A QUASI-PERIODIC POINCARE’S THEOREM

YONG LI AND YINGFEI YI

ABSTRACT. We study the persistence of invariant tori on resonant surfaces
of a nearly integrable Hamiltonian system under the usual Kolmogorov non-
degenerate condition. By introducing a quasi-linear iterative scheme to deal
with small divisors, we generalize the Poincaré theorem on the maximal res-
onance case (i.e., the periodic case) to the general resonance case (i.e., the
quasi-periodic case) by showing the persistence of majority of invariant tori
associated to non-degenerate relative equilibria on any resonant surface.

1. INTRODUCTION

The present work concerns the study of the persistence of invariant tori in the
resonance zone of a nearly integrable, real analytic Hamiltonian system of the fol-
lowing action-angle form
(11) H($7y75) ZHO(y)+8P($Jy7E))
where y € G, G C R? is a bounded closed region (closure of a bounded, non-empty

open set), z € T4(= g—j), d is the degree of freedom, and € > 0 is a small parameter.
With the symplectic form

d
Z dx, A dyi,
i=1
the associated unperturbed motion of (1.1) is simply described by the equation
& =w(y),
y =0,
where w(y) = %(y). Thus, for £ = 0, the phase space R? x T? is foliated into
invariant tori 7, = {y} x 7% with the frequency vectors w(y).
We first assume the usual Kolmogorov non-degenerate condition:

A1) The Hessian a;;“ (y) is non-singular for all y € G.

Under this condition, the map w : G = w(G),y — w(y) defines a local dif-
feomorphism. Without loss of generality, we further assume that the diffeomor-
phism is global on G. Thus, points of G have one to one correspondence with the
frequency vectors in the region w(G), among which the non-resonant ones form
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a full (Lebesgue) measure set. On one hand, by the celebrated KAM theorem
(Kolmogorov [8], Arnold [1], Moser [9]), majority of the non-resonant tori among
the family {T, : y € G} will persist as € small. On the other hand, the family
{Ty : y € G} also contains resonant tori of all type of resonances, and, it is well
known that these resonant tori tend to be destroyed under arbitrary generic pertur-
bations and give rise to a resonance zone containing both stochastic trajectories and
regular orbits (see [3], [13] and references therein). To characterize regular orbits in
the resonance zone, an essential problem is to analyze mechanisms of destruction
of the resonant tori and the persistence of certain lower dimensional tori which are
split from the resonant ones.

Such persistence problem was first considered by Poincaré ([10]) within the class
of maximal resonances, i.e., a resonant torus in this class is foliated into periodic
orbits. With respect to (1.1), the Poincaré theorem states that any periodic orbit
associated to a non-degenerate relative equilibrium will persist.

To characterize general resonance types, we consider a proper, non-trivial sub-
group g of Z¢ of rank m, where 0 < m < d. Then

0(9,G) ={y € G: (k,w(y)) =0,k € g}

is a n = d — m dimensional sub-manifold of G — the so called g-resonant surface
with multiplicity m. This manifold characterizes a unique class of resonant tori
{Ty : y € O(g,@G)} associated to the resonance type determined by g.

The group g also determines the splitting of the resonant tori into lower dimen-
sional ones. Let {r,--- , 7, } and {7{,--- ,7),} be bases of g and the quotient group
ZTd, respectively, such that

Ky = (K1, K>)
is unimodular (i.e., detKy = 1), where

Klz(TllJ"' 7_/)7 K2=(7—17"'77—m)'

’'n
Then the toral automorphism Ky defines a new symplectic coordinate (’f)) =Ky
on T?, where ¢ = K"z € T™,4 = K, x € T", under which the g-resonant surface
becomes
0(9,G) = {y € G: Kj w(y) = 0}.
Moreover, it is easy to see that for each y € O(g,G), the resonant torus T}, is
foliated into invariant n-tori

Ty() ={y} xT" x{o}, ¢€T™
Under the new coordinate, the unperturbed motion of (1.1) becomes

"j} = Kl—rw(y)a
¢ =0,
y =0.

Thus, each (¢, y) is a relative equilibrium of the unperturbed system, and, the flow
on a n-torus Ty(y) is parallel with the frequency vector K w(y).
Define

hO(‘P;?J) = ~/T" P(¢7<}07y)d¢7

where,

P(4,0,) = P((K])! (jﬁ)ym
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A n-torus T (p) is said to be associated to a non-degenerate relative equilibrium

(p,y) if ¢ is a non-degenerate critical point of ho(-,y), i.e., %—’g(go, y) = 0 and

%212 (p,y) is non-singular.
Motivated by the condition of Poincaré , we consider the set

Oo(g9,G) ={y € O(yg,G) : ho(-,y) admits a non-degenerate critical point}

and assume that
A2) Oo(g,G) is non-empty.

Clearly, the set Og(g,G) depends only on g, G but not on a particular choice of
K, K2. Moreover, since the non-degeneracy described above is an open property,
Oo(g,G) also admits positive Lebesgue measure under the condition A2). We note
that A2) is a generic condition in the sense that for any given g, G, Hy, perturbations
P|.— satisfying A2) form an open dense subset of the set of real analytic functions
on T x G.

Due to the existence of resonant frequency vectors among the n-tori which are as-
sociated to non-degenerate relative equilibria, the persistence problem in the nature
of the Poincaré theorem for general multiplicity resonances should be considered
with respect to the Lebesgue measure on O(g,G), similarly to the classical KAM
case.

For any small p > 0, let

0,(9,G) = {y € Oo(g,G) : dist(y,000(g,G)) > p},

where d0g denotes the boundary of Oy. Our main result states as follows.

Theorem 1. Assume Al), A2). Then for any fized sufficiently small p > 0 and
any positive integer lo, there is an g9 = £9(g,G, p,lo) > 0 and a family of Cantor
sets Ac C 0,(9,G), 0 < e < eg, such that the following holds.

1) Each n-torus Ty(y), y € Ac, associated to a non-degenerate relative equi-
Librium (p,y) will persist and gives rise to an analytic, quasi-periodic, in-
variant n-torus T, ,(p) of the perturbed system (1.1). Moreover, all such
perturbed tori corresponding to a same y € A, are symplectically conjugated
to the standard quasi-periodic n-torus T™ with the Diophantine frequency
vector w* = K w(y);

2) Within each connected component of O,(g,G), the set of perturbed tori di-
vides into a finite number of C'* Whitney smooth families over A, varying
analytically in €.

3) The relative Lebesgue measure |0,(9,G) \ Ac| = 0 as e — 0.

In applications of the theorem, one can also replace the global conditions Al),
A2) by similar non-degenerate conditions at a particular resonant point yo € R?

(i.e., w(yo) is a resonant vector). Indeed, let the Hessian %Q(yo) be non-singular

and g be a subgroup of Z¢ such that (k,w(yo)) = 0 for all k € g (such g is uniquely
defined). If ¢ is a non-degenerate critical point of hg(-,40), then the implicit
function theorem implies that there is a neighborhood G of yo on which both Al)
and A2) are valid, i.e., the above theorem holds on G.

Poincaré’s theorem has been recently explored in various cases of lower mul-
tiplicity resonances in Hamiltonian systems like (1.1). In particular, persistence
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problems for multiplicity 1 (i.e. n = d — 1) resonant tori have been studied exten-
sively in works of Eliasson [7], Cheng [4], Chierchia and Gallavotti [5], Rudnev and
Wiggins [12], etc. The general multiplicity resonance cases were considered in [15]
and [6]. In [15], Treshchev proved the following result: If yo € O(g, G) is such that
w* = K{ w(yo) is Diophantine and if no eigenvalue of %2:20 (o, y0) K3 882;2’0 (yo) Ko
is positive or zero, then the torus T, (¢o) persists (see also [2] for a variational
approach of the Treshchev’s result). Recently, Cong et al ([6]) showed a general

multiplicity result under the g non-degenerate condition, i.e., K, 882—ng (y) K> is non-
singular over G.

Treshchev’s result restricts to the case that not only ¢¢ is a hyperbolic criti-
cal point of ho(-,y0), but also Ty, (yo) is a normally hyperbolic torus. Our result
works for any type of non-degenerate critical points of ho(-,40), and, the associ-
ated unperturbed tori can certainly be normally degenerate (see the example in
Section 2). Our generalization to the result of Cong et al is also significant because
of the failure of the g non-degeneracy in general (see also Section 2). In a case that
the g non-degenerate condition fails, one could try to apply the result of Cong et
al by introducing a new symplectic transformation y = NY, N = (Ny, N») which

makes N, K, ‘9;;0 (y)Ko N> non-singular. But this would change the group g and
therefore change the resonance type originally considered.

The above theorem will be proved based on the normal form theory and a quasi-
linear iterative scheme. It follows from arguments in Treshchev [15] that, near each
non-degenerate relative equilibrium (¢, yo) such that w = K w(yo) is Diophantine,
one can separate the first order resonant terms according to the group g and reduce

the Hamiltonian (1.1) into a canonical form

12 e+ )+ (1) M@ (1) + Pz
which carries the standard symplectic structure, where (z,y,2) € T" x R" x R*™,
é > 0 is a constant, M is real symmetric and non-singular over a bounded closed
region O C R"™, e, M are C* on O, and, P is real analytic in a complex neighbor-
hood D(r,s) = {(z,y, 2) : |Imz| <r,|y| < s,|2| < s} of T™ x {0} x {0} and C* in
w € O (see Section 5).

The following theorem from which Theorem 1 will follow should be of importance
on its own right.

Theorem 2. Consider (1.2) and let (’):,, ~v > 0, denote the Diophantine set

weo: |<k,w)|>#, for all k € Z™\ {0}},

where |k| = Z |ki| and T > n —1 is fized. Given an integer ly > (n + 2m)%. If §
i=1

is sufficiently small and if there exists a sufficiently small p = p(r,s,lo) > 0 such

that

(1.3) 0L 0L0P, 8|0L0:0y..) Pl, $2I0L8L00 Pl < 5v*s?p

for all (z,,2) € D(r,5), w € O, (1,i,§) € ZL x Z2 x ZTH*™ with |I| +|i] < lo,2 <
] < lo, where b= (21> + 3)(n + 2m)?, then the following holds.
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1) There ezists a Cantor set O, C (’)A,, and a Co~! Whitney smooth family of
Ch symplectic transformations
r s
T, :D(i,z)—)D(r,s), w € O,,
which is C uniformly close to the identity and is real analytic in x when
y =0,z =0, such that

6,(y y
HoU, =e, , - , M, P,,
0w, = e+ )+ 50(Y) . (V) +
where e, = e.(w), M, = M.(w) are C'o~1 Whitney smooth on w € O,,
P, = P.(z,y,2,w) is C in (z,y,z) and C"*~1 Whitney smooth in w, and
moreover, for arbitrary 0 < e < 1,

|0Lex — Blelo, = o(y"u' =), 1| <o -1,
|8cluM* - BLM|O~/ = O(A/bul_e)’ |l| <lp—1,
IONP,|(y,)=0,0) =0, 2 €T", wE O,, j€ Z}, k€ Z7™, |j| + |k < 2.

Thus, for eachw € O, the perturbed system (1.2) admits an analytic, quasi-
periodic, (Floquet) invariant n-torus with the Diophantine frequency vector
w, which is slightly deformed from the unperturbed torus with the same
frequency vector w. Moreover, these perturbed tori form a C'~1' Whitney
smooth family.

2) The Lebesgue measure |O\ O, = O(7) as v — 0.

In the above, derivatives of e,, M, with respect to w € O, are in the sense of
Whitney. For the notion of Whitney smoothness on a Cantor set, we refer the
readers to [3], [11].

In the proof of Theorem 2, we shall use a quasi-linear iterative scheme instead of
the usual KAM linear scheme to overcome technical difficulties due to the generality
of the Hamiltonian (1.2). We note that the matrix M (w) is not necessarily of a
diagonal form, and, in general, it cannot be made diagonal via a smooth family of
symplectic change of variables. Moreover, associated to the possible g degeneracy
of (1.1), the z direction in (1.2) can well be degenerate, i.e., the right lower 2m x 2m
minor of M can be singular over O (see the example in Section 2).

With almost the same proofs using the quasi-linear iterative scheme, Theorem 2
can be made slightly general to apply to a Hamiltonian system like (1.2) with a
higher order term h(y, z,w) = O(y*2?), |¢| + |3] > 3, adding to the integrable part.
We prefer not to do so in the present paper for the sake of briefness.

The paper is organized as follows. In Section 2, we give an example to illustrate
some significance of our result. The quasi-linear iterative scheme is described in
detail in Section 3 for Hamiltonian (1.2) for one KAM cycle. In Section 4, we prove
Theorem 2 by deriving an iteration lemma which ensures the validity of all KAM
steps. The proof of Theorem 1 will be completed in Section 4 by using Treshchev’s
reduction and Theorem 2.

Throughout the paper, we shall use the same symbol | - | to denote norm of
vectors, matrices, absolute value of functions, and measure of sets etc., and use
| - |p to denote the supremum norm of functions on a domain D. They will have
obvious meanings unless specified otherwise. Also, for any two complex column
vectors &, ¢ of same dimension, (£, () always stands for £7(, i.e., the transpose of ¢
times (. For simplicity, we shall not specify smoothness orders for functions which
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are either sufficiently smooth or have obvious orders of smoothness indicated by
their derivatives taken.

Aknowledgement. This work is partially done when the first author was visit-
ing the Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of
Technology, and the second author was visiting the National University of Singa-
pore. We would like to thank both Institutions for support. We are grateful to the
referee for careful reading and for valuable comments which lead to improvements
of the paper.

2. AN EXAMPLE

Consider the following Hamiltonian on 7° x R5:

(21) H:HO(?J)+5P0(37)+52P1(37;ya5)a

where y = (y1,---,ys) | € R®,x = (z1,--- ,x5) " € T?, € is a small parameter,
1

(2:2) Ho(y) = yrys + yoys + 503,

Py(z) = sin 2wy + sin 27zs,
and P; is a real analytic function.
We note that

Ys
8Hy ya
w(y) = 6—( )= 1y3 |
Y
Y2
Y1
0 0 0 01
0 0 0 10
2H,
aazo(y)z 00100
Y 01000
1 0 0 0 O
Clearly, the condition A1) is satisfied on any bounded close region G C R°. We
now consider the rank 2 subgroup g = {z = (21, -+ ,25)" € Z°%: 21 = 20 = 23 = 0}.

Such choice of g yields the g-resonant surface
0(9,G) ={y € G: (k,w(y)) =0,k € g} ={y € G:y1 =y2 =0},

which is just the intersection of G with the y3y4y5-plane.

Since the condition A2) only depends on g,G, we take the liberty to choose
K1, K, Ko which are easy to work with. Let K; = (r{,74,74), K2 = (71, 72), where
7 =(1,0,0,0,0)7, 7, = (0,1,0,0,0,0)T, 7, = (0,,0,1,0,0)", 7 = (0,0,0,1,0)7,
72 = (0,0,0,0,1)T. It turns out that Ko = (K1, K>) is the identity matrix Is.
Therefore, 1 = (z1,z2,73)" € T%,0 = (z4,75)" € T?, and ho(p,y) = ho(p) =
sin 27z4 + sin 2wzs.

The function hg has 4 critical points ¢1 = (3, 1) 7,02 = (5, 5) T, 05 =3, D)7,

@4 = (3,2)T which are all non-degenerate. Indeed,
0%h 0%h 1 0
o =5 = (1),
62h0 62}10 0

(o) =5 =G (o 7).
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Thus, Oo(g,G) = O(g,G), and, (2.2) admits four families of non-degenerate
relative equilibria {p;} x O(g,G), i = 1,2,3,4. Applying Theorem 1 to a larger
region containing G, we conclude that for sufficiently small £ > 0, there is a Cantor
set Ac C O(g,G), with |O(g, G)\ Ac| = 0 ase — 0, such that the Hamiltonian (2.1)
admits four Whitney smooth families of quasi-periodic 3-tori {TE’y ty €AY}, i =
1,2,3,4, which, for each fixed y € O.(g, @), are all symplectically conjugated to the
quasi-periodic 3-torus 7% with the frequency vector w* = K w(y) = (y5,y4,y3) " .

Remark:

1) Among the four families of non-degenerate relative equilibria of (2.2) as-
sociated to non-degenerate critical points of hg(p), there are one family
of hyperbolic type, one family of elliptic type, and two families of mixed
type. Thus, for this example, the persistence of invariant tori associated to
non-degenerate relative equilibria of all type is guaranteed by our theorem.

2) Since K, 8;;20 (y)K2 = 0 for any choice of K, all the unperturbed tori
associated to {p;} x O(g,@Q), i =1,2,3,4, are g-degenerate (i.e., normally
degenerate). Therefore, neither the result of Treshchev ([15]) nor the result
of Cong et al ([6]) is applicable to this example.

3) The application of Theorem 1 depends on a careful splitting of resonances,
i.e., on an appropriate choice of g. For instance, if we chose a different
rank 2 subgroup g = {2z = (21,--- ,25) | € Z° : 21 = z4 = 25 = 0}, then
@ = (x2,23) T € T? and ho(p,y) =constant, which makes Oy(g, G) empty.
To study the persistence problem for this type of resonance, one perhaps
need to exam further non-degeneracy among higher order perturbations.

3. KAM STEP

The next two sections are devoted to the proof of Theorem 2. Following the
framework of the classical KAM theory, we shall find a symplectic transformation,
involving infinitely many successive steps (referred to as KAM steps) of iterations,
to the Hamiltonian (1.2), so that after each iteration the z-dependent terms are
pushed into a new perturbation consisting of terms of either smaller scales or at
least cubic order in the action variable. As usual, we shall carry out the KAM steps
by induction.

Let s,r,v, 4,0 be as in Theorem 2. Without loss of generality, we assume that
0<drs<l,0<~vy< i. For the sake of induction, we initially set eg = e,rg =
r, B0 = 8,70 =47, Mo = M,0Oy = O, Py = P. Denote

¢ =sup{|w| :w € Op}
and let M*, M, be fixed such that

max |0, Molo, < M*, |M; o, < M,.
l€Z$7\l|§lo| w Oloo = | 0 |Oo = M«
By monotonicity, we define 0 < pg < 1 implicitly through the following equation:

43b—1'u/0

B Cg([log ”1_0] + 1)6"((”+2m)2r+(n+2m)2+1) )

(3.1) I

where [-] denotes the integral part of a real number,

Co = (n + 2m)*(c*)(mH2m)* (Ar* 4 1)(n+2m)*
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and 7 is a fixed positive integer such that (1 + )7 > 2 with o = &

13- 1t is easy to
see that po — 0 iff 4 — 0, and, for any fixed 0 < € < 1,

(3.2) po =o(p'=¢) as pu—0.

Let

5 — Bovs
0= 2COK1(n+2m)2T+(n+2m)2+1 ’

where,
1
K; = ([log —] + 1)%".
o

With p being sufficiently small, we can assume without loss of generality that

(3.3) 90, K (AW T 2m L g
Hence,

b
(3.4) 0 < 80 < min{fo, To 1.

200K§n+2m)27—+("+2m)2+1

For j € Z{+?™, define

2, 1j =0,
aj = 1-sm(sl-1)=3 1 [jl=1
0, il >2,
. . . b, [j| =0,1,2,
b = 81— sea(isen(il - Dseadil - 2) = { ¢ P15 %
. . . 1, i|=0,1,2,
& = 1= asen(isendil - Dssndil -2 = { 1_, P13
where 12—3 < Ao < 11is fixed. Then
(3.5) 10L0507, ) PolD(ro,s0) %00 < 09655517 g < 057 57 1’

for all (1,i,7) € Z7 x ZT x Z¥>™, |I| + |i] + |j] < lo-
As an induction hypothesis, we assume that, after a vth step, we have arrived
at a Hamiltonian

(3.6) H = H =N+P,
N = NV:e+<w,y)+g<<Z),M<y>)

z

which is defined on a domain D(r,s) = D(r,,s,) with 0 < s = 5, < 89, 0 <
r =1, <rg, where M = M, (w) is real symmetric, non-singular and smooth on a
frequency domain O = O, C Oq, e = e, (w) is smooth on O, and, P = P,(z,y, z,w)
is analytic in (z,y,2) € D(r,s), smooth in w € O, and satisfies

(3.7) 0L0L87 .\ P|p(rsyxo < 6% s% pds

wrz 7 (y,z)
for all (1,i,7) € Z7 x Z% x ZT*™ |I| + |i| + |j] < lo, with some 0 < p = p,, < po,
0<y=7%<-
The purpose of this section is to carry out the next cycle of KAM iterations,
i.e., the (v + 1)th step. More precisely, we shall seek for a Hamiltonian F' = F,
such that the time-1 map ¢} of the vector field generated by F, as a symplectic
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transformation, will essentially transform H = H,,, on a smaller domain D(ry,sy)x
Ot = D(Ty41, Sv+1) X Ouy1, to a new Hamiltonian

Hy = Hy41=Ni+ Py,
d.(y Yy
Ny = Ny+1:e++(w,y)+§((z),M+< )),

z

where ey = ey y1(w), My = My 41 (w), Py = Pyyi(z,y, z,w) enjoy similar properties

ase=¢,, M = M,,P = P,, respectively, and moreover,
|8£Ja;8€y,z)P+|D(7‘+aS+)><O+ < 57—b|-j Sj-j“fii-j

for all (I,4,5) € Z7 x Z7 x Z{H*™ |I| + |i| + |j| < lo, with some smaller 0 < p4 =

Pt < po, 0 <74 = Y41 < Y0-

We shall give detailed estimates on the transformation, new normal form and
perturbation etc for this cycle of KAM steps. For simplicity, in the rest of this
section, we omit the index for all quantities at the vth step and use “+” to index
all quantities at the (v + 1)th step.

Below, all constants ¢;—cy2 are positive and independent of the iteration process.
We shall also use the same symbol ¢ to denote any intermediate positive constant
which is independent of the iteration process.

3.1. Truncation of the perturbation. As usual, the symplectic transformation
at each KAM step should add the average of quadratic terms of P into the new
normal form. Therefore, we need to separate the quadratic terms from P, which
leads to a truncation process. Moreover, for the reminder of the truncation to
qualify as part of the new perturbation, we also need to estimate the reminder
term on a smaller domain.

Consider the Taylor-Fourier series of P:

P = Z Pkuy'Z]€ —1(k,:c)7
1€Z% gEZT™ kEZ™
and, let R be the truncation of P of form
R = S PrgyteleY M)
[k| <K, +]51<3

Z (Proo + (Pr10,y) + (Prot, 2)
k|<F+

(3.8) + (Y, Peooy) + (2, Penry) + (2, Proaz))eV 102}

where Pyo0, Pro2 are symmetric matrices, and,

Ky = (log 3] + 1)

with 7 being defined at the beginning of the section.

Denote
Do = Diri+i(r=ri).a9)
A 7
D(\) = D(T++g(7“—7'+)a)\),
D) = {(y,2) €C" x C*™ : |y| < A, |2 < A},
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1

where a = p3, A > 0, and,

= o
(3.9 ry =<+ 1

N =

Lemma 3.1. Assume that
H].) K > S(TL-H())’

T—T4
o0

H2) AnHOe= AT 4\ < i,
K+

Then there is a constant ¢y such that for all |I| + |i| + |7] < o, w € O,
104,050], (P — R)|p, < 167" 5% ptitt,

Proof. Without loss of generality, we let po < 1. Hence a < 1, and, Do C D(s) C

D(r,s).
Define
pr = pe(U:2)= D Drg¥'?,
lEZ_T_,JEZ_Z'_m
I = Z pkwyzzﬂe\/jl<kaw)7
|k\>K+,zer;,geZ§;"
II7 = Z pk”y’z]e‘/__l<k"”>.
[k| <Ky, |o|+]s]>3
Then
P—-R=1I+1I,
and, it follows from the standard Cauchy estimate that
|3 a(y z)pk|D(s) < |3 ayz)pb(r,s)ef\k\r < Mbjsajudjef\klr
for all k. -
Denote 854 = 8! oi 6(y 2 Since, by H1), the function t"*tloe 5T s strictly
decreasing as t > ("HJ:’), we have
i, ! r—r
|3l,z,1_r|f3(s) < ¢ Z k|18, 3Jy Z)pk|D( (r++g(r—r4))
|k|>K+
< ebytismipt Nk
[k|>K 4
> T—7
S C(S’ij Saj/J/dj Z K_)n+loe—r.; 8+
K=K+
oo
(310) S C5’7bj saj /J/dj )\n+loe bj SaJ ,LLdJ+1
K+

This together with (3.7) implies that
|al’i’j(P - I)|f)( ) < |8l’i’jp|f)(s) + |8l’i’jI|b(s) < cdyPi 5% pti
NeXta for b= (p17 7pn » 4= (q17 e 7q2m)T with |p| + |q| = 37 write

(p,9)
II—/a8 Z pk”e‘/__”k’z)y’z]dydz,
\kISK+,|z\+|JIZ3
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92m

o [ [ [ [T

Using the Cauchy estimate for 8% (P — I) on D(s), we have

|0"59 T p, = |98 86:;:2 z pk”eﬁw’z)y‘z]dydzba
\k|SK+,\t|+\J\Z3
= |/|6yp8 7077(P =Dl p(yy dydz|p,
< c(ﬁ) 57”f8“fudj|/dyd2|pa
(3.11) < 23067”1'3‘”(0%)3;1‘1]' = corybi s pditt
The lemma now follows from (3.10) and (3.11). O

3.2. Quasi-linear equations. We shall look for a Hamiltonian F' which averages
out the truncation R. The order of R in y*2? suggests that F' should have the
following form

F = S fuyteY T
0<|k| <K, [2|+]y]<3

> (Froo + (Frio,y) + (Frot, 2)
0<|k|<K 4

(3.12) + (Y, Frooy) + {2, Friny) + (2, Froaz))eV 102)

where Fi;; = Fi;;(y,2),0 < i+j < 2, are matrices or vectors of obvious dimensions.
Note that, differing from usual KAM linear schemes, we have allowed the coefficients
(matrices) in the above to depend on y and z.

Let ¢% be the flow generated by F. Then the time-1 map ¢} will transform
(3.6) into the following Hamiltonian

Ho¢h = (N+R)og¢h+(P—R)ogh

1
(3.13) = N+R+{N,F}+/ {Ry,F} o ¢ldt + (P — R) o ¢,
0

where
R, ={(1-t)N,F} +R.

The integral in (3.13) is of quadratic order in R, F', and, the term (P — R) o ¢}, is
of order O(y*2?), |¢| + |7| > 3, in y, 2. These two terms will be treated as part of
the new perturbation.

Write M = M (w) into blocks
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where My1, My2, Moy, Mas are n X n,n X 2m, 2m X n, 2m X 2m minors of M respec-
tively, and define

n = (%) m (Y

oh
A = A(yaz) = 66_y(yaz) = 6(Mlly + M12z)-

It is clear that

Oh _OF

Oh _OF
22797 J

(3.14) {N,F} = —(Ny, Fy) +&( 92" 82

= —V/=1{k,w + AYF + §{ ).

In the above and also below, J denotes symplectic matrices of appropriate di-
mensions which match the symplectic structure of the Hamiltonian.
Let
oh 6F>
0z’ 0z
—6(Mary + Moz, J Y (Fror + Fru1y + Froo2 + Fiip2
0<|k|<Ky

(3.15) +Froos + Frio.y + kazz)e‘/__l(’“’m)).

R = &

Then R' is of order O(y*z?), |2 + || > 3, in y, 2, which can be also included in the
new perturbation. Thus, the main idea of the quasi-linear iterative scheme is to
solve F' through the following equation:

(3.16) {N,F}+R—-[R]-R' =0,
where
[R] = R(z,-)dz.
Tn
If (3.16) is solvable, then (3.13) becomes
Ho¢p =Ny + Py,
where

(3.17) N, =N+[R]

is essentially the new normal form (the resonant terms involved in [R] can be
transformed away), and,

1
(3.18) P, = /0 {Ry,F}o¢tdt + (P — R) o ¢} + R’

essentially serves as the new perturbation. We note that, using (3.16), R; can be
rewritten as

(3.19) R;=(1-t)(R'— R+ |[R]) +R.
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We now construct F' of form (3.12) which satisfies (3.16). Substituting (3.8),
(3.12), (3.14) and (3.15) into (3.16) yields

_ Z \/—1<k;W+A)(Fk00+ <Fk10,y)+<Fk017z)
0<|k|<K4
+<y7Fk20y) + <Z,Fk11y) + <z,Fk022))e\/jl(k,z)
(3.20) + Z 0{Mory + Mooz, J(Fro1 + Fr11y + Fro2z + F,;BQZ
0<|kI<K4
+Frooz + Friozy + Froi.2))eV "1k
== > (Poo+(Puo,y) + (Pror, 2)

0<|k|<K+

+(y, Peaoy) + (2, Pra1y) + (2, Prozz))e¥ 182,

By equating the coefficients in the above, we obtain, for each 0 < |k| < K, the
following family of quasi-linear equations:

k,w + A))Froo = Proo,

k,w+ A)lom — dMazJ) Fro1 + 6 Moo J Froo: = Prot,

k,w + A))Frio + 6 Mi2J (Froo- + Fro1) = Prio,

k,w+ A))Froo + 0(Fr11 + Frio.)JJ Moy = Proo,

k,w + A))Fray — 0Mao JFray — 6My1J(Fro2 + Fiy + Fror)
+0Fk10:J M2s = Pra,

(3.26) (V—1{k,w + AY) Fros — 6 Moo J Fyoo + 6 FroaJ Moy — M JFyly1, = Pros-

~ N SN SN
w
[\
w
~— N~ N N
~~ N N N~
3
P e e e

Now, if the above quasi-linear equations are solvable, then their solutions Fj;;
will satisfy (3.20) and hence uniquely determine the Hamiltonian F. We note that,
when substituting these solutions into the expression of F'in (3.12), one can replace
the matrices Fi20, Froz2 by 5(Fr2o +Fiso)s 5 (Froz + Fiys), Tespectively, so that they
become symmetric.

For any p x ¢ matrix A = (a;;), we let T'(A) denote the column vector formed
by all row vectors of A, i.e.,

T(A) = (all "'alq"'apl ...apq)T
Define
T(Fya0) T (Pr20)
Fr = T(Fkll) , Pp = T(Pkll)
T (Froz) T (Proz)

We can rewrite (3.21)-(3.26) equivalently into the following system form

Lo Froo = Proo,

L1k Fro1 + 0Ma2J Frooz = Prot,

LorFr10 — 0M12J (Froo: + Fro1) = Prio,
Loy Fy = Py + Q,,

(3.27)
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where

Lox = vV—=1(k,w+ A),

Lix = V—1Uk,w + A) Loy, — 6 Ma2J,

Loy = V—=1{k,w + AV (4 2m)2 + 6 M (w),
M (w) integrates the coefficients of F}, involving &, and Qj, corresponds to the re-
maining terms in (3.24)-(3.26) which linearly depend on Fyoy, and Fjig..

It turns out that the entire system (3.27) can be solved successively on a further
restricted frequency domain

2m
0, =0Ky) = {we0: |(kw)> |k| - detLuel >
_ (n+2m)*
(328) |detL2k| > W, for all 0 < |k| S K+},
where
le = \/—l(k,wﬂgm - 5M22J,
(3.29) Ly, = \/—1<k‘,w>1(n+2m)2 + 5M(w)
Define

_0_7

(3.30) Y+ = 4 + 2

Lemma 3.2. Assume that

H3) ‘rlrllax |0 M — 8! My|o < /,I,O ;

H4) ZSCOK_(:H_Qm) T4+ (n+2m)2+1 < ’Yb-

Then the quasi-linear equations (3.21)-(3.26), or equivalently, the system (3.27) can
be solved on O successively to obtain functions Fioo, Fro1, Fri0, Fi, 0 < |k| < K4,
which are smooth in w € O4 and analytic in (y, z) € D(s). Moreover,

(3.31) Fiij (§,2) = F-rij (y, 2),

forall0<i+j <2, 0< k| <Ky, (y,2) € D(s).

Proof. Note by H3) that |[M|o < M* + 1. For all w € Oy, 0 < |k| < K4, we have
by (3.28) and H4) that

(3.32)  [Lokl = |V-Uk,w+V-1(k A) >

|det(Lig + vV —1(k, A) o, )|

2m 2m
Y 2 Y
T 5K > ,
kT 08 2[k[2mT

(3.34) |detLox| = |det(Lox + vV—1(k, A)(10m))]
,y(n+2m)2
|k.|(n+2m)27—

(5COSK 2 y
|| "= 2IkIT

(3.33) |detLi]

\Y%

,y(n+2m)2

(n+2m)?
- 6COSK+ = W

>
In particular, Lok, L1, Lop are non-singular on (4. Therefore, the quasi-linear
equations (3.21)-(3.26), or equivalently, the system (3.27) can be solved successively
to obtain functions Fygo, Fyo1, Fr10, Fx with the same regularity properties as the
coefficients of (3.27).



A QUASI-PERIODIC POINCARE’S THEOREM 15

(3.31) easily follows from the uniqueness of solutions of (3.21)-(3.26) or (3.27).
O

3.3. Translation. After finding the transformation F' which transforms the the
normal form N to N, , we need to introduce a translation of coordinate to further
remove the first order resonant terms in [R].

Consider the translation

oo (1) (1))
z z 20
(yo) _ M (Pom)
20 6 \Poor/’
Then, ¢ transforms H o ¢ into the desired form:
Hy=Hog¢po¢p=Ni+Py,

where

where
Y Yy Pozo  FPoir Yo
N, = N -2
" +od <<Z>’<P0Tu Fooz >(zo>)
d,(y Y
= — M
e++<way)+2<(z)7 +<z))7
5 Y Pyzo  Pour Yo
3.35 P, = P 2 , ,
(3.5) = peoor(Y) (7 P ) (%))
with
1
(3.36) e+ = e+ Py + (w,y0) + 5((13010,3/0) + (Poo1, 20))
Yo Pozo  Pour Yo
+ 9 )
(@) (7w ) (%)
2 [ Py Pon)
3.37 M, = M+-= )
(3.5) * "3 ( Py Poos

Having defined M, we can define M, = M, (w) similarly to M. By Lemma 3.2,
in its domain of definition, F' is well defined, real analytic in (z,y, 2), and smooth
in w. Consequently, the same holds for &, = ¢} o ¢, N and Py. Moreover, we
have the following.

Lemma 3.3. Assume H3). Then there is a constant ca such that for all |I| <l

10Ler —delo < cysp,
l6LMy, — 0L, Mlo < cn,
0,My =0, Mlo < ev'n,
3o
(5% )l < enton
Proof. By (3.7), we immediately have
0L Posolo < cdybs?p,
164 Potolo + [0, Pootlo < c6+°sp,
0!, Pyag 9%, Po11 b
w w < :
|< (0L, Po11) " 8L Pooo o < edyp
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Without loss of generality, we let uo be small such that ,ué M, < % Then by
H3),

M1t M,
|M71|O S | 0 |OO — S :
1= [M = Molo|My "o, ~ 1— p2 M,

It follows from induction that

<2M..

8L M~ o < | MR (M* +1) < eMo(M* + 1), |I'| < lo.
Therefore,

1]

wY0 ' a1 a51010 b
E <
|< )l(’) - (5 (ll) 8 |o|(6ZP001> |O = 7 sk

[I']=0
which, together with (3.36), (3.37), also implies the first two inequalities of the

lemma. O

3.4. Estimate on the new frequency domain. For k € Z™ \ {0}, w € Oy, we
define

LY, = V-1k,w)ly, — M J,
(338) L;_k =V _1<k7w)I(n+2m)2 + (5M+(UJ),

where M.} is the right lower 2m x 2m minor of M.

Lemma 3.4. Assume that

2m _ _2m (n+2m)2 (n+2m)2
(n+2m)%7+(n+2m)%+1 oY=+ YTy Y —V4
H5) copKy < min{-—=, w0 L (rrem)? }-
0

Then for all 0 < |k| < K4, w € Oy,

,YQm (n+2m)2
I+ T
[{k,w)| > |k| |detLf,| > T |detLg, | > %] n+2m)2
Proof. Let 0 < |k| < K4, w e O4. By (3.28),
,YZm B (n+2m)>
|<k7w)| |k|.,-7 |detL1k| > |k|2m7-7 |detL2k| > W:
and by H5),
ey K < eoqouK it <y — vy,
502’YbuK2mT+2m <ec 72muK_2i_mT+2m < ,YZm _ ,Yim7
5027 uK(n+2m)27—+(n+2m)2 < 02,yén—i-2m)2'LLI(—_(Fn—i-2m)27’—}-(77,—}-2m)2
,y(n+2m)2 _ ,Y_(‘_n+2m)2‘
Since

Ly = Lk = 6(Map — M35)J, L3, — Loy = 6(My — My),

the lemma follows from Lemma 3.3 and a similar argument as that for (3.32)-
(3.34). O
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3.5. Estimate on F. We now give some estimates on F' and its derivatives, which
are vital later in proving the convergence of the transformation sequence and in
estimating the new perturbation. Define

Dr—r)= Y [|kre M=,
0<|k|<K 4

where x = br + 5l + 27 + 10. We note that T(r —ry) > e~ %
Lemma 3.5. Assume H3), H4). Then the following holds for all 0 < |k| < K.

1) There is a constant cs such that, on D(s) x O,

9, 7l
6(” )FkOO < CS|k|(|i‘"r|.7|+‘l|+1)7+‘z|+|‘7‘+|”652'u,e_|k|r’
Ay, 29, wh)
o] + [g] <lo+4, || <lo,
9, 7l
92 Froy < ok IFD2mT 420+l 27425 oKl
Ay, 29,w')
[o] + |9] <o+ 3, |I] <o,
WJh
WY Fyg < calk| (I D2mT 202 g ) 427+ 25 g oIkl
Ay, 29, wh)
[of + |71 <lo+ 3, |I| <lo,
9, 7l
1) < |k (D (2m) T2 (el g )+ 2745 5 o= I
Ay, 27,w')

o] + |21 < lo+2, |I] < lo.
2) There is a constant ¢4 such that, on D(s) x O,

(3.39) |0L,850], . F| < cads® pl(r —r4), || <lo, [i] + 15| < lo +2.

Proof. Let (y,2) € D(s), w € Oy.
].) Denote Ly, = LOk,le,L2k and q= (’L,j,l) € Z_?_ X Z_%_m X Z_T'L_, where |Z| + |]| <
lo+4, || <lo. By H3), it is easy to see that

|0¢Lg| < clk]
for all |k| > 1, |¢| > 0. Applying the above and the inequalities
'] )
o < iz 30 ()0 L o L, 1) < b
lg"|=1
inductively, we deduce that
|6‘1L;1| < clk“‘l\'L;l'\Q\'H_
Using (3.32)-(3.34) and the identities
adj(Lip) 1 _ adj(Lax)

Ll = Stk = SRak)
% = det(Lyg)’ ~2* det(Lay)’
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we then have

a1 |k|(al+D)m+gl
|09 Ley, | W’
(la|+1)2m7+2[q|+1
qr—1 |k|
|6 le < ,.Y2m\q\+2m ’
. || (la1+1) (n+2m)?7+2]q|+1
|0%Lo | <

A 2m)Z g+ (n2m)?

It now follows from (3.21) and the Cauchy estimate that

1]

0:31) Fyog I\ it 11t
By S 2 (l,>|<9( #10 Loyt 18 Peool

i']=1
< o[R| IR ol g g2 o
(3.40) o] + 13l <lo+4, 1] <lo.
Using (3.22) and (3.40), we also have
9. ’l
M| < | 2m 2 D 2425 o=kl
Ay, 2,wh) ’
(3.41) o] + 9] < lo+3, [I] < lo-
Similarly, (3.23), (3.40) and (3.41) yield
9, ’l
M| < ol D2mr 2 (s s D +2r 25 ol
Ay, 2,wh) ~ ’
(3.42) o + 13l < lo +3, [I] < lo.
Finally, combining (3.34), (3.41), (3.42) with the last equation in (3.27), we obtain
1) B,

27_ - _
Wl < c|k|(eHbIFIEF D (n42m) T+ 2([l+ I+ U427 455 o~ RIT
[+ gl < lo+2, |I] < lo.

2) By 1) and direct differentiations to (3.12), we have, on D(s) x O, that

- RN LCH D) P
|04,0,0(, ., FI < ¢ > B (5 |
v , Ay, 2, wh)
o +151<1310< kI <K 4
Wl Dl
1 98P aoogniiy 4 90 Fio | aosonis)
ay*, 27, w') oy, 27,w')

o) B
+|—
Ay, 27, wh)

< cds%p Z |k|Xe*|k|¥ = 65 pul(r — ry).
0<|k| <Ky

|1 8n(3 = D))lkI(r - (r =)

This proves the Lemma. O

To obtain the symplectic transformation stated in Theorem 2, we need to extend
the function F' smoothly to the domain D(8g) x Op.
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Lemma 3.6. Assume H3), H4). Then F and © = (%) can be smoothly extended
to functions of Hélder class Clotootblo=1+00(D(B1) x Of) and Clo~1+90(Oy) re-

spectively, where 0 < o9 < 1 is fized. Moreover, there is a constant cs such that
”F”Clo+1+<’o!lo—1+ao (D(Bo) xOp) < C55NF(T - T+)7
||®||Clo—1+”o(oo) < CS'Yb/‘-

Proof. By the standard Whitney extension theorem (see [11], [14]), F, © can be

extended smoothly to functions F', © of Holder class Clo+ootLio=1400(H)(y) x Oy),
Clo—1+90((y), respectively, such that

||F||Clo+1+”0:lo—1+ao (D(Bo) x Op) < 5||F||olo+2,lo(1‘7(s)><o+)=
(3.43) 1Ol cto-1+0(00) < €llOllcto(oy)

where ¢ is a constant depending only on the regularity orders lg, 0y and the dimen-
sions n,m (in particular, not on the iteration process). The lemma now follows
from Lemma 3.5 2) and Lemma 3.3. O

3.6. Estimate on the transformation. Define

1—1

D%a:‘D(r++ (r_r-i‘))%as)) 7/:]-;2778

Lemma 3.7. Assume H3), H4) and also that
1
HO) cl(r —ry) < g(r—74);
H7) cyul(r —r4) < %a;
HB8) cop < za.
Then the following holds.
1) Forall0<t<1,

(3.44) ¢tF~ : D%a—>D%a,
(3.45) ¢ : Déa_)D%a

are well defined, real analytic and depend smoothly on w € O.
2) There is a constant cg such that for all 0 <t <1, |l| < ly,

| i . CGS/J’F(T - T+)7 |Z| + |.7| ='07 |l| Z 1;
|8w6:zc3gy,z)¢F|D1aXO+ < CGMF(T - T-i-)a 2< |l| + |7’| + |.7| <lo+ 2
* Co, otherwise.

Proof. 1) (3.45) follows immediately from Lemma 3.3 and HS8).

To show (3.44), we write ¢h = (¢}, 4, ¢4) T, where ¢}, b, ¢, are components
of ¢% in the directions of z,y, 2 respectively. Let (z,y,2) be any point in D%a
and let t, = sup{t € [0,1] : ¢4 (z,y,2) € Dy}. We note that D, C D(s). Using
Lemma 3.5 2), H6), H7) and the identity

t
(3.46) ¢h =id + / Xp o ¢ppd,
0
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where Xp = (Fy, —F,, JF,) denotes the vector field generated by F, we have

t

1

Bep)=al < [ 1F06Ho.dA < Rlog < sl =) < 5 =r),

t

1

6502 =yl < [ R0 8}n,d S IFalpg, < cs?ullr = i) < gas,

0

t
1
#e.9)-2 < [ 1P 0 6}Hn.d\ < Rl < casuT(r — 1) < gas
0
forall w e Oy, 0 <t <t It follows that

1 3
|¢i($7yaz)| < r+ + Z(T —T‘+) < Ty + g(/r _,,.+)7

3 1
|¢§($,y,z)|, |¢t3($7yaz)| < gOLS < 5‘137

ie., ¢b(z,y,2) € Dy, C Dq forallw € Oy, 0 <t <t,. Thus, t, =1 and (3.44)
holds.

The regularity properties of ¢4, ¢ follow from Lemmas 3.2, 3.3.

By differentiating (3.46) and applying the Gronwall inequality inductively, 2)
follows from H7) and Lemma 3.5. O

Define

)

Lemma 3.8. Assume H3),H4) H6)-H8) and also that
HO) coul(r — 1) < br—rs);
H10) csuT(r—ry)+1) < B —B4.
Let F, © = (%) be the estended functions defined in Lemma 3.6. Then
&y = ¢k 0¢: D(B:+) = D(r, B)

is of class C"1°0 and also depends C'°~1190 smoothly on w € Oy, where g is as
in Lemma, 3.6. Moreover, there is a constant c; such that

12+ = idl| o to.to 1470 (BB, x0) < CTHI(r = 14).

Proof. Denote
D(By) = D(B4 + c56p).

Using H9), H10), Lemma 3.6 and a similar argument as in Lemma 3.7, it is easy to
see that for all 0 < ¢ <1,

¢4 : D(By) = D(r, B),
¢: D(ﬂ+) — D(ﬁ+)

are well defined, and, ¢4 is of class C'**70 and also depends C'°~1%90 smoothly on
w € Oy. Moreover,

t
|#F —idlps,)x00 < /0 X5 © | (g0 x 009N < 106 F | gy oy < CsHT(r —74),

where £ = (2, y, 2).
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Differentiating (3.46) with respect to ¢ yields
t
Oy = Bvam+ | DXiog}ocobd)
0

(3.48)

t
Lonyom + / J(@2F) o $p0e HhdA.
0

By applying Lemma 3.6 and the Gronwall inequality to (3.48), we then have

t
|0¢bF = Dnt2m|pia,yxos < /0|5§F|b(g0)xoo|3g¢}—12n+2m|b(5+)xood)\

2 |62 F| 5
HEF | papyxo,e ¢ Proxeo

el (r — 14 )ecskr(r=r+)

cul(r —ry), 0<t <1

IAIA

Note that

X Ellgisr1+o0.11-1420 (H(80) x 00) < ClIF [l 11420101 1-120 ((30) x 06)

for all 0 < |¢'| < lo,1 < |I'| < lp. By using Lemma 3.6, the Gronwall inequality and
induction, one can prove similarly to the above that

(3.49) ||¢tF||CIiI+00,HI—1+Uo(D(ﬁ+)x00) <cpl(r—ry)

forall 2 <|i| <lp,1 <|l| <lp, 0<t <1,
The lemma now follows from H9), Lemma 3.3 and the identity

0
& —id= (¢ —id)op+ | wo
20

|

3.7. Estimate on the new perturbation. It remains to estimate the new per-
turbation P} on the domain D, x O, where

.D+ = D%a

Lemma 3.9. Assume H1)-H4) and H6)-H8). Then there is a constant cg such
that, on Dy x Oy,

10L0500 ol < cabns s a2 (iD=senil=2) b2 1) 1]+ [i] + ] < lo.

Proof. Denote 9% = 656;6{3} o for [[| + [i[ +[j| < lo. By Lemma 3.5 and the

expressions of R, R' in (3.8), (3.15) respectively, we have
|Bl’i’j1%|f)(s)x(%r < edyPs% ul(r —ry),
|6l’i’le|D(s)xo+ < c§g>sen(lih—sendlil=2) P (p — 1),

(3.50) |al’i’jRI|D%a><O+ < cb(aus)?—sen(iD=sen(lil=2) yp(p — 1 ).
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It follows from Lemma 3.5 2) and Lemma 3.7 2) that, for all 0 < ¢ < 1,
10" {[R], F} psyxo + 10" {R, F} pgyxo < €0v's% T2 (r —14),
|0"{[R], F} o ¢|p, ,x0, +10"{R, F} o $|p, xo.
< edy’s% T3 (r — 1y ),
|44 (R, F}|b(s)xo < cos?—sen(li)—sen(l31=2) 202 (p _ ),
(044 (R, FY o I, xo. < cos e UD—senbi=2)209( )

Hence, by (3.19) and the fact that s < v (H4)), we have

1
049 [ {Ri, P} o dhatln, <o,
0
(3.51) < edybis% P T3 (r —ry).
Recall from Lemma 3.1 that
8" (P — R)|p,xo0, < 87" s%u®H.
This together with Lemma 3.7 2) implies that
(3.52) |8"53 (P — R) o CI)+|D%Q><(’J+ < edybi s it (e — py).
Using (3.18), (3.50), (3.51) and (3.52), we then have
0Py by xo, < eyt (bt 4 a2 D e )

(3.53) < corti gt a2—sEn(iD—sen(131=2) T3 (p _ p ).

Since, by Lemma 3.3,
16Ldlo, < c2vspu,
it follows from (3.53) that

079 P, 0 8|, xo, < cby"s% a2~ (A= i =D uTS(r — p),

and, from (3.7) and Lemma 3.3 that

> P, P, .
(M) (e ) (o non < bttt

The lemma now follows from (3.35). O

Finally, let

1 1
g% M= (64c0) %0 u!+,

where ¢g = max{1,c1,--- ,cs} and o = -=. We note that D(ry,s;) = D, and, ¢
only depends on 7g, o, lg- If we further assume that

b .
g

a3
HI1) poT3(r —rp) < 1

then, on D, x O,

0L0007 (Pul < 2% cody® sy a2 ssn(aD—senlil=2)as yloo o2 (p )
< 64cod (7P pe T (r — ry))sy pito)d
oB—sen(li) —sgn(ljl-2)—a; —30-3(1+0)d;
359 < wlpiud



A QUASI-PERIODIC POINCARE’S THEOREM 23

for all |I] + |i| + |j] < lo.
Above all, with the hypotheses H1)-H11), we complete one cycle of KAM steps.

4. PROOF OF THEOREM 2

4.1. Tteration Lemma. Let rg, Y0, S0, B0, to, Oo, Ho, No, eq, My, Py be given at the
beginning of Section 3 and let Dy = D(rg,B), Ko = 0. For any v = 0,1---, we
index all index free quantities in Section 3 by v and index all “+"_indexed quantities
in Section 3 by v + 1. This yields the following sequences:

TV TV
Ty, 71/7 Sv, /8117 /l’lla Qay KV7 OIH L1k7 L2k7
D,, Dy, e,, M,, M3,, M,, N,, H,, P,, ®,

forv=1,2,---, satisfying

1
Ty = TO(I_ZWL

i=1
W= - Z 2i+1)’
i=1
la S
Sy = ZO0py_1Sy—1,
] 1 1
/BV - ;80(]- - Z W);
i=1
po = (64c0) ™% pltg,
1
Qy = i,
1
K, = ([log ] +1)%",
My —1
2m
FYI/—I FU— 71/7
Ol/ = {w € 01/—1 : |<k7w)| > W7 |detL1k 1| > |k|27,i7_7
~ (n+2m)?>
|detL;k_1| > |k|lzn_-il-72m)27" for all 0 < |k| S KV})

LY, = V=Uk,w)lay — M, J,

_gk = \/—1(]{;,(,0)[(”_{_27”)2 —I—(SM,,,
DV = D(’I"V,Sl,),
A 7
Dy = D(T’y + 5(7',,_1 — 7’,,),[8,,)’
MY, MY,
M, = ”11 }/2 ) ,
( (M12)T M22
Hu = Nu + Py,

N, = e +(wy)+ ;(Z)M(Z))

The following lemma, verifies the validity of all KAM steps.
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Lemma 4.1. (Iteration Lemma) If (3.5) holds for a sufficiently small po =
wo(ro, Bo,lo), then the KAM step described in Section 3 is valid for allv =0,1,---,
and the following holds for allv =1,2,---.

1) e, =e,(w), M, = M, (w) are smooth on O,, M, is real symmetric and non-
singular over O,, P, is real analytic in (x,y,z) € D, smooth in (z,y,2) €
D, and smooth in w € O,, and moreover, for all 1] < lo,,

p Mo

(4.1) |0ev — Bev-ilo, < V05,1 Il < lo,

(4.2) |0Le, — 8L eolo, < 2coViuo, |I| < lo,

(4.3) 10L,M, — 0, My—1]o, < corbznr, 1] <o

(4.4) |04,M, — 8, Molo, < 2corgpo, |1 < lo,

(4.5) 105058, .\ Polp,x0, < 8585 pilt, (1] + [i] + 1] < lo.

2) @,: D, x Oy — ﬁy_l, D, x0, — D, _1, is symplectic for each w € Oy,
and is of class Clot1toolo—1+o0  Coslo respectively, where o stands for real
analyticity and 0 < og < 1 is fixzed. Moreover,

H,=H, 109, =N, +P,

on D, x O,, and,

(4.6) 12, — idl cro-1+00.10-1400(, x00) < 0753

2m
Yv—1

0, = {weO, 1 :|{kw)>L |detL ! > T

k|7
(n+2m)>

|detE;k71| > Ww, for all K,,f]_ < |k| S KV}

Proof. We need to verify the conditions H1)-H11) in Section 3 for all v = 0,1,---.

For simplicity, let 7o = 1. By (3.3), (3.4), it is clear that the conditions H3)-H11)
in Section 3 hold for » = 0 as long as po is sufficiently small. To verify H1)-H11)
for the other cases, we need to estimate u,. For convenience, denote 0 = 3 = i

and ¢, = (64¢o) g By the definition of u,, it is easy to see that
(4.7) fy = ¢ (capio) T

Since, as g small,
21-7 1
— < ,
=6 (Cxfio)?
0

there exists a sufficiently large A such that

It follows that if ug is sufficiently small (hence X is sufficiently large), then
1

-y
Ci A= 2600

(4.8) NPl >2, g <
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and consequently,

1 1
o = CgM(I)JFUSXuoS?_Ii_"MS_G < Ko,
o, 140 1 1 —i%5 11—9
B2 = Gl qulsﬁuo§2 =% pg ™" < po,
o, 1+o 1 - ﬁ
(4.9) fo = IS S ke S2TT g0 < flo

The choice of pg in (4.8) immediately implies H8) for all » > 1. It also follows from
(4.7), (4.8) and (4.9) that if pg is sufficiently small (X is sufficiently large), then

- - Ho
(4.10) po =ty <0 <5
1 1
(4‘11) 20000#571([1% _] + 1)3n((n+2m)2‘r+(n+2m)2+1)
[y
< 1 < 1 1 1

[vb 2(v+2)(n+2m)?2 < 2(v+2)(2m) < Qu+2’

1

(4.13) 1E (n+ [ + 1)120HD ) g
for all » > 1. Using (3.4) and (4.11), we have
200s,,K(”Hm)ZTJF("Jr2m)2Jr1

v+1

1 2 2
< 20050H371K£1T2m) Tk

1
< bl KT

b

Yo

S

2 2 1 5 )
CONVK,ET_:_—fl_zm) T4+(n+2m)%+1 < cous_1K£141—2m) T4 (n+2m)3+1
« +2 2 +2 2
e TR ks 7 R - Al PR

< min{ , S , e 1

Yo N2 NOED)

<A,

which verify H4), H5) respectively for all v > 1.

Since
1
TI/ — Tll—l-]_ = W’

(4.12) clearly implies H1) for all v > 0. To prove H2), we choose pg further small
if necessary so that

@) (og(o)]+ 107> - og(-0) + 3nlog(llog(-)] + 1.

Then by (4.12) and (4.14),

s logCN+ 1% > (n+ lo)(og(--)] + D

v

Y

(1+6) log%) + 3n(n + lo) 1og([1og(ui)] +1),

v
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ie.,
Ky
Kg—tlloe_zu—i—sl < NuH_a-
This together with (4.13) implies that

o0 K,
[ e @Ay < (o4 o + )0 KD o < 0l —
K, 11
i.e., H2) holds for all v > 0.
Next, we note that

1
L(ry —ry1) = F(w)

IA

/  An e d)
1

< (n+[x]+ 1)!2("+5)(n+[x]+1)_
Then as po small, (4.9) and (4.13) imply that

) 1 v
p2T3(r, —ryp1) < pd < (5)” < (Petlye,

Yv
which proves H11) for all » > 1. By (4.13), we also have
(4.15) wor(r, —r,1) < 1.
It then follows from (4.8), (4.10) that
1 1
(4.16) o T(r —rpn) <pb < B0 < =~ (r, — 1),

— 2v — 2vtie, 8¢y
which verifies H6), H9) for all v > 1. Since, by (4.8),
3
3

1-39 3 3 1
pr 2 <pp < pg <
(8co)

(4.15) implies that

1-g 1 1
cop L' (ry —ruy1) < cop,”” < guﬁ,
i.e., H7) holds for all v > 1. For the verification of H10), we have by (4.8), (4.10)
and (4.15) that

cOllluF("'u - 7'1/—}-1) + copby < 200”11/_0 <oa 2521 < 2?_?_2 = /Bu - /Bu—}-l: v>1

We are now ready to prove parts 1) and 2) of the lemma. Since all conditions
H1)-H11) hold for v = 0, the KAM step described in Section 3 is valid for v = 0. As
an induction hypothesis, we assume that for some v, > 1 the KAM steps are valid
forall v =1,2,--- ,v.. Applying Lemma 3.3 and (4.10) for all v =0,1,--- , v, we
have

Vs Vs
|6LMV*+1 - 6¢luM0‘0u*+1 < Z |6£.;MV+1 - 6cluMV|Ou+1 < ZCO'VbNV

v=0 v=0
(4.17) < > cw”% < 2¢07° o < 2copo, |1 < lo.
v=0

It follows from (4.8) and (4.17) that as po small M, 1 is non-singular on O,, 11
and H3) holds for v = v, + 1. Thus, the KAM step described in Section 3 is also
valid for v = v, + 1.

Above all, by performing the KAM steps described in Section 3 for all v =
0,1,---, we obtain the desired sequences stated at the beginning of the section
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which satisfy all properties described in parts 1) and 2) of the lemma. Ideed,
(4.1), (4.3) follow from Lemma 3.3 and (4.10). (4.2), (4.4) follow from (4.1), (4.3)
respectively along with an argument similar to (4.17). Moreover, (4.5) follows from
(3.54), and, (4.6) follows from Lemma 3.8 and (4.16).

Note that 3) automatically holds for » = 1. We now let » > 1. By Lemma 3.4,
it is clear that

Ovr = {w€ Oy :|(hw) >l |detEYy |>1@i
’ |k |k|>mr?
7(n+2m)2
|det Lyt > MW for all 0 < |k| < K,_1}.
Denote
0, = meowﬂuk@|’ﬁl|@wvw>7ﬁi
’ |k |k[>m’
7(n+2m)2
TVv— v—1
|detL2k 1| > W, for all Ky—l < |k| S KV}
Then
2m
_ A Yv—-1 Yv=1
0, = {w €eO,_1: |(k,w)| > W’ |detL | > W,
~ 7(n+2m)2
|detLy | > MW’ for all 0 < k| < K, }
(4.18) = 0,.,n0,=0,.
The lemma is now complete. O

4.2. Convergence. Fix an arbitrary 0 < € < 1 in (3.2). Then uo = o(u!~¢), and,
o is small iff y is. Therefore, there is a sufficiently small u = u(r, s,lo) such that
o = po(r, s,1lo) fits in the smallness requirement in Lemma 4.1. We then obtain
the following sequences

T, =®go0®10---0d,:D, x O, = Dy,
Ho\]:’V:HV:NV+PV7

N, = e+ + 50(7) 300 (V)

v =20,1,---, which satisfy all properties described in Lemma 4.1, where ¥y = &, =
id.
Let
o0
O.=()0..
v=0

Then O, C @7- By (4.1), (4.3), it is clear that e,, M, converge uniformly on
O, as v = oo. We denote their limits by e (w), My (w), respectively. Fix a
0 < o9 < 1. For all v and (z,y,2) € D,, by a similar application of the Whitney
extension theorem as in Lemma 3.6, we can extend P, uniformly to functions of class
Clo—1+90 with respect to w € Op, whose Hélder norms satisfy the same estimates
(4.5), up to multiplication of a constant. With such extended functions P,, we can
use the same formula (3.37) inductively to define C’c~1+79¢ extensions of M, on
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Oo. Then the Holder norms ||M, — My _1||cto-1++0(0y) and || My, — Mo||cto-1++0 (0g)
still satisfy the same estimates (4.3) and (4.4), respectively, up to multiplication
of a constant. This implies that for all |I] < lp — 1, 8%, M, are (Holder) equally
continuous and uniformly convergent on on Oy. In particular, the limit of M, on
Oy is of class C'~! which coincides with the original limit on O.. Thus, M (w)
is C'o—1 Whitney smooth on O,, and,

|64, Moo — 8L, Mo|o, = O(v’uo) = o(+*p' =), 1| <lo — 1,

in the sense of Whitney (see [11]). Similarly, ey (w) is C'*~! Whitney smooth on
O, and,
|8i;eoo - 65.;60|(’)* = 0(71)“1—6), |l| S lO - ]-7
in the sense of Whitney.
Set

1 1 1 1
D. = D(iro, ZﬂO) x O, Dy= D(§7'0, ZﬂO) x Og

and let ¥, be defined as above using the extended ¢, on ﬁu x Og as in Lemma 4.1.
Since

(4.19) U, =id+ Y (¥; - ¥;_y),
i=1
and,
U, -0y = P; —id,
U, -¥;, 1 = P10---0P;—P10---0P; 4
1
(4.20) = / D(®10---0®;_1)(id + 6(®; — id))dO(P; —id), i > 2,
0
we have by (4.6) that
. Ho
|®: —idlp, < 57,
and,
|D((I)1 0---0 (I)zfl)(ld + 0(@1 - id))|’D0
S |D(I)1((b2 o---0 (I)z',l)(id—F 0((1% - id))l’Do R
|D®;_1(id + 8(®; — id))|p,
Colo Colo
< (1+T)"‘(1+ 2,»,1)
<e BT < om0 < oBo,
Thus,
Wi — @;_1|p, < eP|®; —id|p, < Coeﬁ"%
for all § = 1,2,---. It follows that ¥, converges uniformly on Dy. We denote its

limit by ¥,. Then
(4.22) Voo =id+ Y (¥; — ¥ y),
i=1

and, |¥, —id|p, = O(pg) = o(u'~¢). Hence, ¥, is uniformly close to the identity.

By differentiating (4.19)-(4.22) and applying (4.6) and the above arguments in-
ductively, one can further show that ¥, converges in Cloteolo=1+0(Dy) norm to
.. It follows that ¥, is C* smooth in & = (2,y,2) € D(5r0,%060) and Clo~?
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Whitney smooth in w € O,. Similarly, ¥, is also C’ uniformly close to the
identity. We omit the details.
Now, by the uniform convergence of

N, = e, (w) + {w,y) + g((i),My(w) (y)), ¥,
to
N = o) + G0} + 307 M) (1)),
respectively on D,, we see that, on D,
P,=Ho%¥,—-N,
and their derivatives, converge uniformly to
Py =HoU, — Ny

and its corresponding derivatives. It follows that P., is C* smooth in £ = (z,y,2) €
D(iro, +Bo) and Clo~' Whitney smooth in w € O,. Since ®, is real analytic on
D, for each w € O,, Py, is also analytic in  when y = 0,2 = 0,w € O,.

Recall that, for any w € O,

|P|p, < 6v0s2u.
Using the Cauchy estimate, we have that
(423) lagjj.afPAD(r,,,%su) < 573#:1

for all j € Z7,k € Z3™ with [j| + |k| < 2. By (4.7), it is easy to see that, the right
hand side of (4.23) converges to 0 as v — 0. Therefore, on D(%,0) x O,

IOk P =0, j€ Zh ke Z7™, |jl+ |kl <2

In particular, for each w € O, the equation of motion restricted to D (%2, 0) reduces

27
to
. 094 ,(y y 0P,
Tz = w+6y2<(z)’M°°<z)>+—6y =w,

_ OPs
b= T =0

. ON,, 0Py
o= I+, ) =0

Thus, for each w € O,, the perturbed system (1.2) possesses an analytic, quasi-
periodic, (Floquet) invariant torus with the Diophantine frequency vector w, which
is slightly deformed from the unperturbed torus corresponding to w. Moreover, the
perturbed tori form a C'~! Whitney smooth family.

4.3. Measure estimate.

Lemma 4.2. Suppose that g € CP(I), p > 2, where I C R! is a finite interval. Let
In ={z €I:|g(x)] < h},h>0. If on I, |gP(x)| > ¢ > 0 for some constant c,

then |I| < c'hr, where ¢ =p+2+ o

Proof. See [16], Lemma 2.1. O
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We now prove the measure estimate
|O\Os| = O().
By Lemma 4.1 3),
Ouy1=0,\ U R (),

Ky <|k|<Ky41

where
Rn) = o€ 0, (k)] < ,or|deth|<|,Z|§:T,
(n42m)?
(4.24) or |det Ly | < W}
Thus,

00\0* = U U RZ—H (IYV)

v=0 K, <|k|<Ky,+1

Thus, the desired measure estimate amounts to the estimate of |Ry " (7,)|.

To begin with, we fix a v = 0,1,--- and a k = (k1,ka,--- ,kn)' € Z"\{0},
and, without loss of generahty, assume that k1 = maxi<i<n{|ki|}. Let g(w) =
det(Ly, (w)). For any @ € O, = {(ws,--- ,wy) : thereisa w; such that w =
(wl,wz, -, wn) " € 0,}, we consider the set I(®) = {w;1 : w = (w1,®) " € O,} and
define

A)l'(ln—i-Qm)z
51(@) = {wr € I(@) : |g(w1, @) < W}-

Then, it follows from (4.4) that, on I(),

a(n+2m)2

A@) =| (w1, @)| = [ka| 427 (1 + 0(5)),

6w£n+2m)2 9
where, O(0) is independent of k,v,w,ly (note that, since only up to the (n+2m)2-th
order derivatives were taken, we can choose lp = (n+2m)? in (4.4) so that b is also
independent of ly). Hence if § is small, say 0 < § < §o for some dg, then

1 1
(4.25) A@) > §|k1|2<"+2m>2 > 5

for all wy; € I(w). Applying Lemma 4.2 to g(w;,®) and making use of (4.25), we
see that

[S1@)] < ((n+ 2m)? +6)

for all & € O,.
Thus, by Fubini’s theorem, there is a constant cg > 0 such that

_ ,}/(n+2m)2 7(n+2m)2
|{w € OV : det(Lgk) S |k|(n+2m)2 }| |{0J € OV : |g(OJ)| < |k|(n+2m)2 }|
< cg max |S1(@)| < 4eg((n + 2m)? + 6)

wed, o |k|T
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Similarly, there are constants ¢i1g,c1; > 0 such that
Yv Y
{w e Oy : [(k,w)| < o= H < crorrs
|E[" k|

_ ,YZm
H{w e O, :|detl],| < —c—1} < a

: e
k|27 1 k|7

Therefore, there is a constant ¢;2 > 0 such that
(4.26) IR )| S ena g

In fact, it is easily seen from the above that (4.26) holds for all k € Z™ \ {0} and
v=0,1,---. Consequently,

oo < U U BTol<anY Y ﬁ

v=0 K, <|k|<Ky+1 v=0 K, <|k|<Ky41
= 0O(y), asv— 0.

The proof of Theorem 2 is now complete.

5. PROOF OF THEOREM 1

Let p be sufficiently small such that O,(g,G) # 0. By using finite open cover-
ings on Oz (g, @), it is easy to see that O, (g, G) consists of finitely many connected
components. Therefore, to prove the theorem, we can assume without loss of gen-
erality that O,(g,G) itself is connected. It then follows from the implicit function
theorem that there is a positive integer jo such that each y € O,(g,G) admits ex-
actly jo many non-degenerate critical points of hg(-,). In fact, there are analytic
functions ¢; : O,(g,G) = T™, j =1,2,---, jo, such that, for each 1 < j < j, and
y € 0,(g9,@G), v;(y) is a non-degenerate critical point of ho(:,y).

5.1. Treshchev’s Reduction. Let ¢; be one of the analytic functions above. We
now use the idea of Treshchev ([15]) to reduce (1.1) to a Hamiltonian of form (1.2)
near the tori {Ty(¢;(y)) : y € O,(g9,G)}. For simplicity, we shall omit all constant
terms appearing in Hamiltonians after each transformation. Below, all “O” will be
independent of j.

The reduction process will consist of three steps. The first step is the separation
of ‘resonant’ and ‘non-resonant’ parts in both angular and action variables. To do
so, we first use the Taylor expansion for Hy at yo € O,(g,G) to rewrite (1.1) into
the form

1
Hj(2,y) = (w(0),y = v0) + 5{T1(¥0) (v = %0),y — yo) +€P(x,y,€) + Oy = vol*),
where 52
H,
Ti(yo) = OTWQO(ZJO)KO

and Ky = (K1,K>) is as in Section 1. We then employ the linear symplectic
transformation: y — yo = Kop,q = K{ (¥ — m¢), where z¢ is such that K, zy =
¢;(yo), to further transform the above Hamiltonian into the form

61 Hi@p) = @)+ 5m T +eP(a,pw0)
+0(Ipf*) + O(e?),
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where w'(yo) = K w(yo), p = ',p")7, ¢ = (¥,v)" with p’ € R",p" € R™,¢ €
Tr v € R™, and
Pj(g,p,90) = P(wo + (Kq ) ™" ¢, 50 + Kop, 0).
Consider
0(9,G) = {K{ w(y) € R" : y € 0,(9,G)}.
Since O(g, G) is diffeomorphic to O,(g, G), for simplicity, we shall use w € O(g,G)
as a parameter instead of yo € O,(g,G). Hence (5.2) can be rewritten as

(52) Hj('l/},v,pl,p") = (w;pl) + %(pa Pl(w)p) + Spj(wavapa (.U) + O(|p|3) + 0(52)7

where w € O(g,G) serves as a parameter, and, I'|(w) and Pj(¢,v,p,w) are de-
fined through TI'i(yo) and P;(v,v,p, yo) respectively, via the diffeomorphism be-
tween O(g,G) and O,(g,G). In the sequel, we also denote the matrix function
; 8%ho
I3 (yo) = 8—802(901'(.@0);310)

by T (w) accordingly.
Let 7 > n — 1 be fixed as in Theorem 2 and consider the set

0, ={we 0(g,G) : |(k, w)|>|k| for all ke Z™\{0}}.

The next step of the reduction is to separate the first order resonant terms from

the perturbations in (5.2). Consider the family of functions {S7}, w € (9}, on
(T™ x R™) x R? defined by

SL@Y)=(Y,q)+e Y Sl
kEZ"\{O}
where S7 = \/T}gf“,f;}’w) and K (v,w) = [m Pj(¥,0,0,w)eV 1% dy. Since each

w € (’)Aﬂ, is Diophantine, S7, is analytic and induces a family of symplectic transfor-
mations R? x (T"™ x R™) — R x (T™ x R™): (p,q) — (Y, q) with

_0S8i@Y) _ 0Si(a,Y)

B 0q 1= 75y
In fact, if we denote Y = (Y',Y") € R™ x R™, then

p=Y+v-1¢ Z kSieV=1kv) — v +0(%),

kezn
and,
p"ZY"-i-\/—_IE Z 1 ahk \/_<k,1/)) Y”-{-O(E).
kezm\{0} ( ) o v
By using the Fourier expansion, we have
Pi(W,v,pw) = Y hi(v,we’ " 1+ 0(pP)
keZn
. 1 . .
= 3(0,w) + 5 (v, T} (w)v) + > b (v,w)eV
keZmn\{0}

O(Ip*) + O(jv]*).
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Thus, the Hamiltonian (5.2) becomes
1 €
Hj(qJY) = <w7Y,) + §<Y7 Fl(w)Y> + 5

+o<§Y) + o<j—2) +O([YP) +0(Jof?).

(v, T} (w)v)

~ We now consider the rescaling Y’ = e2Y!, Y" = e2Y" and denote
Y = (Y',Y")T. Then the rescaled Hamiltonian reads
L
Hj(’(p,};IJYTHJU) M
€2
IS _ ;
= @)+ 5 (W Ti@7) + (w0, T w)))
1
(5.3) +5%(%O(Y’) + 0(7—52) +e20(7 ) +e20([o]*)).

Let M;(w) = diag(T'1(w),T}(w)). We replace ©,Y’,Y" &2 above by z,y,u,e
respectively and denote z = (u,v) . Then (5.3) becomes the desired Hamiltonian:
(

(5.4) H; SL’,y,Z):Nj+f)j,
where
€ (Y Y
N = e+ 5(2) e ()
g2 £ 2 3 2 3
Py = O(VIZJI) +0(§) +e 0(ly*) +e°O(|v]*).
Summarizing up, we have found a family of real analytic, symplectic transfor-

mations {F2}, j = 1,2,---, jo, which depend analytically on e and transform the

original Hamiltonian into (5.4) for w lying in the Cantor set OAW. By the Whitney
extension theory developed in [11] (see also [3]), the family, or equivalently, {57},
w € OAW, admits a C* extension with respect to w € O(g,G). This allows us to
work with the Hamiltonian (5.4) by assuming that M, P; are well defined and C*>°
inw € O(g,G).
Tracing back the construction above, we also see that, on a fixed domain
D('I“*, 3*) X 0(97 G):
2 3

3
)+0(—

3
fy“|+1

(5.5) |9, B3| = O ) 1l < L,

where I, = max{(n + 2m)? + 1,1}, lo is as in Theorem 1.

5.2. Application of Theorem 2. Let r =r,, O = O(g,G) and define

b b.a 1—a.(l.+1+5b,)
> )

d=¢, s=79"=¢ p=c

where b, = (2l + 3)(n + 2m)?, and, 0 < a < ;375 and a. € (a, i) are
fixed. By (5.5), we have
|851Pj|D(r,s)xO < 57311*32/‘7 |l| < l*;

provided that ¢ is sufficiently small, say, 0 < € < g¢ for some g9 = €o(g, G, p,lo) >
0. Therefore, (1.3) holds with ly := I, b := b, uniformly for all P = P;, j =
1723"' ajO; 0<e<eo.
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At the beginning of Section 3, choose

M = B, 0. M;(@)lo, M. = 1555 M @)lo-

Then it is easy to see that all arguments in Sections 3, 4 hold uniformly for M = M,
P =P;,j=1,2,---,jo. That is, Theorem 2 is applicable to (5.4) uniformly for
all j = 1,2,---,j0, as long as €¢ (hence ¢ and u) is (are) sufficiently small. In
particular, if (’)Z'Y C (’)Aﬁ, denotes the Cantor set in Theorem 2 for j = 1,2,---,jo
respectively, then |(’)\(’)Zr| = O(%), uniformly for j = 1,2,--- ,jo. Let O, = ﬂ;:"zl(%.
Then |O\O,| = O(y), and, O, corresponds to jo many C'® Whitney smooth families
of real analytic, invariant, quasi-periodic n-tori {T}(w) : w € O,}, j =1,2,---, jo,
of (5.4). Finally, let A, C O,(g,G) be associated to O, C O = O(g, G) through the
defeomorphism between O,(g,G) and O(g,G). Then |0,(g,G) \ Ac| = O(e?) = 0,
as € = 0. The proof of Theorem 1 is now complete.
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