Infrared Thermographic Mapping of Wood Surface Moisture During Drying

J. Abedi and S. Banerjee

September 1999

Submitted to
Holzforschung
The Institute of Paper Science and Technology is an independent graduate school, research organization, and information center for science and technology mainly concerned with manufacture and uses of pulp, paper, paperboard, and other forest products and byproducts. Established in 1929, the Institute provides research and information services to the wood, fiber, and allied industries in a unique partnership between education and business. The Institute is supported by 52 North American companies. The purpose of the Institute is fulfilled through four missions, which are:

- to provide a multidisciplinary education to students who advance the science and technology of the industry and who rise into leadership positions within the industry;
- to conduct and foster research that creates knowledge to satisfy the technological needs of the industry;
- to serve as a key global resource for the acquisition, assessment, and dissemination of Industry Information, providing critically important information to decision-makers at all levels of the industry; and
- to aggressively seek out technological opportunities and facilitate the transfer and implementation of those technologies in collaboration with industry partners.

ACCREDITATION

The Institute of Paper Science and Technology is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award the Master of Science and Doctor of Philosophy degrees.

NOTICE AND DISCLAIMER

The Institute of Paper Science and Technology (IPST) has provided a high standard of professional service and has put forth its best efforts within the time and funds available for this project. The information and conclusions are advisory and are intended only for internal use by any company who may receive this report. Each company must decide for itself the best approach to solving any problems it may have and how, or whether, this reported information should be considered in its approach.

IPST does not recommend particular products, procedures, materials, or service. These are included only in the interest of completeness within a laboratory context and budgetary constraint. Actual products, procedures, materials, and services used may differ and are peculiar to the operations of each company.

In no event shall IPST or its employees and agents have any obligation or liability for damages including, but not limited to, consequential damages arising out of or in connection with any company’s use of or inability to use the reported information. IPST provides no warranty or guaranty of results.

The Institute of Paper Science and Technology assures equal opportunity to all qualified persons without regard to race, color, religion, sex, national origin, age, disability, marital status, or Vietnam era veterans status in the admission to, participation in, treatment of, or employment in the programs and activities which the Institute operates.
Infrared Thermographic Mapping of Wood Surface Moisture During Drying

Jalal Abedi, Sujit Banerjee
Institute of Paper Science and Technology
500 10th Street NW
Atlanta, GA 30318

Abstract
Infrared thermography was used to determine surface temperature maps of veneer and wood flakes during drying. These maps are proportional to the surface moisture distribution. The coefficient of variation (COV) of the surface temperature reflects the properties of the wet line. As the wood dries, the COV increases gradually, and then surges when the surface water film is broken, and the wet line moves into the wood structure. The shape of the relationship between COV and moisture content depends upon factors such as the type of furnish, wood species, and drying temperature.

Keywords: infrared, thermography, drying, variation, wet line, surface.

Introduction
Drying wood evenly is important for the development of good product properties and for preventing press blows and other process problems. Infrared (IR) thermography has been used for knot detection (Murata and Sadoy 1994; Quin et al. 1998), and, more recently for determining energy absorption (Antti and Perre 1999). The surface temperature of wood is influenced by the surface moisture, since evaporative cooling occurs to a greater extent from the wetter regions, which are, then, proportionately cooler. Hence, IR thermograms should illustrate the changing distribution of surface moisture during wood drying, and provide insight into the mechanism of moisture removal.

Experimental
Thermograms were taken with an AGEMA 900SW/TE system, composed of an IR scanner equipped with a 40-degree FOV IR lens and a high-speed system controller. The scanner detects radiation in the 2-5.4 μ range, where temperature is the only variable. The system is able to analyze images at the pixel level of resolution, and compensates for transmission through the atmosphere (Incropera 1990; Thermovision 1993). An emissivity value of 0.92 was estimated by heating a sample of veneer and measuring its temperature with both a thermocouple and the IR scanner. It was then adjusted until the IR-derived temperature corresponded to that obtained from the thermocouple.

Veneer was obtained from the Georgia-Pacific veneer mill at Madison, GA. Samples were cut from different isothermal regions of the sheets, and their moisture content determined. Pine flakes were collected from the Georgia-Pacific Dudley, NC, facility, and aspen was acquired from the Potlatch Grand Rapids mill. In initial laboratory work, veneer was cut into 12.7 x 8.9 x 0.42 cm pieces, and oven dried at different temperatures. The sample was dried in an oven with the door open, and the focal plane of the scanner was positioned approximately 50 cm from the wood surface. Thermograms were taken once every minute, after which the sample was quickly weighed and then replaced in the oven.
In order to determine the relationship between temperature and moisture, two green pine veneer sheets were removed from the conveyor at Madison just after the peeler, and IR thermograms taken immediately. Samples were cut from zones corresponding to different temperatures, and their moisture content determined.

Results and Discussion

The relationship between MC and temperature for the two green veneer sheets are linear as shown in Figure 1. The lines are almost parallel and are offset by about 1.7°C. This offset reflects a difference in the initial sheet temperature. The average temperature difference between the two sheets was 0.7°C. However, when knots (which were at higher temperature) were excluded, the difference increased to 1.4°C, which compares well to the 1.7°C offset in Figure 1. The slopes of the lines are similar, indicating that the rate of evaporation is proportional to the moisture content within the range considered. This linearity should hold as long as free water is being lost; curvature is expected below the fiber saturation point. Importantly, the MC is that of the wood throughout its thickness, whereas the thermogram is a surface measurement. The surface moisture must, therefore, be proportional to the overall moisture content. These results demonstrate that surface temperature is an indirect measure of moisture content.

Thermograms were taken of veneer pieces as they dried in the oven. Plots of the coefficient of variance (COV) of the surface temperature vs. MC are shown in Figure 2 for yellow poplar and pine. The MC is normalized to allow comparisons across sheets. Since the surface temperature is a measure of the MC, the COV must reflect the variability in MC. The traces for hardwood and softwood in Figure 2 are remarkably similar, except that the COV is slightly higher for pine than for yellow poplar probably because the softwood matrix is less homogenous. In both cases, the COV rises as the wood dries to an MC of about 20%. It is very likely that the wet line resides at the surface during this period, and the surface water film thins during drying. Differences in the heat transfer to the wood surface are emphasized as the film thins and the COV increases. The sharp increase in COV at an MC of about 20% almost certainly reflects breakage of the surface film and the onset of bound water evaporation. The COV rise occurs
earlier at the higher temperature, reflecting earlier breakage of the film. It then decreases to a common value when the wood is dry and reaches a more uniform temperature. Analogous data for drying individual pine flakes are illustrated in Figure 3. Since flakes have a higher surface area:volume ratio as compared to veneer, proportionately more moisture resides on the surface, and the COV remains relatively stable during early drying. The position of the COV maximum occurs later for the flakes, since the surface water film breaks at lower overall moisture content.

In conclusion, IR thermography offers a method of visualizing the wet line as wood dries. Wet line control provides considerable environmental benefit during high-temperature drying (Banerjee et al. 1998). As wood dries, it is evaporatively cooled by the departing moisture, and the tissue temperature remains either at or below the boiling point. As the surface dries out, i.e., as the wet line begins to ingress into the matrix of the wood, the surface temperature rises, and terpenes and wood breakdown products are released (Su et al. 1999; Barry and Corneau 1999). Hence, maintaining the wet line at the surface for as long as possible allows the wood to be evenly cooled by the evaporating water and minimizes VOC release.

Acknowledgement
We thank Georgia-Pacific Corporation, Potlatch Corporation, Otter-tail Power, and the Electric Power Research Institute for financial support.
Figure 3: Dependence of the coefficient of variation (COV) of the surface temperature on moisture content for pine flakes.

References