Enabling Inter-repository Access Management between iRODS and Fedora

Bing Zhu,
Uni. of California: San Diego
Richard Marciano
Reagan Moore
University of North Carolina at Chapel Hill

May 18, 2009
Atlanta
An Environment with Heterogeneous Technologies

- DSpace
- Fedora
- iRODS
- dLibra
- Eprints
- Greenstone
- Handle System
Enabling inter-repository data management allows us to share data by connecting the repositories of:

- Different groups, projects
- Different institutions, locations
- Different disciplines
- Diverse types of data
- Diverse hardware, software infrastructure
Issues for inter-Repository data management

- Object Model
- Virtual Registration of Digital Objects from One Repository to Another
- Inter-repository Service Management
- Policy Enforcement across Repositories
iRODS - integrated Rule-Oriented Data System

A middleware providing functions to:

- manage distributed storages
- provide metadata support for digital preservation and search functions
- allow running distributed workflows to enforce system policies and harvest distributed computing power.

iRODS can be used for

- building datagrid
- building digital library
- building digital repositories
iRODS (continued)

- Current version 2.02
- Scalable: Managing > 4 PB worldwide
 - Collections > PB, 100s of millions of files
- Federation of data grids
 - Flexible collaborative data sharing. Scaling >1 DB catalog.
- Transferring data
 - Parallel transfers ~70% of available bandwidth.
- Independent evaluations: NASA, etc.
iRODS (Continued)

iRODS Provides:

- A uniform global naming space for managing digital datasets
- An efficient data access mechanism using parallel data transfer
- Access to data stored on distributed systems
- Rich interfaces including C/C++ API, Java API, Perl, Web Service, and Python
- Support for remote manipulation of data sets to minimize the amount of data sent over the network
- ...

Why iRODS + Fedora?

User

Application

Fedora

Complex Object Modeling Layer

iRODS

Digital Preservation Layer
iRODS for Digital Preservation

- Data replication service
- Periodic data integrity check
- Distributed storages for disaster recovery
- Metadata support for preservation description information
iRODS Storage Module for Fedora

- A replacement for Fedora’s local storage module
- A standalone plug-in module (independent of Fedora release)
- iRODS manages both Fedora objects (XML) and data streams for Fedora (for managed content)
- Implemented based on SRB Storage Module for Fedora by DART project
iRODS Storage Module

- Manual Management of Distributed Stores - Admin Selects a Storage Resource for Storing Data Objects

- Auto Management of Distributed Storages - Use a Logical Storage Resource
Deployment of iRODS Storage Module in Fedora

- Download Jar files from iRODS web site

 https://www.irods.org/index.php/Fedora

- Copy the jar files into Fedora place under Tomcat

 $CATALINA_HOME/webapps/fedora/WEB-INF/lib

- Edit the Fedora config file $FEDORA_HOME/server/config/fedora.fcfg

```xml
<module role="fedora.server.storage.lowlevel.ILowlevelStorage"
  class="fedorax.server.module.storage.lowlevel.irods.IrodsLowlevelStorageModule">
  <param name="file_system" value="fedorax.server.module.storage.lowlevel.irods.IrodsIFileSystem"/>
  <param name="irods_host" value="irods.sdsc.edu"/>
  ...
```
iRODS Digital Object Model

- File Based
- Distributed Digital Objects
- System metadata
- User defined metadata

```
/dzone/home/nerual/eek_001.jpg
```

```
System metadata
User metadata
```

![Diagram showing iRODS Metadata Catalog connected to iRODS Server and Rules Engines]
Four Types of control group for Fedora datastream:

- Internal XML Metadata
- Managed Content
- External Reference Content
- Redirect
Referencing iRODS objects as Fedora External Datastreams

- An extension to the Fedora’s external content manager
- iRODS files can be virtually linked inside Fedora

Syntax:
- `future: irods://...`
Registering iRODS Objects into Fedora

- Create a Fedora object. The full path of the iRODS object becomes the label of the Fedora object.
- Create an external reference datastream for the iRODS file.
- iRODS system metadata is registered as an externally referenced datastream in Fedora.
- iRODS user-defined metadata is registered as an externally referenced datastream in Fedora.
Example: Create a Fedora Object

- **State**: Active
- **Label**: irods://srbbriick15.sdsc.edu:7547/pzone/home/testuser/NeSC-Moore-intro.ppt
- **Created**: 2009-03-30T18:22:02.744Z
- **Modified**: 2009-03-30T18:45:31.238Z
- **Owner**: fedoraAdmin
Example: Create a datastream for the iRODS file

ID: NeSC-Moore-intro.ppt
Control Group: External Reference
State: Active
Versionable: Updates will create new version
Created: 2009-03-30T18:45:31.238Z
Label: The PPT file for e-Science workshop
MIME Type: application/ms-powerpoint
Format URI:
Alternate IDs:
Fedora URL: http://srbbrick7.sdsc.edu:8089/fedora/get/irodsObj:2/NeSC-Moore-intro.ppt
Checksum: DISABLED none
Example: a dynamic reference to iRODS system metadata
Example: a dynamic reference to iRODS user metadata

<table>
<thead>
<tr>
<th>Label</th>
<th>iRODS user defined metadata</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIME Type</td>
<td>text/xml</td>
</tr>
<tr>
<td>Fedora URL</td>
<td>http://srbrick7.sdsc.edu:8089/fedora/get/irodsObj:2/user-defined-metadata</td>
</tr>
<tr>
<td>Checksum</td>
<td>DISABLED - none</td>
</tr>
</tbody>
</table>

Properties
- DC
 - user-defined-metadata
 - system-metadata
- NeSC-Moore-intro.ppt
- New RELS-EXT...
- New...

Datastreams
- ID: user-defined-metadata
- Control Group: External Reference
- State: Active
- Versionable: Updates will create new version
- Created: 2009-03-30T18:28:27.390Z

Buttons
- View
- Export...
- Purge...
- Save Changes...
- Undo Changes
Mapping Fedora Objects in iRODS

Tar File Format

User

Access compound tar file

Manage the Tar file as a container

iRODS Server

iRODS Rule Engine

Meta Data Catalog

Persistent ID

Object Properties

PID

Relations

RELS-EXT

Dublin Core

DC

Audit Trail

AUDIT

Datastream 1

Datastream ...

Datastream N

Manage the Tar file as a container
iRODS Rules

- Implement Policies
- Verify enforcement (audit trails)
- Automate management of exploding data
 - Let you handle petabytes in hundreds of millions of files
- Each Rule defines
 - Event, Condition, Action chains (micro-services, other Rules), Recovery chains
- Rule types
 - Atomic (immediate), Deferred, Periodic
- Rules are executed by iRODS Rule Engine
 - Applied where data is (server-side)
Invoking iRODS service in Fedora

User

Fedora

Call a service

Invoke a rule

iRODS Catalog

(Event, Condition, Action chains, Recovery chains)

iRODS Rule Engine

iRODS Server

iRODS Rule Engine

iRODS Server

iRODS Rule Engine

iRODS Server

iRODS Rule Engine

iRODS Server
iRODS Policy

- To express community goals for data access and sharing, management, long-term preservation, uses, etc.

- Implemented through iRODS rules
 - Each rule is a chain of micro-services
 - Invoked by the iRODS Rule Engine
 - Currently C functions; PHP, Java coming soon
 - Can wrap Web-services
Sample iRODS Policies

- Run a particular workflow when a “set of files” is ingested into a collection (e.g. make thumbnails of images, post to website).
- Automatically replicate a file added to a collection into 3 geographically distributed sites.
- Automatically extract metadata for a file of a certain type and store in metadata catalog.
- Periodically check integrity of files in a Collection and repair/replace if needed/possible.
- Automatically pick a certain storage location based on user or collection or size or type.
- Let a user access a collection only if using certificate-based login.
- Send a notification when a certain file is ingested.
Policy-level Interoperability

- Can a preservation environment be assembled from two existing repositories with differing management policies?
- Can the policies of the federation be enforced across both repositories, ensuring consistent management of the archives?
- Can policies be migrated between repositories, either by association of the policies with the storage repositories, or through control of repository procedures?
- What fundamental mechanisms are needed within a repository to implement new policies?
Embedding Approaches

- ra-DM driving OM. Design policy federation models that are implemented at the storage level through the ra-DM.

- OM driving ra-DM. Design policy federation models in which the workflows within the OM model enforce the policies, but deposit the objects into the ra-DM.

- ra-DM and OM co-driving. Design policy federation models in which policies are enforced by both types of preservation environments.

OM : Objetc Model
ra-DM: rule-aware distributed model
DICE Center

iRODS:

- http://www.irods.org
- http://www.dice.unc.edu
- http://www.diceresearch.org

Fedora-iRODS Integration:

- https://www.irods.org/index.php/Fedora