Low-Temperature Electronics

John D. Cressler

School of Electrical and Computer Engineering
777 Atlantic Drive, N.W., Georgia Institute of Technology
Atlanta, GA 30332-0250 USA

cressler@ece.gatech.edu
Tel (404) 894-5161 / FAX (404) 894-4641
http://users.ece.gatech.edu/~cressler/

This work was supported by JPL, NASA-ETDP, NASA-GSFC, DARPA, and DTRA
Outline

• Extreme Environment Electronics (EEE)
• Using Si CMOS at Low Temperatures
• Using SiGe HBTs at Low Temperatures
• Building the Infrastructure for EEE
• Summary
Extreme Environments

Defn: Operation Outside Commercial or Mil-Spec Conditions
- **temperature** (high-T, low-T, wide-T range)
- **radiation exposure** (TID, SEE)

- **Aerospace** (aircraft, satellites, etc.)
- **Space Exploration** (Moon, Mars, etc.)
- **Automotive** (on-engine electronics, etc.)
- **Drilling** (oil, etc.)
• Some Low-Temperature Electronics Applications
 – deep-space probes and planetary missions (Moon, Europa, …)
 – satellite communications systems + space-based radar
 – ultra-high-speed / high sensitivity instrumentation systems
 – medical electronics (e.g., CT scanner)
 – superconductor-semiconductor hybrids (e.g., 20 Gb/sec ADC)
 – very low-noise receivers (radio astronomy)
 – cooled IR detector arrays

Landers / Rovers

James Webb Space Telescope
Space Radiation Effects

- The Holy Grail of the Space Community
 - IC technology space-qualified without additional hardening (major cost adder)
 - high integration levels to support SoC / SiP (low cost)

 proton + electron belts

- Total Ionizing Dose (TID) – ionizing radiation
 - TID is measured in “rads” (1 rad = 100 ergs per gram of energy absorbed)
 - 100-1000 krad(Si) over 10 years for typical orbit (300 rad(Si) is lethal to humans!)

- Single Event Effects (SEE) – high energy heavy ions
 - SEU: measure data upset cross-section (σ) vs. Linear Energy Transfer (LET)
 - σ = # errors / particle fluence (ions/cm²): LET = charge deposition (pC/μm)
 - Goals: low cross-section + high LET threshold
Space Exploration

All Represent Extreme Environments!
(Very Wide Temperature Swings + Radiation)

<table>
<thead>
<tr>
<th>Planet</th>
<th>T_{surface} (K)</th>
<th>T_{sphere} (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>100-700</td>
<td>445</td>
</tr>
<tr>
<td>Venus</td>
<td>740</td>
<td>325</td>
</tr>
<tr>
<td>Earth</td>
<td>288-293</td>
<td>277</td>
</tr>
<tr>
<td>Mars</td>
<td>140-300</td>
<td>225</td>
</tr>
<tr>
<td>Jupiter</td>
<td>165</td>
<td>123</td>
</tr>
<tr>
<td>Saturn</td>
<td>134</td>
<td>90</td>
</tr>
<tr>
<td>Uranus</td>
<td>76</td>
<td>63</td>
</tr>
<tr>
<td>Neptune</td>
<td>72</td>
<td>50</td>
</tr>
<tr>
<td>Pluto</td>
<td>40</td>
<td>44</td>
</tr>
</tbody>
</table>

A Roadmap to Discovery — The President’s Vision for Space Exploration sets the following goals that will help define and guide space exploration activities through 2020 and beyond, including both robotic and manned missions.

- 2008: First test flight of the Crew Exploration Vehicle (CEV)
- 2009: Robotic landing mission to the Moon
- 2010: International Space Station assembly complete
- 2010: Space Shuttle retired
- 2011: First unmanned flight of the CEV
- 2011: Robotic mission to Mars
- 2014: First manned flight of the CEV
- 2015: Earliest human mission to the Moon
- 2015: Launch of Jupiter Explorer (JIMO)
- 2016: International Space Station human research complete
- 2020: Robotic missions to Jupiter’s moons
- 2020: Human missions to Mars
- 2020 and beyond...

John D. Cressler, MSME
Upcoming Missions

The Moon
Temperature:
• +120°C to –180°C (93K)
• 28 day cycles
• -230°C in shadowed polar craters
Radiation:
• 100 krad total dose (modest)
• single event effects (solar storms)

Europa
Temperature:
• -220°C at the poles
• -160°C at the equator
Radiation:
• 5 Mrad / 2 wks (extreme)
• single event effects
Technology Options

Commercial Technology Options for EEE:

- **Si CMOS** (bulk and SOI)
 - *cooling improves*: $I_{DS,sat}$, g_m, μ_{eff}, S, I_{off}
 - *cooling degrades*: V_T, hot carrier reliability
 - *radiation tolerance*: problem without RHBD

- **SiGe HBT** (bulk and SOI)
 - *cooling improves*: β, V_A, g_m, f_T, f_{max}, NF_{min}
 - *cooling degrades*: β at low currents
 - *radiation tolerance*: built-in to multi-Mrad (TID), RHBD for SEE
Outline

• Extreme Environment Electronics (EEE)
 • Using Si CMOS at Low Temperatures
 • Using SiGe HBTs at Low Temperatures
 • Building the Infrastructure for EEE
 • Summary
Cooling Bulk Si CMOS

- Devices Function Well Down to 43 K (and below)
g_m / Mobility

- μ Increases as T Decreases (reduction in scattering)
- g_m Increases as T Decreases (driven by mobility)
Reliability (Fixed L)

- Max I_{SUB} Increases as T Decreases (more impact ionization)
- Lifetime Degrades as T Decreases (more hot carrier damage)
Reliability (Variable L)

- Max I_{SUB} Increases as L Decreases (decreased drain field)
- Lifetime Degrades with Gate Length Scaling

![Graph showing the relationship between V_{GS} and I_{SUB}](image)

- NFET
 - $W = 10$ um
 - $V_{DS} = 3.3$ V
 - $T = 300$ K

![Graph showing Lifetime vs. $1/V_D$](image)

- 10 year lifetime
- $V_D = 4.25$ V
- $V_D = 3.50$ V
- $V_D = 2.91$ V
- 5AM NFET
 - $W = 10$ um
 - Stressed at 300 K
 - @ I_{SUB_max} condition
nFET 77K Irradiation

- STI Damage Causes Serious Off-State Leakage Issues
- Leakage Can Be Mitigated Using RHBD Techniques

nFET Biased @ $V_{GS} = 3.3V$

- Standard W/L=10/0.5
 - $V_{DS} = 0.1V$
 - Dose rate = 1 krad/s

Proton, $T_{RAD} = 77K$

- Irradiated@$V_G = 3.3V$

nFET @ $V_{GS} = 3.3V$

- Dose rate = 1 krad/s
- Annular $W_{eff}/L=6.2/0.5$
- $V_{DS} = 0.1V$

63 MeV protons
SOI CMOS

- Similar Behavior at Cryo-T to Bulk CMOS
- Improved Radiation Response (SEE)
- Improved Operation at High-T (leakage)
SOI Radiation Response

- No Off-State Leakage (edgeless H-gate device layout)
- Some I_D Degradation in Strong Inversion
 - mobility \downarrow, $R_{SD} \uparrow$, $V_{th} \uparrow$ with increasing total dose

63 MeV protons @ 300K
Outline

• Extreme Environment Electronics (EEE)
• Using Si CMOS at Low Temperatures
 • Using SiGe HBTs at Low Temperatures
• Building the Infrastructure for EEE
• Summary
Si BJTs at Cryo-T

- Degradation in Current Gain with Cooling (bad news)
 - driven by emitter-to-base bandgap narrowing differences
- Degradation in Speed with Cooling (bad news)
 - driven by diffusivity decrease in base transit time and base freeze-out

\[
\beta_{ideal}(T) = \frac{q D_{nb}(T) L_{pe}(T) N_{de}^+(T)}{D_{pe}(T) W_b(T) N_{ab}^-(T)} \, e^{(\Delta E_{gb}^{app} - \Delta E_{ge}^{app})/kT}
\]

\[
\tau_{b, Si}(T) = \frac{W_b^2(T)}{2 D_{nb}(T)} = \frac{q W_b^2(T)}{2 kT \mu_{nb}(T)}
\]
Putting SiGe on Si

- SiGe on Si ➔ Compressive Strain in the SiGe Layer

Bulk SiGe

Strained SiGe

Defects

Relaxed SiGe
Electrical Consequences

- **Type-I Band Alignment** (Valence Band Offset = 74 meV / 10% Ge)
- **Hole Mobility Enhancement** (good news)

150 meV grading across 100 nm = 15 kV/cm electric field!
The SiGe HBT

The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

- smaller base bandgap increases electron injection \((\beta \uparrow) \)
- field from graded base bandgap decreases base transit time \((f_T \uparrow) \)
- base bandgap grading produces higher Early voltage \((V_A \uparrow) \)
- decouples device performance metrics from base doping profile

\[
\frac{\beta_{\text{SiGe}}}{\beta_{\text{Si}}} \bigg|_{V_{BE}} = \Xi = \left\{ \frac{\tilde{\gamma} \tilde{\eta} \Delta E_{G,\text{Ge}}(\text{grade})/kT \; e^{\Delta E_{G,\text{Ge}}(0)/kT}}{1 - e^{-\Delta E_{G,\text{Ge}}(\text{grade})/kT}} \right\}
\]

\[
\frac{\tau_{b,\text{SiGe}}}{\tau_{b,\text{Si}}} = \frac{2}{\tilde{\eta}} \frac{kT}{\Delta E_{G,\text{Ge}}(\text{grade})} \left\{ \frac{kT}{\Delta E_{G,\text{Ge}}(\text{grade})} \left[1 - e^{-\Delta E_{G,\text{Ge}}(\text{grade})/kT} \right] \right\}
\]

\[
\frac{V_{A,\text{SiGe}}}{V_{A,\text{Si}}} \bigg|_{V_{BE}} = \Theta \approx e^{\Delta E_{G,\text{Ge}}(\text{grade})/kT} \left[1 - \frac{1 - e^{-\Delta E_{G,\text{Ge}}(\text{grade})/kT}}{\Delta E_{G,\text{Ge}}(\text{grade})/kT} \right]
\]

SiGe is a Natural Fit for Analog / RF Apps
The SiGe HBT

- Conventional Shallow and Deep Trench Isolation + CMOS BEOL
- Unconditionally Stable, UHV/CVD SiGe Epitaxial Base
- **100% Si Manufacturing Compatibility**
- SiGe HBT + Si CMOS on wafer

SiGe = III-V Speed + Si Manufacturing Win-Win!
Performance Trends

- SiGe HBTs Out-Perform RF-CMOS by 2 Generations
SiGe Applications

Some Application Bands for SiGe IC’s

Defense

Navigation

Automotive

Communications

SiGe Analog/RF ICs Are a Major Driver!
SiGe Performance Limits

- Half-TeraHertz SiGe HBTs Are Clearly Possible (at modest lith)
- Both f_T and f_{max} above 500 GHz at Cryo-T ($T =$ scaling knob)
- Goal: Useful BV @ 500 GHz ($BV_{\text{CEO}} > 1.5\,\text{V} + BV_{\text{CBO}} > 5.5\,\text{V}$)

200-500 GHz @ 130 nm Node!
New Opportunities

- **SiGe for Radar Systems**
 - DoD phased arrays (2-10 GHz and up) + automotive (24, 77 GHz)

- **SiGe for Millimeter-wave Communications / THz Imaging**
 - Gb/s wireless (60, 94 GHz) / imaging systems (100-300 GHz)

- **SiGe for Analog Applications**
 - data conversion (ADC limits) + the emerging role of C-SiGe (nnp + pnp)

- **SiGe for Extreme Environment Electronics**
 - extreme temperatures (4K to 300C)
 - radiation (e.g., space systems)
 - explore performance limits of SiGe (goal: 1 THz aggregate \(f_T + f_{\text{max}} \))

- **SiGe for Enhanced Dynamic Range Systems**
 - improved understanding of linearity / extreme wideband transceivers
The Idea: Put Graded Ge Layer into the Base of a Si BJT

Primary Consequences:

• smaller base bandgap increases electron injection ($\beta \uparrow$)
• field from graded base bandgap decreases base transit time ($f_T \uparrow$)
• base bandgap grading produces higher Early voltage ($V_A \uparrow$)

\[
\frac{\beta_{SiGe}}{\beta_{Si}} \bigg|_{V_{BE}} = \Xi = \left\{ \frac{\Delta E_{g,Ge}(grade)/kT}{1 - e^{-\Delta E_{g,Ge}(grade)/kT}} \right\}
\]

\[
\frac{\tau_{b,SiGe}}{\tau_{b,Si}} = \frac{2}{\tilde{\eta}} \Delta E_{g,Ge}(grade) \left\{ 1 - \frac{kT}{\Delta E_{g,Ge}(grade)} \left[1 - e^{-\Delta E_{g,Ge}(grade)/kT} \right] \right\}
\]

\[
\frac{V_{A,Ge}}{V_{A,Si}} \bigg|_{V_{BE}} = \Theta \approx e^{\Delta E_{g,Ge}(grade)/kT} \left[\frac{1 - e^{-\Delta E_{g,Ge}(grade)/kT}}{\Delta E_{g,Ge}(grade)/kT} \right]
\]

All kT Factors Are Arranged to Help at Cryo-T!
SiGe HBTs at Cryo-T

SiGe Exhibits Very High Speed at Very Low Power!

IBM SiGe 5AM
Reliability

- Extreme Mixed-Mode Stress Applied (High J_C + High V_{CB})
- SiGe HBTs Meets System Reliability Needs at Cryo-T
Impact of Scaling

- 200 GHz SiGe HBTs (3rd Generation) Work **VERY** Well at 77K

Will Support Cryo-T mm-wave Circuits!
Cryogenic SiGe LNAs

Record SiGe LNA Noise Figure at 15 K (Not Optimized!)

- $T_{eff} < 20$ K (noise T)
- $NF < 0.3$ dB (8.5-10.5 GHz)
- Gain > 20 dB
- dc power < 2 mW

Getting Close to HEMT Noise Records!

… with 3rd Generation SiGe
High-Temperatures

- How About SiGe for High-temperature (200-300C) Circuits?
- Degradation, But Plenty of Performance Left!
- Device-level Reliability Looks Good

![Graphs showing gain and frequency plots for high-temperature SiGe circuits.](image-url)
Total-Dose Response

- Multi-Mrad Total Dose Hardness (with no intentional hardening!)
 - ionization + displacement damage very minimal over T; no ELDRS!
- Radiation Hardness Due to Epitaxial Base Structure (not Ge)
 - thin emitter-base spacer + heavily doped extrinsic base + very thin base

63 MeV protons @ 5x10^{13} p/cm^2 = 6.7 Mrad TID!
Cryo-T Irradiation

• SiGe HBT Still Multi-Mrad Hard at 77K

![Graph showing forward Gummel plots for 5AM SiGe HBT at 77 K and 300 K with labels for IC, IB, and VBE.]
Extreme Dose / Fluence

- Peak $\beta > 50$ after $1 \times 10^{15} \text{p/cm}^2 / 100 \text{ Mrad}$

\[\frac{\beta_{\text{post}}}{\beta_{\text{pre}}} \text{ near peak } f_T \]

- CERN
- ATLAS upgrade
- UC Santa Cruz
- DOE Leverage

100 Mrad!
Single Event Effects

- Observed SEU Sensitivity in SiGe HBT Shift Registers
 - low LET threshold + high saturated cross-section (bad news!)

SEU: TCAD to Circuits

“TCAD Ion Strike”

New RHBD SiGe Latch

Standard Master Slave Latch

SEU “Soft”
SEU RHBD Success!

- Reduce Tx-Tx Feedback Coupling Internal to the Latch
- Circuit Architecture Changes + Transistor Layout Changes

Future - Eliminate TMR & Be Faster!
Path - Build a Rad-Hard System!

(no errors!)
SEU at Cryo-T

- Proton σ_{EI} is 5 Orders of Magnitude Less Than Heavy Ion σ_{EI}
- 3X Increase in Proton Cross-section at 77K for Std. M/S ... BUT
- DI RHBD is Error-free < 2 Gbit/s and Insensitive to Temperature

![Graph showing data rate vs. proton cross-section]
Outline

• Extreme Environment Electronics (EEE)
• Using Si CMOS at Low Temperatures
• Using SiGe HBTs at Low Temperatures
• Building the Infrastructure for EEE
• Summary
Develop and Demonstrate Extreme Environment Electronic Components Required for Distributed Architecture Lunar / Martian Robotic / Vehicular Systems Using SiGe Technology

Objectives:

Extreme Environment Requirements: (e.g., Lunar)
- +120C (day) to -180C (night) + cycling
- radiation (TID + SEU tolerant)

Major Project Goals / Approach:
- prove SiGe BiCMOS technology for +120C to -180C applications
- develop mixed-signal electronics with proven extreme T + rad capability
- develop best-practice extreme T range circuit design approaches
- deliver compact modeling tools for circuit design (design suite)
- deliver requisite mixed-signal circuit components (component library)
- deliver robust packaging for these circuits (integrated multi-chip module)
- deliver a functional SiGe REU prototype meeting lunar specs
- validate device + circuit + package reliability
- develop a robust maturation path for NASA mission insertion (TRL-6)
A World Class Team!

- **Georgia Tech** (Device Technology IPT lead)
 - John Cressler *et al.* (PI, devices, reliability, circuits)
 - Cliff Eckert (program management, reporting)

- **Auburn University** (Packaging IPT lead)
 - Wayne Johnson *et al.* (packaging); Foster Dai *et al.* (circuits); Guofu Niu *et al.* (devices)

- **University of Tennessee** (Circuits IPT lead)
 - Ben Blalock *et al.* (circuits)

- **University of Maryland** (Reliability IPT lead)
 - Patrick McCluskey *et al.* (reliability, package physics-of-failure modeling)

- **Vanderbilt University**
 - Mike Alles, Robert Reed *et al.* (radiation effects, TCAD modeling)

- **JPL** (Applications IPT lead)
 - Mohammad Mojarradi *et al.* (applications, reliability testing, circuits)

- **Boeing**
 - Leora Peltz *et al.* (applications, circuits)

- **University of Arkansas / Lynguent** (Modeling IPT lead)
 - Alan Mantooth / Jim Holmes *et al.* (modeling, circuits)

- **BAE Systems**
 - Richard Berger, Ray Garbos *et al.* (REU architecture, maturation, applications)

- **IBM**
 - Alvin Joseph *et al.* (SiGe technology, fabrication)

A World Class Team!
Remote Electronics Unit

The X-33 Remote Health Unit, circa 1998

The NASA ETDP SiGe Remote Electronics Unit, circa 2009

Specifications

- 5” x 3” x 6.75” = 101 in³
- 11 kg
- 17 Watts
- -55°C to +125°C

Goals

- 1.5” x 1.5” x 0.5” = 1.1 in³ \((100x)\)
- < 1 kg \((10x)\)
- < 2 Watts \((10x)\)
- -180°C to +125°C, rad tolerant

Supports Many Sensor Types:
Temperature, Strain, Pressure, Acceleration, Vibration, Heat Flux, Position, etc.

Use This SiGe REU as a Remote Vehicle Health Monitoring Node
Summary

• Low-Temperature Electronics
 - a key niche in the extreme environment electronics portfolio
 - a key need for envisioned planetary exploration
 - cryo-T is often needed in tandem with radiation exposure

• Si CMOS
 - many performance metrics improve with cooling
 - reliability issues can be a concern (address with longer L)
 - radiation exposure can be a concern (may need RHBD)
 - SOI can help on the radiation vulnerability

• SiGe HBTs
 - all performance metrics improve with cooling (natural for EEE)
 - major new lunar application for +120C to -180C = infrastructure
 - built-in multi-Mrad total dose hardness
 - use RHBD for SEE mitigation
 - SiGe Technology = SiGe HBT + Si CMOS (bulk + SOI)