Los Angeles Basin Terminal Airspace Redesign

Presentation to: GT CDA Workshop
Name: Walter White & Kathryn Higgins
Date: January 20, 2006
SCT Airspace Redesign Overview

- Raise initial LAX Departure Altitude
 - Complete 9/2004
- Improve LAX Arrival Profile
 - Internal airspace transfer and new TEC routes – Complete 9/2005
 - LAX Class B - Complete 12/22/2005
 - CIVET5 and SEAVU1 – Publish 2/16/2006
- Implement RNAV Departures
 - OSHNN1 – Scheduled 8/2006
 - KARVR1 – Scheduled 8/2006
- Redesign Terminal Airspace
 - Initial Contract – Complete
 - Scoping Meetings – Targeted Summer 2006
Purpose:
The purpose of this project is to develop an improved integrated airspace design for airports within the Los Angeles Metropolitan Area, focusing primarily on LAX, with the objectives of improving safety and efficiency, reducing delays, and accommodating changes in aircraft fleet usage patterns and capabilities.

Need:
The current airspace design will not meet future demand, does not fully recognize the capabilities and limitations of modern aircraft, and so imposes additional costs on all airspace users. LAX is one of the 35 OEP airports within the U.S. and thus efficiency in the Los Angeles Metropolitan Area is a crucial part of the National Airspace System. A central part of the FAA mission is to maintain and improve safety and efficiency. A redesign of airspace in the Los Angeles Metropolitan Area is required to do this.
Los Angeles Basin Redesign Project Overview – Draft Purpose and Need

Purpose:

The purpose of this project is to develop an improved integrated airspace design for airports within the Los Angeles Metropolitan Area, focusing primarily on LAX, with the objectives of improving safety and efficiency, reducing delays, and accommodating changes in aircraft fleet usage patterns and capabilities.

Need:

The current airspace design will not meet future demand, does not fully recognize the capabilities and limitations of modern aircraft, and so imposes additional costs on all airspace users. LAX is one of the 35 OEP airports within the U.S. and thus efficiency in the Los Angeles Metropolitan Area is a crucial part of the National Airspace System. A central part of the FAA mission is to maintain and improve safety and efficiency. A redesign of airspace in the Los Angeles Metropolitan Area is required to do this.
Los Angeles Basin Redesign Project Overview

Dependent Flow Area

Low Altitude Inefficiency Area
Project Overview – Objectives and Considerations

- Conduct a structured overall assessment of traffic flows in Southern California.

- Use a “clean sheet” approach to develop traffic flows that maximize the use of fuel efficient approaches (i.e. Continuous Descent Approaches or CDA), and unrestricted or profile climbs.

- Work with industry and research community
 - PARTNER project & JPDO
Project Overview – Scope

- Primary airport is LAX.
- Airspace within the Los Angeles Metropolitan Area.
- Airspace beyond the Los Angeles Metropolitan Area to the extent required to efficiently match up with new airspace and procedures within the Los Angeles Metropolitan Area.
- Additional affected Air Carrier airports as required to meet P&N:
 - Burbank
 - Long Beach
 - Ontario
 - Santa Ana
 - March ARB
- Numerous General Aviation Airports
Project Overview – Example Initial Concepts

- Raised Downwind
- Follows Runway Stagger
- RNP Parallel Approach Transitions
- Additional URET/TMA Arrival Gates
Project Overview – Key Strategies for Success

- Keep Project Purpose and Scope Clearly Focused.
- Use of Clear Measurable Metrics. - Examples:
 - Increase LAX IFR arrival rate by 2 aircraft per hour.
 - Reduce estimated fuel consumption by 1,000,000 gallons per year.
 - Reduce arrival radio transmissions by 5%.
- Clearly Defined Roles and Responsibilities
 - Establish Strategy Team Across Lines of Business.
 - Defined Accountability for Each Step.
 - Maintain Adequate & Timely Funding.
- Integration of Airspace Redesign with NEPA Process
Project Overview – Timelines

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Stage</th>
<th>Start</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Problem ID</td>
<td>Nov-05</td>
<td>Feb-06</td>
</tr>
<tr>
<td></td>
<td>Initial Design</td>
<td>Feb-06</td>
<td>Sep-06</td>
</tr>
<tr>
<td></td>
<td>Scoping</td>
<td>Jul-06</td>
<td>Sep-06</td>
</tr>
<tr>
<td>Year 2</td>
<td>Scoping</td>
<td>Oct-06</td>
<td>Jun-07</td>
</tr>
<tr>
<td></td>
<td>Full Design (incl interactive model/design)</td>
<td>Oct-06</td>
<td>Sep-07</td>
</tr>
<tr>
<td>Year 3</td>
<td>Full Design (incl interactive model/design)</td>
<td>Oct-07</td>
<td>Sep-08</td>
</tr>
<tr>
<td>Year 4</td>
<td>DEIS (incl Ops Modeling, Validation, Noise/Envir Assess)</td>
<td>Oct-08</td>
<td>Feb-09</td>
</tr>
<tr>
<td></td>
<td>DEIS (incl Ops Modeling, Validation, Noise/Envir Assess)</td>
<td>Oct-07</td>
<td>Sep-09</td>
</tr>
<tr>
<td>Year 5</td>
<td>FEIS (incl public mtgs & implement planning)</td>
<td>Oct-09</td>
<td>Sep-10</td>
</tr>
<tr>
<td></td>
<td>ROD</td>
<td>Oct-10</td>
<td>Apr-11</td>
</tr>
<tr>
<td>Year 6</td>
<td>ROD</td>
<td>May-11</td>
<td>Jun-11</td>
</tr>
<tr>
<td></td>
<td>Implementation</td>
<td>Jul-11</td>
<td>Sep-11</td>
</tr>
<tr>
<td>Year 7</td>
<td>Implementation</td>
<td>Oct-11</td>
<td>Aug-12</td>
</tr>
<tr>
<td>Year 8</td>
<td>Post-Implement</td>
<td>Sep-12</td>
<td>Sep-12</td>
</tr>
<tr>
<td></td>
<td>Post-Implement</td>
<td>Oct-12</td>
<td>Feb-13</td>
</tr>
</tbody>
</table>
Project Overview – Status

- Initial Environmental Contract Awarded.
- Environmental Kickoff Meeting Held (November 7-8, 2005)
- Initial Briefings Begun.
- Work on Scoping Contract Begun.
- Development of Initial Concepts Underway.
- Extensive Public Participation Planned.
 - Establish Public Web Site and Mailing List.
- Initial Public Scoping Meetings Targeted for Summer 2006.
THANK YOU

Federal Aviation Administration