CONVERSE POINCARÉ TYPE INEQUALITIES FOR CONVEX FUNCTIONS *

S. G. Bobkov† and C. Houdré ‡

November 20, 1995

Abstract

Converse Poincaré type inequalities are obtained within the class of smooth convex functions. This is, in particular, applied to the double exponential distribution.

Let \(\nu \) be the double exponential distribution on the real line, with density \(2^{-1} \exp(-|x|), x \in \mathbb{R} \). One of the main purposes of these notes is to prove:

Theorem 1 Let the random variable \(\xi \) have a double exponential distribution. Then, for any convex function \(f \) on the real line,

\[
E f'(\xi)^2 \leq \text{Var} f(\xi) \leq 4E f'(\xi)^2,
\]

with equality on the left-hand side for the function \(f(x) = |x| \).

The right inequality in (1) belongs to the class of Poincaré inequalities. For the measure \(\nu \), this second inequality is well-known (see for example Klaassen [Kl]) and valid without any convexity assumption. In the literature, one can also find a number of lower estimates for the variance of functions of various distributions ([Ca1], [Ca2], [CP], [HK], [Pa],...). We will see here, that within the class of all convex functions, it is sometimes possible to

*Key words: Poincaré inequality, Double exponential distribution.

†Research supported in part by the ISF grant NZX000 and NZX300.

‡Research supported in part by an NSF Postdoctoral Fellowship.
estimate below the variance of \(f(\xi) \) by a quantity similar to the one appearing in the Poincaré-type inequalities. This is in contrast to the fact that this is never possible within the class of all functions.

In fact, to consider a more general situation, let \(\mu \) be an arbitrary non-atomic probability measure on the real line \(\mathbb{R} \). Given \(a \in \mathbb{R} \), let \(\mu^-_a \) and \(\mu^+_a \) be respectively the left and the right conditional restriction of \(\mu \) to the half-lines \((-\infty, a] \) and \([a, +\infty) \), that is, for any Borel set \(A \),

\[
\mu^-_a(A) = \frac{\mu(A \cap (-\infty, a])}{\mu((-\infty, a])}, \quad \mu^+_a(A) = \frac{\mu(A \cap [a, +\infty))}{\mu([a, +\infty))}.
\]

The above definition makes sense when \(a_0(\mu) < a < a_1(\mu) \), where \(a_0(\mu) = \inf \operatorname{supp}(\mu) \), \(a_1(\mu) = \sup \operatorname{supp}(\mu) \). Let \(\operatorname{Var}(f, \mu) \) and \(\operatorname{Var}(\mu) \) denote respectively the variance of a function \(f \) and of the identity function \(i(x) = x \), with respect to \(\mu \). Throughout, it is also always assume that \(\mu \) has finite variance.

With these notations, the following gives a sufficient condition for a converse Poincaré inequality to hold within the class of convex functions.

Theorem 2 Let the random variable \(\xi \) be distributed according to \(\mu \). Define

\[
\sigma^2(\mu) = \inf_{a_0(\mu) < a < a_1(\mu)} \min \left(\operatorname{Var}(\mu^-_a), \operatorname{Var}(\mu^+_a) \right).
\]

Then, for any convex function \(f \) on the real line,

\[
\operatorname{Var} f(\xi) \geq \sigma^2(\mu) \mathbb{E} f'(\xi)^2.
\]

The property \(\sigma^2(\mu) > 0 \) implies that \(a_0(\mu) = -\infty \) and that \(a_1(\mu) = +\infty \). Thus, the infimum in (2) is in fact taken over the whole real line. This can easily be seen by applying (3) to the functions \(f(x) = (a - x)^+ \), \(f(x) = (x - a)^+ \), and letting respectively \(a \to a_0(\mu), a \to a_1(\mu) \). In addition, we then have

\[
\liminf_{a \to -\infty} \frac{1}{F(a)} \int_{-\infty}^{a} (a - x)^2 dF(x) > 0, \tag{4}
\]

\[
\liminf_{a \to +\infty} \frac{1}{1 - F(a)} \int_{a}^{+\infty} (x - a)^2 dF(x) > 0, \tag{5}
\]

where \(F(x) = \mu((-\infty, x]) \) is the distribution function of \(\mu \) (and of the random variable \(\xi \)). We do not know if the properties (4)-(5) which are necessary
for (3) to hold (up to a positive constant), imply that $\sigma^2(\mu) > 0$. One can however see that (4) and (5) imply that the tails $F(-x), 1 - F(x)$ are "big" and decrease at infinity rather slowly (at least as slowly as exponent). In particular, the normal distribution function does not satisfy (4)--(5). Therefore, one can not hope to extend (3) to the multidimensional case to get

$$\text{Var} f(\xi_1, \ldots, \xi_n) \geq c \mathbb{E} |\nabla f(\xi_1, \ldots, \xi_n)|^2,$$

where $(\xi_k)_{1 \leq k \leq n}$ is an i.i.d. sequence, f is an arbitrary smooth convex function on \mathbb{R}^n, ∇f is its gradient, and $c > 0$ does not depend on the dimension n. Indeed, assuming $\mathbb{E} \xi_k = 0$ and applying the above inequality to the functions of the form $f(x) = g((x_1 + \cdots + x_n)/\sqrt{n})$, we would obtain by the central limit theorem that

$$\text{Var} g(\xi) \geq c \mathbb{E} g'(\xi)^2$$

for the class of all convex functions g and with ξ normal.

Note that a convex function f on \mathbb{R} is differentiable at all points, except possibly on a countable set, and that in general one defines

$$|f'(x)| = \max\{|f'(x^-)|, |f'(x^+)|\}.$$

Of course, this is essential only for distributions F which have atoms.

Denote by \mathcal{F}_+ the family of all non-decreasing, convex functions on the real line.

Lemma 3 Given a random variable ξ with finite second moment and a constant $c > 0$, the following are equivalent:

a) $\text{Cov}(f(\xi), g(\xi)) \geq c \mathbb{E} f'(\xi)g'(\xi)$, for any $f, g \in \mathcal{F}_+$ such that $f(\xi)$ and $g(\xi)$ have finite second moment;

b) $\text{Var} f(\xi) \geq c \mathbb{E} f'(\xi)^2$, for any $f \in \mathcal{F}_+$;

c) $\text{Var}(\xi - a)^+ \geq c \mathbb{P}\{\xi \geq a\}$, for any a real.

Proof. Clearly, a) implies b) which implies c) (note also that b) makes sense even if $f(\xi)$ has infinite second moment). To derive a) from c), one can assume that the distribution function F of ξ is continuous, and that the functions f and g in a) are non-negative and vanish at $-\infty$. In such a case, these functions can be represented as a mixture of functions of the
form \(f_a(x) = (x - a)^+ \), and since \(\text{Cov}(f(x), g(x)) \) is linear in \(f \) and in \(g \), it suffices to establish the inequality \(a/ \) for such functions, only. Let \(a \leq b \). By an integration by parts, we easily have

\[
\text{Cov}(f_a(x), f_b(x)) = \int_b^{+\infty} (x - a)(x - b)dF(x) - \int_a^{+\infty} (x - a)dF(x)\int_b^{+\infty} (x - b)dF(x)
\]

\[
= \int_b^{+\infty} (2x - a - b)(1 - F(x))dx - \int_a^{+\infty} (1 - F(x))dx\int_b^{+\infty} (1 - F(x))dx.
\]

Hence,

\[
\frac{d}{da} \text{Cov}(f_a(x), f_b(x)) = -\int_a^{+\infty} (1 - F(x))dx + (1 - F(a))\int_b^{+\infty} (1 - F(x))dx \leq 0,
\]

that is, \(\text{Cov}(f_a(x), f_b(x)) \) is non-increasing in \(a \), while the right hand–side of \(a \), \(cE f'_a(\xi)f'_b(\xi) = c(1 - F(b)) \), does not depend on \(a \). Therefore, the inequality \(a/ \) is true for all \(a \leq b \) if and only if it is true for all \(a = b \), in which case it becomes \(c/ \). The lemma is proved.

As it follows from Lemma 3, the optimal constant \(c \) in \(b/ \) can be found from \(c/ \). However we would like to mention another way of finding this constant when the random variable \(\xi \) is exponentially distributed with density \(\exp(-x), x > 0 \).

Theorem 4 Let the random variables \(\xi, \eta \) and \(\zeta \) be independent, exponentially distributed random variables. Then, for any absolutely continuous functions \(f, g \) such that \(f(\xi) \) and \(g(\xi) \) have finite second moments,

\[
\text{Cov}(f(\xi), g(\xi)) = E f'(\xi + \eta)g'(\xi + \zeta).
\]

(6)

In particular, under the additional assumption \(f \in \mathcal{F}_+ \), we have

\[
\text{Var}f(\xi) \geq E f'(\xi)^2.
\]

(7)

Proof. Both sides of (6) are bilinear forms in \(f \) and \(g \), hence, it suffices to verify the equality for functions \(f(x) = \exp(itx), g(x) = \exp(isx) \). But for such functions, and if \(\varphi_\xi(t) \) is the characteristic function of \(\xi \), (6) becomes

\[
\varphi_\xi(t + s) - \varphi_\xi(t)\varphi_\xi(s) = -ts\varphi_\xi(t + s)\varphi_\xi(t)\varphi_\xi(s).
\]
CONVERSE POINCARÉ

This identity can easily be verified directly since \(\varphi_t(t) = 1/(1-it) \). To prove (7), we have from (6) and for \(f = g \):

\[
\Var f(\xi) = \int_0^{+\infty} \left(E f'(\xi + t) \right)^2 e^{-t} dt \leq \int_0^{+\infty} f'(t)^2 e^{-t} dt,
\]

since \(f' \) is non-negative and non-decreasing. Theorem 4 follows.

Proof of Theorem 2. Let \(\Var(f, \mu) \) be finite (otherwise, there is nothing to prove). Also, and without lost of generality \(f \) is assumed has a finite global minimum, say, at a point \(a \) (otherwise, one can approximate \(f \) by the sequence of convex functions \(f_n(x) = \max(f(x), -n) \), and then letting \(n \to \infty \) in (3) with \(f_n \) gives (3) for \(f \). As noted before, we can also assume that \(a_0(\mu) = -\infty, a_1(\mu) = +\infty \). Now, if \(\nu \) and \(\lambda \) are two probability measures, and if \(E_{\nu} f \) and \(E_{\lambda} f \), are the respective expectations of \(f \), we have the identity

\[
\Var(f, \nu + (1-p)\lambda) = p\Var(f, \nu) + (1-p)\Var(f, \lambda) + p(1-p)|E_{\nu} f - E_{\lambda} f|^2.
\]

Putting \(\nu = \mu^- \), \(\lambda = \mu^+ \), and \(p = F(a) \), we obtain

\[
\Var(f, \mu) \geq F(a)\Var(f, \mu^-) + (1 - F(a))\Var(f, \mu^+). \tag{8}
\]

By assumption, \(f \) is non-decreasing on \([a, +\infty)\) and non-increasing on \((-\infty, a)\). Hence Lemma 3 applied to \((f, \mu_a^+)\) and \((f, \mu_a^-)\) gives:

\[
\Var(f, \mu_a^+) \geq c^+(a) \int f'(x)^2 d\mu_a^+(x), \tag{9}
\]

\[
\Var(f, \mu_a^-) \geq c^-(a) \int f'(x)^2 d\mu_a^-(x), \tag{10}
\]

where the optimal values of \(c^+(a) \) and \(c^-(a) \) are given by

\[
c^+(a) = \inf_{b \geq a} \frac{\Var((x-b)^+, \mu_a^+)}{\mu_a^+(\{b, +\infty)\})}, \quad c^- \quad a = \inf_{b \leq a} \frac{\Var((b-x)^-, \mu_a^-)}{\mu_a^-((-\infty, b])}.
\]

Now, for any \(b \geq a \),

\[
\Var((x-b)^+, \mu_a^+) \mu_a^+(\{b, +\infty)\})
\]

\[
= \frac{1 - F(a)}{1 - F(b)} \left[\frac{1}{1 - F(a)} \int_b^{+\infty} (x-b)^2 dF(x) - \left(\frac{1}{1 - F(a)} \int_b^{+\infty} (x-b)dF(x) \right)^2 \right]
\]
\[
\frac{1}{1 - F(b)} \int_{b}^{\infty} (x - b)^2 dF(x) - \frac{1}{(1 - F(a))(1 - F(b))} \left(\int_{b}^{\infty} (x - b) dF(x) \right)^2 \\
\geq \frac{1}{1 - F(b)} \int_{b}^{\infty} (x - b)^2 dF(x) - \left(\frac{1}{1 - F(b)} \int_{b}^{\infty} (x - b) dF(x) \right)^2 \\
= \text{Var}((x - b)^+, \mu_b^+) = \text{Var}(\mu_b^+),
\]

since \(1 - F(a) \leq 1 - F(b),\) and \((x - b)^+ = x - b \pmod{\mu_b^+}\. Thus,
\[
c^+(a) \geq \min_{b \geq a} \text{Var}(\mu_b^+) \geq \sigma^2(\mu),
\]

where \(\sigma^2(\mu)\) is defined by (2). In the same way, \(c^-(a) \geq \sigma^2(\mu)\. Using these estimates in (9)-(10) and then in (8), gives (3)\. Theorem 2 is proved.

Proof of Theorem 1. Recall that \(du(x)/dx = 2^{-1} \exp(-|x|), x \in \mathbb{R}\. By symmetry, \(\text{Var}(\nu_\alpha^-) = \text{Var}(\nu_\alpha^+),\) so we need only to show that \(\text{Var}(\nu_\alpha^+) \geq 1,\) for all \(a \) real\. When \(a > 0,\) \(\nu_a^+\) is the one-sided exponential distribution, hence \(\text{Var}(\nu_a^+) = 1,\) and it only remains to consider the case \(a \leq 0\\. To perform some computations, we find it convenient to work with the distribution function \(F_a(x) = \nu_a^+((a, x)].\) \(F_a\) is simply a shift of \(\nu_a^+,\) and thus \(\text{Var}(\nu_a^+) = \text{Var}(F_a).\) Clearly, \(F_a\) has density \(e^{-|a+x|)/(2 - e^a)}, x \geq 0\\. Next, we use the elementary formulae

\[
\int xe^z dz = (x - 1)e^x, \quad \int xe^{-z} dx = -(x + 1)e^{-x},
\]

\[
\int x^2e^z dx = (x^2 - 2x + 2)e^x, \quad \int x^2e^{-z} dx = -(x^2 + 2x + 2)e^{-x},
\]

to find:

\[
(2 - e^a) \int_{-a}^{0} xdF_a(x) = \int_{0}^{-a} xe^{a+x} dx = e^a(x - 1)e^x \left|_{0}^{-a} \right.
\]
\[
= e^a \left[-(a + 1)e^{-a} + 1 \right] = -(a + 1) + e^a,
\]

\[
(2 - e^a) \int_{-a}^{\infty} xdF_a(x) = \int_{-a}^{\infty} xe^{-a+x} dx = e^{-a}(-(x + 1)e^{-x} \left|_{-a}^{\infty} \right.)
\]
\[
= 1 - a.
\]

Thus,
\[
\int_{0}^{\infty} xdF_a(x) = \frac{-2a + e^a}{2 - e^a}.
\]
Moreover,
\[
(2 - e^a) \int_0^a x^2 dF_a(x) = e^a(x^2 - 2x + 2)e^x|_0^a = (a^2 + 2a + 2) - 2e^a,
\]
\[
(2 - e^a) \int_a^\infty x^2 dF_a(x) = -e^{-a}(x^2 + 2x + 2)e^{-x}|_a^\infty = a^2 - 2a + 2,
\]
and thus,
\[
\int_0^\infty x^2 dF_a(x) = \frac{2a^2 + 4 + e^a}{2 - e^a}.
\]
Hence,
\[
\text{Var}(F_a) = \frac{2a^2 + 4 + e^a}{2 - e^a} - \left(\frac{-2a + e^a}{2 - e^a}\right)^2 = \frac{e^{2a} - 2a^2 e^a + 4ae^a - 8e^a + 8}{(2 - e^a)^2}.
\]
At this point, one can verify that \(\text{Var}(F_a) \to 2 = \text{Var}(\nu)\), as \(a \to -\infty\), and that \(\text{Var}(F_0) = 1\). Finally,
\[
\text{Var}(F_a) \geq 1 \iff e^{2a} - 2a^2 e^a + 4ae^a - 8e^a + 8 \geq (2 - e^a)^2 \\
\iff -2a^2 e^a + 4ae^a - 4e^a + 4 \geq 0 \\
\iff (a^2 - 2a + 2)e^a \leq 2 \\
\iff t^2 + 2t + 2 \leq 2e^t = 2(1 + t + t^2/2 + \cdots),
\]
where \(t = -a\). This last inequality is certainly true since \(t \geq 0\). The left inequality of Theorem 1 is proved.

Bibliography

S. G. Bobkov
Department of Mathematics
University of Syktyvkar
167001 Syktyvkar
Russia

C. Houdré
Center for Applied Probability
School of Mathematics
Georgia Institute of Technology
Atlanta, GA 30332, USA