Dependable direct solutions for linear systems using a little extra precision

E. Jason Riedy
jason.riedy@cc.gatech.edu

CSE Division, College of Computing
Georgia Institute of Technology

21 August, 2009
\[Ax = b \]

Workhorse in scientific computing

- Two primary linear algebra problems: \(Ax = b, \ Av = \lambda v \)
- Many applications reduce problems into those, often \(Ax = b \).
 - PDEs: Discretize to one of the above.
 - Optimization: Solve one at each step.
 - ...
- Commercial supercomputers are *built* for \(Ax = b \): Linpack

Many people work to solve \(Ax = b \) faster.

Today’s focus is solving it **better**.

(I’m oversimplifying in many ways. And better can lead to faster.)
Outline

1. What do I mean by “better”?
2. Refining to more accurate solutions with extra precision
3. Other applications of better: faster, more scalable

Most of this work was done at/with UC Berkeley in conjunction with Yozo Hida, Dr. James Demmel, Dr. Xiaoye Li (LBL), and a long sequence of then-undergrads (M. Vishvanath, D. Lu, D. Halligan, ...).
Errors in $Ax = b$

The diagram illustrates the relationship between the matrices A and \tilde{A}, and the vectors b and \tilde{b}, with $A^{-1}b$ and $\tilde{A}^{-1}\tilde{b}$ indicating the solutions to the original and perturbed systems, respectively. The backward error (berr) and forward error (ferr) are quantified in the plots below, with difficulty levels ranging from 2^{-50} to 2^{30}.
Goals for errors in $Ax = b$

(\tilde{A}, \tilde{b})

(A, b)

$A^{-1}\tilde{b}$

$\tilde{A}^{-1}\tilde{b}$

Difficulty

Backward Error

Forward Error

backward error (berr)

forward error (ferr)

Jason Riedy (GATech) Dependable solver 21 Aug, 2009
Possible methods

- **Interval arithmetic**
 - Tells you when there’s a problem, not how to solve it.
 - Finding the optimal enclosure is NP-hard!

- **Exact / rational arithmetic**
 - Storage (& computation) grows exponentially with dimension.

- **Telescoping precisions (increase precision throughout)**
 - Increases the cost of the $O(n^3)$ portion.

- **Iterative refinement**
 - $O(n^2)$ extra work after $O(n^3)$ factorization.
 - Only a little extra precision necessary!
 - Downside: Dependable, but not validated.

Dependable solver

Reduce the error to the precision’s limit as often as reasonable, or clearly indicate when the result is unsure.
What I’m not going to explain deeply

- Precise definition of *difficulty*:
 - A condition number relevant to the error in consideration, or,
 - roughly, the error measure’s sensitivity to perturbation near the solution.

- Numerical scaling / equilibration:
 - Assume all numbers in the input are roughly in the same scale.
 - Rarely true for computer-produced problems.
 - Common cases easy to handle; obscures the important points.
 - *Note*: Poor scaling produces *simple* ill-conditioning.

- Details of when each error measure is appropriate.
 - Backward: normwise, columnwise, *componentwise*, ...
 - Forward: normwise, *componentwise*, ...

All three are inter-linked and address norms.
Outline

1. What do I mean by “better”?

2. Refining to more accurate solutions with extra precision

3. Other applications of better: faster, more scalable
Iterative refinement

Newton’s method for $Ax = b$

Assume A is $n \times n$, non-singular, factored $PA = LU$, etc.

1. Solve $Ax^{(0)} = b$
2. Repeat for $i = 0, \ldots$:
 1. Compute residual $r^{(i)} = b - Ax^{(i)}$.
 2. (Check backward error criteria)
 3. Solve $A dx^{(i)} = r^{(i)}$.
 4. (Check forward error criteria)
 5. Update $x^{(i+1)} = x^{(i)} + dx^{(i)}$.

Overall algorithm is well-known (Forsythe & Moler, 1967…).

In exact arithmetic, would converge in one step.
Iterative refinement

Newton’s method for $Ax = b$

Assume A is $n \times n$, non-singular, factored $PA = LU$, etc.

1. Solve $Ax^{(0)} = b$
2. Repeat for $i = 0, \ldots$:
 1. Compute residual $r^{(i)} = b - Ax^{(i)}$. (Using double precision.)
 2. (Check backward error criteria)
 3. Solve $Adx^{(i)} = r^{(i)}$. (Using working/single precision.)
 4. (Check forward error criteria)
 5. Update $x^{(i+1)} = x^{(i)} + dx^{(i)}$. (New: x with double precision.)

- No extra precision: Reduce backward error in one step [Skeel].
- A bit of double precision: Reduce errors much, much further.
Why should this work?

A brief, informal excursion into the analysis...

\[
\begin{align*}
 r^{(i)} &= b - Ax^{(i)} + \delta r^{(i)} \\
 (A + \delta A^{(i)})dx^{(i)} &= r^{(i)} \\
 x^{(i+1)} &= x^{(i)} + dx^{(i)} + \delta x^{(i+1)}
\end{align*}
\]

Very roughly (not correct, approximating behavior, see LAWN165):

Backward Error (Residual)

\[
r^{(i+1)} \approx \varepsilon_w A A^{-1} r^{(i)} + A \delta x^{(i)} + \delta r^{(i)}
\]

Forward Error

\[
e^{(i+1)} \approx \varepsilon_w A^{-1} A e^{(i)} + \delta x^{(i)} + A^{-1} \delta r^{(i)}
\]
Test cases

- One million random, single-precision, 30×30 systems $Ax = b$
 - 250k: A generated to cover factorization difficulty
 - Four (x, b), two with random x and two with random b
 - Solve for true x using greater than quad precision.
 - Working precision: $\varepsilon_w = 2^{-24} \approx 6 \times 10^{-8}$
 - Extra / double precision: $\varepsilon_x = 2^{-53} \approx 10^{-16}$

- Using single precision and small because
 - generating and running one million tests takes time, and also
 - it’s easier to hit difficult cases!

- Results apply to double, complex & double complex (with $2\sqrt{2}$ factor). Also on tests (fewer) running beyond $1k \times 1k$.

- Note: Same plots apply to sparse matrices in various collections, but far fewer than 1M test cases.
Backward error results (before)

Table

<table>
<thead>
<tr>
<th>Difficulty</th>
<th>Backward Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{-50}</td>
<td></td>
</tr>
<tr>
<td>2^{-40}</td>
<td></td>
</tr>
<tr>
<td>2^{-30}</td>
<td></td>
</tr>
<tr>
<td>2^{-20}</td>
<td></td>
</tr>
<tr>
<td>2^{-10}</td>
<td></td>
</tr>
<tr>
<td>2^{10}</td>
<td></td>
</tr>
<tr>
<td>2^{20}</td>
<td></td>
</tr>
<tr>
<td>2^{30}</td>
<td></td>
</tr>
</tbody>
</table>

Diagram

- All working
- All double

- Omitting double-prec residuals; same limiting error as all working.
- All-double backward error is for the double-prec x.

Jason Riedy (GATech)

Dependable solver

21 Aug, 2009
Omitting double-prec residuals; same limiting error as all working.

All-double backward error is for the double-prec x.
Forward error results (before)

- Omitting double-prec residuals; same limiting error as all working.
- All-double forward error is for the single-prec x.
Forward error results (after)

- Omitting double-prec residuals; same limiting error as all working.
- All-double forward error is for the single-prec x.
Iteration costs: backward error

Convergence to ε_w

- All working
- Residual double
- All double

Convergence step

Empirical CDF

- 0.0
- 0.2
- 0.4
- 0.6
- 0.8
- 1.0

Convergence to $10\varepsilon_w$

- All working
- Residual double
- All double

Convergence step

Empirical CDF

- 1.0
- 1.5
- 2.0
- 2.5
- 3.0

Practical: Stop when backward error is tiny or makes little progress.
Iteration costs: backward error

Convergence to ε_w^2

Convergence step
Empirical CDF
0.0 0.2 0.4 0.6 0.8 1.0
5 10 15 20 25 30
All working
Residual double
All double

Convergence to $10\varepsilon_w^2$

Convergence step
Empirical CDF
0.0 0.2 0.4 0.6 0.8 1.0
5 10 15 20 25 30
All working
Residual double
All double

Practical: Stop when backward error is tiny or makes little progress.
Iteration costs: forward error

Convergence to ε_w

- All working
- Residual double
- All double

Convergence step vs Empirical CDF

Convergence to $\sqrt{N} \cdot \varepsilon_w$

- All working
- Residual double
- All double

Convergence step vs Empirical CDF

Practical: Stop when dx is tiny or makes little progress.
Performance costs

Overhead each phase by precision and type

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Overhead</th>
<th>single</th>
<th>double</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex</td>
<td>$10^{1.0}$</td>
<td>$10^{1.5}$</td>
<td>$10^{2.0}$</td>
</tr>
<tr>
<td>single</td>
<td>$10^{1.0}$</td>
<td>$10^{1.5}$</td>
<td>$10^{2.0}$</td>
</tr>
<tr>
<td>real</td>
<td>$10^{1.0}$</td>
<td>$10^{1.5}$</td>
<td>$10^{2.0}$</td>
</tr>
<tr>
<td>double</td>
<td>$10^{1.0}$</td>
<td>$10^{1.5}$</td>
<td>$10^{2.0}$</td>
</tr>
</tbody>
</table>

Itanium 2

- Relatively balanced cpu / mem arch.
- Double faster than single

Overhead is time for phase (incl. fact.) / time for factorization
Performance costs

Overhead each phase by precision and type

Overhead is time for phase (incl. fact.) / time for factorization

Xeon 3GHz
- Horribly unbalanced cpu / mem arch.
- (Not parallel)
- Vector instructions
- No vectorization in extra precision ops.

Overhead is time for phase (incl. fact.) / time for factorization
Outline

1. What do I mean by “better”?

2. Refining to more accurate solutions with extra precision

3. Other applications of better: faster, more scalable
Obvious applications of better

Available in **LAPACK**

- Routines SGESVXX, DGESVXX, CGESVXX, ZGESVXX
- *Experimental* interface, subject to changes

High-level environments

- Do you want to think about all error conditions all the time?
- Should be in Octave & **MATLAB**

\[
x = A \backslash b;
\]

The same technique applies to overdetermined least-squares

\[\text{[LAWN188; Demmel, Hida, Li, Riedy]. R or S}^+ \text{ (statistics):} \]

\[
\text{model} \leftarrow \text{lm(response} \sim \text{var)}
\]

- Refine the augmented system

\[
\begin{bmatrix}
A & \alpha I \\
0 & A^T
\end{bmatrix}
\begin{bmatrix}
x \\
r/\alpha
\end{bmatrix} =
\begin{bmatrix}
b \\
0
\end{bmatrix} \text{. [Björck]}
\]
Not so obvious application: Speed!

When single precision is much faster than double...

- Assume: Targeting backward error, often well-conditioned
- Factor A in single precision, use for $Adx_i = r$.
- Refine to dp backward error, or fall back to using dp overall.
- Earlier Cell (extra slow double): 12 Gflop/s \Rightarrow 150 Gflop/s!

 [LAWN175; Langou2, Luszczek, Kurzak, Buttari, Dongarra]

 (Independent path to the same destination.)

When single precision fits more into memory...

- Sparse, sparse out-of-core
 - Generally limited by indexing performance [Hogg & Scott]
 - Could use packed data structures from Cell [Williams, et al.]
When pivoting is a major bottleneck...

- Sparse, unsymmetric LU factorization:
 - Completely separate structural analysis from numerical work.
 - Introduce backward errors to avoid *entry growth*.
 - Fix with refinement.
 - (SuperLU [Demmel, Li, (+ me)], earlier sym.indef. work)

When pivoting blocks *practical* theory...

- Communication-optimal algorithms for $O(n^3)$ linear algebra
 - Trade some computation for optimal memory transfers / comm.
 - [LAWN218; Ballard, Demmel, Holtz, Schwartz]
 - Codes exist, are fast, *etc.*

- But LU cannot use partial pivoting!
 - Use a new strategy [Demmel, Grigori, Xiang], refine...
We can construct an inexpensive, dependable solver for $Ax = b$.
- Compute an accurate answer whenever feasible.
- Reliably detect failures / unsure, even for the forward error.

We can compute better results for $Ax = b$.
- Trade some computation, a little bandwidth for accuracy.
- Important bit is keeping all the limiting terms (residual, solution) to extra precision

Better results can help solve $Ax = b$ more quickly.
- Start with a sloppy solver and fix it.
Questions / Backup
Doubled-precision

- Represent $a \circ b$ exactly as a pair (h, t).
- Old algorithms [Knuth, Dekker, Linnainmaa, Kahan; 60s & 70s]
- Work on any faithful arithmetic [Priest]

Addition
- $h = a + b$
- $z = h - a$
- $t = (a - (h - z)) + (b - z)$

Multiplication
- $h = a \cdot b$
- $(ah, at) = \text{split}(a)$
- $(bh, bt) = \text{split}(b)$
- $t = ah \cdot at - h$
- $t = (((t + (ah \ast bt)) + (at \ast bh)) + (at \ast bt))$

See qd package from [Bailey, Hida, Li]; recent pubs from [Rump, Ogita, Oishi].
Iteration costs: backward error to double

Convergence to ε_x

Convergence step

Empirical CDF

0.0 0.2 0.4 0.6 0.8 1.0

5 10 15 20 25 30

All working
Residual double
All double

Convergence to $10\varepsilon_x$

Convergence step

Empirical CDF

0.0 0.2 0.4 0.6 0.8 1.0

5 10 15 20 25 30

All working
Residual double
All double

Practical: Stop when backward error is tiny or makes little progress.