Challenges of Designing the MarsNEXT Network

IPPW-6, Atlanta, June 26th, 2008

Kelly Geelen
kelly.geelen@astrium.eads.net
Outline

- Background
- Mission Synopsis
- Science Objectives and Payload Suite
- Entry, Descent and Landing Sequence
- Lander Configuration
- Lander Design
- Planetary Protection
- Conclusions
Background

- Mission concept studied by ESA for intermediate mission between the ExoMars mission due for launch in 2013, and the Mars Sample Return mission

- Two mission concepts
 1. Mars mission demonstrating aerobraking, rendezvous and capture in Mars orbit, and delivering a network of surface stations.
 2. Lunar lander mission demonstrating high precision landing with hazard avoidance and focusing on in situ science.

- Study started in February 2008 and due to end in February 2009

- Network Science Probe Study Team Members:
 - EADS Astrium (Kelly Geelen, Lester Waugh),
 - Astrium ST (Philippe Tran, Christophe Balemboy, Francine Bonnifond)
 - Vorticity (Steve Lingard)
Mission synopsis (1/2)

- Injection in GTO of a Single-stage vehicle.
- The vehicle carries 3 Net Science Probes (NSP)
- The NSP are separated on Hyperbolic trajectory
- Insertion of the vehicle on a 4-sol orbit around Mars.
- One Martian year on surface operations, at landing site latitude range between -15° to +30°
 - Survival GDSS
Mission synopsis (2/2)

- The orbiter uses aerobraking to reach its final orbit at 500km of altitude.
 - 6 months for the aerobraking phase.
- A demonstration of Rendezvous and capture is then performed.
- For the rest of the orbiter mission, orbiter is used as relay of NSP, and also for on-board science.
 - Nominal lifetime of 3 (Earth) years in Mars orbit +2 years for extension
Science Objectives: Network Mission Concept

- Determining Internal Structure and Dynamics
- Rotational Dynamics
- Site Geology
- Surface Scattering Properties
- Atmospheric Structure
- Meteorology
- Surface Atmosphere Interactions
- Geochemistry and Mineralogy
- Volatile Studies
- Soil and Rock Magnetism
Payload Suite

- Radio-science Ionosphere and Geodesy Experiment (RIGE)
- Atmospheric Electricity Sensor (ARES)
- Meteorological Package (ATMIS)
- Alpha Particle Spectrometer
- Site Imaging System
- Geology/Geochemistry Package
EDL Sequence

- **Coast**
- **1. Entry:**
 - Based on on-board sensors and software the parachute mortar is activated at appropriate Mach number
- **2. Descent:**
 - Parachute opens,
 - the Front Shield is jettisoned (3)
 - Lander with airbags system is lowered along a bridle (4).
 - Airbags are inflated (5).
 - Retrorockets are ignited (6).
 - Bridle is cut; the Back Cover drifts away from the Lander (7);
- **Landing:**
 - Lander protected by its airbags bounces several times (9) (10).
 - Airbags system is separated from the lander;
- **Surface operations begin.**
Network Science Probe Configuration

- MPF-MER-like aeroshape
- Main diameter 1422 mm
- Airbag gas generator in central hole in lander
- Antenna on back cover or use of RF transparent window
MeteoBoom with ATMIS, ARES and SIS

ODS: Camera outside 50º FOV

MAGNET: telescopic boom

307 mm

Customised MOLE

Instrument electronics

Hinge: in electronics compartment to minimise losses from antenna and SA

Transceiver

Battery

RHU

MeteoBoom with ATMIS, ARES and SIS
Configuration: Deployed

- Antenna in lid or on fanfold panel

Fanfold Solar Panels:
Direct access to solar energy and antenna TBC

Petal Solar Panels:
Dust removal option
Entry Descent & Landing Comms Configuration

- **X-band to Earth (EDL params prior to separation)**
- **UHF to Orbiter (during descent & landing) TBD**
- **MarsNEXT / MRO (if available)**

Entry Descent & Landing Comms Configuration
X-band to Earth (data relay)

X-band to Earth
(low rate signalling & contingency)

UHF to Orbiter
(data relay)

MarsNEXT

Surface Operations Comms Configuration
Thermal Architecture

- Survival heating provided by RHU’s
 - Reliable background, non-deteriorating, self sustaining heat source
 - Sized to keep Probe ‘alive’ (survival) in absence of solar/electrical power
 - Minimised RHU thermal output eases cruise heat dumping
- Insulated Electronics Box (with gas gap)
- Additional battery insulation
- RHU heat split between battery and other internal electronics
- Goldised external finish to minimise losses & maximise solar gain
- Thermal switch required to protect battery from overheating
Planetary Protection

- The Network Science Probe is classified as Planetary Protection Category IVa.
 - IVa is for landed systems without life-detection experiments and with no intention to access a Mars special region.
Conclusions

- Three Network Science Probes feasible with payload mass of ~8 kg.
- The total mass of the three probes including margins is estimated to be 365kg.
- Some instruments need to be adjusted to limit the lander volume.
- The landing latitude should be constrained to -15° to +30°.
- Low power modes, hibernation and a survival mode needed to limit the power system mass.
- Nominal data relay via MarsNEXT orbiter although limited opportunities during the aerobraking phase. X-band direct-to-Earth used for contingency.
- Heritage and lessons learned from Beagle2 used for the NSP design.
- Thermal architecture is based on an RHU (robust concept).

- The mission concept will be studied further under the current contract and proposed to the ESA Ministerial Council at the end of 2008.
Questions?

kelly.geelen@astrium.eads.net
+44 (0)1438 773474