Adding OAI-ORE Support to Repository Platforms

Alexey Maslov, Adam Mikeal, Scott Phillips, John Leggett, Mark McFarland

Texas Digital Library
OR’09
Overview

- Texas Digital Library Use Case for OAI-ORE
- Mapping ORE model to DSpace architecture
- Implementation
- Results and Implications
Texas Digital Library

- State-wide initiative
- Eighteen members
 - Public/Private
 - Small/Medium/Large
Electronic Theses and Dissertations

- Federated Collection
- Built on top of DSpace/Manakin
Current Federation Method

- Performed via scripted ingest process
- New batch every semester
- Manual corrections to existing content
Replacement Requirements

• Perform maintenance automatically
• Detect changes in existing content
• Support interchange of metadata and content
Harvesting Solution

- Use the Open Archives Initiative Protocol for Metadata Harvesting
- Member institutions as data providers
- TDL Federated Repository as a service provider

* Open Archives Initiative Protocol for Metadata Harvesting
 http://www.openarchives.org/pmh/
OAI-PMH, advantages

• Ubiquitous

• Supports selective harvesting

• Tracks changes

• Can be automated
OAI-PMH, obstacles

- No existing harvesting solution for DSpace
- Supports harvesting of metadata specifically
Disseminating content

• How do you disseminate content through a metadata harvesting protocol?
 – Wrap it in a packaging format
 – Include the metadata
 – Encode the references to the files
 – Harvest the package
METS, advantages

- Metadata Encoding and Transmission Standard
- Maintained by the Library of Congress
- Mature standard
- Widely adopted

http://www.loc.gov/standards/mets/
Packaging, disadvantages

- Complete packaging format
- Open to interpretation
- Ambiguities at the OAI-PMH layer
“Open Archives Initiative Object Reuse and Exchange defines standards for the description and exchange of aggregations of Web resources.”

- Specialized
- Simple

* Open Archives Initiative Object Reuse and Exchange
 http://www.openarchives.org/ore/
Mapping DSpace to OAI-ORE

- ORE Abstract Data Model
- DSpace architecture
- The Mapping
ORE Data Model

- Aggregations
- Aggregated Resources
- Resource Maps
Aggregation (A)

- Describes a set of resources
- Conceptual construct
Aggregated Resource (AR)

- Object of interest
- Part of an aggregation
- Can itself be an aggregation
Aggregated Resource (AR)

- Object of interest
- Part of an aggregation
- Can itself be an aggregation
Resource Map (ReM)

- Describes an aggregation
- Enumerates its aggregated resources
- Can be serialized in RDF or Atom XML
• Communities
• Collections
• Items
• Bundles
• Bitstreams
Mapping

[Diagram showing relationships between ReM, AR, A, Bitstream, Communities, Collections, Items, Bundles, and Metadata through ore:describes and ore:aggregates]

- ReM
- A
- AR
- Bitstream
- Communities
- Collections
- Items
- Bundles
- Metadata
Bundles, Potential Options

- Bundles as Aggregations of Bitstreams
- Bundles as filters for Aggregated Resources
- Bundles as DSpace-specific metadata
Bundles, Observations

• By default, specialized for internal tasks
• Extendible for any use
• Obscured from the end user
DSpace Bundles
Serialization in Atom
Implementation

- ORE Dissemination
- ORE Harvesting
- Automation
Interfacing with DSpace

- Web UI
- LNI and SWORD
- Ingest and export scripts
- Crosswalks
 - Ingestion
 - Dissemination
ORE Dissemination Crosswalk

• Requires:
 – A DSpace Item

• Produces:
 – Atom-serialized ORE ReM
ORE Dissemination via OAI-PMH

• Dissemination crosswalk produces ORE ReMs from DSpace Items

• OAI-PMH provider disseminates them
ORE Harvesting

- Item-level ORE ReM interpreter
- Collection-level OAI-PMH harvester
- Repository level harvest scheduler
ORE Ingestion Crosswalk

• Requires:
 – A DSpace Item
 – Atom-serialized ORE ReM

• Produces:
 – A DSpace Item with Bitstreams created from AR’s
OAI-PMH Harvester

- Queries remote OAI-PMH providers
- Processes responses as individual records
- Implemented at Collection level
Collection Settings

- Source of collection’s content
- OAI-PMH provider information
- Harvesting Level
Collection Source

Content source:
- This is a standard DSpace collection
- This collection harvests its content from an external source

Harvesting Options
- Harvest metadata only.
- Harvest metadata and references to bitstreams (requires ORE support).
- Harvest metadata and bitstreams (requires ORE support).
OAI-PMH Settings

Harvested Collection Location

OAI Provider:

http://labs.tdl.org/harvest-oai/request

The url of the target repository's OAI provider service

OAI Set id:

hdl_123456789_7685

The persistent identifier used by the OAI provider to designate the target collection

Metadata Format:

Simple Dublin Core

Test Settings
Harvesting Options

Content being harvested:

- Harvest metadata only.
- Harvest metadata and references to bitstreams (requires ORE support).
- Harvest metadata and bitstreams (requires ORE support).
Harvesting a Collection

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Harvest Metadata

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Metadata Replicated

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Case 1: Metadata Only

Local collection (OAI-PMH harvester)

Remote collection (OAI-PMH provider)
Harvest ORE ReMs

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Case 2: Metadata + Content Ref’s

Local collection (OAI-PMH harvester)

Remote collection (OAI-PMH provider)
Case 2: Metadata + Content Ref’s

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Case 3: Metadata + Content

Local collection (OAI-PMH harvester)

Remote collection (OAI-PMH provider)
Case 3: Metadata + Content

Local collection
(OAI-PMH harvester)

Remote collection
(OAI-PMH provider)
Harvest Scheduling System

- Monitors harvested collections
- Starts harvests at regular intervals
- Alerts administrators of errors
Results

- The Primary Use Case
- TDL in General
- The Greater Web Community
Harvesting using PMH+ORE

• Federated ETD collection currently in pre-production at TDL

• Addresses primary requirements
 – Performs maintenance automatically
 – Detects changes in existing content
 – Supports interchange of metadata and content
Other Possibilities

- Specialized DSpace instances
- Flexible repository architecture
- Interoperability with other repository systems

Current Priorities

• Live deployment at TDL
• Release to the open source community
• Integration into DSpace 1.6
National Leadership Grant #LG-05-07-0095-07
Questions?