</td>
<td>41.00</td>
<td>43.00</td>
<td>62.00</td>
<td>86.00</td>
<td>-4.00</td>
<td>.96</td>
<td>.96</td>
<td>-2.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26.25</td>
<td>8.00</td>
<td>7.00</td>
<td>42.00</td>
<td>43.00</td>
<td>63.00</td>
<td>86.00</td>
<td>-3.00</td>
<td>.97</td>
<td>.97</td>
<td>-1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NEW PARAMETER CHANGES

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Old Value</th>
<th>New Value</th>
<th>Replaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>NUM BLUE ARTY TUBES</td>
<td>0.000</td>
<td>3.000</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>NUM RED ARTY TUBES</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<p>	Time	BINF	RINF	MOE1	MOE2	MOE3	MOE4	MOE5	MOE6	MOE7	MOE8	MOE9	M0E10	BAMM	RAMM
0.00	50.	50.											0.00	0.00	
0.00	0.00	0.00	0.00	99.99	99.99	0.00	1.00	0.00							
2.00	42.	34.	16.	16.	33.	-17.	.49	.49	-9.	1.25	-1.25		11298	11613	
2.00	8.	16.	16.	33.	-17.	.49	.49	-9.	1.25	-1.25					
4.00	36.	22.	28.	28.	56.	-28.	.51	.51	-14.	1.63	-1.63		99711	9353	
4.00	14.	28.	28.	56.	-28.	.51	.51	-14.	1.63	-1.63					
6.00	32.	14.	36.	36.	72.	37.	.49	.49	1.49	2.32	1.32		7901	7901	
6.00	18.	36.	36.	72.	37.	49.	49.	1.49	2.32	1.32					
8.00	31.	8.	42.	37.	64.	-46.	.45	.45	23.	3.88	-2.38		3037	7803	
8.00	19.	42.	37.	64.	-46.	.45	.45	23.	3.88	-2.38				</p>	
<table>
<thead>
<tr>
<th>Time</th>
<th>Temp</th>
<th>Humidity</th>
<th>Dewpoint</th>
<th>Pressure</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Dewpoint</th>
<th>Pressure</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00</td>
<td>31.5</td>
<td>42.5</td>
<td>-53.5</td>
<td>1059.5</td>
<td>651.5</td>
<td>42.0</td>
<td>-27.0</td>
<td>7.30</td>
<td>-6.30</td>
</tr>
<tr>
<td>12.00</td>
<td>31.0</td>
<td>39.0</td>
<td>-55.0</td>
<td>175.0</td>
<td>622.3</td>
<td>42.0</td>
<td>-27.0</td>
<td>9.60</td>
<td>-8.60</td>
</tr>
<tr>
<td>13.75</td>
<td>30.0</td>
<td>39.0</td>
<td>-55.0</td>
<td>25.0</td>
<td>600.7</td>
<td>42.0</td>
<td>-27.0</td>
<td>10.01</td>
<td>-9.01</td>
</tr>
</tbody>
</table>
Run Number 10

Lanchester Infantry Model w/ Artillery, Resup, Delay, TV Coeff, Inv Const

<table>
<thead>
<tr>
<th>Time</th>
<th>YR</th>
<th>Z</th>
<th>B</th>
<th>BR</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td>10.00</td>
<td>YR</td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
<tr>
<td>13.00</td>
<td>R</td>
<td></td>
<td></td>
<td>0</td>
<td>YZ</td>
</tr>
</tbody>
</table>

- **BINF=B**, **RINF=R**, **MOE10=0**, **BAMM=Y**, **RAMM=Z**
- **0.25E+02** **0.50E+02** **BR**
- **-0.30E+01** **-0.10E+01** **0.10E+01** **0**
- **0.75E+04** **1.5E+05** **YZ**

NOTE: The table above shows the progression of the simulation at specific time intervals. The variables YR, Z, B, BR, and YZ change over time, reflecting the dynamics of the Lanchester model with added artillery, resupply, delay, and电视系数，以及逆向常数。
NEW PARAMETER CHANGES

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>NEW VALUE</th>
<th>REPLACES</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>3.000</td>
<td>0.000</td>
</tr>
<tr>
<td>28</td>
<td>2.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF</th>
<th>RINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>99.</td>
<td>99.</td>
<td>0.</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
<td>15000.</td>
</tr>
<tr>
<td></td>
<td>0.</td>
<td>15000.</td>
<td></td>
</tr>
<tr>
<td>2.00</td>
<td>38.</td>
<td>34.</td>
<td>25.</td>
<td>33.</td>
<td>-8.</td>
<td>.75</td>
<td>.75</td>
<td>-4.</td>
<td>1.12</td>
<td>-12</td>
<td>11456.</td>
<td>11610.</td>
</tr>
<tr>
<td>2.00</td>
<td>6771.</td>
<td>9331.</td>
<td></td>
</tr>
<tr>
<td>4.00</td>
<td>29.</td>
<td>23.</td>
<td>43.</td>
<td>55.</td>
<td>-12.</td>
<td>.77</td>
<td>.77</td>
<td>-6.</td>
<td>1.28</td>
<td>-28</td>
<td>6699.</td>
<td>7820.</td>
</tr>
<tr>
<td>4.00</td>
<td>6644.</td>
<td></td>
</tr>
<tr>
<td>6.00</td>
<td>24.</td>
<td>15.</td>
<td>52.</td>
<td>70.</td>
<td>-18.</td>
<td>.74</td>
<td>.74</td>
<td>-9.</td>
<td>1.62</td>
<td>-32</td>
<td>4831.</td>
<td>6644.</td>
</tr>
<tr>
<td>6.00</td>
<td>10.00</td>
<td>22.</td>
<td>5.</td>
<td>55.</td>
<td>90.</td>
<td>-34.</td>
<td>.62</td>
<td>.62</td>
<td>-17.</td>
<td>4.26</td>
<td>-3.26</td>
<td>6253.</td>
</tr>
<tr>
<td>12.00</td>
<td>22.</td>
<td>3.</td>
<td>56.</td>
<td>93.</td>
<td>-37.</td>
<td>.60</td>
<td>.60</td>
<td>-19.</td>
<td>6.42</td>
<td>-5.42</td>
<td>5907.</td>
<td></td>
</tr>
</tbody>
</table>
NEW PARAMETER CHANGES

PARAMETER 27 NUM BLUE ARTY TUBES
NEW VALUE 3.000 REPLACES 0.000

PARAMETER 28 NUM RED ARTY TUBES
NEW VALUE 3.000 REPLACES 0.000

<table>
<thead>
<tr>
<th>TIME</th>
<th>BINF</th>
<th>KINF</th>
<th>MOE1</th>
<th>MOE2</th>
<th>MOE3</th>
<th>MOE4</th>
<th>MOE5</th>
<th>MOE6</th>
<th>MOE7</th>
<th>MOE8</th>
<th>MOE9</th>
<th>MOE10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>50.</td>
<td>50.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.</td>
<td>0.99</td>
<td>99.99</td>
<td>99.99</td>
<td>0.</td>
</tr>
<tr>
<td>2.00</td>
<td>34.</td>
<td>34.</td>
<td>32.</td>
<td>32.</td>
<td>0.</td>
<td>1.00</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
</tr>
<tr>
<td>4.00</td>
<td>23.</td>
<td>23.</td>
<td>54.</td>
<td>54.</td>
<td>0.</td>
<td>1.00</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
<td>1.00</td>
<td>0.</td>
<td>1.00</td>
</tr>
<tr>
<td>6.00</td>
<td>17.</td>
<td>16.</td>
<td>69.</td>
<td>69.</td>
<td>-4.</td>
<td>.94</td>
<td>.94</td>
<td>-2.</td>
<td>1.13</td>
<td>-1.13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.00</td>
<td>16.</td>
<td>10.</td>
<td>67.</td>
<td>60.</td>
<td>-12.</td>
<td>.84</td>
<td>.84</td>
<td>-5.</td>
<td>1.60</td>
<td>-1.60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.00</td>
<td>16.</td>
<td>6.</td>
<td>68.</td>
<td>67.</td>
<td>-19.</td>
<td>.79</td>
<td>.79</td>
<td>-9.</td>
<td>2.46</td>
<td>-1.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.00</td>
<td>15.</td>
<td>5.</td>
<td>69.</td>
<td>90.</td>
<td>-21.</td>
<td>.77</td>
<td>.77</td>
<td>-10.</td>
<td>3.10</td>
<td>-2.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Value 1</td>
<td>Value 2</td>
<td>Value 3</td>
<td>Value 4</td>
<td>Value 5</td>
<td>Value 6</td>
<td>Value 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>15.00</td>
<td>4.00</td>
<td>70.00</td>
<td>93.00</td>
<td>-22.00</td>
<td>.76</td>
<td>.76</td>
<td>-11.01</td>
<td>5220.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>15.00</td>
<td>47.00</td>
<td>71.00</td>
<td>95.00</td>
<td>-24.00</td>
<td>.74</td>
<td>.74</td>
<td>-12.01</td>
<td>4962.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>15.00</td>
<td>45.00</td>
<td>71.00</td>
<td>97.00</td>
<td>-26.00</td>
<td>.73</td>
<td>.73</td>
<td>-13.01</td>
<td>4791.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td>14.00</td>
<td>49.00</td>
<td>71.00</td>
<td>99.00</td>
<td>-26.00</td>
<td>.73</td>
<td>.73</td>
<td>-13.13</td>
<td>4689.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:30</td>
<td>14.00</td>
<td>49.00</td>
<td>71.00</td>
<td>98.00</td>
<td>-26.00</td>
<td>.73</td>
<td>.73</td>
<td>-13.12</td>
<td>4600.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RUN NUMBER 12
LANCHESTER INFANTRY MODEL W/ARTY, RESUP, DELAY, TV COEFF, INV CONST

BINF=B, RINF=R, HOE10=0, BAHM=Y, RAMM=Z

<table>
<thead>
<tr>
<th>Time</th>
<th>BINF</th>
<th>RINF</th>
<th>HOE10</th>
<th>BAHM</th>
<th>RAMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>21.00</td>
<td>21.00</td>
<td>21.00</td>
<td>21.00</td>
<td>21.00</td>
<td>21.00</td>
</tr>
</tbody>
</table>
BIBLIOGRAPHY

