Space Qualification for Extreme Environments
Electronics and Packaging

By
Yuan Chen
Jet Propulsion Laboratory
Pasadena, CA

This work was carried out at Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.
Outline

• Space extreme environments
• Technology qualification
• Qualification for extreme environments
• Case study
• Summary
Space Extreme Environments

Temperature (°C)

<table>
<thead>
<tr>
<th>Mission</th>
<th>T_{low} (°C)</th>
<th>T_{high} (°C)</th>
<th>Press. (bar)</th>
<th>Concerns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mars Surface Exploration</td>
<td>-128</td>
<td>20</td>
<td>0</td>
<td>Low Temperature and Temperature Cycling</td>
</tr>
<tr>
<td>Lunar Surface Missions</td>
<td>-230</td>
<td>120</td>
<td>0</td>
<td>Constant low temperature at Lunar shadow area, thermal shock/cycling elsewhere</td>
</tr>
<tr>
<td>Venus In-Situ Exploration</td>
<td>-230</td>
<td>460</td>
<td>90</td>
<td>Sulfuric acid clouds, 97% CO2 at the surface</td>
</tr>
<tr>
<td>Jupiter Multi-Probes</td>
<td>-140</td>
<td>380</td>
<td>20-1000</td>
<td>High g</td>
</tr>
<tr>
<td>Comet Sample Return</td>
<td>-270</td>
<td>-230</td>
<td>varies</td>
<td>Dust</td>
</tr>
<tr>
<td>Titan In-Situ</td>
<td>-180</td>
<td>-140</td>
<td>1.5</td>
<td>2-10% Methane Clouds, Solid/liquid surface</td>
</tr>
<tr>
<td>Europa Lander</td>
<td>-160</td>
<td>-120</td>
<td></td>
<td>Combination of radiation and low temperature</td>
</tr>
</tbody>
</table>

All Solar System Exploration *in-situ* missions have to survive in extreme temperatures, pressure, and/or radiation environments.
Technology Qualification

- Issues and challenges for extreme environments
 - Mil-Std cannot support the extreme conditions
 - Different failure mechanisms at extreme conditions
 - Conventional derating does not work

Technology Selection

Performance

Qualification

Mil-Std

Derating

Lower T and Lower Vcc

Board/System Verification

Performance and Reliability

Design for Reliability Methodology for extreme environments
Design for Reliability Methodology

- Design for reliability yields design for reliability guidelines based on reliability model with understanding of failure mechanisms
 - Reliability model
 - Reliability = f(temperature, power, voltage, current, sample size, confidence level, failure percentage required, failure criterion, failure mode, … …)
 - Based on current understanding of device/material reliability and failure mechanisms/modes
 - Design of Experiments
 - Testing matrix includes temperature, voltage, current, power and sample size
 - Focus on major reliability contributors and critical parameters
 - Data Analysis and Failure Analysis
 - Need to be performed after each test run to either verify or revise the reliability model and testing plan
 - Design-for-Reliability Guidelines
 - Only reliable and efficient path to flight insertion for currently available state-of-the-art technologies
 - Screening, qualification, system design
Keys to Design for Reliability Methodology

- Understanding failure mechanisms
 - Technology reliability
 - Physics of failure
 - Device physics
 - Process limitations

- Reliability model
 - Statistical nature of failure
 - Worst-case approach
 - Assume worst case device bias condition
 - Assume worst case operating condition
 - May give a too pessimistic projection
 - A statistical approach
 - Focus on the statistical nature of device degradation and lifetime
 - Focus on actual use/operating condition
 - Yield realistic estimation

- Design for reliability guidelines
 - System design requirements
 - Design in the risk mitigation
Statistical Approach

- 10 bias conditions
- **RED** - 10 transistors at each bias
- **GREEN** - 100 transistors at bias #1, #9 and #10, 10 at other biases
- **BLUE** - 100 transistors at each bias

<table>
<thead>
<tr>
<th>Circuits</th>
<th>Transistor Failure Criteria</th>
<th>Worst-case Approach</th>
<th>Proposed Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital</td>
<td>13% I_{dsat}</td>
<td>~ 800 yrs</td>
<td>~ 1000 yrs</td>
</tr>
<tr>
<td>Analog</td>
<td>10% g_{max}</td>
<td>~ 0.87 yrs</td>
<td>~ 6.5 yrs</td>
</tr>
</tbody>
</table>
Steady-State Life Test Defined in MIL-STD-883F

- MIL-STD-883F: “the steady-state life test is performed for the purpose of demonstrating the quality or reliability of the devices subjected to the specified conditions over an extended time period and the life tests need to be conducted within rated operating conditions for a sufficiently long test period to assure that results are not characteristics of early failures or infant mortality.”
- Life test defined: 45 parts, 1000 hours, total 45000 device hours at 125°C
 - First, the steady-state life test is to validate the pre-screening testing.
 - Second, the steady-state life test is to indicate a certain device life with a certain levels of reliability and confidence.
 - No failure is allowed in the steady-state life test; however, failures occurred in the test indicate parts failure distribution.
Test Duration and Sample Size

• Minimum test duration
 – The minimum test duration is 1000-hour at 125°C, or equivalent, per MIL-STD-883F.
 – The recommended test duration is the equivalent time to mission life, only if it is possible.
 – Reason: the purposes of the life test is not to demonstrate a device life, but rather to ensure an effective pre-screening test.

• Minimum sample size
 – In addition to the total test time in Chi-square distribution, minimum sample size is determined by the confidence level that the rest of parts in the same wafer lot will last at least the same test duration
 • The minimum sample size for a 90% confidence level that at least 95% of the parts in the same wafer lot will survive life test is 45.
 • The minimum sample size for a 90% confidence level that at least 80% of the parts in the same wafer lot will survive life test is 11.
Qualification for Extreme Environments

- Qualification
 - MIL-STD qualification flow
 - -55°C to +125°C
 - Qualification for applications at cryogenic temperatures
 - Constant low temperatures
 - Example: -180°C, -230°C
 - Over a wide temperature range
 - Example: 125°C to -143°C
 - Qualification for applications at high temperatures
 - Example: 480°C
Qualification for Cryogenic Applications

- Design for cryogenic reliability
 - Advantages at LT: faster speed, lower leakage
 - Challenges at LT: variation, functionality, reliability
 - Design for cryogenic reliability guidelines
 - At both device and system level
 - Including qualification methodology for
 - screening and long term reliability
 » Address potential defects for early failures
 » Life test to validate pre-screening
 » Thermal cycling

- Long term reliability is the key
Qualification for High Temperature Reliability

• Design for high temperature reliability
 – Advantages at HT: none
 – Challenges at HT: survivability, reliability
 – Design for HT reliability guidelines
 • At system level only
 • Including qualification methodology for
 – screening and short term reliability
 • Which technology can survive and for how long?
 – surviving/short-term reliability conditions versus system performance requirements
 • How to screen out “infant mortality”?
 – qualification plan to ensure survivability

 – Survivability and screening are the keys
A Case Study
A Case Study

- A case study
 - Qualification for a Mars mission
 - Background
 - Mission temperature: -128°C ~ +85°C
 - Qualification temperature: -143°C ~ +125°C
 - Parts and Packaging
 - Radiation
 - Element evaluation
 - Reliability
 - Commercially available active and passive parts
 - Selection of packaging material combinations
 » Substrate, die attach, wire bonding, etc.
 - Development of customized op-amp
 » Design for reliability to address long-term reliability concern at low temperature
MIL-STD Qualification

• MIL-STD qualification: -55C to +125C
 – MIL-PRF-38535E: A. 3.4.6 and A.3.4.6.1: traceability and lot traveler
 – Wafer level device functional testing
 – MIL-STD-883
 • Method 2010, Condition A: Element Visual
 • Method 1015 for burn-in with pre and post tri-temp burn-in electrical
 – 240 hours at 125C for dynamic burn-in and 96 hours at 125C for static burn-in
 – Tri-temp: -55C, 25C and +125C
 • Method 1005 for steady state life test with tri-temp interim readouts
 – 45 parts, 1000 hours at 125C
 – Tri-temp: -55C, 25C and +125C
 – Thermal cycling
Qualification for a Mars Mission

- Mars application qualification: -143C to +125C
 - Element Evaluation
 - Large sample characterization (LSC): To characterize parts parametric temperature dependence to support WCA and SA
 - Thermal cycling qualification (TCQ): To demonstrate 3x thermal cycling mission life on parts
 - Methodology
 - LSC: Obtain parts parametric population distributions by characterizing a sample of parts at seven temperatures from flight lots, -143°C, -133°C, -128°C, -55°C, 25°C, 85°C, 125°C
 - TCQ: Thermal cycling parts from -130°C to +85°C for 3x cycles of mission life
 - Sample size
 - LSC: total 128 parts tested
 - 22 samples for active devices (90% confidence for 10% PDA)
 - 8 (90% confidence for 30% PDA) and 11 (90% confidence for 20% PDA) samples for passives
 - TCQ: total 1248 parts under cycling
 - 147 (99.9% confidence for 5% PDA) and 22 samples (90% confidence for 10% PDA) for each part type
 - Pre-screening
 - Static and dynamic
 - High temperature (+125C) and low temperature (-143C)
 - Address potential defects for early failures in field at high and low temperature
 - Life Test
 - 45 parts 1000-hours steady state life test at -143C with interim readouts
 - Validate burn-in
 - Radiation
 - SEU
Qualification Flow

Fabrication → Wafer Level Test

DPA

Radiation → Element Evaluation

HT Screening

LT Screening → HT Life

LT Life
Qualification Flow – Qualification Parts Screen

<table>
<thead>
<tr>
<th>Step</th>
<th>Screen</th>
<th>Required</th>
<th>Reject Criteria</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wafer Level Functional Test</td>
<td>Test to datasheet @ room temperature only</td>
<td>Any part failing to meet datasheet parametric at the temperatures specified</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>Element Visual</td>
<td>MIL-STD-883, Method 2010, Condition A</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>3</td>
<td>Serialization</td>
<td>Laser Serialization for traceability</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>
Qualification Flow - Sample Qualification

<table>
<thead>
<tr>
<th>Step</th>
<th>Screen</th>
<th>Required</th>
<th>Reject Criteria</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Sample Construction Test</td>
<td>DPA per MIL-STD-883, Method 5009</td>
<td>Any abnormal processing especially with metallization. Thinning, voids, notches, or apparent aberrations will be recorded.</td>
<td>5 pcs</td>
</tr>
<tr>
<td>5</td>
<td>Radiation</td>
<td></td>
<td></td>
<td>5-10 pcs</td>
</tr>
<tr>
<td>6</td>
<td>Electrical (Element Evaluation)</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>200 pcs</td>
</tr>
<tr>
<td>7</td>
<td>Static Burn-in (HT)</td>
<td>MIL-STD-883, Method 1015, 96 hours at +125C</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>8</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>100%</td>
</tr>
<tr>
<td>9</td>
<td>Dynamic Burn-in (HT)</td>
<td>MIL-STD-883, Method 1015, 240 hours at +125C</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>10</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>100%</td>
</tr>
<tr>
<td>11</td>
<td>Life Test (Dynamic, HT)</td>
<td>MIL-STD-883, Method 1005, 1000 hour at 125C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>45 pcs</td>
</tr>
</tbody>
</table>
Qualification Flow - Sample Qualification

<table>
<thead>
<tr>
<th>Step</th>
<th>Screen</th>
<th>Required</th>
<th>Reject Criteria</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>45 pcs</td>
</tr>
<tr>
<td>13</td>
<td>Static Burn-in (LT)</td>
<td>MIL-STD-883, Method 1015, 96 hours at +125C</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>14</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>100%</td>
</tr>
<tr>
<td>15</td>
<td>Dynamic Burn-in (LT)</td>
<td>MIL-STD-883, Method 1015, 240 hours at +125C</td>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>16</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>100%</td>
</tr>
<tr>
<td>17</td>
<td>Life Test (Dynamic, LT)</td>
<td>MIL-STD-883, Method 1005, 1000 hour at 125C.</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>45 pcs</td>
</tr>
<tr>
<td>18</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>100%</td>
</tr>
<tr>
<td>19</td>
<td>PDA and FA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Burn-in Condition Determination</td>
<td>Qualification will determine if low temperature burn-in is needed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Qualification Flow – Flight Parts Screen

<table>
<thead>
<tr>
<th>Step</th>
<th>Screen</th>
<th>Required</th>
<th>Reject Criteria</th>
<th>Sample Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>100%</td>
</tr>
<tr>
<td>22</td>
<td>Burn-in</td>
<td>Specifications depends on qualification results</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Electrical</td>
<td>Test to datasheet @ +125C, +25C, -55C</td>
<td>Any part failing to meet data sheet parametric at the temperatures specified.</td>
<td>100%</td>
</tr>
</tbody>
</table>
Known Good Die (KGD) Approach

• Double bond pads on the device die. One pad is used for temporary packaging for burn-in purpose and the other for actual application wire bonding.
Summary

• Challenges for extreme environments qualification
 – Mil-Std cannot support the extreme conditions
 – Different failure mechanisms at extreme conditions
 – Conventional derating does not work

• Qualification for extreme environments
 – Understanding failure mechanisms
 – Reliability model with statistical nature
 – Design for reliability guidelines
 • Design for reliability for cryogenic applications and high temperature applications
Acknowledgements

- Elizabeth Kolawa
- Mohammad Mojarradi
- Scott Cozy
- Nazeeh Aranki
- Carissa Tudryn
- Manuel Gallegos
- Duc Vu