LazySusan
A Flexible, Scalable Digital Repository Ingest System

Alpana Pande
Stanford University

OR 2009, Alpana Pande, Stanford University
Introduction/Motivation

• Ingesting Digital Objects into the Stanford Digital Repository (SDR)

• Variable-sized DOs present challenges:
 – processing time over hours/days
 – inefficient use of tape storage

• A distributed processing model:
 – DOs are processed and stored by multiple processes on multiple machines interacting with a central job store.

• Fedora for workflow and metadata management

OR 2009, Alpana Pande, Stanford University
Digital Object

Checksum

Validation

Generate AIP

Store Online

Store to Tape

OR 2009, Alpana Pande, Stanford University
Flex/Scale

• Flexibility
 – large DOs can block smaller DOs
 – JobMaster can re-order jobs to balance large vs. small jobs, differing priorities, throughput vs. latency

• Scalability
 – processing agents (JobWorkers) are spawned and terminated on-demand to respond to changing load conditions

OR 2009, Alpana Pande, Stanford University
Storage Optimization

• Storage bandwidth is the main bottleneck in most large-scale digital repositories
• LazySusan is designed to optimize use of the storage channel
• Storage optimization scheduling arranges job processing to maximize utilization of the storage channel
Keeping the storage channel busy

- **DO1**: 50% Storage Channel Utilization
- **DO2**: 70% Storage Channel Utilization
- **DO3**: 80% Storage Channel Utilization

- **Storage**
- **Processing**

OR 2009, Alpana Pande, Stanford University
Fedora for metadata management and workflow

• Every SDR DO will have a corresponding Fedora digital object created. This Fedora DO will contain administrative metadata, plus basic descriptive metadata (Dublin Core), plus content metadata.

• Fedora workflow datastream to track processing status of objects through REST calls.

 • SDR Object
 – Header
 – AUDIT
 – DC (identifier name, value)
 – RELS-EXT

 – SDR AdminDataStream
 – SDR WorkflowDataStream

 – Content Metadata

OR 2009, Alpana Pande, Stanford University