Quantitative Determination of Quinone Chromophores in Isolated Lignins

M. Zawadzki and A. Ragauskas

August 1999

Submitted to
Industrial Engineering and Chemistry Research
INSTITUTE OF PAPER SCIENCE AND TECHNOLOGY
PURPOSE AND MISSIONS

The Institute of Paper Science and Technology is an independent graduate school, research organization, and information center for science and technology mainly concerned with manufacture and uses of pulp, paper, paperboard, and other forest products and byproducts. Established in 1929, the Institute provides research and information services to the wood, fiber, and allied industries in a unique partnership between education and business. The Institute is supported by 52 North American companies. The purpose of the Institute is fulfilled through four missions, which are:

- to provide a multidisciplinary education to students who advance the science and technology of the industry and who rise into leadership positions within the industry;
- to conduct and foster research that creates knowledge to satisfy the technological needs of the industry;
- to serve as a key global resource for the acquisition, assessment, and dissemination of industry information, providing critically important information to decision-makers at all levels of the industry; and
- to aggressively seek out technological opportunities and facilitate the transfer and implementation of those technologies in collaboration with industry partners.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company's use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
Quantitative Determination of Quinone Chromophores in Isolated Lignins.

Michael Zawadzki and Arthur Ragauskas,
Institute of Paper Science and Technology,
500 10th St. NW, Atlanta, Georgia 30318.

Abstract
Quinone substructures in lignin are important chromophores which are thought to negatively impact brightness development during industrial pulp bleaching. In this paper, a trimethylphosphite derivatization procedure is presented for the quantitative determination of lignin–quinone contents. Lignins investigated were isolated from chlorine dioxide, oxygen, alkaline extraction, and peracetic acid bleached pulps. Chlorine dioxide dramatically increased lignin–quinone content whereas subsequent alkaline extraction reduced the content. Oxygen delignification also resulted in quinone introduction, but to a lesser extent than with chlorine dioxide. Peracetic acid displayed a beneficial effect by eliminating quinone structures. Trimethylphosphite derivatization chemistry was investigated with small molecule benzoquinones and oxidized poly(4-vinylphenol). Generally small molecule benzoquinones were derivatized in good yield, except, 3-methoxy-1,2-benzoquinone gave less than complete derivatization due to competing self-dimerization. Conditions necessary for optimum derivatization yield of isolated lignins, removal of trimethylphosphite degradation products, and quantitative NMR analysis are also discussed.

Introduction
The goals of kraft pulp bleaching are twofold: delignification, or removal of bulk residual lignin, and brightening. Generally, the lignin component may cause as much as 90% of
the visible region light absorption coefficient of unbleached kraft pulps [1]. The production of high value paper products relies upon bleaching pulps to high brightness. Therefore, knowledge of the fundamental chemistry of both brightening and delignification stages are crucial. Pulp delignification chemistry has been extensively studied [2-5]. Unfortunately, fundamental knowledge of lignin and chromophore transformations during brightness development are much less developed.

Surprisingly, the structures responsible for color in mechanical and chemical pulps are only qualitatively known. Various studies have suggested that colored substructures present in the lignin macromolecule may include: quinone-methides [6], stable radicals [7], stilbenes [7, 8], conjugated carbonyls, and/or benzoquinones [6, 9-11].

Benzoquinones occur as either ortho (1,2-) or para (1,4-) forms, and are highly colored, λ_{max} 420–580 nm [12]. It has often been suggested that quinones are involved in the yellowing of mechanical pulp [7, 13, 14]. Also, the color of kraft [9] and soda lignin [15, 16] has been attributed to the presence of benzoquinone structures. Lignin–quinones may arise during the alkaline pulp cooking process from methyl–aryl ether cleavage after subsequent air oxidation of phenolic units [5, 15, 16].

Benzoquinone structures play an important role in both chlorine dioxide and hydrogen peroxide bleaching processes. Chlorine dioxide has been demonstrated to react with phenolic lignin model compounds to give ortho– and para–benzoquinone products [17-19]. Hydrogen peroxide, conversely, acts as a powerful brightening agent by eliminating conjugated carbonyl structures, including quinones [3, 20]. Recently, Zawadzki et al. quantified the quinone contents of residual lignins isolated from chlorine dioxide bleached pulps (DE*DED) [21, 22]. Lignin–quinone levels were found to correlate with pulp brightness and brightness ceiling values, suggesting that quinones negatively impact brightness development [21].

Although lignin–quinones are widely acknowledged to be important chromophores, until recently few reliable methodologies were available for the quantitative analysis of these structures in lignocellulosic materials [23]. Visible absorption spectroscopy is not directly effective for lignin–quinone quantification because of the broad featureless nature of lignin absorption spectra [24]. Classical colorimetry–based [23] and hydrazine oxidation [23] methods of quinone measurement are difficult to apply. Ortho–
phenylenediamine derivatization and fluorescence spectroscopy has been used for the determination of ortho–benzoquinone structures in mechanical pulps [25, 26]. Unfortunately, the technique is not applicable for the analysis of important para–benzoquinone structures.

Recently, 19F–NMR–based spectroscopic techniques have been developed for the analysis of quinone structures in isolated lignins. 4–trifluoromethylphenylhydrazine derivatization/19F–NMR was applied for quinone analysis on a range of isolated lignins [27, 28]. Alternatively, derivatization by Ruppert's reagent has been suggested for lignin–carbonyl analysis [29], but model compound studies have revealed overlap between para–quinone and aldehyde derivatives [30].

A number of reports have described trimethylphosphite (TMP) derivatization of mechanical pulps. TMP has been reported to specifically form adducts with ortho–quinone structures [31-35]. Lebo et al. were first in applying TMP derivatization and phosphorus microanalysis for ortho–quinone quantification during mechanical pulp photoyellowing [31, 32]. Similarly, Konya and Scaiano employed a trialkylphosphite–based derivatization procedure to detect ortho–quinones by fluorescence spectroscopy [33]. Argyropoulos et al. used solid–state 31P–NMR and TMP derivatization to qualitatively monitor ortho–quinone levels in a range of mechanical pulps [34]. Argyropoulos et al. also reported that carboxylic acid groups, but not carboxylic acid salts, interfere with solid–state 31P–NMR analysis of quinones [35].

Recent investigations of TMP derivatization has revealed that both ortho– and para–benzoquinone structures in lignins can be quantified simultaneously. The fundamental chemistry of the method has been verified by model compound studies [22, 36-38]. The combined ortho– and para–quinone contents of isolated lignins can readily be detected by TMP derivatization and 31P–NMR spectroscopy [21, 22, 28, 37]. Similarly, Argyropoulos and Zhang have shown the application of TMP derivatization on a variety of isolated lignin samples [36]. Recently, Zhang and Gellerstedt applied the methodology towards the analysis of milled–wood lignin samples [39].

This paper describes our ongoing research utilizing TMP derivatization and 31P–NMR spectroscopy as a tool for quantitative analysis of quinone structures in isolated lignins. The purpose of this study was to optimize quinone derivatization conditions and
understand the TMP derivatization and degradation chemistries. Then, the developed procedure was applied for the analysis of residual lignins isolated from chlorine dioxide, oxygen, alkaline extraction and peracetic acid bleached pulps.

Experimental Section

All chemicals were purchased commercially and used without further purification, unless otherwise noted. 4–methyl–1,2–benzoquinone, 4–*tert*–butyl–1,2–benzoquinone, 3–methoxy–1,2–benzoquinone, and 2–*tert*–butyl–1,4–benzo-quinone were prepared by silver oxide oxidation of the analogous catechols and hydroquinone using the method of Cason [40]. Poly(4–vinylphenol) (PVP, MW ~ 22,000), enriched in quinone content, was prepared by Fremy’s reagent oxidation according to a procedure modified from the literature [41]. Structures of quinone model compounds are illustrated in Figure 1.

![Figure 1. Structures of model compounds studied.](image)

Chlorine dioxide (D) and alkaline extracted (E) pulps were bleached as previously described [42]. Both conventional (kappa = 28) and EMCC™ (kappa = 29) laboratory softwood kraft pulps were used. Chlorine dioxide bleaching was performed in a Quantum Technologies mixer at 45°C, 10% consistency, using a kappa factor of 0.2 and a 30–
minute reaction [42]. The alkaline extraction stage was performed in a peg mixer at 70°C, 10% consistency, using ~1.2% NaOH charge and a 60-minute reaction.

Oxygen delignified and peracetic acid treated pulps were prepared as previously described [43]. A laboratory softwood polysulfide/anthraquinone (PS/AQ) kraft pulp (kappa = 45.4) was used [43]. Oxygen delignification was accomplished in a peg mixer at 110°C, with ~1.1% NaOH charge, using 70 psig oxygen pressure and a 60-minute reaction [43]. Equilibrium peracetic acid treatment was performed at 80°C using a 6% charge and 60-minute reaction.

Lignins were isolated from bleached pulps by an acidic 1,4-dioxane isolation procedure previously reported [42, 44]. Lignin was extracted from the pulp with 90% 1,4-dioxane/0.1 N HCl (v/v) solution (10% consistency) by refluxing for 2 hours under an argon atmosphere. The mixture was then filtered, concentrated, and purified by precipitation. Isolated lignin yield was approximately 30–46% relative to pulp kappa number [42, 43]. Purified lignin was freeze-dried and used for further analysis.

Dry model compounds (0.2 mmol) and lignin (30 mg) were derivatized with 250 μL TMP and 250 μL anhydrous solvent under an argon atmosphere at room temperature for two days. TMP was previously purified by distillation from sodium metal. The following derivatization solvents were studied: dimethylformamide (DMF), DMF containing 2% water, and dimethylsulfoxide (DMSO). Derivatized samples were prepared for analysis by removing excess TMP under vacuum at 40°C. Then, 250 μL DMSO was added and the sample was placed under vacuum at 50°C until nearly dry.

Derivatized model compounds were dissolved in 450 μL of DMSO–d₆ containing 19.3 mg/mL tri-meta-tolylphosphate (TTP) and 6.0 mg/mL chromium–acetylacetonate (Cr(acac)₃). Treated lignins were dissolved in 450 μL of DMSO–d₆ containing TTP (0.84 mg/mL) and Cr(acac)₃ (1.0 mg/mL). Derivatized samples were hydrolyzed by the addition of water (10 μL for model compounds and 5 μL for lignin).

Phosphorus–NMR spectra were acquired with a Bruker 400 MHz NMR spectrometer using the following quantitative conditions: 90° pulse, 5-second pulse delay, inverse-gated broadband proton decoupling, 64K time domain, and one degree of zero filling. For treated model compounds 100–400 scans/spectrum were collected. For treated lignin 2000 scans/spectrum were collected. The internal standard, TTP, gave a sharp
Results and Discussion

Derivatization Chemistry. Trivalent phosphorous compounds, particularly trialkylphosphites, are well known to react specifically with ortho- and para-quinones. The chemistry of TMP reactivity with quinone structures has been extensively studied by Ramírez and others [45-48].

In recent years, interest in detecting quinones in lignocellulosic materials has led to a reexamination of TMP/quinone derivatization chemistry. Shown in Figure 2 is the reaction of the ortho-quinone model compound 3-methoxy-1,2-benzoquinone (I) with TMP. The initial stages of TMP/quinone derivatization are obscure, but electron spin resonance spectroscopy has revealed that the reaction may proceed by a radical mechanism [49].

Figure 2. Reaction of TMP with 3-methoxy-1,2-benzoquinone.

Regardless of the initial mechanism of phosphorus attack, cyclization occurs and a benzodioxaphospholene structure (Ia, Figure 2) is formed [46]. The benzo-dioxaphospholene adduct can readily be detected by ^{31}P-NMR spectroscopy at approximately
δ -45 ppm. Many reports have extensively documented this facile reaction on a variety of ortho-quinone compounds [22, 36-38, 47, 48, 50].

Dioxaphospholene structures are known to be unstable towards both water and oxygen [47, 51]. We envisioned that practical TMP derivatization of lignin would likely involve unavoidable exposure to water. Therefore, understanding the hydrolysis chemistry of benzodioxaphospholenes is critical for the development of a robust quinone analysis method.

The literature contains a number of reports regarding the hydrolysis of dioxaphospholene structures with water. Early reports by Ramirez [46, 52, 53] indicated that the addition of water to aliphatic-diketone derived dioxaphospholenes resulted in nearly quantitative conversion to the cyclic phosphate ester (analogous to Ib, Figure 2, δ ~12 ppm, cf. [54]). Later, studies of the hydrolysis reaction on related substrates found complete hydrolysis to the open-chain phosphate ester form (analogous to Ic) [47, 55, 56].

Until recently, few hydrolysis studies on (ortho-quinone-derived) benzodioxaphospholene structures have been reported. Kirillova and Kukhtin found that the hydrolysis of dioxaphospholenes derived from TMP/1,2-naphthoquinones gave predominantly the dimethyl-phosphate ester with little cyclic phosphate adduct [57]. A number of workers, including this group [22, 37], have recently confirmed that TMP derivatization of ortho-quinones, followed by hydrolysis, yields stable dimethylphosphate ester products and negligible cyclic phosphate ester content [36, 38, 48, 50, 57].

For 3-methoxy-1,2-benzoquinone, the stable products of hydrolysis are two dimethylphosphate esters (Ic, Figure 2) with resonances at δ -2.0 and δ -2.7 ppm (Table 1). Note, ring opening of the benzodioxaphospholene structure leads to either C1 or C2 substituted isomers (Ic, Figure 2). The chemical shifts of adduct(s) Ic compare favorably with δ -2.33 ppm reported in related studies (CDCl₃ solvent) [36, 50]. 4-tert-Butyl- and 4-methyl-1,2-benzoquinone were derivatized by TMP and also displayed adducts in the δ -2.5 ppm region (Table 1).

We further explored characterization of adduct Ic (Figure 2) by ³¹P-¹H heterocorrelation spectroscopy using the COLOC pulse sequence [58]. Selecting a phosphorus-proton spin coupling constant of 11.0 Hz, indicative of a POCH₃ moiety, we found the
Table 1. Chemical shifts for TMP–quinone adducts.

<table>
<thead>
<tr>
<th>Benzoquinone</th>
<th>δ 31P (ppm) a</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–methoxy–1,2–benzoquinone (I)</td>
<td>-2.0, -2.7</td>
</tr>
<tr>
<td>4–tert–butyl–1,2–benzoquinone (II)</td>
<td>-2.3, -2.6</td>
</tr>
<tr>
<td>4–methyl–1,2–benzoquinone (III)</td>
<td>-2.4, -2.6</td>
</tr>
<tr>
<td>2,6–dimethoxy–1,4–benzoquinone (IV)</td>
<td>-1.6, -1.7</td>
</tr>
<tr>
<td>2–tert–butyl–1,4–benzoquinone (V)</td>
<td>-2.6, -2.7</td>
</tr>
</tbody>
</table>

a chemical shift of dimethylphosphate ester products.

The expected correlation between the phosphorus signal at δ -2.0 and -2.7 ppm with methoxyl proton, δ 3.8 ppm, thereby further supporting assignment of the adducts as dimethylphosphate esters (Figure 3).

Figure 3. 31P–1H heterocorrelation spectrum (COLOC) of TMP treated 3–methoxy–1,2–benzoquinone.

The reaction of TMP with para–benzoquinone structures has been well documented [22, 36, 37, 45–47, 50, 59–61]. In Figure 4 the reaction of TMP with 2–tert–butyl–1,4–benzoquinone (V) is shown. Initial attack of the phosphorus is reported to give a tetraalkoxyphosphonium intermediate. The intermediate (Va, Figure 4) is a very reactive alkylating agent (cf. [62]) and is readily degraded by water to the analogous hydroquinone (Vb, Figure 4) [60, 63, 64].
If water is excluded from the reaction mixture, methyl group translocation to another molecule Va (Figure 4) gives the dimethylphosphate ester (Vc) in high yield [22, 36, 37, 59]. Note, although the reaction intermediate (Va, Figure 4) is hydrolytically unstable, the dimethylphosphate ester product(s) are stable to the presence of water [64]. As with the ortho-benzoquinone substrates, TMP derivatized para-benzoquinones may give two isomeric dimethylphosphate ester products. From Table 1, chemical shift data for the 2-tert-buty1- and 2,6-dimethoxy-1,4-benzoquinone derived phosphate esters were found at δ -1.6 to -2.7 ppm — in the same region as derivatized ortho-benzoquinones.

Yield Data. Table 2 lists dimethylphosphate ester yield data for TMP derivatized of ortho- and para-benzoquinone model compounds. The initial derivatization conditions involved 50% TMP/DMF treatment for two days. The most sterically hindered benzoquinones, II and IV (Table 2), were found to give high yield (>83.7%) of the desired dimethylphosphate adduct. Generally, the dimethylphosphate yield appeared to correlate with benzoquinone structure.

We suspected that lower derivatization yields observed for some benzoquinone compounds (Table 2) were related to instability of the model. Quinones are well known to be unstable to the presence of light [65] and can also undergo self dimerization via the Diels–Alder reaction (4π + 2π cycloaddition) [66]. Note, when quinone I was merely
<table>
<thead>
<tr>
<th>Benzoquinone</th>
<th>Yield a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-methoxy-1,2-benzoquinone (I)</td>
<td>53.5 (80.8 b, 22.2 c)</td>
</tr>
<tr>
<td>4-tert-butyl-1,2-benzoquinone (II)</td>
<td>83.7 (84.1 b)</td>
</tr>
<tr>
<td>4-methyl-1,2-benzoquinone (III)</td>
<td>69.9 (71.7 b)</td>
</tr>
<tr>
<td>2,6-dimethoxy-1,4-benzoquinone (IV)</td>
<td>95.7</td>
</tr>
<tr>
<td>2-tert-butyl-1,4-benzoquinone (V)</td>
<td>70.1</td>
</tr>
<tr>
<td>oxidized PVP (VI)</td>
<td>0.116 mmol/g</td>
</tr>
<tr>
<td>PVP</td>
<td>0.006 mmol/g</td>
</tr>
</tbody>
</table>

a yield determined by 31P–NMR spectroscopy.
b cooled to -52°C then treated with 100% TMP for 16 hr.
c dissolved in DMF then after 24 hr treated with TMP for 2 days.

A series of ortho–benzoquinone compounds were studied using 100% TMP derivatization and, in all cases, the yield increased, especially so for 3-methoxy-1,2-benzoquinone (I, Table 2). For small ortho–benzoquinone compounds, derivatization yield may be dependent on the relative rates of self-dimerization and TMP derivatization. Although, small molecule quinones have been used to represent lignin–quinone structures [36-38], in some cases their ephemeral stability in solution may preclude extrapolation of the yield results to lignin–quinones. Nevertheless, sterically hindered benzoquinones, as described in this report (Table 2) and others [36-38], have given very high dimethylphosphate yields.

During the course of this investigation, PVP enriched with ortho–benzoquinone structures (VI, Figure 1) was prepared and derivatized by TMP (Table 2). An increase in quinone content, relative to unoxidized PVP, was noted. The estimated ortho–benzoquinone enrichment was ~5% of the monomer units. Polymeric quinones such as oxidized PVP should serve as realistic models for lignin–quinones. Like lignin, quinone substructures in oxidized PVP are present at low level in a low mobility matrix. Dimerization reactions should be much less likely to occur than with small molecule
quinones. Further work is in progress to verify the quinone content data determined for the oxidized PVP by an alternative method.

TMP Degradation Products. Trialkyl- and triaryl-phosphites are well known to degrade to hydrogen-phosphite, \((RO)_{2}P(=O)H\), structures by the action of water or acids [67-69]. Potentially during TMP (VI, Figure 5) treatment of lignin, dimethylphosphite \((CH_{3}O)_{2}P(=O)H\) may form because of the presence of traces of water in the reaction mixture and/or lignin–acid or hydroxyl functional groups (VI→VII, Figure 5). Methyl–dimethylphosphonate (IX, Figure 5) is a degradation product that can arise by a facile Arbusov rearrangement of TMP [70, 71]. TMP oxidation by air, particularly in the presence of quinones [72], can give trimethylphosphate (VIII, Figure 5) [22, 36-38]. Ideally, degradation products from TMP should either be noninterfering or removed prior to quinone analysis.

![Figure 5. TMP degradation scheme.](image)

Although the concentration of degradation products in the TMP reagent is low, their presence can make quinone analysis particularly challenging. An understanding of the potential interference of TMP degradation products is especially important in connection with lignin–quinone analysis in which the quinone content is very low.

Figure 6 illustrates a \(^{31}\text{P}-\text{NMR}\) spectrum of TMP and its degradation products (DMSO–\(d_{6}\) solvent). Chemical shifts and \(^{31}\text{P}-\text{^1}H\) coupling constants for TMP-derived structures are given in Table 3. Clearly, all degradation products, as illustrated in Figure 5, are observed in the spectrum (Figure 6). The component with a chemical shift at
Figure 6. Proton decoupled ^{31}P–NMR spectrum of TMP and degradation products. Inset: A) Proton coupled, and B) Waltz–16 proton decoupled.

δ 12.6 ppm gives a doublet of two septets ($^3J_{\text{PCH}} = 12.1$ Hz) when observed with protons coupled (Figure 6A). The septet indicates the presence of two –OCIH$_3$ groups directly bonded to phosphorus [73]. The large dispersion between the two septets is due to a 699.4 Hz coupling constant ($^3J_{\text{PH}}$), which is a unique signature for hydrogen phosphites [74], arising from dimethylphosphite (Figure 6). The noted presence of dimethylphosphite is consistent with TMP hydrolysis.

Table 3. ^{31}P–NMR parameters for TMP related compounds.

<table>
<thead>
<tr>
<th>δ ^{31}P (ppm)a</th>
<th>Lit. δ ^{31}P (ppm)e</th>
<th>Compound</th>
</tr>
</thead>
<tbody>
<tr>
<td>140.9 (10.7d)</td>
<td>140.9 (10.5–10.7d)</td>
<td>trimethylphosphite (VI)</td>
</tr>
<tr>
<td>33.8 (17.5c, 11.0d)</td>
<td>29.1–32.3 (17.3c, 10.9d)</td>
<td>dimethylmethyl-phosphonate (IX)</td>
</tr>
<tr>
<td>12.6 (699.4b, 12.1d)</td>
<td>9.3–14.3 (710b, 12d)</td>
<td>dimethylphosphite (VII)</td>
</tr>
<tr>
<td>3.5 (11.1d)</td>
<td>-2.4–2.4 (10.2–11.4d)</td>
<td>trimethylphosphate (VIII)</td>
</tr>
</tbody>
</table>

a DMSO–d_6 solvent, ~10% v/v, H$_3$PO$_4$ external standard coupling constants: $^3J_{\text{PCH}}$ (Hz)h, $^2J_{\text{PC}}$ (Hz)c, $^3J_{\text{POCH}}$ (Hz)d

e literature: [73-78]
Our experience has indicated that the presence of dimethylphosphite causes difficulty with trace quinone quantification. Proton decoupling is often used in 31P-NMR spectroscopy because a increase in peak sharpness and sensitivity can be gained. Standard 1D 31P (and 13C) pulse sequences on modern NMR spectrometers typically use the Waltz-16 (1H) decoupling scheme. Unfortunately, Waltz-16 1H decoupling of dimethylphosphite was found to introduce cycling sideband interference [79] into the spectrum (Figure 6 B). The decoupling artifacts can clearly be seen in Figure 6 B as spurious spikes symmetrical about the central resonance. The spurious resonances were observed to occur well within the 8 -2 ppm region used to monitor benzoquinone derivatives.

Preliminary 31P-NMR studies of TMP-derivatized lignin (containing dimethylphosphite) were found to suffer from severe cycling sideband interference when Waltz-16 1H decoupling was used. Two strategies were selected to give a robust method for trace quinone analysis. First, the negative influence of dimethylphosphite was substantially reduced by removing the volatile compound using vacuum and heat [21, 22, 37]. Second, residual dimethylphosphite was found to be effectively 1H decoupled by using classical high-power broadband decoupling (Figure 6) instead of the Waltz-16 sequence. To further mitigate TMP degradation, quantitative derivatization was conducted under an argon atmosphere, in the dark, and using anhydrous solvents.

Quinone Contents of Isolated Lignins. We applied TMP derivatization/31P-NMR analysis to a series of lignins isolated from bleached and unbleached kraft pulps. An important NMR parameter that must be evaluated prior to quantitative NMR acquisition is the spin–lattice (T_1) relaxation parameter. Typically five times the T_1 parameter is selected as the shortest pulse delay that may be used during quantitative NMR acquisition [80].

The applicable T_1 parameters were determined in this study on actual derivatized lignin samples and oxidized PVP (Table 4). Additionally, the T_1 parameter for the internal standard was determined at a concentration typical of routine analysis (Table 4). It should be noted that the T_1 parameter is a dynamic parameter that is influenced by a number of factors including: concentration of Cr(acac)$_3$, sample concentration, solvent,
Table 4. Chemical shifts and spin–lattice relaxation times for TMP–quinone adducts.

<table>
<thead>
<tr>
<th>Compound</th>
<th>δ(^{31})P (ppm)</th>
<th>T(_1) (sec)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxidized PVP</td>
<td>-2.7(^b)</td>
<td>0.70</td>
</tr>
<tr>
<td>TMP treated D(_0)</td>
<td>-2.5(^b)</td>
<td>0.70</td>
</tr>
<tr>
<td>(KF = 0.2, SW brownstock kappa = 29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIP</td>
<td>-16.3</td>
<td>0.77 (0.75 (^c))</td>
</tr>
<tr>
<td>(0.84 mg/mL, 1.0 mg/mL Cr(acac)_3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) T\(_1\) of dimethylphosphate adduct (~ -2 ppm) or TTP.
\(^b\) determined by lineshape analysis (NUTS, Acorn NMR).
\(^c\) in the presence of derivatized D\(_0\) lignin (KF = 0.2, SW brownstock kappa = 29).

and others [80, 81]. Quantitative NMR acquisition can be assured for any of the samples listed in Table 4 when a 5-second (90°) pulse delay is used.

Table 5 gives quinone content data for a series of residual lignins isolated from bleached pulps. Referring to item X (Table 5), the lignin–quinone content was measured after 2 and 7 days of TMP treatment. The content measured after 2 days was 98% of the 7-day result, indicating that a 2-day reaction is sufficient for quantitative derivatization. Similarly, the quinone contents for various other isolated lignins also had second day values close to the 7 day result (>93%, XI, XIII, and XIV, Table 5). In a few cases, derivatization was studied using DMSO as a solvent instead of DMF (XII and XV–XVIII, Table 5) (cf. [21, 22, 28, 37]). The quinone content values were close in value when either solvent was used (XII, Table 5).

In a recent effort, Argyropoulos and Zhang found that the TMP derivatization yield of simple quinone compounds is ~70% when the reaction is performed in DMF containing both 0.5% water and lignin [36]. As a result of this experiment, they concluded that the measured quinone content of TMP derivatized lignin must be multiplied by 1.43 (i.e. 100/70) to give the actual content. From a review of the literature, the lower derivatization yield, observed by Argyropoulos and Zhang [36], is consistent with reports indicating that TMP, in the presence of water, acts as a quinone reducing agent [60, 63, 64].

To verify the hypothesis that water reduces derivatization yield, we derivatized a chlorine dioxide residual lignin using DMF solvent containing 2% water. The measured
Table 5. Quinone contents of TMP derivatized lignins.

<table>
<thead>
<tr>
<th>Residual Lignin</th>
<th>Quinone concentration (mmol/g lignin)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DMF-(2–day)</td>
</tr>
<tr>
<td></td>
<td>DMF-(7–day)</td>
</tr>
<tr>
<td>SW kraft pulps</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>D₀ (KF = 0.2, EMCC™ BS kappa = 29)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td>BS (kappa = 28)</td>
</tr>
<tr>
<td>XII</td>
<td>D₀ (KF = 0.2, BS kappa = 28)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>XIII</td>
<td>DE (KF = 0.05)</td>
</tr>
<tr>
<td>XIV</td>
<td>DE (KF = 0.2)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PS/AQ kraft pulps</td>
<td></td>
</tr>
<tr>
<td>XV</td>
<td>BS (kappa = 45)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>XVI</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>XVII</td>
<td>OO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>XVIII</td>
<td>OPa</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

— = not determined, a treatment time, b see Froass et al. [82], c 7 days 50% TMP/DMSO, d 2 days 50% TMP/DMF (2% water), e see Moe et al. [43].

quinone content was found to be 53% of the value when anhydrous DMF solvent was used (X, Table 5). Therefore, the use of both dry samples and reagents during TMP treatment are likely essential for quantitative derivatization.

Chlorine dioxide has been reported in several studies [17-19, 83-86] to oxidize phenolic lignin model compounds to ortho- and para–benzoquinone structures. Table 5 documents the dramatic introduction of colored lignin–quinone structures as a result of chlorine dioxide bleaching. Comparing residual lignins isolated from unbleached (XI, Table 5) and chlorine dioxide bleached (XII) pulps [82], a ~3–fold increase in the quinone is measured.

Increased lignin–quinone content after chlorine dioxide bleaching may be counterintuitive because it strongly suggests the bleaching stage darkens the lignin remaining in the pulp. In fact, by visible spectroscopy, we have demonstrated that chlorine dioxide
darkens lignin [22]. These results suggest that chlorine dioxide bleaching involves both productive lignin removal and counter-productive lignin darkening reactions.

Industrially, after chlorine dioxide bleaching, pulps are processed with an alkaline extraction stage. Residual lignins isolated from pulps at this stage showed a dramatically reduced quinone content (XIII and XIV, Table 5). The lower quinone content is consistent with reports indicating alkali degrades quinones to α-hydroxy-carboxylic acid structures via a benzylic acid–type rearrangement [3]. Alternatively, alkali can transform quinones into more highly colored hydroxy-quinone structures [3, 87] that may be resistant to subsequent bleaching operations.

Residual lignins, isolated from oxygen delignified and peracetic acid pulps [43], were also investigated. The quinone contents of residual lignin from the unbleached pulp (XV, Table 5) was found to be low. Oxygen (XVI) and double-stage oxygen (XVII) caused an increase in the measured quinone content, although not as dramatic as observed with chlorine dioxide. Peracetic acid was applied after oxygen delignification gave a beneficial reduction of the quinone content. This result is consistent with higher brightness, as previously reported [43] and its known chemistry [88].

Figure 7 illustrates 31P–NMR spectra of TMP–derivatized chlorine dioxide residual lignin, oxidized PVP, and PVP. The broad Gaussian resonances (Figure 7), centered at $\delta \sim -2.5$ ppm (Table 4), are attributed to dimethylphosphate TMP/quinone adducts. Note, the resonances from derivatized quinone structures are well separated from downfield signals due to trimethylphosphate (VIII, Table 3) and other aliphatic phosphate esters. The reproducibility of quinone measurement was found to be ±3.5% using an alkaline extraction stage residual lignin (XIV, 2–day treatment, Table 5) derivatized in triplicate.

Quinone Content of Oxidized PVP. Factor and Donahue used TMP derivatization/31P–NMR to qualitatively determine ortho–quinone structures in γ–irradiated bisphenol–A polycarbonate [89]. They monitored derivatized ortho–quinones as the unstable benzo-dioxaphospheinene derivative (analogous to Ia, Figure 2). Their work confirmed the presence of quinones as potential colored bodies in these polymers. Similarly, this present study demonstrated the ability to quantify quinone structures in polymeric oxidized PVP
Quinone Adduct

Internal Standard

Figure 7. 31P-NMR spectra of compounds treated with 50% TMP/DMF for 2 days: A) D$_0$ residual lignin, B) oxidized PVP, and C) PVP.

(Table 2 and Figure 7). Potentially, TMP derivatization may have broad applicability for the quantitative study of quinone contents in a variety of aromatic-based polymeric materials.

Secondary Lignin/TMP Reactions. Lignin is rich in a variety of hydroxyl functional groups, and our studies have indicated that a portion of these structures may form TMP-derived products. Identification of these "secondary" reaction products was critical because they may have been falsely attributed to quinone–TMP adducts.

Figure 8 reveals 31P–NMR spectra of TMP–treated 3,4–dimethoxybenzyl alcohol (A and B) and 3,4–dimethoxybenzoic acid (C). The benzoic acid did not form any apparent adducts with TMP (δ 140 to -50 ppm monitored) and is shown as a blank spectrum. Clearly, in the blank spectrum (Figure 8C) TMP degradation products are observed, including: dimethylphosphite (VII, Figure 5) and methylphosphate esters (δ 3.5 (VIII), 1.8, and 0.8 ppm).
Hoffmann [90] and others [71, 91, 92] have noted that trialkylphosphites can undergo transesterification with alcohols. Figure 9 illustrates a pathway of TMP benzylalcohol exchange with subsequent hydrolysis of the mixed trialkylphosphite. Note, the 1H decoupled spectrum of 3,4-dimethoxybenzyl alcohol shows the appearance of two new resonances after TMP treatment and hydrolysis (δ 11.6 and 10.2 ppm, Figure 8B). These signals were tentatively assigned to hydrogen–phosphites formed from single (XIX, Figure 9) and multiple exchange reactions. The assignment of this structure type is strongly supported by 31P–1H coupling constant data (~700 Hz, Figure 8A).

Figure 9. Alcohol exchange reaction between TMP and benzyl alcohol.

Figure 10 reveals the presence of hydrogen–phosphite structures in TMP–derivatized chlorine dioxide residual lignin. Adducts can be identified in the 1H coupled
spectra (Figure 10A) as hydrogen–phosphites ($J_{PH} = 716 \text{ Hz}$), possibly derived from lignin hydroxyl groups such as benzyl alcohol. The lignin polymer is much less mobile than the small molecule benzyl alcohol, hence, only a single alcohol exchange reaction is most likely to occur. Interestingly, the chemical shift of the hydrogen–phosphite product is coincident with cyclic phosphate adducts expected from TMP derivatized ortho–quinones (δ ~ 12 ppm, see Figure 2). But, $^{31}\text{P–}^{1}\text{H}$ spin coupling data excludes the possibility that the δ ~ 12 ppm signal can be assigned to an ortho–quinone derived cyclic phosphate ester.

![Figure 10](image.jpg)

Figure 10. $^{31}\text{P–NMR}$ spectra of TMP treated D_0 residual lignin: A) ^{1}H coupled and B) ^{1}H decoupled.

Conclusions

Trimethylphosphite derivatization and $^{31}\text{P–NMR}$ spectroscopy has proved useful for a study of the introduction and removal of colored benzoquinone structures during kraft pulp bleaching. Chlorine dioxide bleaching dramatically increased lignin–quinone content whereas subsequent alkaline extraction reduced the content. Oxygen delignification also resulted in quinone formation, but to a lesser extent than with chlorine dioxide. Peracetic acid displayed a beneficial effect by eliminating quinone structures. Consistent with known chemistry, trimethylphosphite in the presence of water gave drastically lower
derivatization yield for an isolated chlorine dioxide residual lignin. The optimum derivatization treatment time for isolated lignin in anhydrous DMF solution was found to be approximately two days.

The fundamental chemistry of TMP derivatization of lignin was explored using quinone model compounds, 3,4-dimethoxybenzyl alcohol, and 3,4-dimethoxybenzoic acid. Both ortho- and para-benzoquinone model compounds were found to give dimethylphosphate ester products consistent with our previous studies and literature reports. 3,4-Dimethoxybenzoic acid was found to be unreactive with trimethylphosphite. Conversely, 3,4-dimethoxybenzyl alcohol gave dialkylhydrogen phosphite adducts after transesterification with trimethylphosphite and subsequent hydrolysis.

Derivatization yields for quinone model compounds were generally high; cases of incomplete derivatization may be explain by competing self–dimerization and degradation reactions. Hence, some monomeric thermally unstable quinone model compounds are not effective models for benzoquinone structures in isolated lignins. A model polymeric ortho–quinone was prepared by the oxidation of poly(4-vinylphenol) and characterized by trimethylphosphite/\(^{31}\)P-NMR spectroscopy. Therefore, the developed method may have broader applicability for the study of quinone structures in other aromatic and phenolic polymers.

Major degradation products of the derivatization reagent, TMP, were identified by \(^{31}\)P-NMR chemical shifts and \(^{31}\)P-\(^1\)H coupling constants. Dimethylphosphite was found to cause difficulty with trace lignin–quinone analysis. The negative influence of dimethylphosphite was substantially reduced by removing the volatile compound using vacuum and heat and using classical high–power broadband decoupling \(^1\)H decoupled during NMR acquisition.

Acknowledgements

The authors wish to thank Drs. McDonough, Dimmel, and Lucia for helpful suggestions and review of this manuscript. We would also like to thank the Institute of Paper Science and Technology (IPST) and its member companies for their financial support.
Portions of this work were used by M. Z. as partial fulfillment of the requirements for the Ph.D. degree at IPST.

List of Abbreviations

BS = brownstock, unbleached pulp
Cr(acac)3 = chromium–acetylacetonate
D0, D = chlorine dioxide bleached pulp
DMF = dimethylformamide
DMSO = dimethylsulfoxide
KF = kappa factor
O = oxygen delignified pulp
ortho-benzoquinone = 1,2-benzoquinone
Pa = peracetic acid bleached pulp
para-benzoquinone = 1,4-benzoquinone
PVP = poly(4-vinylphenol)
SW = softwood kraft pulp
T1 = spin–lattice relaxation
TMP = trimethylphosphite
TTP = tri-\textit{meta}-tolylphosphate

References

