Institute of Paper Science and Technology
Central Files

Institute of Paper Science and Technology

FOREST BIOLOGY

PROJECT ADVISORY COMMITTEE

DECEMBER 18, 1990
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agenda</td>
<td>i</td>
</tr>
<tr>
<td>Project Advisory Committee Members</td>
<td>ii</td>
</tr>
<tr>
<td>Project 3223-00 Summary Form</td>
<td>1</td>
</tr>
<tr>
<td>Project 3223-02 Summary Form</td>
<td>8</td>
</tr>
<tr>
<td>Project 3223-03 Summary Form</td>
<td>13</td>
</tr>
<tr>
<td>Loblolly Pine / Initiation</td>
<td>20</td>
</tr>
<tr>
<td>Loblolly Pine / Maturation</td>
<td>41</td>
</tr>
<tr>
<td>Loblolly Pine / Seed Composition</td>
<td>46</td>
</tr>
<tr>
<td>Douglas-fir</td>
<td>53</td>
</tr>
<tr>
<td>Hardwoods / Shoot Cultures</td>
<td>56</td>
</tr>
<tr>
<td>Hardwoods / Genetic Transformation</td>
<td>61</td>
</tr>
<tr>
<td>Hardwoods / Somaclonal Variation</td>
<td>69</td>
</tr>
<tr>
<td>Student Projects</td>
<td>83</td>
</tr>
<tr>
<td>Forward Planning</td>
<td>86</td>
</tr>
</tbody>
</table>
FOREST BIOLOGY

PROJECT ADVISORY COMMITTEE MEETING

MEAD COATED BOARD TECHNICAL INSTITUTE
555 14TH STREET
CONFERENCE ROOM # 2

TENTATIVE AGENDA - DECEMBER 18, 1990

10:00 - 10:15 a.m. Welcome & Introductions
Welcome & Introductions
Dinus/Stanton

10:15 - 11:00 a.m. Committee Orientation
Committee Orientation
Yeske
Purpose
Guidelines
Review of RAC Meeting

11:00 - 11:45 a.m. Loblolly Pine
Initiation
Webb
Maturation
Webb
Seed Composition
Nagmani

11:45 - 12:00 noon Douglas-fir
Nagmani

12:00 - 12:30 p.m. LUNCH
IPST

12:30 - 01:15 p.m. Hardwoods
Shoot Cultures
Ozturk
Genetic Transformation
Webb/Mathis
Somaclonal Variation
Mathis

01:15 - 01:30 p.m. Student Projects
Dinus

01:30 - 02:15 p.m. Forward Planning
Key Issues
All
New Directions
Terms of Office
Officiers
Alternates/Substitutes
External Specialists
Minutes
Future Meetings

02:15 - 02:30 p.m. Summary & Conclusions
Stanton/Dinus

02:30 p.m. ADJOURNMENT
FOREST BIOLOGY
PROJECT ADVISORY COMMITTEE

IPST LIAISON: RON DINUS

Dr. Brian J. Stanton (Chairman)
Geneticist
James River Corp.
Northwest Fiber Supply
349 NW 7th Avenue
Camas, WA 98607

Dr. Gregory N. Leach
Research & Development Manager
Champion International Corp.
Southern Timberlands Division
P. O. Box 87
Cantonment, FL 32533

Term Ends

206-834-8342
FAX = 206-834-8252

Term Ends

904-968-3010
FAX = 904-968-3009

Dr. David S. Canavera
Genetics Group Leader
Forest Research
Westvaco Corp.
P. O. Box 1950
Summerville, SC 29484-1950

Mr. Sharon R. Miller
Director, Woodlands & Wood Products
Chesapeake Corp.
P.O. Box 311
West Point, VA 23181

Term Ends

803-871-5000
FAX = 803-875-7185

Term Ends

804-843-5278
FAX = 804-843-5240

Mr. Steve Coleman
Tree Improvement Forester
Boise Cascade Corp.
P. O. Box 37
Singer, LA 70660

Dr. Gerald Pullman
Vegetation Propagation Scientist
Weyerhaeuser Co.
WTCG30
Tacoma, WA 98477

Term Ends

318-586-3565
FAX = 318-462-4085

Term Ends

206-924-6941
FAX = 206-924-6736
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY

Atlanta, Georgia

FOREST BIOLOGY

PROJECT ADVISORY COMMITTEE

Project 3223-00

MASS CLONAL PROPAGATION OF IMPROVED CONIFERS

(Dinus, Nagmani, Webb)

December 18, 1990
DUES-FUNDED PROJECT SUMMARY FORM
FY 90-91

Project Title: Mass clonal propagation of improved conifers
Project Code: SFTWD
Division: CBSD
Project Number: 3223-00
Staff: Dinus, Nagmani, Webb
Current FY Budget: $500,000
Program Objective: Develop reliable cell and tissue culture systems for mass clonal propagation of genetically improved softwoods
Program Areas: Reduced Operating Costs, Capital Effectiveness, Fiber Availability, Quality, and Cost, End-Use Performance

Rationale: Major increases can be obtained in fiber production, quality, and uniformity via mass cloning of genetically improved trees. Reliable cell and tissue culture systems will also open the way for genetic engineering and production/delivery of new genetic combinations having exceptional growth, increased pest resistance, special fiber properties, and enhanced site and/or climatic adaptability. Screening for and selecting useful variants from culture could also lower costs and accelerate the pace of conventional tree breeding. In addition, such systems could be used to investigate fiber formation under highly controlled conditions, thereby facilitating study of factors regulating fiber length, diameter, flexibility, and other properties. Improved
growth obtained via mass cloning will reduce raw material costs and increase returns on capital invested in land and equipment. Greater uniformity of clonal plantations can lower both woodlands and mill operating costs as well as enhance end-use performance and foster development of new, value-added products.

FY 90-91 Goals:
1) Raise frequencies for initiation of embryogenic cultures in loblolly pine and Douglas-fir; obtain additional cultures for accelerated work on embryo maturation.
2) Increase frequencies of embryo maturation and seedling conversion in Norway spruce model system; extend best treatments to Douglas-fir and loblolly pine.
3) Establish guideposts for manipulating somatic materials via documenting course of zygotic embryo development, maturation, and germination as well as early growth and development of zygotic seedlings.
4) Explore initiation of embryogenic cultures from explants of more mature plant materials.

Accomplishments to Date: Past research on cell and tissue culture systems has brought somatic embryogenesis, one method of mass cloning, closer to commercialization. Embryogenesis in Norway spruce, our model system, is now reproducible and straightforward. Embryogenic cultures can be obtained from immature and mature seeds and from tissues of newly germinated seedlings. Last efforts to
produce mature embryos showed that using glutamine in lieu of ammonium nitrate as well as higher concentrations of abscisic acid foster maturation. Numbers of mature embryos, averaged over all treatments, were 130 per g of culture tissue; the best treatment yielded 750 per g.

In recent months, work on spruce has been limited to producing materials for growth regulator assays and anatomical or biochemical comparisons of somatic and zygotic structures at various stages of development. This tack allowed us to consolidate progress and focus on a few critical topics as well as to devote more resources to our target species. In the course of this work, we merged several techniques into a more precise method for quantifying embryo numbers and stages. Samples of tissues, embryos, and media were collected at various times during maturation and forwarded to collaborators for growth regulator assays. In addition, structures at various stages were collected for evaluation of anatomical and biochemical characteristics. Results from these undertakings should lead to improved definitions of somatic embryo quality and better media for maturation and germination. Advances in research on spruce somatic embryogenesis in recent times have been rapid, especially in Canada. As a result, we are considering cessation of spruce work, except that dealing specifically with conversion to seedlings and comparison of zygotic and somatic materials.

To increase loblolly pine initiation frequencies, developing open-
and control-pollinated cones containing early stage (precotyledonary) embryos were secured from Union Camp and Westvaco. Care was taken to obtain cones from mother trees that yielded responsive explants in earlier years. Whole gametophytes were excised and placed on various media as described in our Initiation Strategy Document. Early observations indicated that roughly 10% of the explants showed some response. These initial responses appeared random with regard to treatment, but subsequent behavior, browning and loss or proliferation, varied considerably with media composition and growth regulator type/level. Yields remain uncertain, but at least 25 cultures now exhibit embryogenic phenotypes and 7 are growing at rates comparable to levels experienced in past years. Microscopic assays to confirm yields will be completed as quickly as sample sizes permit. Significant cone numbers have been maintained in cold storage, and are being used to retest best treatments from the first summer experiments and to examine a number of related options. Plans have also been made for "winter initiation", and arrangements are being made to secure the necessary cones from a Brazilian subsidiary of Westvaco.

Loblolly pine embryogenic cultures initiated in earlier years have been and are being used to improve maturation frequencies. Major factors remain carbohydrate source and concentration as well as abscisic acid levels. Two large factorial experiments were planned to confirm earlier findings and test several new options. Installation, however, was delayed by problems with contamination
and slower than expected culture growth. Sufficient tissue should be available for installation by mid-January. Experiment designs, however, are being adjusted to account for smaller amounts of tissue, new thinking about the role of ABA, and information from a recent patent.

Difficulties with initiation, proliferation, and maturation in our target species prompted reevaluation of past work on physical and chemical properties of zygotic embryos, gametophytes, and seeds. Results presented in early 1990 suggested that conventional media differ from environments afforded by developing seed. Efforts were therefore undertaken to reassess mineral composition, cations and anions, in developing seed, with multiple collections made from just after fertilization to the fully ripened state. Open-pollinated cones from six seed orchard mother trees were provided by Weyerhaeuser. Analyses of material from most collections have been completed, but fully ripened seeds have not yet been secured, processed, or analyzed.

Initiation in Douglas-fir was deferred in order to concentrate resources on loblolly pine. Exploratory trials on embryo maturation, however, showed much promise. More definitive tests with three tissue sources were planned and are in progress.

Related Projects: The softwood project is complemented by collaboration with scientists in several external organizations.
expertise are exchanged freely. Some examples are:

Dr. D. Gray, Univ. of FL, Leesburg - Readying Norway spruce somatic embryos for storage and germination via desiccation.

Drs. L. Barbour, SAPPI and J. Cutting, Stellenbosch Univ. Quantifying ABA in embryogenic and nonembryogenic cultures and developing zygotic and somatic embryos.

Dr. K. Eriksson, Univ. of GA - Lignin precursors as indicators of maturation in developing embryos and seedlings. This should also contribute to eventual use of our cultures as vehicles for studying lignin biosynthesis and deposition.

Dr. D. Neale, US Forest Service - Expression of foreign genes in cultures of commercially important softwoods (pending).

Related Student Projects:

Completed in 1990

Michael Wood - M.S., Effect of cold shocking on cell cultures of *Larix decidua*. Advisor, Dinus.

In Progress

David Barzyk - M.Sc., Development of a fiber optics system to determine the *in vivo* pH of developing *Pine taeda* seeds. Advisor, Dinus.
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY

Atlanta, Georgia

FOREST BIOLOGY

PROJECT ADVISORY COMMITTEE

Project 3223-02

BIOCHEMISTRY OF CLONAL PROPAGATION

(Dinus, Mathis)

December 18, 1990
DUES-FUNDED PROJECT SUMMARY FORM

FY 90-91

Project Title: Biochemistry of Clonal Propagation

Project Code: BIOCM

Division: CBSD

Project Number: 3223-02

Staff: Dinus, Mathis

Proposed FY 90-91 Budget: $150,000

Project Objective: Develop an understanding of biochemical mechanisms controlling embryogenesis and other cloning methods, and devise procedures for raising effectiveness and efficiency of mass cloning methods

Program Areas: Reduced Operating Costs, Capital Effectiveness, Fiber Availability, Quality, and Cost, Environmental Impact, End Use Performance

Rationale: Improved understanding of biochemical mechanisms underlying successful cloning processes will shorten time to commercial application of clonal forestry, raise its efficiency, and facilitate extension to trees old enough to have been proven genetically superior. Understanding the biochemistry of cell and tissue cultures will also facilitate their application to other problems; e.g., fiber formation and lignification.

FY 90-91 Goals:

1) Complete restaffing and equipping of laboratory.

2) Renew work on biochemical similarities/differences of developing
somatic and zygotic embryos, with emphasis on storage proteins and lipids.

3) Develop techniques for obtaining herbicide tolerance in selected hardwood species via genetic transformation and/or somaclonal variation/selection.

4) Adapt molecular techniques for verifying genetic fidelity and gene expression.

Accomplishments to Date: Past efforts have made somatic embryogenesis in Norway spruce, our model system, straightforward and reproducible. Embryos can be produced in large numbers, and somatic seedlings have been recovered. Somatic embryogenesis has also been obtained in our target species, loblolly pine and Douglas-fir, but initiation and maturation frequencies remain low and seedlings have not been recovered.

Earlier work on the biochemistry of embryogenesis yielded useful data on differences between embryogenic and nonembryogenic cultures, and some knowledge of factors affecting the process. Such differences and associated markers can be used to screen cultures for embryogenic potential, and monitor effects of modified or new protocols. In addition, techniques for isolating, purifying, and characterizing proteins, lipids, enzymes, RNA, and DNA have been developed or adapted for use with forest trees. These are now available for application toward increasing initiation and maturation frequencies, facilitating conversion to
seedlings, and evaluating seedling performance and fidelity.

More recently, recruiting and hiring efforts resulted in addition of a molecular biologist and two technical staff personnel. The biochemistry/molecular biology laboratory has been organized and is being used by new employees as well as other staff and students. Efforts to acquire new equipment and supplies are underway.

Actions needed to secure the laboratories for recombinant DNA research were completed, and we have been certified as in compliance with all applicable USDA and NIH regulations. Permits for acquisition, storage, and handling of Agrobacterium tumefaciens and other such materials were secured ahead of schedule. A comprehensive chemical inventory system has also been developed and implemented.

Plans for obtaining herbicide tolerance in hardwoods were developed and are being implemented. Efforts are focused on gene transfer, with somaclonal variation/selection as insurance. A working dialogue was established with technical and legal representatives of Monsanto Corp. in connection with their providing the Institute with genes for research and/or commercialization. A genetic construct for enhanced auxin synthesis has been received for use in student research. Negotiations concerning a gene for glyphosate tolerance are continuing. Additional information on these topics is provided on the Project Summary Form for Project 3223-03.
Experiments on mechanisms underlying beneficial effects of maltose on loblolly pine embryo maturation are being planned and should be implemented in the near future. Work on proteins and lipids in maturing loblolly and Douglas-fir embryos as well as on genetic fidelity of somatic embryos and seedlings is also being planned.

Related Projects: This project effort supports work underway in Projects 3223-00 and 3223-03.

Related Student Projects:

In Progress

James Bond - Ph.D., A Raman microspectroscopic investigation of the patterns of molecular order in secondary walls of southern pine tracheids. Committee participation, Dinus.

Colleen Walker - Ph.D., Development of a biomimetic approach for pulp bleaching. Advisor, Dinus.
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY

Atlanta, Georgia

FOREST BIOLOGY

PROJECT ADVISORY COMMITTEE

Project 3223-03

MASS CLONAL PROPAGATION OF GENETICALLY IMPROVED AND ENGINEERED HARDWOODS

(Dinus, Mathis, Webb)

December 18, 1990
DUES-FUNDED PROJECT SUMMARY FORM
FY 90-91
Project Title: Mass clonal Propagation of Genetically Improved and Engineered Hardwoods
Project Code: HRDWD
Division: CBSD
Project Number: 3223-03
Staff: Dinus, Mathis, Webb
FY 90-91 Budget: $125,000
Project Objective: Develop reliable cell and tissue culture systems for mass clonal propagation of genetically improved and/or engineered hardwoods
Program Areas: Reduced Operating Costs, Capital Effectiveness, Fiber Availability, Quality, and Cost, End Use Performance
Rationale: Major increases can be obtained in fiber production, quality, and uniformity via mass cloning. Reliable cloning systems will also open the way for genetic engineering and production/delivery of new genetic combinations having exceptional growth, greater pest resistance, special fiber properties, and enhanced site and/or climatic adaptability. Screening/selection for useful variants in tissue culture holds promise for raising the pace and efficiency of conventional tree breeding. In addition, such systems could be used to investigate fiber formation under highly controlled conditions, thereby facilitating study of factors governing fiber properties of interest to the industry. Accelerated growth will ensure reliable raw material supplies,
reduce their costs, and raise returns on capital invested in land and equipment. Greater uniformity can lower both woodlands and mill operating costs as well as enhance properties related to end-use performance. Better or new fiber properties can improve end-use performance and foster development of value-added or new products.

FY 90-91 Goals:
1) Complete construction and equipping of greenhouse.
2) Secure additional plant materials and establish "clean" greenhouse populations.
3) Expand existing cultures, and initiate or obtain and stabilize additional ones.
4) Refine technologies for mass propagation; ensure suitability for genetic transformation and/or somaclonal variation/selection.
5) Accelerate research on gene transfer and expression.

Accomplishments to Date: Considerable hardwood research has been done at the Institute in past years. This work resulted in production of plants from tissue culture, and successful application of polyploidy to forest tree breeding. Other exploratory work at the Institute suggested that tissue culture methods can be used to test for disease resistance. Results from these efforts and those of other organizations indicate that hardwood tissues, cells, and protoplasts can be manipulated with relative ease. In addition, the first demonstration of gene transfer and expression in forest trees was accomplished with a
hardwood. Still other work infers that novel variants can be produced in culture, isolated, and used to introduce new traits into breeding and/or planting stock.

In accordance with earlier plans, this project seeks to develop technologies for transferring genes for herbicide tolerance into commercially important species, and for efficient mass propagation, testing, and release of genetically modified plant materials. Herbicide tolerance is also sought, as a matter of insurance, via somaclonal variation and selection.

Greenhouse populations have been increased to include a total of seven cottonwood clones, five of which are widely used in breeding and planting programs. Twelve control-pollinated seedlots have been secured from James River Corp. to further expand numbers of improved genotypes available for research.

Shoot cultures of five additional cottonwood genotypes were established. The task proved difficult, especially for improved clones of southern origin. Numerous media and growth regulator combinations, along with ethylene inhibitors and anti-auxins, were tried before reasonable numbers of cultures were secured. To improve efficiency, an alternate protocol has been obtained from cooperators at Oregon State University and the University of Nebraska. This approach, scheduled for testing in the near future, involves brief exposure of stem internode explants to a callus-
forming medium followed by transfer to shoot induction medium. Six clones, including C175, are now being maintained for research. These, and new ones established in future, will be used to "generalize" the Leaf Section System, developed earlier this year, for transformation and propagation. Representative numbers of aspen and sweetgum cultures are also being maintained.

Efforts to "generalize" the Leaf Section System to more genotypes have slowed, primarily due to departure of our Post Doctoral Fellow. Results to date, however, appear promising, and work continues. In addition, student research has shown that the large numbers of explants needed for genetic transformation can be produced with ease.

As noted in the Project Summary Form for Project 3223-02, our facilities have been certified for work on genetic transformation and a working relationship has been established with Monsanto Corp. The auxin synthesis gene needed for student research has been obtained, and transformation of Clone C175 will be attempted in the near future. First tests of C175 sensitivities to antibiotics have been completed, a step required to ensure that transformed materials can be selected and that Agrobacterium tumefaciens can be removed following transformation. Efforts to finalize legal and technical arrangements for securing the Monsanto gene for glyphosate tolerance are ongoing, and should be expedited by progress with the auxin synthesis gene.
Suspension cultures, established earlier, are being maintained with relative ease. Cultures of C175 were used to develop growth curves; results are being used to better determine when to withdraw samples for other research and how frequently to subculture. Improved efficiencies in both research and routine maintenance should follow. Efforts to regenerate plants from C175 suspensions were successful. Significant numbers of plants were obtained by transferring microcalli, whose formation was reported earlier, to shoot induction and rooting media used for the Leaf Section System. Successful regeneration from suspensions, if workable for a variety of genotypes, will provide another avenue for transformation. Suspension cultures of several other genotypes have been established from stem internode explants, and are now being expanded for use in various lines of research. A detailed plan for obtaining herbicide tolerant plants via somaclonal variation/selection was developed, and experimentation has been started.

Related Projects: Contacts developed during work on a DOE subcontract are used as sources of useful plant material and cultures, methods for establishing and maintaining cultures, and expertise for genetic transformation. Cooperating organizations include: Oregon State University, University of Iowa, University of Kentucky, University of Nebraska, Tuskegee University, and the US Forest Service, Rhinelander, WI.
Related Student Projects

In Progress

Lois Forde - M.Sc., Phenylalanine ammonia lyase and lignin biosynthesis. Advisors, Conners and Dinus.

Tom Ptacek - M.Sc., Variability of wood, fiber, and pulping properties as affected by cloning. Advisor, Dinus.

Peasely Shorter - M.Sc., Promotion of additional auxin synthesis in *Populus deltoides* via transformation with *Agrobacterium tumefaciens*. Advisor, Webb.
Initiation of Embryogenic Callus from

Megagametophytes of Pinus taeda

D.T. Webb, N. Rangaswamy - Principal Investigators

D. Evans, Y. Powell, C. Stephens - Technical Assistants
OBJECTIVES

1. Increase frequency of initiation

2. Insight regarding underlying factors

3. New lines for maturation & development
EXPERIMENTAL APPROACH

1] Donor (Mother) Trees

2] Embryo Stage

3] Whole Megagametophyte

4] Growth Regulators

5] Culture Media

6] Amino Acids & Amides
RESULTS - 1 - EXTRUDED CALLUS

A. Collection 1 cones -> Stage 2-3 (1:1) Zygotic Embryos

B. Collection 2 cones -> Stage 3-4 (1:1) Zygotic Embryos

C. 90% of megagametophytes contained Zygotic Embryos

D. All Source Trees & Collections -> Extruded Callus

E. Overall Extrusion Frequency (DCR & MSG) = 7.6%
 (Corrected for empty megagametophytes = 8.4%)
 1. MSG = 8.0% (Fig. 1; Corrected = 8.8%)
 2. DCR = 7.25% (Fig. 2; Corrected = 8.0%)

F. Extrusion Frequency BM = 2.2%
RESULTS - 1 - EXTRUDED CALLUS

A. Best Treatments (Corrected Frequencies)

1. DCR #2 (1.1 mg/l 2,4-D) = 14.6%
2. DCR #6 (2 mg/l 2,4-D + 1.0 mg/l BA) = 15.1%
3. MSG #2 (1.1 mg/l 2,4-D) = 13.5%
4. MSG #4 (2 mg/l 2,4-D) = 12.5%
5. MSG #11 (5 mg/l 2,4-D + 0.5 mg/l BA) = 13.3%
6. MSG #12 (5 mg/l 2,4-D + 1 mg/l BA) = 13.7

B. Best Common Treatment -> #2 (1.1 mg/l 2,4-D)

1. MSG = 12.25% (Corrected = 13.5%)
2. DCR = 13.3% (Corrected = 14.6%)
RESULTS - 1 - EXTRUDED CALLUS

A. Best Cumulative Treatments (Fig. 3)

1. #2 (1.1 mg/l 2,4-D)
2. #9 (3.0 mg/l 2,4-D + 1.0 mg/l BA)
3. #10 (5.0 mg/l 2,4-D)
4. #11 (5.0 mg/l 2,4-D + 0.5 mg/l BA)

B. Worst Treatment -> #1 (1.1 mg/l 2,4-D)

1. MSG = 4.5% (Corrected = 4.9%)
2. DCR = 4.25% (Corrected = 4.7%)
RESULTS - 2 - INDEPENDENT CALLUS

EXPLANT SOURCE

A. All Source Trees -> Independent Callus (Table 1)
B. Both Collections -> Independent Callus
C. Excised Embryos did not proliferate
RESULTS - 2 - INDEPENDENT CALLUS

BASAL MEDIUM

A. All Basal Media -> Independent Callus (IC)

B. DCR (16 Lines\(^1\)) > MSG (7 Lines\(^1\)) > BM (1 Line)

C. Only DCR -> Proliferating Callus (P; 15 Lines)

\(^1\) One line (#7; Table 1) initiated on G0 medium -> D1 medium
RESULTS - 2 - INDEPENDENT CALLUS

DCR MEDIUM

A. 69% IC Initiated & Maintained on 2,4-D alone
B. 50% of Rapidly Proliferating (P*) Calli Initiated & Maintained on 2,4-D alone
C. 83% P* calli maintained on 2,4-D alone

MSG & BM MEDIA

A. MSG 14% IC initiated on 2,4-D alone
B. BM -> only one IC
EXPERIMENT IN PROGRESS

1. Union Camp cones - one source tree
2. Stage 3 vs 4 zygotic embryos (2 collections)
3. Megagametophyte Culture
4. DCR Medium
 \[D1 = 1.1 \text{ mg/l 2,4-D (Best medium from work above)} \]
 \[D8 = 3 \text{ mg/l 2,4-D + 0.5 mg/l BA (Old Maintenance Medium)} \]
5. Full-Strength vs Half-Strength salts
6. Sucrose 3\% vs Maltose (equimolar)
SUMMARY & CONCLUSIONS

1. Whole megagametophyte culture equals or surpasses embryo culture for initiation frequency [ie. extruded callus].

2. Megagametophyte cultures are far easier to inoculate & transfer than excised embryos.

 Thus, origin of EC is unambiguous. However, exceptions occur and in some cases origin could be uncertain.

4. Extruded callus probably represents secondary embryos, as dominant embryo is often at chalazal end of megagametophyte.
SUMMARY & CONCLUSIONS

5. Extrusion occurs on all media & does not require growth regulators.

6. Levels of Glutamine, Asparagine & Arginine based on 7/6 analysis may be better than 6/30 analysis for initiation. However, no proliferating callus developed.

7. Tetrazolium tests show that culture medium is rapidly delivered to the embryo and inner megagametophyte. Thus, extrusion is not limited by any diffusion barrier.

8. DCR & MSG media -> similar overall results for extrusion.

9. BM medium was inferior

10. There is no consistent pattern for extrusion on different media treatments.
SUMMARY & CONCLUSIONS

11. No agreement between media which favor extrusion and those which support proliferation.

 Worst Initiation Medium = Best Proliferation Medium

12. In most cases, embryo heads turn brown and extruded callus declines. This suggests an oxidation problem.

13. DCR is better than other media for callus proliferation.

14. Several DCR media are suitable for proliferation

15. Use of 2,4-D without cytokinin may be better for initiation & maintenance.
NEXT STEPS/OPTIONS

1. Source Trees & Explants

 A. Cones from Brazil
 1. Five Clones
 2. Three Collections -> Stages 2-4 (precotyledonary)

 B. Union Camp Cones
 1. One Clone -> Megagametophyte Culture (In Progress)
 2. Two Clones -> Embryo Culture
 a. Time & Resources
 b. Viability after storage

2. Explant

 A. Whole Megagametophyte

 B. Half Megagametophyte (Transverse Bisect)

 C. Punctured
 1. Chalaza -> Dominant Embryo
 2. Micropyle -> Higher Extrusion Frequency

 D. Remove Embryogenic Material at Micropyle [suction]
3. Growth Regulators
 A. 2,4-D alone (1.1, 3 mg/l)
 B. 3 mg/l 2,4-D + 0.5 mg/l BA

4. Basal Medium = DCR
 A. Full-Strength Salts & Nitrogen Sources
 B. Half-Strength Salts & Nitrogen Sources
 C. pH Buffer
 D. Anti-oxidants (See 7 below)

5. Carbohydrates
 A. Maltose vs Sucrose (Various Concentrations)
 B. Glucose vs Sucrose
NEXT STEPS/OPTIONS

6. Gelling Agent & Support
 A. Washed Agar
 B. Bactoagar
 C. Gelrite
 D. Gellan Gum
 E. Liquid with inert support
 1. (Sorborods = Cellulose)
 2. Membrane or Screen

7. Culture Environment
 A. Reduced Oxygen Levels (Carmen, 1988; "Oxyreducer")
 B. Liquid Medium
 (Need novel approach ?co-cultivation wells?)
 C. Others ???

8. Nitrogen Sources = Too complicated - pursue later

9. OTHERS ???
FORMATION OF EXTRUDED CALLUS ON DCR MEDIUM

% EXTRUSIONS

DCR MEDIA TREATMENTS
FORMATION OF EXTRUDED CALLUS ON MSG & DCR MEDIA

% EXTRUSIONS

MEDIA TREATMENTS
Table 1. SUMMARY OF INITIATION WITH WESTVACO CONES

<table>
<thead>
<tr>
<th>LINE ID</th>
<th>SOURCE</th>
<th>INITIATION MEDIUM</th>
<th>MAINTENANCE STATUS MEDIUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCR MEDIUM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1) W1-1-1</td>
<td>D1 [B3]</td>
<td>D1</td>
<td>p1</td>
</tr>
<tr>
<td>2) W2-1-1</td>
<td>D1 [B2]</td>
<td>D1</td>
<td>s2</td>
</tr>
<tr>
<td>3) W2-1-2</td>
<td>D1 [A2]</td>
<td>D1</td>
<td>P3</td>
</tr>
<tr>
<td>4) W3-2-1</td>
<td>D4 [A1]</td>
<td>D1</td>
<td>P4</td>
</tr>
<tr>
<td>5) W3-1-1</td>
<td>D1 [B2]</td>
<td>D1</td>
<td>pP</td>
</tr>
<tr>
<td>6) W3-1-1</td>
<td>D8 [C4]</td>
<td>D1</td>
<td>P6</td>
</tr>
<tr>
<td>7) W3-1-1</td>
<td>D9 [B4]</td>
<td>D1</td>
<td>p</td>
</tr>
<tr>
<td>10) W3-1-1</td>
<td>G0 [A2]</td>
<td>D1</td>
<td>P8</td>
</tr>
<tr>
<td>11) W3-1-2</td>
<td>D1 [C1]</td>
<td>D1</td>
<td>P</td>
</tr>
<tr>
<td>12) W3-1-2</td>
<td>D7 [B1]</td>
<td>D1</td>
<td>P</td>
</tr>
<tr>
<td>13) W1-1-1</td>
<td>D3 [B3]</td>
<td>D3</td>
<td>??</td>
</tr>
<tr>
<td>14) W2-1-2</td>
<td>D4 [A2]</td>
<td>D4</td>
<td>P*</td>
</tr>
<tr>
<td>15) W1-1-1</td>
<td>D5 [A1]</td>
<td>D5</td>
<td>P*</td>
</tr>
<tr>
<td>16) W1-1-1</td>
<td>D7 [C3]</td>
<td>D7</td>
<td>P</td>
</tr>
<tr>
<td>17) W1-1-1</td>
<td>D7 [C4]</td>
<td>D7</td>
<td>P</td>
</tr>
<tr>
<td>18) W3-1-2</td>
<td>D7 [B1]</td>
<td>D7</td>
<td>P*</td>
</tr>
<tr>
<td>19) W1-1-1</td>
<td>D10 [C4]</td>
<td>D10</td>
<td>p</td>
</tr>
<tr>
<td>20) W3-1-2</td>
<td>D17</td>
<td>D17</td>
<td>P</td>
</tr>
</tbody>
</table>

SUMMARY 20 LINES

2 SOLITARY

17 PROLIFERATING

6 PROLIFERATING PROFUSELY
MSG MEDIUM

21	W1-1-2	G0 [C4]	G6	s
22	W3-2-1	G1 [A4]	G6	s
23	W3-2-1	G2 [A1]	G6	s
24	W3-2-1	G2 [B4]	G6	s
26	W3-2-1	G15 [A1]	G15	s
27	W2-1-1	G16 [C3]	G16	s

SUMMARY 7 LINES

ALL SOLITARY

BM MEDIUM

| 28 | W2-1-2 | BM11 [B2] | BM1 | s |

SUMMARY 1 LINE

SOLITARY

1. Two - four callus clumps
2. Solitary callus
3. Four - eight callus clumps
4. More than eight callus clumps
Role of Carbohydrates and Growth Regulators in the Maturation and Development of *Pinus taeda* Somatic Embryos

D. Webb, J. Mathis - Principal Investigators

S. Ozturk, Y. Powell - Technical Assistants
OBJECTIVES

1. Confirm results which show that maltose is better than sucrose for the maturation of precotyledonary & cotyledonary somatic embryos

2. Certify that glucose is superior to sucrose and inferior to maltose

3. Compare the effects of filter-sterilized vs autoclaved carbohydrates

4. Determine whether the beneficial effects of maltose & glucose are primarily nutritional or osmotic

5. Evaluate whether or not ABA is required

6. Establish the optimal interaction of ABA with carbohydrates

7. Determine the interaction of auxin with ABA & carbohydrates

8. Understand the key molecular events evoked by carbohydrates
SUMMARY & CONCLUSIONS OF PRIOR RESULTS

1. Lob pine callus does not -> cotyledonary embryos with Sucrose

2. Maltose and Glucose -> cotyledonary embryos

3. Maltose was superior to Glucose

4. Effective Maltose levels range from 0.17 to .7M

5. Results are fragmentary and optimal levels are unknown

6. All carbohydrates were autoclaved

7. ABA (20-30 uM) is required for somatic embryo development

8. Optimal ABA carbohydrate interaction levels are unknown

9. IBA may enhance cotyledonary embryo production

10. Changes in the sequence of carbohydrate & hormone treatments may yield superior results
EXPERIMENTAL APPROACH

1. Determine optimal levels for Maltose, Glucose vs Sucrose with 30 uM ABA

 A. Autoclaved with media

 B. Filter-sterilized

2. Test the interaction of optimal carbohydrate levels with ABA doses

3. Determine the osmotic component of the carbohydrate effect

 A. Non-physiological osmotica

 1. Sorbitol

 2. Mannitol

 B. Physiological osmotica

 1. Inositol

4. Test the interaction of IBA with the above

5. Determine the best sequence of treatments

6. Explore the effects of suspension culture vs callus

7. Determine the effects of key treatments on gene expression
NEXT STEPS/OPTIONS

1. Compare effects of Maltose & Glucose vs Sucrose with callus
 A. Two best lines
 B. Additional two lines
 C. New Lines

2. Preliminary studies on osmotic effects

3. Interaction of ABA & Carbohydrates
ELEMENTAL COMPOSITION OF DEVELOPING OVULES OF LOBLOLLY PINE A MECHANISTIC APPROACH

NAGMANI, R. RON HOOPER RON DINUS
JACINTA CASTELLINO

OBJECTIVES

REVIEW PAST I.P.S.T RESEARCH
COMPLETE DATA ON OVULE COMPOSITION
COMPARE WITH EXISTING SYNTHETIC CULTURE MEDIA
RECOMMEND PROTOCOL CHANGES IF POSSIBLE

METHODS

ICP - EMISSION SPECTROMETRY
ION CHROMATOGRAPHY
TABLE 1: GENOTYPES, COLLECTION DATES & DEVELOPMENTAL STAGE OF ZYGOTIC EMBRYO IN LOBLOLLY PINE
(SEED CONE COLLECTION FROM LYONS, GA (WEYERHAUSER CO)

<table>
<thead>
<tr>
<th>GENOTYPE (MOTHER TREES)</th>
<th>DATE OF SEED CONE COLLECTION</th>
<th>STAGE OF OVULE/EMBRYO DEVELOPMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A; 2B; 3C</td>
<td>7/2/90</td>
<td>POST-FERTILIZATION STAGES BEGINNING</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PRE-COTYLEDONARY & COTYLEDONARY</td>
</tr>
<tr>
<td>4D; P1 & P2 (6 MOTHER TREES)</td>
<td>7/9/90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/16/90</td>
<td>(SEE FIGS)</td>
</tr>
<tr>
<td></td>
<td>7/23/90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/1/90 --- 8/31/90</td>
<td>(WEEKLY INTERVALS)</td>
</tr>
</tbody>
</table>

Figure 7.2 Fertilization and cleavage polyembryony in Pinus (from Owens and Molder 1984b).
RESULTS

TABLE 2: ELEMENTAL ANALYSIS OF LOBLOLLY PINE OVULES
(CATION ANALYSIS)

<table>
<thead>
<tr>
<th>MACROELEMENTS</th>
<th>7/2/90 *</th>
<th>7/16/90 **</th>
</tr>
</thead>
<tbody>
<tr>
<td>CALCIUM</td>
<td>260</td>
<td>320-350</td>
</tr>
<tr>
<td>MAGNESIUM</td>
<td>11,900</td>
<td>9,300-9,600*</td>
</tr>
<tr>
<td>PHOSPHORUS</td>
<td>17,300</td>
<td>18,200-21,000**</td>
</tr>
<tr>
<td>POTASSIUM</td>
<td>36,900</td>
<td>15,200-15,400**</td>
</tr>
<tr>
<td>SODIUM</td>
<td>13.2</td>
<td>6.21-7.77**</td>
</tr>
</tbody>
</table>

* COLLECTION DATES OF SEED CONES FROM LYONS, GA
** DATA FROM DUPLICATE SAMPLES
RESULTS

TABLE 2: ELEMENTAL ANALYSIS OF LOBLOLLY PINE OVULES (CATION ANALYSIS)

<table>
<thead>
<tr>
<th>MICRO-ELEMENTS</th>
<th>7/2/90*</th>
<th>7/16/90*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BORON</td>
<td>70</td>
<td>43-48**</td>
</tr>
<tr>
<td>MANGANESE</td>
<td>280</td>
<td>420-430**</td>
</tr>
<tr>
<td>ZINC</td>
<td>237</td>
<td>210-240**</td>
</tr>
<tr>
<td>MOLYBDENUM</td>
<td><0.125</td>
<td>< 0.125</td>
</tr>
<tr>
<td>COPPER</td>
<td>19</td>
<td>27-26 **</td>
</tr>
<tr>
<td>COBALT</td>
<td><0.075</td>
<td>< 0.075</td>
</tr>
<tr>
<td>NICKEL</td>
<td>8.4</td>
<td>6.88-7.28**</td>
</tr>
<tr>
<td>IRON</td>
<td>110</td>
<td>92-99**</td>
</tr>
</tbody>
</table>

* COLLECTION DATES OF SEED CONES FROM LYONS, GA

** DATA FROM DUPLICATE SAMPLES
<table>
<thead>
<tr>
<th>RUN</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>AREA</td>
<td>AREA TYPE</td>
</tr>
<tr>
<td>1.475</td>
<td>0.0126E+07</td>
</tr>
<tr>
<td>4.634</td>
<td>4173700</td>
</tr>
<tr>
<td>5.328</td>
<td>6319000</td>
</tr>
<tr>
<td>6.232</td>
<td>3320400</td>
</tr>
<tr>
<td>7.481</td>
<td>4156800</td>
</tr>
</tbody>
</table>

TOTAL AREA = 3.4096E+07
MUL FACTOR = 1.00000E+00
Run 1

<table>
<thead>
<tr>
<th>AREA%</th>
<th>AREA TYPE</th>
<th>AREA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.149</td>
<td>ARI+H1</td>
<td>9.845</td>
</tr>
<tr>
<td>5.221</td>
<td>SBB</td>
<td>6.350</td>
</tr>
</tbody>
</table>

Total Area: 3.929E+07

Hull Factor: 1.0000E+00

Run 2

<table>
<thead>
<tr>
<th>AREA%</th>
<th>AREA TYPE</th>
<th>AREA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.504</td>
<td>SBB</td>
<td>0.395</td>
</tr>
<tr>
<td>5.183</td>
<td>PB</td>
<td>0.345</td>
</tr>
<tr>
<td>6.061</td>
<td>BB</td>
<td>0.341</td>
</tr>
</tbody>
</table>

Total Area: 6.126E+07

Hull Factor: 1.0000E+00

Notes:

- The diagrams represent the layout of different areas and hull factors for the two runs.
- The area percentages are calculated based on the total area.
- Hull factors are constant across both runs.
SUMMARY & FUTURE PLANS

BOTH CATION AND ANION ANALYSIS TO BE DONE FOR

A. OVULES AT THE TIME OF FERTILIZATION & EARLY PRO-EMBryo FORMATION

B. MATURE SEEDS AT THE TIME OF HARVEST.

DATA SO OBTAINED WOULD BE USED FOR COMPARISON WITH ELEMENTS OF SYNTHETIC CULTURE MEDIA.

DATA ON ANION ANALYSIS DID NOT REVEAL PEAKS FOR NITRATE OR NITRITE

TWO PEAKS STILL NEED TO BE IDENTIFIED

ESTIMATION OF TOTAL NITROGEN
DEVELOPMENT AND MATURATION OF SOMATIC EMBRYOS
DOUGLAS-FIR

NAGMANI, R. DEDRA EVANS

OBJECTIVES

ESTABLISH SUSPENSION CULTURES

PROMOTE DEVELOPMENT & MATURATION OF
SOMATIC EMBRYOS IN SUSPENSION CULTURES
IN LARGE NUMBERS

TO DEVELOP A PROTOCOL OPTIMAL FOR
AT LEAST 3 EC LINES REPRESENTING 3
GENOTYPES

EXPERIMENTS

1. TO TEST THE EFFECT OF CASEIN HYDROLYSATE
 AS NITROGEN SOURCE ON DEVELOPMENT & MATURATION

2. TO TEST THE EFFECT OF MALTOSE VS SUCROSE

3. TO TEST THE EFFECT OF AUTOCLAVED CHO VS FILTER
 STERILIZED

4. TO TEST THE EFFECT OF DIFFERENT LEVELS OF ABA
DEVELOPMENT AND MATURATION OF
SOMATIC EMBRYOS OF DOUGLAS-FIR

RP. NO: 11/21/90

RESEARCHERS ORIGINATING STUDY: NAGMANI & DEDRA EVANS

TREATMENTS:

1. 1/2 mMSG + MALTOSE 0.8M (3%) (AUTOCLAVED)
2. 1/2 mMSG + MALTOSE 0.8M (3%) (AUTOCLAVED) + 1μM IBA
3. 1/2 mMSG + MALTOSE 0.8M (3%) (AUTOCLAVED) + 1μM IBA + 10μM ABA
4. 1/2 mMSCG + MALTOSE 0.8 M (3%) (AUTOCLAVED) + 10μM ABA
5. 1/2 mMSCG + MALTOSE 0.8M (3%) (FILTER STERILIZE) + 10μM ABA
6. 1/2 mMSCG + SUCROSE 0.8 M (3%) (AUTOCLAVED) + 10μM ABA
7. 1/2 mMSCG + SUCROSE 0.8 M (3%) (FILTER STERILIZE) + 10μM ABA
8. 1/2 mMSG + MALTOSE 0.8 M (3%) (AUTOCLAVED) + 10μM ABA
9. 1/2 mMSG + MALTOSE 0.8 M (3%) (FILTER STERILIZE) + 10μM ABA
10. 1/2 mMSG + SUCROSE 0.8 M (3%) (AUTOCLAVED) + 10μM ABA
11. 1/2 mMSG + SUCROSE 0.8 M (3%) (FILTER STERILIZE) + 10μM ABA

(G = GLN = 500 mg/L; C = CH = 1000 mg/L)
SUMMARY

PRELIMINARY EXPERIMENTS HAVE INDICATED:

CAESEIN HYDROLYSATE IS NOT NECESSARY FOR DEVELOPMENT & MATURATION?

MALTOSE ALONE PROMOTES DEVELOPMENT & MATURATION

MALTOSE WITH ABA AT 10μM ENHANCES SYNCHRONOUS DEVELOPMENT OF PRE-COTYLEDONARY EMBRYOS IN LARGE NUMBERS

FUTURE PLANS

1. EFFECT OF CARBOHYDRATES; GLUCOSE, MALTOSE & SUCROSE AT 1/2; 3, 6, 9 & 12%

2. OPTIMAL SOURCE OF CHO & OPTIMAL LEVEL + ABA (0, 2, 5, 10, 20, 40 & 80 μM)

3. STATISTICAL EVALUATION OF DATA
STATUS OF HARDWOOD PLANT MATERIAL

SONJA OZTURK
SHANNON JOHNSON
YOLANDA POWELL
RON DINUS
OBJECTIVES

BUILD & MAINTAIN "CLEAN" GREENHOUSE POPULATIONS

ESTABLISH & MAINTAIN STOCK CULTURES
RESULTS, CONT’D

COTTONWOOD STOCK CULTURES

<table>
<thead>
<tr>
<th>CLONE/CULTURE CODE</th>
<th>CULTURE ORIGIN</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEAF</td>
<td>PETIOLE</td>
</tr>
<tr>
<td>C175</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td>K417</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST66</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST70</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST72</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST75</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

BEST MEDIA: INITIATION, DKW + THIDIAZURON (0.1 uM)
MAINTENANCE, DKW + NAA (0.1 uM) & BA (1.0 uM)
RESULTS

GREENHOUSE POPULATIONS:

BUILT TO 7 COTTONWOOD CLONES

INCLUDES 5 GENETICALLY IMPROVED SOUTHERN CLONES

K417 - UNIV. OF KY
ST 66 - JAMES RIVER CORP.
ST 70 - SAME
ST 72 - SAME
ST 75 - SAME

OTHERS - C175 - UNIV. OF NB

XD-44-65-5-2 - IPST (UNIV. OF MN)
CONCLUSIONS/PLANS

CONCLUSIONS:

GREENHOUSE -

HAVE LARGER ARRAY OF GENOTYPES, 7 TOTAL
INCLUDES 5 GENETICALLY IMPROVED ONES, USEFUL IN SOUTH

CULTURES -

BUILT CULTURES TO INCLUDE 6 CLONES
ADDED 5 NEW GENETICALLY IMPROVED CLONES

PLANS:

GREENHOUSE -

MAINTAIN & FURTHER ENLARGE ARRAY OF GENOTYPES

CULTURES -

INCREASE CULTURE NUMBERS / CLONE
RAISE NUMBER GENOTYPES IN CULTURE
TEST OSU/UNB INITIATION PROTOCOL
Promotion of Additional Auxin Biosynthesis in *Populus deltoides* through Genetic Engineering

D.T. Webb, J.N. Mathis & R. Dinus - Principal Investigators

P. Shorter - M. Sc. Student
OBJECTIVES

1. Develop tissue culture systems suitable for transformation

2. Use cocultivation with genetically engineered *Agrobacterium* to transfer auxin biosynthesis gene(s)

3. Select and regenerate transformed plants

4. Analyze for phenotypic traits

5. Assay for increased IAA synthesis

6. Confirm presence of foreign gene

7. Use with other poplar clones

8. Use with other genes
BACKGROUND

1. *Agrobacterium* transfers two genes affecting auxin biosynthesis during transformation

2. These genes (iaaM & iaaH) -> enzymes -> tryptophane -> IAA
 A. Tryptophane -> iaaM -> indole-3-acetamide
 B. Indole-3-acetamide -> iaaH -> indole-3-acetic acid (IAA)
 C. Genes function in bacteria
 D. Genes are not known to be present in normal plants
 E. Activity of iaaM alone should not lead to IAA production

3. Petunia transformed with iaaH
 A. Use indole-3-acetamide as a substrate -> IAA
 B. Have normal phenotype
BACKGROUND

4. Petunia transformed with \textit{iaaM} (Constitutive Promoter)

 A. Have elevated levels of IAA

 B. Have abnormal phenotype

 1. Increased Apical Dominance
 2. Increased Cell Size
 3. Elongated Internodes
 4. More Woody Stems
 5. More Secondary Xylem & Phloem
 6. Larger & Thicker Leaves
 7. Curled & Narrow Leaves
 8. Adventitious Roots (Leaves & Stems)
 9. Abnormal Roots
 10. Fertile Plants \rightarrow Seeds

5. Petunia transformed with seed storage protein promotor

 A. Normal Phenotype

 B. Expression in the Seed

 C. Mendelian Inheritance
RESULTS

1. Improved leaf section regeneration system

2. Improved internode regeneration system

3. Antibiotic screening

4. Genes & Agrobacterium strains obtained
NEXT STEPS/OPTIONS

1. Develop *Agrobacterium* vector for *iaaM* gene

2. Perform co-cultivation experiment

3. Select & regenerate transformants

4. Analyze putative transformants

 A. Phenotype

 B. Presence of *iaaM* gene

 C. IAA content

5. Identify tissue specific & stage specific promoters

6. Make new gene constructs

7. Transform with new constructs -> desirable traits

8. Extend to other *P. deltoides* clones

9. Use with other genes (herbicide resistance)
Genetic Transformation of *Populus deltoides*

with Economically Important Genes

J.N. Mathis, D.W. Webb, R. Dinus - Principal Investigators

C.J. Stephens - Research Assistant

P. Shorter - M.S. Student
Methods for Transformation of *Populus deltoides* with Glyphosate Resistance

1. Co-cultivation *Agrobacterium* and leaf discs (using Monsanto construct)

2. Development of transformants in B5 medium as described by:

 M. De Block (Plant Physiol. 93:1110-1116)

 1. Mes and Ca-gluconate will be used to buffer the media and avoid shoot tip necrosis

 2. Temperature below 25°C

 3. Greenhouse tests of plants will be performed, then field trials
Development of Somatic Variants of

Populus deltoides with Glyphosate Resistance

J.N. Mathis, R. Dinus - Principal Investigator

C.J. Stephens - Technical Assistant
Step 1

Development of Growth Curves For
Cell Cultures of *P. deltoides* C175

J.N. Mathis, R. Dinus - Principal Investigators

S. Ozturk, S. Johnson - Technical Assistants

M. Naik - Ga. Tech Undergraduate

S. Bergman - Ga. Tech Undergraduate
Objective

To quantify the growth kinetics of *P. deltoides* C175 in order to assist in:

1. Developing somaclonal variants
2. Studying xylogenic cultures
3. Developing transformation systems
Experimental Approach

Measure cell growth in five different ways with five replicate cultures and compare each method

1. Cell Number
2. Fresh Weight
3. Dry Weight
4. Total Protein by Lowry
5. Settled Cell Volume
Log Cell Count vs. Time

$R^2 = 0.96$
Log Concentration of Protein vs. Time

$R^2 = 0.95$

Standard Deviations were not calculated because samples were pooled for Lowry protein determinations.
SUMMARY of RESULTS

<table>
<thead>
<tr>
<th>METHODS</th>
<th>MEAN GENERATION TIME IN DAYS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Count</td>
<td>3.0</td>
</tr>
<tr>
<td>Fresh Weight</td>
<td>3.3</td>
</tr>
<tr>
<td>Dry Weight</td>
<td>3.3</td>
</tr>
<tr>
<td>Protein Content</td>
<td>3.0</td>
</tr>
<tr>
<td>Settled Cell Volume</td>
<td>4.5</td>
</tr>
</tbody>
</table>
CONCLUSIONS

P. deltoides cultures C175 in MS media with 3% sucrose, 1mg/L 2,4D and 0.1 mg/L BA have a generation time of 3 days and are in exponential growth phase between 5 and 19 days under several specified conditions:

1. only 20% of the culture flask is taken up with medium to allow adequate aeration

2. a 10% inoculum is used to start cultures

3. a growth temperature of 24°C and a shaking speed of 125 rpm
STEP 2

Development of LD_{100} for Glyphosate

J.N. Mathis, R. Dinus - Principal Investigators

C.J. Stephens - Technical Assistance
Methods

Plate cells that have been growing in various levels of glyphosate from 0-512 μM and stain culture with tetrazolium to determine viability.

Results

Tetrazolium - 128 μM initial experiment

Plating - still underway
Future Directions to Develop Glyphosate Resistant Somaclonal Variants

1. Plate populations from glyphosate challenge experiment

2. Look for survivors in cultures above or slightly below apparent LD$_{100}$

3. Rechallenge putative glyphosate resistant clones with potentially lethal doses of glyphosate. Keep increasing dosage as done by several other investigators who have developed glyphosate resistant somaclonal variants.

4. Place resistant calli on differentiation media. Develop plants as outlined by R. Uddin

5. Test resistant plants in the greenhouse and field
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY

Atlanta, Georgia

FOREST BIOLOGY

PROJECT ADVISORY COMMITTEE

STUDENT PROJECTS

Student Research Comprehensive List

December 18, 1990
STUDENT RESEARCH - COMPREHENSIVE LIST

Completed in 1990

Michael Wood - M.Sc., Effect of cold shocking on cell cultures of Larix decidua. Advisor, Dinus.

In Progress

Teri Ard - Special Student, Project pending. Advisor, Dinus.

David Barzyk - M.Sc., Development of a fiber optics system to determine the in vivo pH of developing Pinus taeda seeds. Advisor, Dinus.

James Bond - Ph.D., A Raman microspectroscopic investigation of the patterns of molecular order in secondary walls of southern pine tracheids. Committee participation, Dinus.

James Bradburne - Ph.D. (GT), Molecular characterization of ineffective Bradyrhizobium japonicum USDA 110 variants and differences in signal transduction pathways between effective and ineffective Bradyrhizobium japonicum USDA 110 variants. Advisor, Mathis.

Rebecca Champion - Ph.D. (GT), Strain X cultivar interactions; Effects of nitrogen-fixing and non-nitrogen-fixing Bradyrhizobium japonicum USDA 110 on nodulation and nitrogen fixation. Advisor, Mathis.

Lois Forde - M.Sc., Phenylalanine ammonia lyase and lignin biosynthesis. Advisors, Conners and Dinus.

Rene Kapik - Ph.D., Recently admitted, starting A390 problems. Advisor, Dinus.

Tom Ptacek - M.Sc., Variability of wood, fiber, and pulping properties as affected by cloning. Advisor, Dinus.

Colleen Walker - Ph.D., Development of a biomimetic approach for pulp bleaching. Advisor, Dinus.

Michael Wood - Ph.D., Completing A390 problems; Decision on dissertation topic pending. Advisor, Dinus.
KEY ISSUES

QUESTION: WHY BE CONCERNED?

KEY GOALS, SET IN FALL, 1989

MANY NEW DEVELOPMENTS

KEEP, DROP, OR ADJUST?

ORIGINAL PURPOSE

PERIODIC, OBJECTIVE EVALUATION EVERY 2 OR 3 YRS

DECIDE TO CONTINUE, TURN, OR STOP

IN ADDITION TO BUT COINCIDENT WITH

IPST STRATEGIC PLAN

NEAR-TERM PROJECT PLANS

BASES FOR EVALUATION

PROCESS STEP IMPROVEMENTS

ENHANCED UNDERSTANDING & NEW KNOWLEDGE

NEW OPPORTUNITIES
"SOMATIC SEEDLING" YIELDS, ADVANCED SPRUCE SYSTEMS

ORGANIZATION: BC RESEARCH CENTRE

SPECIES: INTERIOR SPRUCE

<table>
<thead>
<tr>
<th># GENOTYPES (MOTHER TREES)</th>
<th>SEEDLINGS (#)</th>
<th>NURSERY SURVIVAL (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>71 (6)</td>
<td>1200</td>
<td>80</td>
</tr>
</tbody>
</table>

Authors Conclusion: Can be used to produce planting stock for reforestation from an array of genotypes.
1) INCREASE DEVELOPMENT/MATURATION FREQUENCY IN MODEL SPECIES TO 25% ON A REPEATABLE BASIS, AND EXTEND TO TARGET SPECIES.

IE., MOVE 250 OR MORE OF THE 500 - 1000 POTENTIAL EMBRYOS PRESENT PER GRAM OF EMBRYOGENIC CALLUS TO MATURITY.

REQUIRES IMPROVED UNDERSTANDING OF ZYGOTIC SYSTEM.

2) IMPROVE CONVERSION PROTOCOLS FOR MODEL SPECIES & PRODUCE A POPULATION OF SUITABLE SIZE & VARIABILITY FOR REPLICATED GREENHOUSE & FIELD TRIALS.

IE., ACCUMULATE 375 USABLE SEEDLINGS FROM EACH OF ONE OR MORE CALLUS LINES REPRESENTING EACH OF SEVERAL DONOR TREES.

REQUIRES IMPROVED UNDERSTANDING OF ZYGOTIC SYSTEM, REFINED GERMINATION METHODS, & IMPROVED ACCLIMATIZATION PROCEDURES.
3) RAISE INITIATION FREQUENCIES IN TARGET SPECIES TO 10% ON A REPEATABLE BASIS ACROSS EXPERIMENTS, SEASONS, AND GENOTYPES.

MAIN INTENT: IMPROVE RELIABILITY OF PROCESS STEP, AND GAIN ABILITY TO OBTAIN EMBRYOGENIC CALLUS AT WILL & WITH EASE FOR RESEARCH ON OTHER CRITICAL STEPS.

HONORABLE MENTION: OBTAIN EMBRYOGENIC CALLUS OF AT LEAST ONE SOFTWOOD, FROM EXPLANTS OF TREES OLD ENOUGH TO HAVE BEEN PROVEN GENETICALLY SUPERIOR.
KEY ISSUES - STAFF VIEWS & SUGGESTIONS

NORWAY SPRUCE - NEED STRATEGIC DECISION

STOP ALL WORK EXCEPT -

SOMATIC & ZYGOTIC COMPARISONS
CONVERSION PROTOCOLS
FIDELITY
INITIATION FROM OLDER DONORS

LOBLOLLY PINE - INCREASE EFFORT

INITIATION - RETAIN FORMER KEY GOAL,

10% ACROSS TESTS, SEASONS, & GENOTYPES

MATURATION - COMBINE & PUSH OLD + NEW THRUSTS

IN VULVO ENVIRONMENT
CHO & ABA EFFECTS
MOLECULAR BASIS OF CHO EFFECT
LIQUID VS SOLID MEDIA
SYNCHRONY, COUNTING, & HARVESTING

CONVERSION PROTOCOLS - ADAPT FROM NORWAY SPRUCE

FIDELITY - ADAPT FROM NORWAY SPRUCE
DOUGLAS-FIR

INITIATION - DEFER, UNLESS NEED NEW LINES

MATURATION - CONTINUE AT PRESENT LEVEL

CHO & ABA EFFECTS
LIQUID VS SOLID MEDIA
SYNCHRONY, COUNTING, & HARVESTING

LEARN & GENERALIZE TO LOBLOLLY

CONVERSION & FIDELITY

ADAPT FROM NORWAY SPRUCE
EXTEND TO LOBLOLLY
KEY ISSUES - REQUEST FOR ASSISTANCE

APPOINT SPECIAL SUBCOMMITTEE(S)

CONSULT OUTSIDE EXPERTS

BUILD RECOMMENDED LIST & EXPLANATION

CIRCULATE TO ALL MEMBERS

DISCUSS & APPROVE AT APRIL MEETING
NEW DIRECTIONS

EXTERNAL FUNDING ????????

EARLIER & OVER THE HILL:

USDA - LIGNIN BIOSYNTHESIS, 01/90
RD/DW + UGA - NOT FUNDED

NSF - SEED COMPOSITION, 01/90
NR/SB - NOT FUNDED

USDA - LIGNIN DISTRIBUTION & STRUCTURE, 03/90
RD/DW + UGA - NOT FUNDED, NEAR-MISS

NSF - NOVEL ENZYMES IN LIGNIFICATION, 01/90
UGA + RD - WITHDRAWN, PI LEFT UGA

SUBMITTED & WAITING:

NSF - LIGNIFICATION, 06/90
UGA/RD/DW - NO WORD YET

DOE - SAME

RECENTLY CONTRIVED & SUBMITTED:

MEMBER COMPANY - IDENTIFYING & PROTECTING
ELITE GERMPLASM, 10/90 - JM

NSF - LIGNIN BIOSYNTHESIS, 12/90
UGA/DW

NSF - LIGNIN DISTRIBUTION & STRUCTURE, 12/90
UGA/RD
NEW DIRECTIONS, CONT’D

NEAR-NEAR-TERM PLANS:

SOFTWOODS:

COMPLETE SUMMER INITIATION EXPERIMENTS (LP)

ESTABLISH WINTER INITIATION TRIALS (LP)

COMPLETE PROJECTED MATURATION TESTS (LP & DF)

INITIATE WORK ON MOLECULAR BASIS OF CHO EFFECTS ON MATURATION (LP)

COMPARE SOMATIC/ZYGOTIC DEVELOPMENT (NS)

FACILITATE STUDENT PROJECTS

RECOMMEND NEW/REVISED KEY GOALS, STAFF/PAC
NEW DIRECTIONS, CONT'D

NEAR-NEAR-TERM PLANS:

BIOCHEMISTRY:

COMPLETE RECRUITING/HIRING

ACQUIRE LAST SUPPLIES/EQUIPMENT

SUPPORT SOMATIC/ZYGOTIC COMPARISONS

ADAPT/REFINE METHODS FOR WORK ON MOLECULAR BASIS OF CHO EFFECTS IN MATURATION

REFINE METHODS FOR GENE TRANSFER VIA At

FACILITATE STUDENT PROJECT ON GENE TRANSFER

DEVELOP/ADAPT METHODS FOR ASSESSING FIDELITY
NEW DIRECTIONS, CONT’D

NEAR-NEAR-TERM PLANS:

HARDWOODS:

REPLACE POST-DOCTORAL FELLOW, IF APPROVED

ENLARGE GREENHOUSE & STOCK CULTURE POPULATIONS

COMPLETE FIRST WORK ON SOMACLONAL VARIATION/SELECTION

EXTEND LEAF SECTION SYSTEM TO MORE GENOTYPES

FINALIZE AGREEMENT WITH MONSANTO;
 SECURE GENE FOR GLYPHOSATE TOLERANCE

START WORK ON TRANSFER OF GLYPHOSATE TOLERANCE GENE

FACILITATE STUDENT PROJECT ON LIGNIFICATION
Herbicide Tolerance Gene: Status & Process

Legal Agreement

Member Companies

Germplasm

Modified Germplasm

Research & Testing

IPST

Genes & Consulting

Legal Agreement

Monsanto

Legal Agreement
FORWARD PLANNING, COMMITTEE ISSUES

TERMS OF OFFICE

OFFICERS

ALTERNATES/SUBSTITUTES

EXTERNAL SPECIALISTS

MINUTES

FUTURE MEETINGS

DEFINITE - APRIL 1, 1990 (FORMAL)

OTHERS - NEEDED; WHEN & WHERE?

HAPPY HOLIDAYS!!!!