ANTENNA ELEMENTS INTEGRATED INTO THE PARACHUTES OF PLANETARY ENTRY PROBES

Carlos Corral van Damme
Maarten van der Vorst
Rodolfo Guidi
Simón Benolol
INTRODUCTION

- Integrating antenna elements into the parachutes of planetary entry probes may provide benefits at system level
 - parachutes are most common aerodynamic decelerator
 - conventional comms solution: low gain antennas located in the probe (limited mass and surface)
 - integration of parts of the antenna on the parachute may allow for potential
 - increased performances
 - size/mass reduction
 - additional applications

- Activity initiated and founded by ESA

- Multidisciplinary research
 - GMV (EDL), CIMSA (parachutes), IDS (antennas)
MISSION SCENARIOS AND SYSTEM CONSIDERATIONS (1)

Classification of mission scenarios

- Mars missions
 - Thin atmosphere ⇒ large parachutes, can be opened only close to the ground ⇒ descent under parachute lasts no more than a few minutes
 - Communications during descent: DTE (X-band) or UHF (through relay SC)
 - Amount of information that needs to be transmitted during the EDL is small (mainly engineering telemetry) ⇒ no need for high data rates

- Missions to bodies with denser atmospheres (Venus, Jupiter, Titan...)
 - dense atmospheres ⇒ smaller parachutes ⇒ descent lasts much longer (up to 2 hours for Huygens)
 - main scientific return of the mission is achieved during the passage through the atmosphere
 - no or very short lifetime on the surface
 - all data collected during the descent (images, atmospheric properties, and engineering data) must be transmitted right away to a relay SC overhead (DTE often not possible)
 - the highest the data rate, the better
MISSION SCENARIOS AND SYSTEM CONSIDERATIONS (2)

- Main potential benefit at system level
 - increase the volume of data transmitted during the descent phase

- Huygens taken as reference mission scenario
 - 3 parachutes: most part of descent under stabiliser 3-m diam. chute
 - One-way link comms to Cassini

- Link geometry depends very much on the mission
 - evolution of probe aspect angle
INTEGRATED PARACHUTE-ANTENNA SOLUTIONS (1)

- Candidate antenna concepts
 - Patch array
 - different configurations and number of elements located on top of the canopy
 - large surface available, azimuth symmetric patterns, fixed or steerable beam, flexible design
 - Single circular patch
 - Microstrip constrained lens (feeder + lens)
 - efficiency problems in power supply (spillover), design complexity
 - Dual-mode conical helix supported by suspension lines
 - directivity gain strongly depends on ground plane, not suitable for steerable beam
 - Conical vertical array of printed antennas
 - Conical sleeve dipole
INTEGRATED PARACHUTE-ANTENNA SOLUTIONS (2)

- Considerations on frequency band
 - Heritage, atmospheric attenuation, antenna sizes, etc.
 - S-band was selected because of smaller antenna

- Selected concept ⇒ patch array with steerable pattern, both in elevation and azimuth
 - significant increase in gain
 - flexible design for easy adaptation to different missions, parachutes
 - operating frequency, number of radiating elements and inter element distance can be varied according to mission requirements
 - signal must be modulated and amplified on the canopy and not on the probe (avoid transmission losses)
 - a bidirectional link is necessary to evaluate the direction to the orbiter
RADIATING ELEMENT DESIGN

- Radiation requirements
 - operating frequency (S-band), bandwidth (about 40 MHz)
 - polarization (circular)
 - radiating element return loss (-10 dB)

- Design optimized for robustness
 - ground plane + dielectric + radiating patch
 - dual feeding point structure (good circular polarization)
 - reactive splitter-fed structure to obtain two ports with a phase shift of 90°
 - only one radiating patch (no stacked patches) in order to simplify manufacturing

Dimensions: 75 x 75 x 3 mm
STEERABLE PATCH ARRAY DESIGN (1)

- A 12-element configuration selected
 - small number of elements with small reduction in radiation performance
 - 4 identical sub-panels: sequential rotation of step 90° is applied to antenna elements (3 by 3), to reduce the pattern of the cross polar component
 - System works on the basis of implicit or explicit DOA (direction of arrival) knowledge
 - phase of the excitations of the 12 elements can be varied to steer the antenna beam
STEERABLE PATCH ARRAY DESIGN (2)

- Retro-directive technique
 - array automatically transmits in the direction of the source by re-transmitting the phase conjugate of the received signal
 - no need for phase shifters and no explicit DOA evaluation

- Three types of retro-directive arrays
 - Frequency division: transmitted and received signals operating at different frequencies
 - Drawbacks: blocking of the receiver, difficulty to control unwanted phase shift for each radiating element
 - Time division: both signals at the same frequency using a time division technique
 - Advantage: allows for a self phase calibration of the antenna
 - Drawback: same frequency for transmitting and receiving signals at the orbiter
 - Hybrid technique: signals operating at different frequencies + time division
ANTENNA CONFIGURATIONS

- 2 integrated parachute-antenna configurations
 - one single patch array antenna located on the top of the canopy, near the vent
 - not symmetric (central part of the canopy is occupied by the vent) ⇒ canopy shape almost flat in region closest to the vent
 - Directivity very good at boresight, decreasing sharply for probe aspect angles > 70°
 - one antenna with three patch arrays located in the lower part of the canopy, that work in diversity mode
 - symmetric
 - angle between the normal of the antenna and the parachute axis around 45°
 - only one array transmits at a given time
 - for mission scenarios where the antenna will need to cover the full range of aspect angles
MATERIALS AND PROCESSES (1)

- Research conducted to identify best materials for dielectric and ground plane and radiating patches
 - Requirements for dielectric
 - required permittivity constant
 - low density
 - proper range of operational temperature
 - flexibility
 - Use of textile materials for dielectric discarded due to
 - very high number of layers required (more than 2000 for Nylon 6-6)
 - difficulty to avoid air cavities during the sewing process
 - High-frequency circuit material RO6002 selected
 - Conductive fabrics also investigated for ground plane and radiating patches, but reference design based on Printed Circuit Board (PCB)

- Mass budget
 - 12 radiating elements: \(~600\) g
 - Common unit electronic devices, cabling: \(~400\) g
MATERIALS AND PROCESSES (2)

- Single array substrate (easier integration) or separated dielectric pieces for each radiating element sewed to the fabrics

- One pocket to cover and protect the antenna and avoid entanglement during the parachute extraction sequence

- Connection between probe and antenna located on the canopy through cables for signal, control and power
 - Signal is transmitted in base-band to reduce RF losses
 - Cables routed through parachute suspension lines

- Integrated parachute-antenna packing
 - similar process to conventional parachutes
 - extraction angle determined by position of antenna
AERODYNAMIC ANALYSIS

- Disk-gap-band parachute

- Antenna local load per surface unit compared to aerodynamic load on parachute determines deformations in steady-state descent
 - aerodynamic load depends on mission (parachute size, probe mass) and planet (gravity, density)
 - preferred locations for the antenna on the canopy
 - reinforcement tapes on the canopy reduce the concavity

- Dynamic analysis to determine frequency and modes of oscillation
Probe-orbiter link performance with new integrated parachute-antenna design was analyzed for a Huygens mission scenario

- Atmospheric descent lasted for some 140 min
 - Range varied between 60000 - 70000 km
 - Probe aspect angle varied between 20 and 70 deg
- All original link parameters (transmitter RF power, receiver, etc.) were kept constant except for the updated antenna gain

![Graph showing RF link performance](image)
RF LINK PERFORMANCE (2)

- Data bit rate varied to assess link performance
 - Original data bit rate used by Huygens was 8 Kbps

- New antenna would allow for 64 Kbps
 ⇒ increase in data volume returned
 - More and higher resolution images

- Increase in scientific return to be traded-off with impact at system level
 - Mass increase
 - Another antenna will be needed in the probe
PROTOTYPE AND TESTING (1)

- A **prototype** of the integrated parachute-antenna will be implemented and tested in-flight

- Objective: proof the feasibility of the concept
 - verify manufacturing and integration methods
 - test integrated parachute-antenna aerodynamic behavior
 - test antenna performances during a real descent

- Test concept: drop the parachute from a balloon at 2 km altitude
 - prototype size and configuration determined by constraints imposed by test procedure (parachute size, max. payload mass, geometry, etc.)
 - tests not representative of real mission scenarios
PROTOTYPE AND TESTING (2)

- 2 parachute prototypes already built and dropped from a balloon with 2 dummy antennas (same properties as planned antenna prototype)

- Tests were successful ⇒ conditions for antenna test (relative geometry, oscillations, etc.) as planned
CONCLUSIONS

- Integrated parachute-antenna concept investigated
 - Design proposed for a retro-directive patch array (S-band) located on top of the canopy
 - Easily customizable as a function of the mission
 - Prototype being built and tested for proof of concept

- Significant increase in gain wrt conventional antennas for entry probes allows for an increase of bit rate performance
 - Potential increase in scientific return

- Improved link performance to be traded-off at system level
 - A bi-directional link is required with the orbiter
 - Increased mass and complexity

- Promising application to **balloons**
 - Scientific missions, high volume of data return, constantly changing link geometry
 - Antenna on top of balloon, similar implementation processes
Thank you

Carlos Corral van Damme
Email: cfcorral@gmv.es
www.gmv.com