Creating software to compute the optimal number of newspapers to deliver to each sales outlet

Megan Babb
Jonathan Baggett
Corey Barthelemy
Katie Dickenson
Amanda Hughes
Katie Rogovin

Finalist Presentation
April 29, 2009

Client Advisors: Mike Burlingame & Dan Gallivan
Faculty Advisor: Anton Kleywegt, Ph.D.
Overview

Current Model:
- Maximizing Circulation

Optimization Model:
- Historical Sales Data
- Optimization Model
- Optimal Draw
- Maximized Profit

Additional profit per year: $1.8 million
Optimization Model Inputs

- Marginal Revenue
- Marginal Cost
- Salvage Revenue
- Demand Distributions
- Theft
- Shrinkage

Optimization Model
Outlet Types

Theft Outlet

Shrinkage Outlet

Non-Theft/Non-Shrinkage Outlet
Case without shrinkage or theft:

\[
E_D[g(x, D)] = \sum_{d=0}^{x} P[D = d] (rd + s(x - d)) + \left(1 - \sum_{d=0}^{x} P[D = d]\right)(rx) - cx
\]

\[
x = \text{Decision variable, draw} \quad r = \text{Marginal revenue}
\]

\[
D = \text{Demand} \quad c = \text{Marginal cost}
\]

\[
s = \text{Salvage revenue}
\]
Profit Function

Maximum Profit: $5.81

Optimal Draw: 7
Optimization Model Inputs

- Marginal Revenue
- Marginal Cost
- Salvage Revenue
- Demand Distributions
- Theft
- Shrinkage
Demand Distributions

Outlet 11386 on Friday Histogram

Frequency

Demand, d

This document was created within the framework of a student design project and its contents are not sanctioned by the Georgia Institute of Technology or the Atlanta Journal-Constitution.
Demand Distributions

- Censored data
- Shifting sales trends

Histograms

CDFs
Covariates

Covariates tested:

<table>
<thead>
<tr>
<th>Weather</th>
<th>4th of July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unemployment Rate</td>
<td>Tax Free Holiday</td>
</tr>
<tr>
<td>Seasonality</td>
<td>Labor Day</td>
</tr>
<tr>
<td>Price</td>
<td>Wednesday before Thanksgiving</td>
</tr>
<tr>
<td>Time</td>
<td>Thanksgiving</td>
</tr>
<tr>
<td>New Year’s Day</td>
<td>Thanksgiving Weekend</td>
</tr>
<tr>
<td>Martin Luther King Day</td>
<td>Christmas Eve</td>
</tr>
<tr>
<td>Memorial Day</td>
<td>Christmas Day</td>
</tr>
</tbody>
</table>
Covariates

Covariates with greatest impact:

- Weather
- Unemployment Rate
- Seasonality
- Price
- Time
- New Year’s Day
 - Martin Luther King Day
 - Memorial Day
- 4th of July
- Tax Free Holiday
- Labor Day
- Wednesday before Thanksgiving
- Thanksgiving
- Thanksgiving weekend
- Christmas Eve
- Christmas Day

This document was created within the framework of a student design project and its contents are not sanctioned by the Georgia Institute of Technology or the Atlanta Journal-Constitution.
Demand Distributions

Demand distributions considered:
- Exponential
- Gaussian
- Log-Logistic
- Log-Normal
- Logistic
- Poisson
- Weibull

Maximum Likelihood Estimation (MLE)
Maximum Likelihood Estimation

MLE example for Poisson distribution without theft:

\[LL(\beta) = \sum_{j=1}^{n} \left[(1 - z_j) \log \left(\frac{e^{-\lambda_j} (\lambda_j)^{k_j}}{k_j!} \right) + z_j \log \left(1 - \sum_{l=0}^{k_j-1} \frac{e^{-\lambda_j} (\lambda_j)^{l}}{l!} \right) \right] \]

- \(\lambda_j = \beta_0 + \beta_1 x_1 + \ldots + \beta_m x_m \)
- \(\beta_0 - \beta_m \) = Parameters to be estimated
- \(x_1 - x_m \) = Covariate values
- \(k_j \) = Sold quantity of data point \(j \)
- \(z_j \) = 1 if data point \(j \) is censored; 0 otherwise

This document was created within the framework of a student design project and its contents are not sanctioned by the Georgia Institute of Technology or the Atlanta Journal-Constitution.
MLE example for Poisson distribution with theft:

\[LL(\beta) = \sum_{j=1}^{n} \left(1 - z_j \right) \log \left(\frac{e^{-\lambda_j} \left(\lambda_j \right)^{k_j} \left(1 - p \right)^{k_j}}{k_j!} \right) \]

\[+ z_j \log \left(1 - \sum_{l=0}^{k_j-1} \frac{e^{-\lambda_j} \left(\lambda_j \right)^{l} \left(1 - p \right)^{k_j-1}}{l!} \right) + \sum_{l=1}^{k_j} \frac{e^{-\lambda_j} \left(\lambda_j \right)^{l} \left(1 - \left(1 - p \right)^l \right)}{l!} \]

\[\lambda_j = \beta_0 + \beta_1 x_1 + ... + \beta_m x_m \]

\[\beta_0 - \beta_m = \text{Parameters to be estimated} \]

\[x_1 - x_m = \text{Covariate values} \]

\[k_j = \text{Sold quantity of data point } j \]

\[z_j = 1 \text{ if data point } j \text{ is censored; } 0 \text{ otherwise} \]

\[p = \text{Probability of theft} \]
Probability of Theft

- Pick initial value, \(p_i \), of theft probability \(p \)
- Calculate \(\beta \) parameters with fixed \(p_i \) using MLE
- Use \(\beta \) parameters to compute calculated theft % as a function of \(p \)
- Find value, \(p_f \), of \(p \) that makes calculated theft equal to 14.4% of sales
- Adjust initial value, \(p_i \)

\[\text{Does } p_i = p_f ? \]

- Yes
 - \(p_i \) is probability of theft
- No

- Remember:
 - We compute separate \(\beta \) parameters for every outlet and every day of the week, but we only have one aggregate percentage of theft: 14.4%
Demand Distributions

- Demand distributions tested:
 - Exponential
 - Gaussian
 - Log-Logistic
 - Log-Normal
 - Logistic
 - Poisson
 - Weibull

- Poisson distribution
Optimization Model Inputs

Marginal Revenue
Marginal Cost
Salvage Revenue
Demand Distributions
Theft
Shrinkage

Optimization Model
Software Snapshot

Start

In Progress

Complete

This document was created within the framework of a student design project and its contents are not sanctioned by the Georgia Institute of Technology or the Atlanta Journal-Constitution.
Update Parameters

ONE outlet on ONE day of the week

Covariates

Historical Sales Data

News Rack: MLE Using Probability of Theft

OR

Non-News Rack: MLE

Store Estimated Parameters, β_i
Calculate Draw

- Covariates x_i
- Estimated Parameters β_i
- Profit Function Parameters r, c, s
- Distribution Parameter λ
- Profit Function Inputs

Maximize Profit

- News Rack $E_D[g(x,D,p)]$
- Kroger or Wal-Mart $E_D[g(x,D,q)]$
- Other $E_D[g(x,D)]$

Store Optimal Draw
Validation

- Optimization model data:
 - July 2007 – November 2008

- Validation:
 - December 2008

- Assumptions:
 - Calculate AJC estimated profit for comparison
Validation

Sample of results:

GT profit versus AJC profit summary:

<table>
<thead>
<tr>
<th>Compare GT & AJC</th>
<th>GT Profit</th>
<th>AJC Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Per outlet per day:</td>
<td>$6.04</td>
<td>$5.28</td>
</tr>
<tr>
<td>All outlets per day:</td>
<td>$45,500</td>
<td>$39,700</td>
</tr>
<tr>
<td>All outlets per year:</td>
<td>$14.2 million</td>
<td>$12.4 million</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

What if we used the Poisson distribution to calculate the draws, but the demand is actually Gaussian distributed?

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Expected Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJC Profit</td>
<td>$12.5 million</td>
</tr>
<tr>
<td>GT Profit using Poisson draws</td>
<td>$14.45 million</td>
</tr>
<tr>
<td>GT Profit using Gaussian draws</td>
<td>$14.47 million</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

Include 100% of advertising:

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Expected Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJC Profit</td>
<td>$12.4 million</td>
</tr>
<tr>
<td>GT Profit</td>
<td>$14.2 million</td>
</tr>
</tbody>
</table>

Include 50% of advertising:

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Expected Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJC Profit</td>
<td>$7.8 million</td>
</tr>
<tr>
<td>GT Profit</td>
<td>$8.7 million</td>
</tr>
</tbody>
</table>

Include 0% of advertising:

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Expected Profit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AJC Profit</td>
<td>$3.1 million</td>
</tr>
<tr>
<td>GT Profit</td>
<td>$3.55 million</td>
</tr>
</tbody>
</table>

Additional Profit

- $1.8 million
- $900,000
- $450,000
Thank You

Client Advisor: Mike Burlingame
Senior Director, Consumer Sales & Retention
The Atlanta Journal-Constitution

Faculty Advisor: Dr. Anton Kleywegt
Appendices

- Appendix I: Objective Profit Function (Shrinkage)
- Appendix II: Objective Profit Function (Theft)
- Appendix III: Profit Function (Theft) Comparisons
- Appendix IV: Fixed Point Calculation
Objective Function

Case with shrinkage:

\[E_D[g(x, D, q)] = \sum_{d=0}^{x} P[D = d](r_{adv}d + (1 - q)r_{sales}d + s(x - d)) + \left(1 - \sum_{d=0}^{x} P[D = d]\right) (r_{adv}x + (1 - q)r_{sales}x) - cx \]

- \(x \) = Decision variable, draw
- \(D \) = Demand
- \(q \) = Probability of shrinkage
- \(r_{adv} \) = Marginal advertising revenue
- \(r_{sales} \) = Marginal sales revenue
- \(c \) = Marginal cost
- \(s \) = Salvage revenue
Objective Function

Case with theft:

\[E_D[g(x, D, p)] = \sum_{d=1}^{x} P(D = d) \left(\sum_{j=1}^{d} (1 - p)^{j-1} p(r_{sales} j + r_{adv} x) + (1 - p)^{d} (r_{sales} d + r_{adv} d + s(x - d)) \right) \]
\[+ \left(1 - \sum_{d=0}^{x} P(D = d) \right) \left(\sum_{j=1}^{x} (1 - p)^{j-1} p(r_{sales} j + r_{adv} x) + (1 - p)^{x} (r_{sales} x + r_{adv} x) \right) \]
\[+ \left[P(D = 0)(sx) \right] - cx \]

- \(x \) = Decision variable, draw
- \(D \) = Demand
- \(p \) = Probability of theft
- \(r_{adv} \) = Marginal advertising revenue
- \(r_{sales} \) = Marginal sales revenue
- \(c \) = Marginal cost
- \(s \) = Salvage revenue

This document was created within the framework of a student design project and its contents are not sanctioned by the Georgia Institute of Technology or the Atlanta Journal-Constitution.
Example 1: Marginal advertising revenue is low

Example 2: Marginal advertising revenue is high
Probability of Theft

\[\sum \left[\sum_{d=1}^{x_i} P_i(D = d) \sum_{j=1}^{d} (1 - p)^{j-1} p(x_i - j) + \left(1 - \sum_{d=0}^{x_i} P_i(D = d) \right) \sum_{j=1}^{x_i} (1 - p)^{j-1} p(x_i - j) \right] = 14.4\% \text{ of Total Sales} \]

This document was created within the framework of a student design project and its contents are not sanctioned by the Georgia Institute of Technology or the Atlanta Journal-Constitution.