Modeling of Lunar Dust Contamination Due to Plume Impingement

Michael Woronowicz, SGT Inc.
25 June 2008
Introduction (1 of 3)

• Apollo 16 Lunar Module landing sequence

• “I think dust is probably one of our greatest inhibitors to a nominal operation on the Moon. I think we can overcome physiological or physical or mechanical problems except dust.”
 – Gene Cernan, Apollo 17 Technical Debrief
• During the Apollo missions it became apparent that lunar dust was a significant hazard. Problems included
 – Surface obscuration during landing sequence
 – Abrasion damage to gauge faces and helmet visors
 – Mechanism clogging
 – Development of space suit pressurization leaks
 – Loss of radiator heat rejection capabilities to the point where vulnerable equipment exceeded maximum survival temperature ratings
 – Temporary vision and respiratory problems within the Apollo Lunar Module (LM)
Introduction (3 of 3)

• NASA Constellation Program features many system-level components
 – including the Altair Lunar Lander

• Altair to endure longer periods at lunar surface conditions
 – Apollo LM, about three days
 – Altair, over seven months

• Program managers interested in plume-generated dust transport onto thermal control surface radiators of the first Altair created by its own landing operations
Problem Description

• Analyze dust contamination environment generated during first Lunar Lander landing
 – Self-contamination of critical thermal control radiators
 – Non-LOS

• Virtually no lunar atmosphere
 – No atmospheric mixing of gases

• Concern that electrostatically-charged particles, freed from lunar regolith by lander engine operations, may find their way to critical lander surfaces
Approach

- Model main engine plume
- Calculate surface stresses on lunar regolith
- Calculate regolith removal rate
 - Fluid acceleration against particle inertia, short-range forces
- Determine electrostatic work necessary to overcome kinetic energy of mobile dust particles
- Current modeling efforts still underway
Altair Lunar Lander

• Much larger than Apollo Lunar Lander
 – 46,000 kg vs. 16,400 kg

• Meant to remain on lunar surface for weeks
 – Period depends on type of mission (sortie vs. outpost support modes)
Pratt & Whitney RL-10 Engine Description

- Created RL-10 model
 - Hard to pin down unspecified Altair parameters
 - Range of O/F ratios
 - Various I_{sp}’s, nozzle geometries
 - Versatile engine, designed in 1957, has used vast array of fuels under test conditions, throttled down to 1% full thrust in testing
 - Used RL-10A-4 info
 - $I_{sp} = 449$ s, O/F = 5.5, $p_0 = 39$ bar, $\dot{m} = 21$ kg/s, $A_e/A^* = 84$
 - Nozzle exit properties (simplistic)
 - 22 H$_2$O + 10 H$_2$
 - $V_e = 4.3$ km/s, $T_0 = 2600$ K, $T_e = 550$ K, $M_e = 6.37$
 - Decided flat exit profile adequate for current application
 - Neglect boundary-layer development and its high-angle influence
 - Altair geometry inhibits backflow development
Descent Engine Comparisons

• Altair RL-10 vs. Apollo LM Descent Stage (DS)
 – Fuel
 • LOX/LH₂ vs. N₂O₄/Aerozine-50
 – Thrust
 • 99.1 kN vs. 44.0 kN
 – Specific Impulse \(I_{sp} \)
 • 449 s vs. 311 s
 – Exit velocity
 • 4.3 km/s vs. 3.1 km/s

• Altair DS engine parameters much more energetic than Apollo
 – Apollo-related models may not be suitable for Altair investigations
Observations

• Period of highest plume impingement not same as period of worst dust attraction

• Particle drag will overwhelm charge effects
 – Neglect dust attraction during firing periods
 • Drag force and attraction both fall with square of distance

• Attraction occurs during, after engine shutdown
 – Only for disturbed, charged dust within Debye radius from Lander
 – Intersection with lunar surface produces disk of influence
 – Varies with particle size, relative potential
Plume Model Formulation

• Initial modeling uses FM plume formulation
 – Can use rapidly to approximate incident fluxes (impingement stresses)
 – Try correcting for Knudsen layer using bridging technique
 • DLR
 • Potter
 – Reynolds analogy for high density shear (Legge)

• Can substitute results from different approaches
 – DSMC simulations
 – CFD computations
FM Model—Free Expansion

- Logarithmic mass flux contour map

- Mass flow rate verified from mass flux map
FM Model—Surface Impingement

- Pressure contours (incident + reflected, $T_{surf} = 300$ K)
• Radial shear stress contours
 – Max of 7.5 Pa @ \(r = 11.3 \) m
Plume Model Procedure

- Create time-varying gas properties across starting surface
- Inputs at each timestep affects solution domain over long subsequent period
 - May identify arbitrary response periods to individual input timestep conditions beyond which influences decay to negligible values
 - Build up overall FM solution from summation of transient responses to inputs at each single timestep
- Look for opportunities to revise with solutions using higher-fidelity techniques
 - DSMC, CFD, hybrids
Lunar Dust Attributes

(Frame width ≈ 0.66 microns)
Lunar Dust Attributes

• Typical sample described as a basaltic ash
• Density $\approx 2.9 \text{ g/cm}^3$
• Avg. grain radius ≈ 70 microns
 – Size distribution ranges from sub-micron to hundreds of microns
• Jagged features
 – Oxidation removes roughness for terrestrial dust
 – Exposure to high-energy solar wind
• Low electrical conductivity
• Surface adhesion facilitated by
 – Burr-like geometry
 – Electrostatic effects
Dust Production Mechanism

• “Viscous erosion” model developed for Apollo program
 – Issue concerned obscuration of landing site, not charged particle attraction
• Particle expected to remain at rest until local plume shear stress
 overcomes static friction, cohesive stress, component of gravity
 – Does this process produce triboelectric charging?
• Plume shear stress in excess of the critical value converted into
 accelerating particles to their final velocities
• Some subsequent testing found model erosion rates match to
 within an order of magnitude
 – Verification of particle velocities not mentioned
Observations

• Viscous erosion model
 – assumes instantaneous acceleration to final velocity
 – Neglects persistent influence of plume environment
 • Model assumes dust trajectories determined by surface ejection angle
 • Recent photogrammetric analyses indicate actual trajectories lie 1-3° off horizontal
 • Effects on dust velocity

• Current studies identify at least three other mechanisms
 – “Bearing Capacity Failure”
 – “Diffused Gas Eruption”
 – “Diffusion-Driven Shearing”

• Erosion model modifications currently under development
Electrostatic Attraction to Altair

• Compute Debye radius
 – Representative distance over which significant charge separation can occur and still exert influence
 – Outside this distance, charges are considered screened

• Time lag determines whether generated particles remain within influence disk (intersection of Debye sphere and lunar surface) at instant engine firing ceases
 – Sorta like “musical chairs” once music stops

• Electrostatic attraction model
 – Electrostatic work performed to overcome K.E. for Altair surface attraction
 – Translate these effects to a incident dust mass flux
Final Results--Dust Mass Flux

- Dust return flux will be particle size dependent
 - Must use binning to create return fractions
 - Summation provides estimate for Percent Area Coverage (PAC)
 - Assume no overlap of particles (simple, conservative for high PAC’s)
- Relate PAC to radiator degradation
 - Changes in absorptivity, emissivity
- Others could use mass flux to determine effects on mechanisms, visors, etc.
Concluding Remarks

- Relatively unique investigation requires at least three models
 - Transient plume impingement problem
 - Dust generation rates
 - Non-line-of-sight electrostatic attraction
- Must remain responsive to possibility of incorporating
 - high-fidelity RL-10 lunar plume impingement computational results
 - updates to dust generation models from current studies
 - Including newly-defined generation mechanisms
 - Estimates of charging of lunar surface, Altair due to various mechanisms