CONTENTS

General Information
- 4 Important Websites at Georgia Tech
- 4 Academic Calendar
- 8 Academic Offerings
- 8 Accreditation
- 8 Student Life
- 15 Special Support Facilities
- 21 Affiliated Organizations

Information for Undergraduate Students
- 23 Degrees
- 24 Special Programs
- 26 Admissions
- 28 Academic Regulations
- 31 Core Curriculum

Information for Graduate Students
- 33 General Information
- 33 Degrees and Programs of Study
- 34 Special Programs
- 35 Policies and Regulations
- 36 Admissions Information
- 38 The Master's Degree
- 40 The Doctoral Degree

Financial Information
- 43 Classification of Students for Tuition Purposes
- 48 Undergraduate Information
- 51 Graduate Information

College of Architecture
- 53 Architecture
- 56 Building Construction
- 59 Industrial Design

College of Computing
- 86 Computer Science

DuPree College of Management
- 107 Management
- 107 Management of Technology

College of Engineering
- 127 Multidisciplinary Certificate Programs
- 128 Aerospace Engineering
- 139 Biomedical Engineering
- 145 Chemical Engineering
- 153 Civil and Environmental Engineering
- 157 Engineering Science and Mechanics
- 159 Electrical and Computer Engineering
- 166 Industrial and Systems Engineering Health Systems
- 186 Algorithms, Combinatorics, and Optimization
- 186 International Logistics
- 192 Operations Research
- 194 Statistics
- 197 Materials Science and Engineering Polymers
- 207 Mechanical Engineering
- 207 Nuclear and Radiological Engineering
- 209 Health Physics
- 227 Textile and Fiber Engineering
- 227 Polymer and Textile Chemistry
- 227 Textile Enterprise Management
- 227 Textile and Fiber Chemistry Polymers
Georgia Tech: The Vision Statement

Georgia Tech will be a leader among those few technological universities whose alumni, faculty, students, and staff define, expand, and communicate the frontiers of knowledge and innovation. Georgia Tech seeks to create an enriched, more prosperous, and sustainable society for the citizens of Georgia, the nation, and the world.

Statement on Human Relations

Georgia Tech is a diverse community, composed of individuals and groups with a variety of religious, racial, national, cultural, sexual, and educational identities. The continuing need to deal constructively with this diversity is one of the great challenges facing us over the next two decades.

The challenge is both professional and personal. Professionally, we increase the opportunities in our lives if we are able to constructively manage and guide such diversity with tolerance. The challenge is also personal because each of us has a legacy of religious, racial, national, cultural, sexual, and educational prejudices that influences our lives.

Each member of our community must be committed to the creation of a harmonious climate because one cannot be neutral to this challenge. Those who are committed to it strengthen Georgia Tech and themselves.

Individuals who choose not to commit to the challenge, via acts of intolerance, jeopardize their continued affiliation with the Institute. Those acts may be defined as attempts to injure, harm, malign, or harass a person because of race, religious belief, color, sexual orientation, national origin, disability, age, or gender.

To belong to a global society, Georgia Tech must be a pluralistic institution. Only by embracing diversity, multiformity, and variety can we gain stature, strength, and influence in that global society.

The Institute is committed to maintaining academic and working environments free of objectionable conduct and communication that would be construed as sexual harassment. The determination of what constitutes sexual harassment will vary with particular circumstances, but it can be described as unwanted sexual behavior, such as physical contact or verbal comments that adversely affect the environment of an individual.
Important Websites at Georgia Tech
The following Web addresses will help you find the information you need about Georgia Tech:

Georgia Tech website
www.gatech.edu

Admissions (undergraduate)
www.enrollment.gatech.edu/admissions

Admissions (graduate)
www.grad.gatech.edu/admissions

Athletic Association
www.ramblingwreck.com

Bursar's Office (payment/refund policies)
www.bursar.gatech.edu

Campus Organizations
http://cyberbuzz.gatech.edu

Career Services
www.career.gatech.edu

Cooperative Division
www.coop.gatech.edu

Dean of Students Office
www.deanofstudents.gatech.edu

Dining Services
www.gatechdining.com

Disabled Assistance Program
www.adapts.gatech.edu

Financial Aid
www.enrollment.gatech.edu/finaid

Freshman Experience Program
www.housing.gatech.edu/Programs/freshman_experience.html

Health Services
www.health.gatech.edu

Honor Code
www.honor.gatech.edu

Housing Department
www.housing.gatech.edu

Identification/Meal Plan/Debit Card
www.buzzcard.gatech.edu

International Student Services
www.intprog.gatech.edu

OMED (Office of Minority Education Development)
www.omed.gatech.edu

Orientation (new students)
www.faset.gatech.edu

Parking and Transportation (vehicle registration, campus shuttles)
www.parking.gatech.edu

Police (campus)
www.police.gatech.edu

President's Scholarship Program
www.enrollment.gatech.edu/psp

Registrar's Office
www.registrar.gatech.edu

Registration, Student Access System
http://oscar.gatech.edu

Schedule of Classes, Academic Calendar, Transfer Credit Equivalency
www.oscarweb.gatech.edu

Sports
www.ramblingwreck.com

Academic Calendar
For an up-to-date Georgia Tech academic calendar, visit www.oscarweb.gatech.edu.
GEORGIA TECH: There's a Difference

The Georgia Tech educational experience is distinctive because of the combination of high academic quality within a public, technologically oriented university. Georgia Tech offers the unparalleled educational quality of an Ivy League university with the strong blend of affordability and extracurricular programs — such as Division I athletics — offered at most large state schools. Georgia Tech students have the chance to make a meaningful difference by striving to improve the campus — and the world. Georgia Tech is proud of the difference it has made in the lives of students, and students are proud of the differences they have made.

The Tech campus provides opportunities to put into practice ideas that make a difference. For example, Tech students have initiated an academic honor code, lobbied for the construction of the Student Athletic Complex, created the annual Team Buzz Community Service Day, and championed the creation of a campus recycling program. These initiatives have made a tremendous difference in the lives of students, faculty, and members of the Atlanta community.

Experiences such as these prepare our students to be the kind of visionary, technological leaders who can make an enduring difference. After they graduate, Tech students go out into the world and continue a tradition of achievement that includes founding groundbreaking Internet start-up companies; leading NASA into a new era; becoming a world-renowned scientist, academic leader, and Nobel Prize recipient; or even becoming president of the United States — in the case of Jimmy Carter.

In addition to professional development, Georgia Tech also helps students grow as human beings by providing a campus atmosphere with countless activities and organizations to accommodate almost any interest. Georgia Tech strives to help students become the people they want to be and make the kind of differences they want to make.

Academic Excellence

The quality of the Georgia Tech educational experience is reflected in two important ways: consistently strong rankings by national publications and a prestigious, highly regarded curriculum with a technological focus.

In 2000, Georgia Tech was ranked Number 8 among public universities in the country by U.S. News & World Report, which also routinely lists many of Tech's undergraduate programs in the top 10.

Georgia Tech is also renowned for providing a highly diverse educational environment. The Institute consistently ranks among the top universities in the country in the number of engineering degrees awarded to women, African Americans, and all underrepresented minorities.

Tech's high-quality faculty is another key contributor to the Institute's educational environment. More than 90 percent of the faculty hold Ph.D.s, and 46 faculty members have received the prestigious National Science Foundation CAREER Awards. Tech's prominent faculty are recognized worldwide for their excellent research and teaching skills. In 1999, Georgia Tech received the prestigious Hesburgh Award for its alumni-funded programs to enhance teaching at the undergraduate level. The Hesburgh is the nation's top award for improvement of undergraduate teaching. Faculty entrepreneurship is another vital element of the Tech philosophy. "Anyone who aspires to define the technological university of the twenty-first century must be in the leading edge, which includes not just creating new ideas, but also moving them from the laboratory to a place where they can be used by society," said President Wayne Clough in his 2000 State of the Institute address.

Both faculty and administrators help to ensure that the Georgia Tech curriculum reaches far beyond the scope of traditional major classes with programs that provide a competitive career advantage. Many forward-thinking students choose to
participate in the Cooperative Plan, an alternating work/study program that is the largest voluntary program of its kind in the United States. More than 3,500 students participate in this program, which provides not only valuable work experience, but also income to offset college expenses.

For students who want a more flexible program, internships are available with a wide variety of employers. Regardless of whether students choose a co-op or internship position, or pursue a pre-professional program to prepare for graduate or professional school, Tech helps students lay the groundwork for a successful future.

Research Leadership
From its beginnings more than a century ago, the Georgia Institute of Technology has established a tradition of excellence in technological research as well as education. The Institute is well known for its high academic standards and stands among the top ranks of U.S. research universities with a clear vision for leadership in providing a cutting-edge, technological education for the twenty-first century.

Our peers and the public recognize Georgia Tech’s commitment to excellence. Georgia Tech is one of the South’s largest industrial and engineering research agencies. Research is conducted for industry and government by the Georgia Tech Research Institute, various academic schools and departments, and more than 80 interdisciplinary research units on and off campus. In Georgia specifically, the Institute plays a leading role in the Georgia Research Alliance (GRA), a centerpiece of the state’s economic development strategy. In 1996, the GRA completed construction of the Georgia Center for Advanced Telecommunications Technology (GCATT) building, a facility that houses several Georgia Tech research centers as well as research centers from other universities, high-tech business incubators, and established telecommunications businesses. The GCATT partnership of academia, industry, and government is helping propel Georgia’s telecommunications industry to world prominence.

Georgia Tech is also a key player in Yamacraw, an economic development initiative to make Georgia a world leader in the design of broadband (high-speed) communications systems, devices, and chips — the next-generation of hardware/software infrastructure — thus creating in Georgia both high-paying design jobs and many more support and supply-chain jobs. The first two investments from the state’s Yamacraw venture capital seed fund went to innovations developed by Georgia Tech faculty.

By insisting the Institute’s major interdisciplinary research centers—focusing on topics from architectural conservation to biotechnology, microelectronics, and transportation research—also develop distinct undergraduate and graduate educational programs, the Georgia Tech administration aims to keep its educational programs on the leading edge of discovery and development.

Campus Atmosphere
Many students cite the interactive learning atmosphere at Georgia Tech as one of the primary benefits of attending the Institute. Through hands-on learning experiences such as labs, field studies, and team projects, Tech students are prepared for the real world. Continued recruitment and job placement of high-quality students is also an advantage that many gain from attending Georgia Tech. The Placement Center is one of the nation’s most successful and innovative. Upon graduation, approximately 70 percent of Tech students have already accepted a job or been accepted to graduate school.

Tech’s administration and staff emphasize student services as well as academics. Centralized student services, the Student Success Center, and renovated and new residence halls are some of the efforts to further enhance the quality of life on campus. The strong work ethic at Tech is balanced by a collegiate atmosphere incorporating both intercollegiate and intramural sports, campus traditions, and approximately 300 student organizations. Alongside their academic achievements, Tech students are also active in the community, earning a well-rounded education through community service activities.

To become even more effective in a rapidly diversifying world, Tech is aggressively recruiting underrepresented populations. The Institute is consistently rated among the top universities in the nation for graduation of underrepresented minorities in engineering, computer science, and mathematics. Each year the number of minority and female students continues to grow, ensuring that Tech’s students will be ready to thrive in the multicultural workforce.
There's no doubt that Georgia Tech stands out as a distinctively different kind of university, one that is eagerly encouraging and developing the revolutionary technologies of the twenty-first century. In December 2000, the Institute completed a five-year, $700 million Capital Campaign to raise funds to fulfill the Institute's strategic goals and objectives. Equipped with the extremely rich resources of an outstanding student body and faculty; strong partnerships with business, industry, and government; and support from alumni and friends, Georgia Tech is poised to fulfill its goals, as well as meet and exceed the challenges of the new millennium.

Academic Offerings
Through the Colleges of Architecture, Computing, Engineering, Management, and Sciences, and the Ivan Allen College, Georgia Tech offers curricula leading to degrees in 31 undergraduate majors, 5 undesignated bachelor of science degrees, 41 master's programs, and 27 doctoral programs as well as preparatory programs for law, dental, medical, and veterinary schools. The "Information for Undergraduate Students" and the "Information for Graduate Students" sections of this book contain general information about these degree programs.

Accreditation
The Georgia Institute of Technology is an accredited member of the Southern Association of Colleges and Schools, and many programs within the Institute are specifically accredited by appropriate professional certifying agencies.

The Engineering Accreditation Committee (EAC) of the Accreditation Board for Engineering and Technology (ABET) has accredited the curricula leading to bachelor's degrees in the following fields: aerospace engineering, chemical engineering, civil engineering, computer engineering, electrical engineering, industrial engineering, materials science and engineering, mechanical engineering, nuclear and radiological engineering, and textile engineering. The EAC of ABET has accredited the advanced program leading to the master's degree in environmental engineering.

The American Chemical Society has certified the curriculum leading to the bachelor's degree in chemistry; the Computer Science Accreditation Board has certified the curriculum leading to the bachelor's degree in computer science; the National Architecture Accrediting Board has certified the curriculum leading to the Master of Architecture; and the American Assembly of Collegiate Schools of Business has accredited the curricula for all degrees awarded by the DuPree College of Management.

The Counseling Center is accredited by the International Association of Counseling Services.

Student Life
Numerous extracurricular activities are available for students. For complete information concerning these services, see the Student Handbook, available to all students from the Division of Student Affairs.

Office of the Dean of Students
The Office of the Dean of Students, a unit of the Division of Student Affairs, strives to create an environment in which student leadership occurs, tradition and diversity are respected, and learning is enhanced. The dean's offices recognize the importance of each individual student, nurtures personal growth, and supports academic pursuits through advocacy, services, and programs.

Students of nontraditional age (over the age of 25) who would like information regarding campus resources, such as housing and other specific services, may call the dean's office for assistance. Information on other areas within the Office of the Dean of Students can be found in various sections of this catalog. The office is located in 210 Smithgall Student Services Building. Students may drop in or call 404.894.6367 to schedule an appointment.

Community Services
Georgia Tech applies its resources through community services to the needs of the community and provides an outlet for creative individual responses to social problems. The Student Center MOVE (Mobilizing Opportunities for Volunteer Experience) Office places individuals and groups with community agencies and organizes volunteer outings on a regular basis.
Counseling Center
The Counseling Center's professional counselors and psychologists assist in a confidential manner with academic, career, and personal concerns whenever students request counseling services. The Center's career counseling helps students examine and work toward resolving personal and interpersonal issues related to selecting a major or career. The Center's library provides a program of computer-assisted study skills instruction (CASSI-GT) and information about careers through reference books, videos, a computer-assisted decision-making program (SIGI PLUS), catalogs from other colleges and business and graduate schools, and a number of inventories and tests for determining occupational interests, abilities, and personality traits. More information is available at www.counseling.gatech.edu.

Career Services
Career Services offers students a variety of services, from helping them choose a career to finding internship and full-time positions. The office provides career counseling and testing; career planning; seminars on job search-related topics; mock interviews; resume critiques; internship, part-time, and full-time job listings; salary surveys; recruiting company information; resume referral services; and graduate school information. The Career Library is located on the second floor of the Student Success Center.

Campus recruiting takes place each semester. Approximately 800 employers, representing a substantial number of Fortune 500 corporations, recruit on campus annually.

Career Services sponsors Career Focus in September and the Georgia Tech Majors Fair in February of each year. Visit Career Services in the Student Success Center or online at www.career.gatech.edu.

Diversity Issues and Programs
The Office of Diversity Issues and Programs is responsible for fostering a vision of diversity appreciation reflective of the Institute's strategic plan, which enables students from all backgrounds and cultures to thrive and succeed at Tech. The Office provides an institutionalized approach for meeting the co-curricular needs of students by coordinating and planning educational opportunities that enhance interaction and learning across groups. Through intentional programming and training, the Office assists the campus in understanding, appreciating, and celebrating Tech's rich cultural diversity. For additional information, call 404.894.6367. The Women's Resource Center enhances the performance and personal development of women at Georgia Tech by striving to create a more inclusive and supportive campus environment for women, and by promoting understanding among Georgia Tech's diverse community of women and men. Services and programs provide opportunities to involve female students in all phases of campus life. For additional information, call 404.385.0230 or visit www.womenscenter.gatech.edu.

Student Organizations
Georgia Tech has 280 chartered student organizations that offer a variety of activities for student involvement. These organizations are classified in the following categories: honor societies and governing boards, professional/departmental, service and educational, cultural/diversity, religious, and sport clubs.

Fraternities and Sororities
Georgia Tech's 41 social fraternities and sororities are coordinated by Student Affairs. The groups offer a variety of activities, opportunities, and services to the Georgia Tech community.

Student Publications and Media
The student publications and radio communications boards oversee the budgeting and operation of the Technique, the official student newspaper; the Blueprint, the student yearbook; and other student publications, in addition to the operation of the student radio station, WREK 91.1 FM.

Other student publications include the North Avenue Review, an open forum magazine, and Erato, the student literary magazine.

Department of Housing
The Department of Housing oversees the assignment, operation, and maintenance of on-campus rooms for 6,300 single students and 300 married students. Amenities include local telephone service, cable TV, ethernet connectivity, learning centers, tutoring, laundry facilities, and fitness areas.
A team of residence life staff members is available at all times. Additionally, housing for single graduate students and apartment complexes for single undergraduates are available. Residence hall programs provide counseling services and organized activities for residence hall and family housing residents. For further information, refer to the *Residential Living on the Georgia Tech Campus* brochure available at the Housing Office, or visit www.housing.gatech.edu.

Student Health Center

The Primary Care Center’s Hours
(Appointment required except in cases of emergency)

- Monday-Friday: 8:00 A.M.-6:00 P.M.
- Full Staff
- Sunday: 2:00 P.M.-5:00 P.M.
- Clinic with limited staff for urgent care

The Wellness Center’s Hours

- Monday-Friday: 9:00 A.M.-5:00 P.M.

Health Center Telephone Number

404.894.2585 for appointments

Website

www.health.gatech.edu

The Student Health Center is an ambulatory health care clinic that provides medical care and health education for eligible students and spouses.

The Primary Care Center staff consists of general practice, family practice, and internal medicine physicians, as well as nurse practitioners, registered nurses, medical and radiological technologists, pharmacists, and health educators.

Specialists in gynecology, orthopaedics, psychiatry, and radiology, as well as a registered dietician, are available for consultation for a nominal fee. Two Women's Health nurse practitioners are available for gynecological problems and preventive care, such as Pap smears. Contraceptive counseling and information on sexually transmitted disease are also available.

The Wellness Center is available to all Tech students and offers computer-assisted health and nutrition assessments, wellness seminars and events, an information resources center, and personal consultations.

Medical Entrance Form

Students will receive a Medical Entrance Form with their letter of acceptance. All students, graduate and undergraduate, should complete the form and mail it to the Student Health Center before registration. In addition to the Medical Entrance Form, students must provide evidence of updated immunization certificate and tuberculosis screening. Completed forms must be mailed to:

Student Health Services
Georgia Institute of Technology
275 Fifth Street N.W.
Atlanta, Georgia 30332-0470
Attention: Medical Records Dept.

Tuberculosis (TB) Screening

All matriculating students must provide documentation of TB screening prior to registration. Failure to do so will prevent registration. For information on required documentation, consult your admissions packet.

Immunizations

All Georgia Tech students must provide documentation of immunization for measles, mumps, and rubella (MMR) prior to attending class. Proof of immunization or immunity must be documented on a Certificate of Immunization by a medical practitioner. Students born before December 31, 1956, need only provide documentation of rubella immunity.

Eligibility for Treatment

Students enrolled in classes, co-op students, spouses of students enrolled in classes or the co-op program (if both the student and spouse have paid their health fees), cross-enrolled students who have paid their health fee for the semester, and continuing students with a current student I.D. are eligible for treatment, provided the health fee has been paid.

Terms of Eligibility

Once the health fee has been paid, students/spouses are eligible for services from the date paid through the end of break week for each semester; new students are eligible for services during the break week that precedes the semester they are entering if they can present proof that the fee was paid. Students who have graduated are no longer eligible for care.
Cost
A semester health fee is automatically assessed to students taking four semester hours or more. All others must pay the health fee at the Health Center or present the Health Center with proof that the health fee has been paid. A $10 late penalty will be assessed if the health fee is paid after the second week of each semester.

Special Health Considerations
It is the responsibility of all students to notify the Health Service, the Department of Health and Performance Sciences, and the Office of Disabled Student Services of any disability that would make participation in swimming, competitive sports, and aerobic training hazardous to their well-being. Any student requesting special consideration because of mental or physical disability should have his or her physician write an explanatory letter, giving full details of the disability and consequent limitations on physical activity, to the medical director of the Student Health Center. This letter must accompany the Medical Entrance Form.

Health and Accident Insurance
Supplemental insurance to cover major illnesses and surgeries, specialist consultations, and diagnostic procedures (not available at the Student Health Center) should be purchased by all students who are not included in their parents’ or spouse’s medical insurance plans. Generally, private hospitals will not admit patients who do not have hospitalization insurance.

Office of International Education/Study Abroad
The newly established Office of International Education combines the activities of the former offices of International Student Services and Programs and Study Abroad with faculty development in international education to create a more comprehensive range of services to faculty, staff, and students. The office supports the internationalization of the curriculum, advocates for programs of study that prepare students to be globally competent, provides opportunities for faculty to acquire international education experiences, and serves the large population Tech’s of international students.

The Office of International Education currently provides services to more than 2,100 international students from more than 75 countries. These students receive assistance in complying with U.S. immigration law, with cross-cultural adjustment, and in negotiating the academic and social environment of Georgia Tech. International student advisors work closely with student organizations and students themselves in helping them to realize their personal and academic goals.

Students enrolled at Georgia Tech who wish to study abroad may choose from a range of faculty-led summer programs as well as bilateral exchange programs. Such opportunities exist on every continent and in dozens of countries. Students engage in academic programs that allow them to earn credit that can be applied toward graduation. More than 500 students elect to participate in study abroad programs each year.

As a leading research institution, Georgia Tech attracts scholars from all over the world. More than 300 visiting scholars are currently engaged with Georgia Tech faculty in cutting-edge research. A few of them also teach courses. These collaborative research activities and the contributions made by these visiting scholars help Georgia Tech maintain its national and international prominence as a technological institution.

The Fulbright Scholar program is housed at the Office of International Education. Faculty are encouraged to take advantage of the hundreds of teaching and research opportunities available worldwide through this distinguished program. Faculty also receive assistance in developing new overseas summer programs, and in designing other initiatives to support the internationalization of academic programs.

FASET Orientation (new student orientation)
The student/parent orientation program informs new students and their parents of academic programs and requirements, in addition to familiarizing them with Tech traditions and the activities and services available on campus. For more information, call 404.894.6897 or visit www.faset.gatech.edu.

OMED: Educational Services
OMED is an academic service organization that seeks to assist Georgia Tech in its development of the complete learner who is a gifted African American, Native American, Latino, or Hispanic
student. This complete development is intended to ensure that these students become inspired, high-performing problem solvers. When they graduate or leave Tech, their choice set is optimal and they, as well as their families, will have had a positive and gratifying experience.

Student Athletic Complex
The Fuller E. Callaway III Student Athletic Complex (SAC) houses all campus recreation facilities as well as the Campus Recreation Department. Facilities include: a 50-meter bubble-covered pool and the Olympic Aquatic Center with diving well; six multipurpose courts for basketball, volleyball, and badminton; eight indoor racquetball and two squash courts; a cardio-theater with aerobic conditioning equipment (stairmaster, treadmills, Concept II rowing machines); and a weight room with free weights and machines. SAC is open daily with the exception of home football games and holidays.

Robert Ferst Center for the Arts
The Robert Ferst Center for the Arts serves as a showcase for the presentation of concerts, recitals, lectures, dance, and theater.

Since opening its doors in 1992, the Center has provided a once-in-a-lifetime opportunity for the students of Georgia Tech to experience the finest entertainers in the world at truly affordable prices. Each year the Center for the Arts hosts memorable performances and events such as the 1992 Vice Presidential debate; the former Secretaries of Defense Roundtable Discussion; violinist Itzhak Perlman; renowned mime Marcel Marceau; comedic magicians Penn & Teller; the Atlanta Ballet; and the New York Opera.

The Robert Ferst Center for the Arts not only houses the theater, but also the Richards and Westbrook galleries, located in the foyer of the Center. The galleries feature displays from local and traveling exhibits of fine arts and high technology. The James E. Dull Theatre, which is home to DramaTech, is also located within the Center.

The Center for the Arts is committed to exploring the links between the arts and technology and serves as a prominent example of Georgia Tech's dedication to excellence and outstanding performance - both on campus and in the metro Atlanta community.

DramaTech
DramaTech, Atlanta's oldest theater company, produces at least four plays a year, as well as improvisation and musical theater performances. DramaTech uncovers and nourishes the creative talents of Georgia Tech's future engineers, managers, architects, scientists, and leaders, talents that might otherwise never develop in the world of calculators, computers, designs, and formulas.

DramaTech is unique among area college theaters in that it is student run. Although Georgia Tech has no theater department, the director is part of the faculty of the School of Literature, Communication, and Culture. Participation in the theater is open to all students, faculty, staff, and Tech alumni. Students may earn credit for participation in DramaTech through the School of Literature, Communication, and Culture.

For more information, call DramaTech at 404.894.3481.

Student Center
The Fred B. Wenn Student Center is located in the heart of the Georgia Tech campus and provides many vital services to Tech students. Governed and operated by students, the Student Center Program Council consists of student-run planning committees that organize and coordinate campus-wide activities and events. The Student Center houses the post office, bowling and billiards facilities, video games, a crafts center, the MOVE community service office, a music listening room, a newly renovated ballroom, several smaller meeting rooms, a credit union, a computer lab, lounge and study areas, and several dining options. Vans, cellular phones, and audio/visual equipment are available for use by student organizations through the Student Center Administrative Office. Also located in the Student Center is the Center for the Arts Box Office, offering student discounted tickets to a variety of entertainment events.

The hours of operation for many of the Student Center services vary; however, the Student Center building is open 24 hours a day, 7 days a week, providing students with a place to meet and study.

Student Government
The Georgia Tech Undergraduate and Graduate Student Government Associations (SGA) enable students to maintain responsible and respected
self-government and official institutional involvement in academic and nonacademic affairs. For more information, contact the SGA offices in the Student Services Building at 404.894.2814.

Assistance for Persons with Disabilities
The Access Disabled Assistance Program for Tech Students (ADAPTS) provides accessible programs, services, activities, and reasonable accommodations for students with a disability as defined by section 504 of the Rehabilitation Act of 1973, as amended, and by the Americans with Disabilities Act of 1990. Services are available to ensure that individuals with disabilities have an equal opportunity to pursue education, employment, or other campus programs, activities, or services.

ADAPTS offers self-identified students with permanent or temporary disabilities assistance with registration, academic advisement, accessibility, transportation, parking, housing, counseling, notetaking, recorded textbooks, advocacy, test proctoring, referral services, and other needs. ADAPTS sponsors a student advisory club and promotes disability awareness programs for departmental faculty and staff, as well as student organizations. Interpreting services are available for deaf students, and assistive listening devices are available for loan to students who are hard of hearing.

Students and prospective students who wish to learn more about ADAPTS and accommodations for students with disabilities should contact ADAPTS, Smithgall Student Services Building, Georgia Institute of Technology, Atlanta, Georgia, 30332-0285, or call 404.894.2564 (voice) or 404.894.1664 (TDD), or visit the website at www.adapts.gatech.edu. Faculty, staff, and visitors should contact Disability Services in the Office of Human Resources at 404.894.3344 (voice) or 404.894.9411 (TDD).

Academic Accommodations for Students with Disabilities
Reasonable accommodations are provided to self-identified students with disabilities who meet the academic and technical standards requisite to admission or participation in the program of study. Incoming students with apparent course work deficiencies due to a disability should contact the coordinator for Students with Disabilities at 404.894.2564.

Consideration may be given to the substitution or modification of certain course requirements — within the limitations imposed by the accreditation criteria for the degree program in which the student is enrolled — and to the extent that such substitutions or modifications of the course or curriculum do not have a net effect of detracting from the quality of the educational experience implied by the course or curriculum designation. Such substitutions or modifications must be approved by the school director, department head, or college dean, and the Undergraduate Curriculum Committee and/or the Graduate Committee.

Nontraditional Student Services
For the Nontraditional Student (undergraduates over age 25, graduate students over age 30, and financially independent students whose lifestyles vary significantly from those of younger students), the Office of the Dean of Students recognizes the importance of each individual student, encourages personal growth, and supports academic pursuits through advocacy and referral services. For assistance, contact the assistant dean of students at 404.894.2564.

Notification of Student Rights under FERPA
The Family Educational Rights and Privacy Act (FERPA) affords students certain rights with respect to their education records. They are:

1. The right to inspect and review the student's education records within 45 days of the day that the Institute receives the request for access.
 Students should submit to the registrar written requests that identify the record(s) they wish to inspect. The registrar will make arrangements for access and notify the student of the time and place where the records may be inspected.

2. The right to request amendment of the student's education records that the student believes are inaccurate or misleading.
 Students may ask the Institute to amend a record that they believe is inaccurate or misleading. They should write the Office of the Registrar, clearly identifying the part of the
record they want changed, and specify why it is inaccurate or misleading.

If the Institute decides not to amend the record as requested by the student, the Institute will notify the student of the decision and advise the student of his or her right to a hearing regarding the request for amendment. Additional information regarding the hearing procedures will be provided to the student when he or she is notified of the right to a hearing.

3. The right to consent to disclosures of personally identifiable information contained in the student's education records, except to the extent that FERPA authorizes disclosure without consent.

One exception that permits disclosure without consent is disclosure to school officials with legitimate educational interests. A school official is a person employed by the Institute in an administrative, supervisory, academic, research, or support staff position (including law enforcement unit personnel and health staff); a person or company with whom the Institute has contracted (such as an attorney, auditor, or collection agent); a person serving on the Board of Trustees; or a student serving on an official committee, such as a disciplinary or grievance committee, or assisting another school official in performing his or her tasks.

A school official has a legitimate educational interest if he or she needs to review an education record in order to fulfill his or her professional responsibility.

4. The right to file a complaint with the U.S. Department of Education concerning alleged failures by the Georgia Institute of Technology to comply with the requirements of FERPA. FERPA is administered by:

Family Policy Compliance Office
U.S. Department of Education
400 Maryland Avenue, S.W.
Washington, D.C. 20202-4605

The address for the registrar is:
Office of the Registrar
Georgia Institute of Technology
Atlanta, GA 30332-0315

Parental Notification Policy
Parents of students under the age of 21 will be notified when a student is found responsible for violating the “Georgia Tech Student Policy on Alcohol and Other Drugs” when the following occurs:

- When the student endangers himself or herself or others while under the influence of alcohol or other substances. Specific instances include DUI, fighting, alcohol poisoning, and hospitalization.
- When a hearing officer determines that any future violation of the Institute's policy will most likely result in suspension from Georgia Tech.
- When a hearing officer determines that any future violation of the Institute's policy will most likely result in removal from housing.

Directory Information
“Directory Information” is information not generally considered harmful or an invasion of privacy if disclosed. The Georgia Institute of Technology considers the following information to be Directory Information:

- Name, address, and telephone listing
- Level (graduate or undergraduate)
- Field of study
- Dates of attendance
- Degrees and date awarded

Directory Information cannot include student identification numbers or social security numbers. Students who wish to discuss the prohibition of release of Directory Information should contact the Registrar's Office for procedural information.

Policy on Sexual Harassment
Sexual harassment of employees or students in the University System is prohibited and shall subject the offender to dismissal or other sanctions after compliance with procedural due process requirements. Unwelcome sexual advances, requests for sexual favors, and other conduct of a sexual nature can constitute sexual harassment. For more information, contact the Dean of Students Office at 404.894.3627 or the director of the Office of Equal Opportunity and Diversity Programs at 404.894.9412.
Student Alcohol Policy
Georgia Tech complies with all federal, state, and local laws and policies, including the policies of the Board of Regents of the University System of Georgia, on the abuse of alcohol and other drugs by its students. The legal drinking age in Georgia is 21. Each member of the Tech community should be involved in the implementation of the Student Alcohol Policy. This policy is distributed via e-mail annually.

In accordance with federal and state laws and because of the potential detriment to the health, well-being, and success of students, all students are prohibited from engaging in the unlawful use or abuse, possession, manufacture, distribution, dispensation, and sale of alcoholic beverages, controlled substances (including marijuana), and other drugs.

Intellectual Property Policy
The Institute's Intellectual Property Policy, concerning inventions, copyright, and computer software, applies to students as well as to faculty and staff. Adherence thereto is a condition of continued enrollment at the Institute.

Academic Honor Code
A student initiative, the Academic Honor Code became official Institute policy in 1996. Students are required to sign an honor agreement acknowledging their awareness of the Code. All students are strongly encouraged to understand each instructor's Academic Honor expectations. The objective of the Honor Code is to level the academic playing field for all students while strengthening the level of academic integrity and trust within the Georgia Tech community.

Parking and Transportation
Due to limited campus parking availability, registration for parking permits is not offered to first-semester freshmen. Parking registration is conducted online from mid-April through mid-June each year. The registration address is www.applyparking.gatech.edu. The Parking and Transportation Web address, www.parking.gatech.edu, contains information such as parking policies and procedures, shuttle services, visitor parking, parking fees, a campus map with parking locations, and other pertinent information.

Questions concerning campus parking and transportation may be directed online to info.parking.gatech.edu or by phone to 404.894.4611.

Required Student Computer Ownership
In an effort to foster equal access to computers and to make the most of the teaching and learning technology available at Georgia Tech, all undergraduate students entering Georgia Tech under this or subsequent catalogs are required to own or lease a computer.

The minimum hardware and software requirements (as well as purchasing and financing options) are sent each spring to students accepted for the summer and fall semesters, and in the fall to students accepted for spring semester.

Because computer ownership is mandatory, an average cost for the minimum hardware and software required will be included in computing each new student's cost of education for the purpose of determining their eligibility for all forms of student financial aid.

Special Support Facilities

Library and Information Center
The Georgia Tech Library and Information Center houses one of the nation's largest collections of scientific and technical literature. Resources include more than 3 million volumes, more than 600,000 government documents, more than 3,000 videotapes, a complete collection of U.S. patents, and approximately 2 million technical reports. The Library receives more than 14,000 current periodicals.

Georgia Tech faculty, students, and staff have access to more than 200 online databases containing citations, abstracts, newspapers, indexes to journals and conference proceedings, and the full text of many periodicals. These databases, as well as the Library's catalog, are accessed through GTEL(r) (Georgia Tech Electronic Library) and Galileo, a statewide database service. Gateways to a variety of information resources available on the Internet are provided through GTEL(r).
Students, faculty, and staff may use libraries at Emory University, Georgia State University, the University of Georgia, and other local schools via a Georgia Tech ID card.

Copiers are available on several floors of the Library. Students may use facilities for group or individual study. The Library’s information consultants provide training classes for all students in the use of GTEL(r), Galileo, and the Internet. Consultants also are available for advice about individual information needs.

Information Technology and Computing Facilities

The Office of Information Technology (OIT) provides communications and computing technology leadership and support to all Georgia Tech students, faculty, staff, and researchers. Its mission is to serve the campus community in several critical areas, including customer service for computing, communications, the Student Computer Ownership Policy, and the growing area of educational technologies.

OIT issues computer accounts to all students, faculty, and staff for Institute-related activities such as Internet access; electronic mail; electronic publishing; information and database storage and retrieval; homework; and class assignments.

The campus network connects more than 160 buildings, including more than 30 residence halls and more than 35 sorority and fraternity houses, via fiber optic cables to the OIT central computing facilities, located in the Rich Building. Network connections are available in every residence hall (one for each bed), and all appropriate administrative, academic, and research workstations; classrooms; campus ministries; and most fraternity and sorority houses. The Institute's Network and Computer Usage Policy governs acceptable use of these facilities.

OIT also supports the campus cable television network in association with the Department of Housing. This service is also available to the academic and research communities.

In addition, OIT is playing a major role in the development of Internet2, serving as the home for the SOX (Southern Crossroads) gigaPoP, the largest aggregation point in the Southeast for universities to connect to the emerging national high-speed networking fabric.

OIT consists of seven directorates: Customer Support; Educational Technologies; Enterprise Information Systems; Information Security; Operations and Engineering; Planning and Programs; and Resource Management.

Customer Support provides support to campus users in a variety of computer-related areas. Specifically, the Customer Support Center provides support for microcomputer and workstation software applications; account administration for central computing resources; support for Macintosh, DOS, Windows, and UNIX operating systems; electronic mail; and workstation utilities.

The Customer Service Center can be reached via e-mail at support@oit.gatech.edu, by phone at 404.894.7173, or through the Web at www.oit.gatech.edu/cs/.

Educational Technologies serves as the technology advocate for the academic faculty and also provides support services to faculty members who wish to experiment with alternative classroom instructional methods.

Enterprise Information Systems is responsible for designing, implementing, and supporting Tech’s administrative information systems; developing and maintaining the Institute’s data repository; and providing information management support to all departments.

Information Security, established in fall 1999, is responsible for educating the campus community about security-related issues, assessing current policies, developing new policies, assisting in strengthening technical measures to protect campus resources, and developing mechanisms to react to incidents and events that endanger those resources.

Operations and Engineering is responsible for the design, development, operation, management, and maintenance of the core campus servers and systems, as well as the data, voice, and video communications networks for the Georgia Tech community.

Planning and Programs is responsible for strategic planning, program management support, and policy development.

Resource Management provides centralized management of OIT’s budgetary, purchasing, facilities management, and human resource functions, and Georgia Tech’s electronic data processing. Other areas include Public Relations and Printing and Copying Services (PCS).

The Office of Information Technology home page is located at www.oit.gatech.edu.
Georgia Tech Research Institute

The Georgia Tech Research Institute (GTRI) is a client-oriented, not-for-profit research organization that is an integral unit of the Georgia Institute of Technology. GTRI conducts basic and applied research in engineering, science, and economic development for a diversity of customers including federal, state, and local governmental agencies, industrial firms, and private organizations.

Chartered by the Georgia legislature in 1919 and activated in 1934, the GTRI mission is to plan and conduct focused programs of innovative research and development, education, and economic development that advance the global competitiveness and security of the state of Georgia, the region, and the nation.

GTRI works closely with Tech's academic colleges, interdisciplinary centers, and the Economic Development Institute in areas of research, education, and service. GTRI's vision is to be the most respected university-based applied research institute in the nation.

The staff is composed of engineers, scientists, support staff, and students (undergraduate and graduate). Employees work in eight laboratories and several support groups housed on campus, at the Cobb County Research Facility; and in Huntsville, Alabama, and Arlington, Virginia. Field offices are maintained in Arlington, Virginia; Dayton, Ohio; Ft. Walton Beach, Florida; Quantico, Virginia; Albuquerque, New Mexico; Huntsville, Alabama; and Warner Robins, Georgia.

Research programs at GTRI include acoustics, aerospace sciences and technology, telecommunications and information technology, electromagnetic environmental effects, electronic protection, food processing industry programs, human factors, electro-optics, law enforcement technology, learning technology, manufacturing technology, materials science, microelectronics and applications, missile systems, modeling and simulation, networking, navigation, optoelectronics/photonics, radar, safety, health and environmental technology, signature control and reduction, signature sciences, simulator testbeds, technology insertion, test and evaluation, and transportation.

One of GTRI's principal missions is to support economic and technological development in Georgia. GTRI promotes economic growth in the state and the Southeast through mutual programs with the Economic Development Institute. GTRI operates strong technology transfer programs and offers continuing education courses. It is the home of the state's Agricultural Research Technology Program, which conducts research and technology transfer for the poultry industry, one of Georgia's leading employers.

For additional information, contact the Office of the Vice President and Director, GTRI, Centennial Research Building, Atlanta, Georgia 30332-0801, or call 404.894.3400.

Advanced Technology Development Center

The Advanced Technology Development Center (ATDC) is the oldest and most experienced university-affiliated technology development center in the country. It was formed in 1980 by the governor and General Assembly to increase the technology business base in Georgia. ATDC fulfills this mission by assisting in the formation and growth of advanced technology start-up companies, supporting technology commercialization, and attracting technology companies to the state. In 1996, ATDC was named "Incubator of the Year" by the National Business Incubation Association.

ATDC is headquartered in the 83,000-square-foot Technology Business Center on the Tech campus. ATDC also has facilities at Warner Robins and at the Georgia Center for Advanced Telecommunications Technology on Fourteenth Street. At these locations, early-stage companies enjoy a strong entrepreneurial working environment, access to professional business consulting, contact with university research faculty, and modern office and laboratory facilities. The ATDC also provides companies with access to facilities, personnel, and students in the University System.

ATDC's increasingly proactive efforts to facilitate commercialization of university technology, as exemplified by the Faculty Research Commercialization Program, help bring high-tech concepts from the university research laboratory to commercial product realization.

ATDC assists in economic development efforts in key technological areas around Georgia. ATDC/Warner Robins is working to encourage the development of new defense and aerospace technology firms. ATDC provides assistance to entrepreneurs throughout the state in cooperation with its parent organization, the Economic Development Institute.
Distance Learning, Continuing Education, and Outreach

Distance Learning
Graduate-level courses are available throughout the state of Georgia and the nation by videotape, CD-ROM, and over the Internet. Selected courses are available at some locations by video teleconferencing and satellite. The courses can be taken for professional development or with a degree objective. Qualified candidates are enrolled as regular part-time graduate students. A master of science degree can be earned entirely at a distance in:

- Electrical Engineering
- Environmental Engineering
- Health Physics/Radiological Engineering
- Industrial Engineering
- Mechanical Engineering

Students at remote sites receive class handouts and videotapes of campus sessions via e-mail, and communicate with the instructor by telephone, computer, fax, and/or e-mail. For a semester calendar, call 404.894.3379, fax 404.894.8924, or write to the Center for Distance Learning, Georgia Institute of Technology, Atlanta, Georgia 30332-0385, or e-mail cd@contend.gatech.edu.

Undergraduate courses are delivered by videotape to Georgia Tech co-op students on work semester. Undergraduate engineering courses are delivered by video teleconferencing to pre-engineering students at other units of the University System.

Continuing Education
Continuing Education coordinates the delivery of non-credit short courses and professional development programs to the public and to individual clients. Programs are held on campus and at other selected locations in the United States and other countries. In collaboration with the Center for Distance Learning, continuing education programs are also delivered via distance learning technologies including videotape, video teleconferencing, online, and satellite. Continuing Education also hosts conferences and trade shows.

Short courses, varying in length from one to five days, are offered throughout the year to assist professionals with acquiring knowledge of different fields and new technologies. Courses are offered on various topics in architecture, engineering, science, management, economic development, research, and computer science.

There are 33 certificate programs comprised of sequences of short courses offered in the following areas: database management, digital signal processing and telecommunications, e-commerce, hazardous materials, information technology, information technology project management, Internet/Web design and programming, logistics, management, multimedia, networking, occupational safety and health, power engineering, radar technology, software engineering, sustainable facilities and infrastructure, and Unix.

For information, call 404.385.3502, fax 404.894.7398, or write to Continuing Education, Georgia Institute of Technology, Atlanta, Georgia 30332-0385, or e-mail diana.turner@conted.gatech.edu.

Language Institute
The Language Institute offers intensive English classes to international students and business and professional people. This intensive English program provides levels of instruction in English as a second language to participants from around the world. The program also facilitates the assimilation of international students into campus life in the United States through orientation and assistance in the admissions process to American colleges and universities.

For information, call 404.894.2425, fax 404.894.7398, or write to the Language Institute, Georgia Institute of Technology, Atlanta, Georgia 30332-0374, or e-mail charles.windish@conted.gatech.edu.

Oak Ridge Associated Universities
Since 1946, students and faculty of the Georgia Institute of Technology have benefited from the Institute's membership in the Oak Ridge Associated Universities (ORAU). ORAU is a consortium of 86 colleges and universities and a contractor for the U.S. Department of Energy (DOE) located in Oak Ridge, Tennessee. ORAU works with its member institutions to help their students and faculty gain access to federal research facilities throughout the country; to keep its members informed about opportunities for fellowship, scholarship, and research appointments; and to
organize research alliances among its members.

Through the Oak Ridge Institute for Science and Education, the DOE facility that ORAU operates, undergraduates, graduates, postgraduates, as well as faculty enjoy access to a multitude of opportunities for study and research. Students can participate in programs covering a wide variety of disciplines including business, earth sciences, epidemiology, engineering, physics, geological sciences, pharmacology, ocean sciences, biomedical sciences, nuclear chemistry, and mathematics. Appointment and program length range from one month to four years. Many of these programs are especially designed to increase the numbers of underrepresented minority students pursuing degrees in science- and engineering-related disciplines. A comprehensive listing of these programs and other opportunities, their disciplines, and details on locations and benefits can be found in the ORISE Catalog of Education and Training Programs, available at www.orau.gov/orise/edufOlCatalogEdu.pdf, or by calling either of the contacts below.

ORAU's Office of Partnership Development seeks opportunities for partnerships and alliances among ORAU's members, private industry, and major federal facilities. Activities include faculty development programs such as the Ralph E. Powe Junior Faculty Enhancement Awards, the Visiting Industrial Scholars Program, and various services to chief research officers.

For more information about ORAU and its programs, contact Dr. Charles L. Liotta, vice provost for Research and dean of Graduate Studies, at 404.894.8885 or charles.liotta@carnegie.gatech.edu. Dr. Liotta is the ORAU counselor for Georgia Tech. You may also contact Ms. Monnie E. Champion, ORAU corporate secretary, at 865.576.3306; or visit the ORAU home page at www.orau.org.

Skidaway Institute of Oceanography
Located on Skidaway Island near Savannah Georgia, the Skidaway Institute provides a complex of coastal- and marine-related educational and research opportunities. School of Biology faculty have facilities at the Institute and participate along with their students in research activities. The Institute maintains small boats and the R/V Blue Fin, a 72-foot vessel for research at distances up to 100 miles offshore. Areas of research expertise at the Institute include chemical oceanography, physical oceanography, biological oceanography, and marine geology.

Georgia Tech Lorraine
Located in France in the Technopole Metz 2000 technology park in the Lorraine region, Georgia Tech Lorraine (GTL) serves as the Georgia Institute of Technology platform in Europe. GTL conducts graduate education in engineering, has ongoing programs of basic and applied research, and offers continuing education courses.

At GTL, students can pursue regular academic programs of Georgia Tech while immersed in the rich culture of Europe. Instructional programs leading to master's degrees and Ph.D.s in electrical and computer engineering and in mechanical engineering are available to graduate students throughout the year. In addition, double-degree programs that lead to both a Georgia Tech degree and a diploma from a European university have been developed. Undergraduate summer programs in engineering, management, and social sciences are offered to any qualified student.

All instruction at GTL is in English. French language courses are also available to enhance students' experience as well as to enable students to participate in a double-degree program.

GTL operates in a 50,000-square-foot building that houses classrooms, academic and research laboratories, student lounges, conference rooms, and a library, along with faculty and staff offices. Student housing is available for all GTL students. Many student-oriented facilities are available close to the GTL campus, along with the diverse cultural and entertainment resources of the city of Metz.

For more information, contact GTL at 404.894.0076 or +33 38+2-3939. You may also access GTL at info@georgiatech-nietzir.

Joint CNRS Research Laboratory
As the result of a strategic alliance between the Georgia Institute of Technology and the French Centre National de la Recherche Scientifique (CNRS), a joint GIT/CNRS research laboratory was established in 1998 at GTL. The laboratory, the Centre GIT-CNRS Telecom, conducts a unique transatlantic collaborative program of research in telecommunications and related areas. Research faculty and graduate students from Georgia Tech,
French universities, and other CNRS laboratories work on joint research projects sponsored by industry and by local and national governments.

Initial research programs center on opto-electronic techniques for signal encryption and secure transmission, signal coding for wireless communications and for data transmission in hyperlans, and soliton transmission and wavelength division multiplexing and signal routing in optical fiber transmission links. The program will expand to include a diversity of research in telecommunications and in the area of integrated sensors and sensor networks.

For more information, contact GTL-CNRS Telecom at +33 387 20 3939 or send e-mail to gtl-cnrs-telecom@georgiatech-metz.fr.

Interdisciplinary Programs

The Office of the Vice Provost for Research and Dean of Graduate Studies oversees interdisciplinary research centers at Georgia Tech not otherwise coordinated through a College. The office currently provides oversight for 20 centers. The four programs in bioengineering and bioscience are coordinated through the Parker H. Petit Institute for Bioengineering and Biosciences. The Institute of Sustainable Technology and Development coordinates five additional centers involved with the environment and sustainability. The Georgia Center for Advanced Telecommunications Technology coordinates four other centers with similar research areas. Seven centers report directly to the vice provost for Research and dean of Graduate Studies. Each center is listed below, along with the director's name and telephone number. For more information on each center, call the number provided or call the Office of the Vice Provost for Research and Dean of Graduate Studies at 404.894.8884.

Parker H. Petit Institute for Bioengineering and Bioscience (IBB)
Director: Robert Nerem, 404.894.2768
- Bioengineering Research Center
 Director: Ajit Yoganathan, 404.894.2849
- Bioscience Center (BC)
 Director: Sheldon May, 404.894.4052
- Georgia Tech-Emory Biomedical Technology Research Center (EM/GT)
 Director: Ajit Yoganathan, 404.894.2849
- GIT/MCG Biomedical Research and Education Program
 Director: Loren Williams, 404.894.9752

Institute for Sustainable Technology and Development (ISTD)
Director: Carol Carmichael, 404.894.7895
- Air Resources and Engineering Center (AREC)
 Director: Armistead (Ted) Russell, 404.894.3079
- Environmental Resources Center (ERC)
 Director: Bernd Kahn, 404.894.3776
- Georgia Transportation Institute (GTI)
 Director: Glenn Rix, 404.894.2292 or 404.385.0381
- Georgia Water Resources Institute
 Director: Aris Georgakakos, 404.894.2240
- Specialty Separations Center
 Director: Charles A. Eckert, 404.894.7070

Georgia Center for Advanced Telecommunications Technology (GCATTT)
Director: Nikil Jayant, 404.894.7285

Vice Provost for Research and Dean of Graduate Studies
- Interactive Media Technology Center (IMTC)/Biomedical Interactive Technology Center (BITC)
 Executive Director: Mark Clements, 404.894.4584
 Research Director, IMTC: Andrew Quay, 404.894.4195
 Research Engineer, IMTC: Ed Price, 404.894.4195
 Research Director, BITC: John Peifer, 404.894.7028
- Center for Human Movement Studies
 Director: Robert Gregor, 404.894.1028
- Center for Optical Science and Engineering (COSE)
 Director: William T. Rhodes, 404.894.2929
- Center for Nanoscience and Nanotechnology
 Director: Zhong Lin (Z.L.) Wang, 404.894.8008
- Manufacturing Research Center (MARC)
 Director: Steven Danyluk, 404.894.9687
- Microelectronics Research Center (MiRC)
 Director: James D. Meindl, 404.894.5101
- Polymer Education and Research Center (PERC)
 Director: Vacant
The schools of the Georgia Institute of Technology are authorized to offer graduate degrees, develop and administer their own individual programs, and work closely with one another to provide special study and research opportunities for students who wish to pursue a degree with a wider perspective than that presented by a single discipline. Cooperation between academic units and various research centers and the development of informal programs based on areas of faculty interest have resulted in the establishment of interdisciplinary programs in a number of areas, such as computer integrated manufacturing systems, microelectronics, bioscience and bioengineering, and nanotechnology. The College of Engineering lists a number of multidisciplinary programs on page 127 of this catalog. The College of Computing offers an interdisciplinary certificate in cognitive science, detailed on page 94. The role of the DuPree College of Management in multidisciplinary programs is discussed on page 110. Multidisciplinary programs in the College of Sciences are discussed on page 304.

Affiliated Organizations

Georgia Tech Athletic Association
Intercollegiate sports are administered by this non-profit corporation through a board of trustees consisting of seven faculty members, three alumni, and three students, with the president of Georgia Tech serving as chair. The Athletic Association is committed to the development, preparation, support, and graduation of student-athletes through its Total Person Program and Academic Center. The Association provides and maintains facilities that allow the participation and enjoyment of a variety of sporting events by members of the Georgia Tech and Atlanta communities. Intercollegiate sports include football, basketball, cross country, indoor/outdoor track, golf, tennis, baseball, volleyball, swimming, and softball. The Athletic Association has made a commitment to excellence and to complement the mission of the Institute.

Georgia Tech Alumni Association
The Georgia Tech Alumni Association was chartered in June 1908 and restructured in 1920 as a not-for-profit organization with policies, goals, and objectives guided by a board of trustees.

In October 1999, Joseph P. Irwin, a 1980 industrial management graduate, was named executive director. The Association's mission to support Georgia Tech and foster ties between the Institute and alumni was examined strategically to improve operations. The Association adopted the vision statement "Building Your Lifelong Connection to Georgia Tech." The Association was reorganized into eight departments: Administration, Alumni Relations, Campus Relations, Communications (which includes the Living History initiative), Event Management, Human Resources and Career Development, Marketing, and Roll Call.

The offices of the Alumni Association are located in the L. W. "Chip" Robert Jr. Alumni/Faculty House at 190 North Ave., Atlanta, GA 30313. Inquiries should be directed to 404.894.2391 or 1.800.GTALUMNS (phone), 404.894.5113 (fax), or alumni@Web@gtalumni.org (e-mail). The Web address is www.gtalumni.org.

Georgia Tech Foundation Inc.
The Georgia Tech Foundation Inc. is a not-for-profit, tax-exempt corporation that receives, administers, and invests virtually all private contributions made in support of the academic programs of the Georgia Institute of Technology. The Foundation maintains its support of the Institute through the regular and emeritus members of its board of trustees, who are distinguished by their expertise in financial management and investments and by their devotion to Georgia Tech.

Endowment funds maintained by the Foundation furnish student scholarships and fellowships, faculty assistance, and general support to the academic divisions of the Institute. In addition, gifts and income from undesignated endowments provide unrestricted funds that help meet the most pressing needs of the Institute.
The Georgia Tech Research Corporation

Founded in 1937, the Georgia Tech Research Corporation (GTRC) is a state-chartered, not-for-profit corporation serving Georgia Tech as a University System of Georgia-approved cooperative organization. By charter, GTRC “...shall be operated exclusively for scientific, literary, and educational purposes...conduct laboratories, engage in scientific research, and distribute and disseminate information resulting from research...” GTRC is an IRS section 501(c)(3) not-for-profit organization and serves as the contracting agency for all of the sponsored research activities at Georgia Tech. It also licenses all intellectual property (patents, software, trade secrets, etc.) created at Georgia Tech. Additionally, GTRC assists Georgia Tech in obtaining quality research space, enters into long-term leases for specialized research equipment, and conducts other research support programs as requested by the Institute. All funds collected by GTRC are used to support various Georgia Tech research programs requested by the Institute and as approved by the 12-member Board of Trustees. GTRC is located on campus at 505 Tenth Street.
INFORMATION FOR
UNDERGRADUATE STUDENTS

Degrees
Georgia Tech at present offers curricula leading to the following undergraduate degrees:

College of Architecture
- Bachelor of Science
- Bachelor of Science in Building Construction
- Bachelor of Science in Industrial Design

College of Computing
- Bachelor of Science
- Bachelor of Science in Computer Science

DuPree College of Management
- Bachelor of Science
- Bachelor of Science in Management

College of Engineering
- Bachelor of Science
- Bachelor of Science in Aerospace Engineering
- Bachelor of Science in Biomedical Engineering
- Bachelor of Science in Chemical Engineering
- Bachelor of Science in Civil Engineering
- Bachelor of Science in Computer Engineering
- Bachelor of Science in Electrical Engineering
- Bachelor of Science in Industrial Engineering
- Bachelor of Science in Materials Science and Engineering
- Bachelor of Science in Mechanical Engineering
- Bachelor of Science in Nuclear and Radiological Engineering
- Bachelor of Science in Polymer and Textile Chemistry
- Bachelor of Science in Textile Enterprise Management
- Bachelor of Science in Textile and Fiber Engineering

Ivan Allen College
- Bachelor of Science
- Bachelor of Science in Economics
- Bachelor of Science in History, Technology, and Society
- Bachelor of Science in International Affairs
- Bachelor of Science in International Affairs and Modern Languages
- Bachelor of Science in Public Policy
- Bachelor of Science in Science, Technology, and Culture

College of Sciences
- Bachelor of Science
- Bachelor of Science in Applied Mathematics
- Bachelor of Science in Applied Physics
- Bachelor of Science in Applied Psychology
- Bachelor of Science in Biology
- Bachelor of Science in Chemistry
- Bachelor of Science in Discrete Mathematics
- Bachelor of Science in Earth and Atmospheric Sciences
- Bachelor of Science in Physics

Requirements for each degree are listed in “Curricula and Courses of Instruction” under the school responsible for the program. Students should select a degree program as early as possible, preferably with their request for admission, but may postpone the decision and enter as undecided majors. Students who have selected a degree program receive academic advisement from the appropriate school; undecided students are advised through the respective offices of the deans of the six colleges.

Undergraduates who have completed the required number of work terms through the Cooperative Division receive the degree with the designation “Cooperative Plan,” or if they have met certain language and international work experience requirements, the designation “International Cooperative Plan” is awarded.
Special Programs

The Cooperative Plan
Since 1912, Tech has offered two plans of study—the standard four-year plan and a five-year cooperative plan for students who wish to combine practical experience with technical theory.

Approximately 3,500 cooperative students, selected from applicants on the basis of high scholarship, work with more than 600 employers throughout the country (as well as a few international assignments), while they complete academic degree programs.

The Cooperative Division offers programs for majors in aerospace, chemical, civil, computer, electrical, industrial, materials, mechanical, nuclear and radiological, and textile and fiber engineering (including textiles and polymer and textile chemistry), and in biology, chemistry, computer science, earth and atmospheric sciences, mathematics, physics, management, economics, international affairs, industrial design, building construction, and science, technology, and culture. The academic curricula are identical to those offered regular four-year students. Co-ops also remain on the school rolls while on work periods by registering for the appropriate co-op course.

The cooperative program offers the student practical experience and insight into human relations, as well as financial assistance. The work experience co-op students receive is a valuable asset to graduates starting out in their chosen professions. Neither college laboratory experience nor employment during vacations can take the place of organized co-op training. The plan provides, to a substantial degree, the experience most companies require of their employees before promoting them to positions of responsibility. Work experience may also assist students undecided about their future plans in determining early in their college careers whether they wish to continue in a particular field.

Moreover, daily contact with diverse groups among their fellow employees offers students practical insight into sociology, psychology, economics, and ethics that no textbook can supply. Finally, students receive compensation for their services from their employers. Typically, co-op students can save enough from their earnings to pay for more than half of their school expenses.

Students interested in applying for admission to the cooperative plan should write to the Director, Cooperative Division, Georgia Institute of Technology, Atlanta, Georgia 30332-0260, for an information packet, including the necessary application form. Students may also contact the office by e-mail at gcoop@coop.gatech.edu, or visit the website at www.coop.gatech.edu.

The Georgia Tech Cooperative Program is accredited by the Accreditation Council for Cooperative Education.

Undergraduate Academic Common Market
The Academic Common Market is an interstate agreement for sharing educational programs and facilities, allowing students to participate in selected programs not offered in their home states without having to pay out-of-state tuition charges. The Southern Regional Education Board (SREB) coordinates the activities of the Academic Common Market for the 15 participating states (Alabama, Arkansas, Delaware, Florida, Georgia, Kentucky, Louisiana, Maryland, Mississippi, Oklahoma, South Carolina, Tennessee, Texas, Virginia, and West Virginia).

One of the primary functions of the Academic Common Market is to assist states in offering together what they cannot offer alone. Programs are added to and removed from the Market on an annual basis in order to reflect the changing needs of participating states. The state of Georgia currently makes program changes once annually during the spring.

For a list of undergraduate degree programs non-Georgia residents may study without having to pay out-of-state tuition, as well as the ACM policies and procedures, visit www.enrollment.gatech.edu/acm or call the Office of Undergraduate Admission at 404.894.4154.

Multidisciplinary and Certificate Programs
Multidisciplinary Programs in the College of Engineering and Certificate Programs in the College of Sciences, the Ivan Allen College, and the DuPree College of Management offer students in good standing an opportunity to broaden their areas of expertise or acquire skills or information beyond their major degree requirements. Students interested in pursuing these programs should consult with their major school advisor.
For a description of Multidisciplinary and Certificate Programs offered in the College of Engineering, see page 127. For a description of similar programs in the College of Sciences, see page 304; in the Ivan Allen College, see page 238; and in the DuPree College of Management, see page 110.

Summer Language Program
The Language for Business and Technology Program at Georgia Tech offers an intensive summer program of study in German, French, Japanese, and Spanish. The six-week French and German immersion programs are taught in France and Germany; the Japanese and Spanish programs both have a three-week on-campus component and an extended stay abroad (four weeks in Spain and three weeks in Japan). Students attend classes six hours per day and take part in special educational and social activities together, including visits to companies and government offices and cultural programs. The students and their native-speaker instructors converse only in the target language.

The program is designed to take students who have a moderately low familiarity with the language (one year of college or two years of high school instruction) and move them to a level where they will be prepared to take advantage of overseas opportunities for work and study in a business or technological setting.

Upon completion of the summer program and the overseas seminar, students may earn 9 (French, German, and Japanese) or 12 hours (Spanish) of credit. For further information, contact the School of Modern Languages.

ROTC
Georgia Tech offers three voluntary ROTC programs: Army, Navy, and Air Force.

Depending on the student's major, basic and advanced ROTC classes count as a portion of elective credit. (Students may apply a maximum of four hours in basic ROTC courses and six hours in advanced ROTC courses toward meeting the free elective requirements for any degree.) Consult the specific college to determine the amount of hours that will count toward a degree. After earning a baccalaureate degree and completing the advanced ROTC courses for any of the three services, a student may receive a commission in either the reserve or active forces.

Students accepted into the program earn more than just money for college and leave with far more than just a college degree. Cadets and midshipmen receive training and experience in the one quality that will always be in great demand: leadership.

Preparation for Careers in High School Teaching
Students interested in pursuing careers in high school teaching may obtain secondary (high school) certification while pursuing their degree program at Georgia Tech. Through partnership with local universities, the program arranges for Tech students to cross-register for the necessary education classes. Some of these classes are taught on the Tech campus, but may also be taken at Georgia State University, which is only a short distance from Georgia Tech. Those interested in pursuing this option should consult with academic advisors in the College of Sciences for assistance in structuring their academic program to include the required education courses.

Joint Enrollment Program for High School Students
High school students who have completed tenth or eleventh grade and have academic credentials comparable to those of scholastically superior first-year students at Tech may take courses at Georgia Tech. Courses taken at Georgia Tech will normally be at a level beyond those available in the student's high school. Courses completed at Georgia Tech can be used to satisfy high school requirements, and will also carry college credit. Interested students should consult their high school counselor for specific program requirements. Applications for the program are available from the Office of Undergraduate Admission at Georgia Tech.

Preprofessional Programs
Georgia Tech degree programs offer a well-balanced basic education in addition to outstanding training in the chosen field. As such, they provide an excellent basis for subsequent study of medicine, dentistry, veterinary medicine, or law. These professional programs typically require a limited number of courses in specific areas, which if not required as a part of the student's Georgia Tech degree program may be included as electives.
Each academic department has preprofessional advisors who advise students in structuring their program of study to include the necessary courses to qualify for admission to professional school.

Georgia Tech has elected not to have majors designated as premedicine, predentistry, or prelaw. This approach to preprofessional education has two major advantages. First, students who elect not to enter professional school upon graduation are prepared for alternative careers immediately. Second, students who do continue to professional school have backgrounds that often provide them with unique opportunities within their selected profession. Examples include medical research, development of medical devices and apparatus, patent law, or the legal aspects of design and construction.

Professional schools typically admit students with strong academic credentials, a well-balanced education, good communication skills, and a broad range of experiences. With the appropriate selection of elective courses, most majors at Georgia Tech provide suitable preparation for professional school in any area. No specific major offers an obvious competitive advantage in assuring admission to professional schools. The best choice of major is usually the one in which the student has the greatest inherent interest.

Special Academic Services

In an effort to assist its students in realizing their full intellectual potential, Georgia Tech sponsors a variety of voluntary programs designed to help the student overcome academic problems.

For assistance within a specific academic discipline, students should contact the appropriate college office (Architecture, Computing, Engineering, Management, Sciences, or Ivan Allen College). Other academic assistance programs are available through the Division of Student Affairs, the Department of Housing (Freshman Experience Program), OMED (Office of Minority Education Development), and other units of the Institute.

Admissions

Freshman Admission

Freshmen may apply only for the summer or fall terms. Following the completion of the junior year of high school, freshman applicants may submit the completed Application for Freshman Admission, nonrefundable application fee, SAT I and/or ACT scores, and high school transcript(s) to the Office of Undergraduate Admission. Freshman applicants may choose to submit a paper copy of the application or complete one of the options found online at www.enrollment.gatech.edu/apply. The high school transcript must cover the first three years of high school, with the student’s senior year schedule indicated by semesters or quarters. The high school transcript should show the type of grading system, accreditation status of the school, and any honors-level or advanced courses completed by the applicant.

It is the applicant’s responsibility to ensure that all required elements, including the application, nonrefundable application fee, SAT I and/or ACT scores, and official transcript(s), are submitted on time. All elements must be submitted by October 31 (postmarked) to guarantee consideration for the President’s Scholarship or by January 15 (postmarked) to guarantee consideration for admission to Georgia Tech.

The Office of Undergraduate Admission will consider all completed applications on file by the stated deadlines provided spaces are available for the particular term or academic year for which the student applies. An application submitted after the deadline may receive consideration, but only at the discretion of the Institute.

For more information regarding freshman admission to the Georgia Institute of Technology, visit www.enrollment.gatech.edu, call 404.894.4154, or write to: Director of Undergraduate Admission, Georgia Institute of Technology, Atlanta, Georgia 30332-0320.

Transfer Admission

Transfer applicants may apply for the summer, fall, or spring terms. Transfer applicants must submit the completed Application for Transfer Admission, nonrefundable application fee, official college transcript(s) from all colleges attended, and, if appropriate, any additional forms related to a Special Transfer Program. Transfer applicants may choose to submit a paper copy of the application or complete one of the options found online at www.enrollment.gatech.edu/apply.

It is the applicant’s responsibility to ensure that all required elements, including the application, nonrefundable application fee, and official college transcript(s) from all colleges attended, and, if appropriate, any additional forms related to a Special Transfer Program. Transfer applicants may choose to submit a paper copy of the application or complete one of the options found online at www.enrollment.gatech.edu/apply.

It is the applicant’s responsibility to ensure that all required elements, including the application, nonrefundable application fee, and official college transcript(s) from all colleges attended, and, if appropriate, any additional forms related to a Special Transfer Program. Transfer applicants may choose to submit a paper copy of the application or complete one of the options found online at www.enrollment.gatech.edu/apply.

It is the applicant’s responsibility to ensure that all required elements, including the application, nonrefundable application fee, and official college transcript(s) from all colleges attended, and, if appropriate, any additional forms related to a Special Transfer Program. Transfer applicants may choose to submit a paper copy of the application or complete one of the options found online at www.enrollment.gatech.edu/apply.

It is the applicant’s responsibility to ensure that all required elements, including the application, nonrefundable application fee, and official college transcript(s) from all colleges attended, and, if appropriate, any additional forms related to a Special Transfer Program. Transfer applicants may choose to submit a paper copy of the application or complete one of the options found online at www.enrollment.gatech.edu/apply.
Information for Undergraduate Students

transcript(s), are submitted on time. All elements must be submitted by February 1 (postmarked) to guarantee consideration for summer or fall semester admission to Georgia Tech, or September 1 (postmarked) to guarantee consideration for spring semester.

The Office of Undergraduate Admission will consider all applications on file by the stated deadlines, provided spaces are available for the particular term or academic year for which the student applies. An application submitted after the deadline may receive consideration, but only at the discretion of the Institute.

For more information regarding transfer admission to the Georgia Institute of Technology or any of the Special Transfer Programs offered, visit www.enrollment.gatech.edu/transfer, call 404.894.4154, or write to: Director of Undergraduate Admission, Georgia Institute of Technology, Atlanta, Georgia 30332-0320.

International Students

International students should access further information regarding application policies and procedures and other basic information helpful to applicants from other countries by visiting www.enrollment.gatech.edu/Intl. International students will not receive financial aid or institutional scholarships. For more information, contact the Office of Undergraduate Admission at 404.894.4154.

Advanced Placement/Advanced Standing

Students entering Georgia Tech may receive college credit based upon their scores on the College Board Advanced Placement (AP) Exams taken in conjunction with designated high school advanced placement classes, SAT II Subject Tests, International Baccalaureate Credit, and/or Georgia Tech Departmental Exams.

College Board Advanced Placement (AP)

Minimum AP scores for earning college credit include: 4 in American government and politics, comparative politics, computer science (AB), economics, English, French, German, history (American and European), mathematics, music, psychology, and Spanish; and 5 in biology, chemistry, environmental science, and physics. Students who have taken any of these tests should have their scores sent directly to Georgia Tech by the College Board.

SAT II Subject Tests

English and chemistry credit may also be earned based upon minimum scores of 720 English and 720 chemistry. Students who have taken any of these tests should have their scores sent directly to Georgia Tech by the College Board.

International Baccalaureate

<table>
<thead>
<tr>
<th>Subject</th>
<th>"Higher Level" Exam Scores</th>
<th>Georgia Tech Credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>American</td>
<td>3 hours</td>
<td></td>
</tr>
<tr>
<td>History</td>
<td>4 or higher</td>
<td>(HIST 2111)</td>
</tr>
<tr>
<td>Biology</td>
<td>4 hours</td>
<td>(BIOL 1510)</td>
</tr>
<tr>
<td>Biology</td>
<td>8 hours</td>
<td>(BIOL 1510, 1520)</td>
</tr>
<tr>
<td>Chemistry</td>
<td>4 hours</td>
<td>(CHEM 1310)</td>
</tr>
<tr>
<td>Computer</td>
<td>3 hours</td>
<td>(CS 1321)</td>
</tr>
<tr>
<td>Science</td>
<td>3 hours</td>
<td>(ECON 2100)</td>
</tr>
<tr>
<td>Economics</td>
<td>3 hours</td>
<td>(ENGL 1101)</td>
</tr>
<tr>
<td>Foreign</td>
<td>6 hours*</td>
<td>(1001-1002)</td>
</tr>
<tr>
<td>Language</td>
<td>4 hours</td>
<td>(MATH 1501)</td>
</tr>
<tr>
<td>Mathematics</td>
<td>8 hours</td>
<td>(PHYS 2211 & 2212)</td>
</tr>
<tr>
<td>Physics</td>
<td>5 or higher</td>
<td></td>
</tr>
</tbody>
</table>

*You may receive free elective credit for courses numbered 1001-1002 in a language if you submit scores of 5 or higher from a certified high school international Baccalaureate program. You won’t get credit for high school language study if you’re a native speaker of that language or if you’ve taken freshman-level courses at a college and received transfer credit. To have this free elective credit entered on your records, you must ask the School of Modern Languages to submit the appropriate document to the registrar. This credit doesn’t apply toward the six-hour humanities/fine arts requirements for graduation. No grade is attached to it.
Departmental Exams
Advanced Placement in Mathematics: If you've taken a high school calculus course and achieved an SAT I math score of 600 or higher, you may take the School of Mathematics' advanced placement exam in calculus during freshman orientation. This exam is an alternative to College Board Advanced Placement Exams. Pass this and receive credit for MATH 1501. You may also be approved for subsequent course exams.

These guidelines are subject to change without notice.

Readmission
Georgia Tech students who are not enrolled for two or more consecutive terms must apply for readmission. The Application for Readmission, with all pertinent supporting information, must be submitted to the Registrar's Office before the deadline for the term for which readmission is requested as listed below:

<table>
<thead>
<tr>
<th>Term</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>July 1</td>
</tr>
<tr>
<td>Spring</td>
<td>December 1</td>
</tr>
<tr>
<td>Summer</td>
<td>May 1</td>
</tr>
</tbody>
</table>

Former students on drop or review status should apply at least two months prior to these deadlines in order to ensure sufficient time for the review process. The section “Rules and Regulations” in this catalog contains additional information on readmission.

Students who withdraw from school (receiving all Ws) will not ordinarily be permitted to enroll the next succeeding term. If an exception is requested due to unusual circumstances, a Petition to the Faculty must be filed.

Academic Advising
The faculty of each school must provide each student enrolled in that school the opportunity to consult with an informed advisor on the academic program and the selection of courses. Students should regularly seek assistance from their designated faculty advisors during their program of study, particularly when problems occur. Students who do not know the identity of their advisor should consult with the school director. Students undecided about their majors should seek advice from staff members in the office of the appropriate college dean.

Students must follow the approved curriculum of the academic school in which they are registered. Students who do not follow the approved curriculum may be denied registration privileges.

Academic Regulations
The “Rules and Regulations” section of this catalog contains detailed information regarding the academic regulations of the Institute. Students who have questions concerning these regulations should consult either the general office of their major school or the Office of the Registrar, Room 104, Administration Building.

Grading System
For detailed information about the Georgia Tech grading system, see “Rules and Regulations,” Section V, in this catalog.

Graduate Course Option
Students who complete both the bachelor's and master's in the same discipline at Georgia Tech may use up to six credit hours of graduate-level course work in the major discipline for both degrees. Recognizing that some master's degree programs do not have a unique undergraduate counterpart program, and that some master's programs are offered by several schools, the term "discipline" in the prior sentence will be broadly interpreted in such cases. In order to qualify for this option, the student must complete the undergraduate degree with a cumulative grade point average of 3.5 or higher and complete the master's degree within a two-year period from the award date of the bachelor's degree. Civil Engineering, Electrical Engineering, Engineering Science and Mechanics, Industrial and Systems Engineering, International Affairs, Mathematics, Mechanical Engineering, and Textile and Fiber Engineering are the only schools currently participating in this program.

Institute Rules for the Pass/Fail System
At the option of the major school, a student may receive up to a maximum of nine hours credit toward a bachelor's degree or three hours credit toward a graduate degree for courses taken under
the pass/fail system with a grade of satisfactory. Such courses apply toward the degree requirements only if the major school has approved the course, either for all majors or for the individual student. The department or school offering a course determines the criteria for a passing grade and may restrict the pass/fail enrollment in any course it offers. The rules for withdrawal from graded courses apply to pass/fail courses as well.

Professors will record only a grade of satisfactory or unsatisfactory for any student so designated on the official class roll; students may not change their designation from credit to pass/fail or from pass/fail to credit after the last day to make schedule changes. Neither the professor nor the registrar may change a pass/fail grade to a letter grade, nor may the registrar include courses taken pass/fail in the calculation of grade point averages.

Under certain circumstances, a change in degree requirements may affect a department's position on a course previously approved for degree credit under the pass/fail system. In such cases, the student's major school will decide if a course completed with a grade of pass before the change will fulfill the amended requirements.

Only students who complete 91 or more hours toward a degree at Georgia Tech may use the entire maximum of 9 hours credit taken on pass/fail toward a bachelor's degree. For transfer students, second undergraduate degree students, and dual degree students, the number of hours completed at Georgia Tech determines the maximum number of pass/fail hours allowed, according to the following schedule:

<table>
<thead>
<tr>
<th>Hours included in program of study</th>
<th>Hours allowed on pass/fail basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 to 70 credit hours</td>
<td>3 credit hours</td>
</tr>
<tr>
<td>71 to 90 credit hours</td>
<td>6 credit hours</td>
</tr>
<tr>
<td>91 or more credit hours</td>
<td>9 credit hours</td>
</tr>
</tbody>
</table>

Examination and Term Grades

The Institute schedules final examinations during the last week of each term, and term grades are posted on the Student Access System.

Scholastic Average

A student who passes a course receives both the designated number of credit hours and a number of quality points, calculated by multiplying the course credit hours and the numerical equivalent of the letter grade received \((A = 4, B = 3, C = 2, D = 1)\). Thus, a student taking a three-hour credit course and earning a grade of \(C\) receives six quality points. To determine the undergraduate scholastic average, the total number of quality points earned by the student for all courses scheduled as an undergraduate is divided by the total number of credit hours scheduled; for the graduate scholastic average, only those courses scheduled by the student while enrolled in the graduate division are considered. If a student takes the same course more than once, the later grade does not replace the earlier one; rather, the scholastic average includes both grades. Courses taken pass/fail are not included in the calculation of the student's grade point average.

Second Undergraduate Degrees

To be a candidate for a second undergraduate degree, a student must obtain the recommendation of the faculty through the director of the school concerned. See “Rules and Regulations,” Section XIII. F, for detailed information.

Transfer Credit

The basic policy regarding the acceptance of courses by transfer is to allow credit for courses completed with satisfactory grades \((C\) or better) in other accredited colleges and universities in the United States and Canada, provided the courses correspond in time and content to courses offered at the Georgia Institute of Technology. Georgia Tech will not accept credit for courses successfully completed at another institution but previously taken at Tech. The student must request and file an official transcript of transfer courses before the Institute can award credit. Course work completed at colleges and universities outside the United States and Canada will be evaluated on a case-by-case basis. Transfer credit is not calculated in the Georgia Tech grade point average.

Enrolled students at Georgia Tech must receive prior approval from the student's major school and the registrar before scheduling courses at other institutions. Students are not to be enrolled.
at Georgia Tech and another college without specific approval of the registrar and the appropriate faculty committee.

Auditors

Officially enrolled students who have obtained approval of their advisors and the department of instruction concerned may audit courses at Tech; however, the student will not receive credit for courses scheduled on an auditing basis. If the student wishes to change to or from auditing status, he or she must follow the procedure for schedule changes during the time allotted for schedule modification in the official calendar.

In order for a successful audit to show on the student's permanent record, the student must comply with all requirements listed by the instructor. If the instructor deems that the student did not successfully audit the course, the grade of W will be assigned.

All students registered as auditors must pay tuition at the regular rate. Members of the faculty or staff of the Georgia Institute of Technology may sit in on a course with the permission of the department concerned.

Constitution and History Requirements

The Georgia law as amended March 4, 1953, requires that before receiving an undergraduate degree all students pass an examination or a comparable course in United States and Georgia history/constitution. Courses that fulfill the United States and Georgia history/constitution requirement are HIST 2111, 2112; POL 1101; PUBP 3000; or INTA 1200.

Regents’ Testing Program

To establish eligibility for an undergraduate degree, every student in the University System of Georgia must pass the Regents’ Test, an examination designed to measure proficiency in reading and English composition. Students are invited to take this examination when they have earned 10 hours of college credit. Any student accumulating 45 hours of college credit toward a degree without passing the Regents’ Test must schedule remedial English or reading along with other credit course work. If a student fails in the first attempt, he or she must repeat the test. Alternative tests of competence and remediation are offered to non-native speakers of English. Alternative tests are offered for students with disabilities documented through the Dean of Students’ Office.

ROTC Credit

Students may apply a maximum of four hours in basic ROTC courses and six hours in advanced ROTC courses toward meeting the free elective requirements for any degree. Students should begin taking basic ROTC courses during the first term they are enrolled. For further information, see individual curricula for the schools.

Wellness Requirement

All students attending Georgia Tech must satisfactorily complete a wellness requirement (HPS 1040, 1062, 1063, or 1064) during their freshman year. Other health and performance sciences (HPS) courses may be used as free electives or technical electives, if approved by the major school. Students should check the curricula of their individual schools to determine the number of hours they may apply toward the degree.

Prerequisite Checking

The registration system will automatically check prerequisites for courses numbered below 6000. Students who do not have the listed prerequisites but believe they have sufficient background work to enroll in the course should contact the department of instruction.

Transfer Courses with ‘X’ Numbers

Transfer courses for which there is no exact Georgia Tech equivalent will be listed with the numbers 1XXX, 2XXX, etc. Courses so numbered can be used as free electives or may be substituted for Georgia Tech courses at the discretion of the academic department. Transfer courses with an “X” as the third number of the course (e.g., MATH 15X2) are lacking a component of the Georgia Tech course. These courses, in combination with another Georgia Tech course, may be considered as equivalent for prerequisite checking and degree requirements. Students should seek advisement from their academic department regarding the use of these courses toward fulfilling degree requirements.
Core Curriculum

Areas A-E

- CORE AREA A (Essential Skills)
- CORE AREA B (Institutional Options)
- CORE AREA C (Humanities/Fine Arts)
- CORE AREA D (Science, Mathematics, and Technology)
- CORE AREA E (Social Science)
- CORE AREA F (Courses related to degree and major)

Core Area A

(Essential Skills, 9 sem. hours)

Area A is satisfied by completion of 10 semester hours as follows.

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 Eng. Comp. I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102 Eng. Comp. II</td>
<td>3</td>
</tr>
</tbody>
</table>

Core Area B

(Institutional Options, 4 sem. hours)

Area B is satisfied by completion of the following:

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1321 Computer Sci. I</td>
<td>3</td>
</tr>
</tbody>
</table>

Plus 1 hour from Area A

Core Area C

(Humanities/Fine Arts, 6 sem. hours)

Area C is satisfied by completion of 6 semester hours from the following lists.

Architecture, Industrial Design, and City Planning:
- ARCH 2111, 2112, 2115, 4113, 4114, 4117, 4118, 4119, 4120, 4124; OAA 2115, 2116, 2214, 2242; CP 4040; ID 2202; MUSI 2600, 3450, 3500, 3600, 3610, 3620, 4450, 4801, 4802, 4803

Literature, Communication, and Culture:
- All LCC courses except LCC 2661, 2662, 3400, 3401, 3402, 3403, 3404, 3406, 3408, 3410, 3412, 3661, 3662, 4100, 4102, 4200, 4400, 4404, 4406, 4600, 4602, 4904, 4906

Modern Languages:
- All CHIN courses beginning with CHIN 1002 except CHIN 4901, 4902
- All FREN courses beginning with FREN 1002 except FREN 4901, 4902
- All GRMN courses beginning with GRMN 1002 except GRMN 3901, 4901, 4902
- All JAPN courses beginning with JAPN 1002 except JAPN 1801, 1802
- All LING courses except LING 4901, 4902
- All RUSS courses beginning with RUSS 1002 except RUSS 4901, 4902
- All SPAN courses beginning with SPAN 1002 except SPAN 4901, 4902

Philosophy of Science and Technology:
- All PST courses except PST 3790, 4790, 4791, 4792, 4901, 4902, 4903

Core Area D

(Science, Mathematics, and Technology, 12 sem. hours)

Area D is satisfied by completion of 8 semester hours from the science list and 4 semester hours from the mathematics list.

Continued on next page.
Core Curriculum

Science:

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1510</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 1520</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1311</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1312</td>
<td>1</td>
</tr>
<tr>
<td>EAS 1600</td>
<td>4</td>
</tr>
<tr>
<td>EAS 1601</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>4</td>
</tr>
</tbody>
</table>

Economics:

All ECON courses except ECON 3110, 3120, 3150, 3160, 3161, 4060, 4170, 4301, 4321, 4345, 4360, 4412, 4901, 4910, 4990

Psychology:

PSYC 1101, 2010, 2020, 2103, 2210, 2220, 2230, 2240, 2260, 2300, 2400, 3060, 4070, 4770

Core Area F

(Mathematics, 4 sem. hours)

All students with majors in the Colleges of Architecture, Computing, Engineering, and Sciences will complete Math 1502. All other majors will complete:

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1711</td>
<td>4</td>
</tr>
<tr>
<td>or</td>
<td></td>
</tr>
<tr>
<td>MATH 1502</td>
<td>4</td>
</tr>
</tbody>
</table>

Psychology:

PSYC 1101, 2010, 2020, 2103, 2210, 2220, 2230, 2240, 2260, 2300, 2400, 3060, 4070, 4770

Core Area E

(Social Sciences, 12 sem. hours)

Area E is satisfied by completion of the U.S./Georgia history and constitution legislative requirement with 3 semester hours from HIST 2111, 2112; POL 1101; INTA 1200; PUBP 3000; and 9 semester hours from the following list.

Architecture and City Planning:

ARCH 4126, 4335, 4770; CP 4010, 4020, 4030

History, Sociology, and History, Technology, and Society (HTS):

All HIST, SOC, and HTS courses except HTS 2927, 2928, 2929, 4925, 4926, 4927, 4928, 4929

International Affairs:

All INTA courses except INTA 1001, 1002, 2010, 3750, 4400, 4901, 4902, 4903

Political Science and Public Policy:

All POL and PUBP courses except PUBP 3113, 3600, 4113, 4201, 4530, 4532, 4901, 4902, 4903, 4951, 4952

Note:

1. Courses completed at the 3000-4000 level may not satisfy the core curriculum Area C and Area E requirements for students transferring to other units of the University System of Georgia.

2. Any courses completed that were listed in prior catalogs as satisfying the Humanities/Social Science requirement and were completed while that catalog was in effect may also be used to satisfy this requirement.
INFORMATION FOR GRADUATE STUDENTS

General Information
The faculty of the Georgia Institute of Technology grants advanced degrees in engineering, science, management, computing, architecture, city planning, public policy, and other technology-related areas. The goals for graduate studies and research are to establish an educational environment that will foster students' personal and professional development, to encourage students and faculty to vigorously pursue the discovery and generation of new knowledge through research, to investigate ways of applying such knowledge innovatively for the benefit of society and humanity, and to foster the development of new tools, objects, and ideas.

Students whose interests and aptitudes lead them beyond the limits of the traditional undergraduate curriculum may broaden their knowledge of a given field and pursue independent inquiry through graduate study. A graduate education is of particular benefit to students interested in careers in research, management development, design, or consulting; to those who aspire to formulate and administer policy; and to those who desire to enter the profession of education.

Degrees and Programs of Study

Master's Programs
Programs of study and research leading to the master of science are offered in the following disciplines:
- Aerospace Engineering
- Applied Physics
- Architecture
- Bioengineering
- Bioinformatics
- Biology
- Building Construction/Facilities Management
- Chemical Engineering
- Chemistry
- City Planning
- Civil Engineering
- Computer Science
- Earth and Atmospheric Sciences
- Economics
- Electrical and Computer Engineering
- Engineering Science and Mechanics
- Environmental Engineering
- Health Physics
- Health Systems
- History of Technology
- Human-Computer Interaction
- Industrial Engineering
- Information Design and Technology
- International Affairs
- International Logistics (Executive)
- Management
- Management of Technology (Executive)
- Materials Science and Engineering
- Mathematics
- Mechanical Engineering
- Nuclear and Radiological Engineering
- Operations Research
- Physics
- Polymers
- Psychology
- Public Policy
- Quantitative and Computational Finance
- Statistics
- Textile Chemistry
- Textile Engineering
- Textiles

Doctoral Programs
Programs of study and research leading to the Doctor of Philosophy are offered in the following disciplines and areas:
- Aerospace Engineering
- Algorithms, Combinatorics, and Optimization
- Architecture
- Bioengineering
Biology
Biomedical Engineering
(joint with Emory University)
Chemical Engineering
Chemistry
Civil Engineering
Computer Science
Earth and Atmospheric Sciences
Economics
Electrical and Computer Engineering
Engineering Science and Mechanics
Environmental Engineering
History of Technology
Industrial and Systems Engineering
Management
Materials Science and Engineering
Mathematics
Mechanical Engineering
Nuclear and Radiological Engineering
Operations Research
Physics
Psychology
Public Policy
Public Policy (joint with Georgia State University)
Textile Engineering

To locate detailed descriptions of these programs and related courses, refer to the index on pages 418-419 of this catalog. Areas of specialization may also be found under each program description.

The Institute may award degrees with or without designation of the field, based upon the recommendation of the school concerned.

Special Programs

Interdisciplinary Programs
The schools of the Georgia Institute of Technology are authorized to offer graduate degrees, develop and administer their own individual programs, and work closely with one another to provide special study and research opportunities for students who wish to pursue a degree with a wider perspective than that presented by a single discipline. Cooperation between academic units and various research centers and the development of informal programs based on areas of faculty interest have resulted in the establishment of interdisciplinary programs in a number of areas, such as computer integrated manufacturing systems, microelectronics, bioscience and bioengineering, and nanotechnology. The College of Engineering lists a number of multidisciplinary programs on page 127 of this catalog. The College of Computing offers an interdisciplinary certificate in cognitive science, detailed on page 94. The role of the DuPree College of Management in multidisciplinary programs is discussed on page 110. Multidisciplinary programs in the College of Sciences are discussed on page 304.

Video-based Instruction
For students who cannot attend daily classes on campus, graduate courses leading to master's degrees in electrical engineering, environmental engineering, health physics, industrial and systems engineering, and mechanical engineering are available by videotape. Students applying for video-based degree programs must meet the same admissions criteria as other degree-seeking students. For more information, see page 18 of this catalog.

Graduate Cooperative Program
Selected students planning to enroll for graduate study at Georgia Tech have the opportunity to participate in a unique cooperative program leading to advanced degrees in participating schools. Two plans are available. One is designed for Georgia Tech undergraduates who plan to continue as graduate students at Tech and includes study-work periods that span both undergraduate and graduate levels. Eligibility is based on academic achievement at Georgia Tech. The second plan is for graduate students whose undergraduate degrees may be from Tech or other institutions. Degree requirements under this plan are identical to those for all students enrolled at Georgia Tech. The Graduate Cooperative Plan is designed as an enhancement to the educational programs of students working for advanced degrees and offers the benefits of added facilities and opportunities for external stimulation. In addition, students receive compensation for their services from companies that employ them.

Preliminary screening of students occurs at the school or college level. The participating companies select students on the basis of academic credentials and interest areas correlated with
company activities. Many participating companies require U.S. citizenship or permanent residency. For students planning to participate both at the undergraduate and graduate levels, the program requires at least two work semesters at the undergraduate level and at least two work semesters at the graduate level. Students planning to participate only at the graduate level are required to work at least two semesters.

Academic credit for co-op work is available if the student, with approval of the major school, pursues research at the company that can be used to satisfy requirements for the thesis or other research paper.

Students interested in applying for admission to the Graduate Cooperative Plan should write to the Director, Graduate Cooperative Program, Office of Graduate Studies, Georgia Institute of Technology, Atlanta, Georgia 30332-0265.

The Academic Common Market
The Institute participates in the Academic Common Market (ACM) Program managed by the Southern Regional Education Board. By interstate agreement, the market enables southern states to share academic programs. Residents of the participating states who qualify for admission and gain the approval of their state coordinators may enroll on an in-state tuition basis. The Georgia Tech programs currently participating in ACM are graduate programs in building construction and integrated facility management, architecture, city planning, city planning/architecture joint program; as well as undergraduate programs in building construction, nuclear and radiological engineering, textile and fiber engineering, and aerospace engineering.

Policies and Regulations
The Graduate Committee, with the approval of the Academic Senate, is responsible for establishing academic policy for the graduate program; however, final authority rests with the Senate. This committee reserves the right to change requirements for degrees as may be appropriate. Students enrolled at the time such changes appear in the Catalog have the privilege of following either the regulations stated in the Catalog effective the semester in which they enrolled or the regulations in the Catalog that records the change.

This catalog records the Institutewide policies and regulations that govern the graduate program. Schools may make additional rules concerning their programs and the pursuit of their degrees, but such rules may not contradict Institute policies and regulations.

Graduate Student Work Loads
A full-time graduate course load is defined as at least 12 credit hours on a letter grade or pass-fail basis. The advisor and school chair may approve the substitution of 1 course (up to 3 hours) on an audit basis for fall and spring semesters, and 2 courses (up to 6 hours) on an audit basis for summer semester. Full-time students working exclusively on thesis research should register for 18 or more hours of 7000- or 9000-level courses (Master's or Doctoral Thesis) in fall and spring semesters, and for up to 16 hours during summer semester.

The maximum load for graduate students in good standing is 21 hours in fall/spring and 16 hours in summer. The minimum load for graduate students is 3 hours except for the semester of graduation. A student may register for only 1 hour of Master’s or Doctoral Thesis (7000 or 9000) during the semester of graduation. This exception may be used once for each degree.

Students with fellowships, assistantships, traineeships, tuition waivers, or student visas and those assigned to the Institute by the armed forces for the purpose of pursuing a degree are required to enroll full time. Part-time doctoral students engaged in research for the Ph.D. should register for the number of 9000-level hours consistent with the time they and their faculty advisors spend on the dissertation research.

Staff Members
No staff member beyond the rank of instructor in a school may work for a master’s degree in that school.

No new staff member with the rank of assistant professor in a school may work for a doctoral degree in that school.
Admissions Information

Applicants for the master's program should have received a bachelor's degree from a recognized institution and graduated in the upper half of their class. Students must show evidence of preparation in their chosen field sufficient to ensure profitable graduate study.

Ordinarily, the graduate school admits to the doctoral program only those students who have graduated in the upper quarter of their class.

Prospective students may obtain information and the necessary forms for admission from either the appropriate school or via the graduate admissions web page at www.gatech.edu/admissions/grad/. Unless otherwise instructed by the major department, the student must submit the application, letters of recommendation, and official transcripts of previous academic work to the offices specified by June 1, November 1, or March 1 for fall, spring, or summer terms, respectively. Some programs have earlier deadlines, and some programs admit students for the fall term only. Students are advised to check with the graduate program of interest before applying. It is strongly recommended that international students submit their materials at least six months before the proposed registration date. The $50 application fee may be waived for U.S. citizens and permanent residents receiving financial aid. Students applying for admission with financial assistance for any term are strongly advised to submit their materials by February 1 of the preceding academic year.

Graduate Record Examinations (GRE)

GRE General test scores are generally required by all graduate programs with the exception of the Master of Science in Management and the Executive Management of Technology program, which require Graduate Management Admission Test (GMAT) scores. In addition, GRE subject test scores are required for applicants to the Colleges of Computing and the Schools of Chemistry and Biochemistry and Mathematics.

Information concerning these tests can be obtained from Graduate Record Examinations, Educational Testing Service, Box 6000, Princeton, New Jersey 08541-6000, or www.gre.org.

General information on the GMAT is available from Educational Testing Service, Box 966, Princeton, New Jersey 08540, or www.gmac.com.

On-campus applicants may pick up GRE information from Graduate Academic and Enrollment Services and GMAT information from the DuPree College of Management.

Types of Standing

Applicants holding a bachelor's degree in an appropriate field from an approved institution will be accorded full graduate standing provided their previous work is of sufficient quality to indicate immediate success in advanced study.

If the work of an applicant holding an approved bachelor's degree is deficient in content or quality so that supplemental study or demonstrated ability is necessary, the applicant may be accorded conditional graduate standing.

Students who do not wish to qualify for an advanced degree at Tech, but demonstrate the potential benefits of their participation in advanced study, may gain admission as special graduate students. Students who are admitted with special standing for failure to submit official transcripts or for other administrative reasons may credit not more than 16 semester hours taken on special standing toward a degree.

Graduate students in good standing at other U.S. universities may enroll at Tech as transient graduate students by filing an application for admission and verification of good standing status from their registrar or graduate dean. Work undertaken in this standing will not apply, however, toward a Georgia Tech degree.

The undergraduate school, not the graduate school, will register students working toward a second bachelor's degree.

In addition to full, conditional, and special graduate standing, graduate students will be classified by academic standing according to their grade point averages: good standing, warning, probation, or drop. For specific information, see "Rules and Regulations," page 366.

The graduate average includes the grades on all courses scheduled by the student after admission to graduate study.

Readmission

Students who interrupt the continuity of their graduate programs by not registering for two or more consecutive terms must seek readmission by filing with the registrar a completed request for
Information for Graduate Students

readmission form. Request forms are available from the registrar's office. For more information, see "Rules and Regulations," page 366.

Reactivation of Application
Applicants to a Tech graduate program who do not enter in the term for which they applied and subsequently wish to be considered for a later term must reactivate their application for the new term. Since the graduate admissions office keeps files on "never entered" students for one year only, students who delay more than one year in the reactivation request will have to supply a new set of application materials. To reactivate an application, the student must contact the graduate program to which he or she applied by June 1, November 1, or March 1 for the fall, spring, or summer terms, respectively. The number of reactivations per applicant is limited.

Undergraduate Students
Seniors with a grade point average of at least 2.7 may schedule graduate courses. In order to do so, the student must obtain permission both from the student's advisor and from the chair of the school offering the course.

Credit toward the master's degree for up to 8 hours of courses taken as an undergraduate may be received under the following conditions.
1. The student was in residence at the Georgia Institute of Technology for at least two semesters before registering for the course(s).
2. The student did not apply credit for the course toward the baccalaureate degree.
(See page 28, "Graduate Course Option," for special exceptions in certain schools.)

Registration
During the week preceding first registration, each new student should consult with the graduate coordinator of his or her major school to prepare a plan of studies and to receive instructions regarding registration procedures. Complete instructions on how and when to register can be found in the OSCAR (Online Student Computer Assisted Registration) bulletin and at www.oscarweb.gatech.edu.

Tech also conducts orientation for new fall graduate students just before registration.

Note: All new students must have submitted health forms to Student Health Services before they can register. All new international students should check in with the Office of International Education as soon as they arrive.

TOEFL for International Students
All international students from countries in which English is not the primary native language must take the Test of English as a Foreign Language (TOEFL). Since the results of this test constitute part of the material reviewed for admission to graduate study at Tech, students should arrange to have the Educational Testing Service send their scores to the Graduate Admissions Office as early as possible. The minimum score for graduate admission required by Georgia Tech is 550 (paper-based) or 213 (computer-based). Some academic programs require higher scores.

Students who wish to take the TOEFL may obtain more information and materials at www.toefl.org. Applicants may also acquire copies of the TOEFL Bulletin of Information for Candidates, International Edition, and the registration form through the offices of the U.S. Information Service (USIS), American embassies and consulates, and U.S. educational commissions and foundations in a number of cities outside the United States. In addition, several private organizations distribute the TOEFL Bulletin. These groups include the Institute of International Education (ISE); the African-American Institute (AAI); the American Mideast Educational and Training Services (AMIDEAST); and the American-Korean Foundation.

Students who cannot obtain a TOEFL Bulletin and registration form locally or via the Web should write well in advance of application to Test of English as a Foreign Language, Box 6151, Princeton, New Jersey, 08541-6151, USA.

Transfer of Credit
A student may not apply for transfer credit until after matriculation at Georgia Tech. The courses to be transferred would typically be those appearing on the approved program of study form for the master's degree. A doctoral student normally does not request transfer credit. The rules relative to and the process for obtaining transfer of credit for graduate-level courses are as follows.
1. A student may receive transfer credit (up to six hours) for graduate-level courses taken at an accredited institution in the United States or Canada and not used for credit toward another degree. The student must supply a current transcript for this evaluation.

2. To obtain transfer of credit, the student must complete the following procedure:
 (a) The student will confer with the graduate advisor to ascertain whether the courses to be transferred are a logical part of the student's graduate program. (b) If the courses are appropriate, the student will deliver to the school that teaches such courses a copy of the current transcript, necessary descriptive materials including catalog descriptions, and textbooks used for evaluation. The faculty of the appropriate school will determine the equivalent Georgia Tech course and the number of credit hours accepted. The faculty member who prepares the transfer credit form should have the school chair cosign it. The school should then send the form directly to the registrar with a copy of the student's Approved Program of Study attached. (c) If the student wishes to transfer more than six hours, a petition must be submitted to the graduate committee including statements of possible justification for the granting of such a petition, transfer credit forms, and the recommendation of the student's school chair.

3. A joint enrollment student may receive graduate credit for up to one-third of the hours required for the degree for graduate courses taken at Emory University or Georgia State University provided that (a) Georgia Tech does not offer such courses, (b) the student's advisor and school chair approve the courses in writing in advance, and (c) the student passes the courses with a grade of C or better. "Advance approval" is satisfied when the courses appear on the student's proposed program of study.

4. A student may not receive transfer credit from universities outside the United States and Canada; however, an international student can obtain credit for courses previously taken but not applied toward another degree by filling out an "Examination for Advanced Standing Authorization Request Form," paying the appropriate fee at the Cashier's Office, and passing the examination for advanced standing. The school or department that normally teaches the equivalent course will administer any necessary examinations.

The Master's Degree

Enrollment Requirements

While students may enroll in the master's degree program upon admission with either full or conditional standing, all conditions must be met and the student's status changed to "full" in order to graduate with the master's degree.

Students enrolled for the master's degree must register for at least one semester per year in order for the original requirements for their degree to remain unchanged. In other cases, the school may re-evaluate the student's credentials and impose additional degree requirements.

Students who have completed all course work and are planning to submit a thesis in partial fulfillment of the requirements for a master's degree should register for research hours ("MAJR7000") consistent with a realistic appraisal of the amount of remaining thesis work and required faculty involvement. Students will not receive thesis guidance during any term for which they are not registered.

Students must normally enroll for a minimum of three hours each semester. Thesis students may enroll for one hour of thesis only in the semester of graduation.

The Institute has no residency requirements for the master's degree. See "Requirements for Award of the Master's Degree," item 7, page 39, for more information.

Program of Study

The student, in conference with the faculty advisor, should prepare a program of study for the master's degree as a guide for planning an academic schedule. In some cases, the student's school may require that the proposed program be submitted to the chair of that school for approval.

The program of study must be completed satisfactorily within 6 consecutive calendar years and must include, at a minimum, 30 approved credit hours distributed as follows:
With thesis:
- Minimum course credit hours in major field
 (a basic field of knowledge, not a department
 of specialization) .. 12
- Minimum course credit hours
 at 6000 to 9000 level 12
- Total course credit hours for degree 18
- Thesis hours (7000) 6
- Total credit hours ... 30

Without thesis:
(must have approval of school director):
- Minimum course credit hours in major field
 (a basic field of knowledge, not a department
 of specialization) .. 18
- Minimum course credit hours
 at 6000 to 9000 level 21
- Total credit hours ... 30

Some schools require more than the minimum credit hours. Refer to specific academic program descriptions for more detailed information.

Other than thesis hours, the student may use only three hours under the pass/fail designation in the approved program of study (see page 28). As a rule, a course may not be counted toward more than one degree.

Undergraduate courses required for graduation in the discipline (designated degree) or discipline-of-origin (undesignated degree) at Georgia Tech may not be applied toward a master’s degree. (See page 28, “Graduate Course Option,” for special exceptions in certain schools.)

The Master’s Thesis
To complete the requirements for the master's degree, the student must submit a master's thesis unless the school chair determines that additional course work is of more importance in meeting approved objectives.

Students who meet the requirements for the master’s degree by completing a combination of course work and thesis must register for a minimum of six hours of thesis credit. (See Program of Study.)

A candidate whose program includes a thesis must present a treatise in which the results of an investigation directed by a member of the faculty of the Institute are set forth in clear, articulate form. The purpose of the thesis is to further educational development by requiring the student to

plan, conduct, and report an organized and systematic study of importance.

The Manual for Graduate Theses, available from Graduate Studies and Research, specifies the formatting requirements for the thesis.

Requirements for Award of the Master’s Degree
1. Petition to graduate: To apply for master's degree candidacy, the student must submit to the registrar, during the semester preceding the anticipated final semester of work, the petition for a degree with the Approved Program of Study attached.
2. Approved Program of Study (must accompany petition to graduate): The student’s Approved Program of Study must show that course requirements for the master’s degree will be satisfied during the final semester (see Program of Study).
3. The Approved Program of Study must be successfully completed within a period of no more than six consecutive calendar years.
4. The student must have an overall grade point average of at least 2.7 and satisfy all school academic requirements.
5. The student must have completed satisfactorily any language requirement imposed.
6. The student must have passed any qualifying or comprehensive examinations required by the student’s school.
7. The student must be registered for a minimum of three credit hours in the semester of graduation. Thesis students may enroll for one hour of MAJR 7000 in the semester of graduation. This reduction may be used only once. Students who have met all requirements for graduation before the last day of registration for the graduation term and who were registered the preceding semester may be eligible for a waiver of enrollment.
8. In addition, the student must have completed any required work outlined at the time of matriculation.

Additional Requirements for Master’s Thesis Students
9. The student must submit the thesis topic and committee form to the Office of
Doctoral Degree

Graduate Studies and Research for approval and make satisfactory progress on the thesis.

10. The student must receive final acceptance of the thesis from the Office of Graduate Studies and Research and submit three unbound copies.

Language Requirement
The student's school may require a reading knowledge of one appropriate language.

The Doctoral Degree
The degree of Doctor of Philosophy recognizes demonstrated proficiency and high achievement in research. After adequate preparation, the candidate must successfully complete both comprehensive examinations in his or her academic field and a searching and authoritative investigation of a special area in the chosen field, culminating in a written dissertation.

Enrollment Requirements
The matriculation requirements are similar to those outlined for the master's degree with the addition of the residency requirement: doctoral students must spend at least two full-time semesters in residence at the Georgia Institute of Technology and ordinarily must complete research for the dissertation while in residence. Under special circumstances, candidates who have met the residency requirement may receive permission to pursue their research in absentia, provided the chair of the appropriate school approves and a faculty member directs the project.

In either case, doctoral students working full time on thesis research should be registered for a full course load of "9000" dissertation hours each semester.

While no fixed course requirements apply for the doctoral degree, the student's thesis advisory committee may recommend graduate course work in both a major and a minor field of study.

Doctoral students must be registered in the semester of graduation. See "Additional Graduation Requirements" in item 3 on page 41 for more information.

Admission to Candidacy
Doctoral students customarily apply for degree candidacy after completing at least three semesters of course work beyond the B.S. degree.

To qualify for candidacy, students must
- complete all course requirements (except the minor);
- achieve a satisfactory scholastic record;
- pass the comprehensive examination; and
- submit for approval to the school chair and the Office of Graduate Studies and Research a formal statement naming the dissertation reading committee and delineating the research topic.

Upon satisfactory completion of these requirements, Graduate Studies and Research formally admits the applicant to candidacy for the degree.

The Comprehensive Exams
The comprehensive examination assesses both general knowledge of the degree area and specialized knowledge of the student's chosen research field. Each school is responsible for scheduling comprehensive examinations at least once a year, in the fall or spring, and for informing students of their scope. A guidance committee appointed by the chair of the school will advise each student in planning a program of study and preparing for the examination, partly through an initial evaluation of the student's background and interests, partly through periodic consultation to evaluate and aid the student's progress.

Thesis Topic
Prior to the student's admission to candidacy, the candidate will present for the approval of the school chair or college dean and the Office of Graduate Studies and Research a formal statement naming the student's dissertation advisor and setting forth the topic selected for investigation, the objectives the student hopes to gain, and the steps by which the student proposes to achieve them.

The dissertation topic must give promise of being either a genuine addition to the fundamental knowledge of the field or a new and better interpretation of facts already known.

Time Limit for Degree Completion
Students must complete all degree requirements within seven years from the end of the term in which they pass the comprehensive examination.
Information for Graduate Students

The Minor Field of Study
In addition to an adequate knowledge of the major field of intended research, the student must demonstrate mastery of some other, smaller body of knowledge — the minor field — preferably outside the student's school. The purpose of the minor is to encourage a wider interest on the part of the student and to provide a broader basis for the evaluation of the student's capabilities.

The minor will normally consist of at least nine semester hours of work in related courses, chosen by the student in consultation with a guidance committee and approved by the Office of Graduate Studies and Research. These courses should be at the 6000 level or above, but the use of certain 4000-level courses may also be approved. Courses taken at other institutions may be included in the minor. Once the student has satisfactorily completed the minor, the school chair sends a confirmation, accompanied by course grades, to Graduate Studies and Research for final approval and recording.

Although the student need not complete the minor as a prerequisite for admission to candidacy, the minor must be completed and approved in order to be cleared for graduation.

Language Requirements
The student's school may require a reading knowledge of one or more foreign languages.

The Dissertation
The dissertation must demonstrate that the candidate possesses powers of original thought, talent for research, and ability to organize and present findings.

The format of the dissertation (in general appearance) must meet the criteria published in the Manual for Graduate Theses, which is available in the Office of Graduate Studies and Research. For other format or style questions, students should refer to style manuals appropriate to their disciplines.

The Doctoral Examination
If the dissertation advisory committee finds the dissertation satisfactory, it schedules the candidate for an oral examination on the subject matter for the dissertation and the field in which it lies. An examining committee approved by the Office of Graduate Studies and Research will conduct the examination. The candidate's academic department should forward the announcement of the oral examination, including the names of the examining committee members, to Graduate Studies and Research at least 14 days prior to the exam.

If a candidate should fail to pass the final oral examination, the examining committee may recommend permission for one additional examination. In the case of failure, the registrar does not receive a report of the examination results.

Additional Graduation Requirements
In addition to requirements listed elsewhere, the candidate must:

1. Submit a petition for the degree to the Registrar's Office during the term preceding the anticipated final term of work. Petition forms are available from the Registrar's Office.
2. Have an overall grade point average of 3.0 in order to graduate.
3. Register for a minimum of one hour of dissertation in the term of graduation. This reduction from the normal minimum course load of three hours may be used only once. If all requirements for graduation, including submission of the final approved dissertation, have been completed prior to the last day of registration, and the student was registered for the preceding term, the student may apply for a waiver of the enrollment requirement.
4. Pay the Institute a fee of $55 for microfilming the dissertation through Bell and Howell Information and Learning (UMI Dissertations Publishing) prior to the final submission of the completed dissertation to Graduate Studies and Research.

If both the dissertation and the examination are satisfactory and the candidate has completed the requirements of residence, minor field, and any additional school requirements, the Office of Graduate Studies and Research will certify the candidate as qualified to receive the degree of Doctor of Philosophy.
Classification of Students for Tuition Purposes

Under the Constitution and laws of Georgia, the Board of Regents of the University System of Georgia was created to govern, control, and manage a system of public institutions providing quality higher education for the benefit of Georgia citizens. The state, in turn, receives substantial benefit from individuals who are attending or who have attended these institutions through their significant contributions to the civic, political, economic, and social advancement of the citizens of the state of Georgia.

Because the overwhelming proportion of financial support for the operation of the public institutions of higher education in Georgia comes from the citizens through the payment of taxes, the determination of whether a student is classified as a resident or a nonresident of the state for tuition purposes becomes a significant matter. The tuition paid by in-state students covers only about one-fourth of the total cost of their education in the University System. Therefore, Georgia taxpayers are contributing three-fourths of the necessary funds to provide quality education for the citizens of the state.

The practice followed by state colleges and universities of assessing out-of-state students a higher tuition rate is a rational attempt by states to achieve a partial cost equalization between those who have and those who have not recently contributed to the state's economy, even though no precise way exists to determine the degree to which higher tuition charges equalize the cost of educating in-state and out-of-state students. Courts that have been faced with challenges to residency classification procedures have consistently recognized the right of public institutions of higher education to charge higher rates to out-of-state students and to adopt reasonable criteria for determining the establishment of in-state status.

For the purpose of these regulations, the question to be answered is not primarily whether a student is a resident or nonresident of Georgia, but rather whether the student meets the criteria to pay University System fees on an in-state basis. The term "resident" is confusing because it may have several definitions as it relates to voter registration, driver's licenses, automobile registration, deeds, contracts, wills, income taxes, and other matters. A student may be a resident of Georgia for some purposes, but not entitled to in-state status for tuition purposes.

The Board of Regents has adopted certain policies governing the classification of students as residents and nonresidents for tuition purposes in keeping with its responsibilities to the citizens of Georgia for an appropriate assessment of fees and to ensure that out-of-state students pay a fair and reasonable share of the cost of their education. The taxpayers of Georgia are thereby assured that they are not assuming the financial burden of educating persons whose presence in the state is not intended to be permanent.

With these considerations in mind, the Board of Regents has adopted the following policies governing the classification of students for fee payment purposes.

1. a) If a person is 18 years of age or older, he or she may register as an in-state student only upon showing that he or she has resided in Georgia for a period of at least 12 months immediately preceding the date of original enrollment.

 b) No emancipated minor or other person 18 years of age or older shall be deemed to have gained or acquired in-state status for tuition purposes while attending any educational institution in this state, in the absence of a clear demonstration that he or she has in fact established legal residence in this state.
2. If a person is under 18 years of age, he or she may register as an in-state student only upon showing that his or her supporting parent or guardian has been a legal resident of Georgia for a period of at least 12 months immediately preceding that date of registration.

3. If a parent or legal guardian of a minor changes his or her legal residence to another state following his or her legal residence in Georgia, the minor may continue to take courses for a period of 12 consecutive months on the payment of in-state tuition. After the expiration of the 12-month period, the student may continue his or her registration only upon the payment of fees at the out-of-state rate.

4. In the event that a legal resident of Georgia is appointed as guardian of a nonresident minor, such minor will not be permitted to register as an in-state student until the expiration of one year from the date of court appointment, but only upon a proper showing that such appointment was not made to avoid payment of the out-of-state fees.

5. Aliens shall be classified as nonresident students provided, however, that an alien who is living in this country under an immigration document permitting indefinite or permanent residence shall have the same privilege of qualifying for in-state tuition as a citizen of the United States.

6. Waivers: An institution may waive out-of-state tuition for:
 a) nonresident students who are financially dependent upon a parent, parents, or spouse who has been a legal resident of Georgia for at least 12 consecutive months immediately preceding the date of registration provided, however, that such financial dependence shall have existed for at least 12 consecutive months immediately preceding the date of registration;
 b) international students selected by the institutional president or his authorized representative may be enrolled upon the payment of in-state tuition provided that the number of such waivers in effect does not exceed 1 percent of the equivalent full-time students enrolled at the institution in the fall semester immediately preceding the semester for which the out-of-state tuition is to be waived;
 c) full-time employees of the University System, their spouses, and their dependent children; and full-time employees of the State Board of Technical and Adult Education programs, their spouses, and their dependent children;
 d) nonresident graduate students who hold teaching or research assistantships requiring at least one-third time service at such institution;
 e) full-time teachers in the public schools of Georgia and their dependent children. Teachers employed full time on military bases in Georgia shall also qualify for this waiver;
 f) career consular officers and their dependents who are citizens of the foreign nation that their consular office represents and who are stationed and living in Georgia under orders of their respective governments. This waiver shall apply only to those consular officers whose nations operate on the principle of educational reciprocity with the United States; and
 g) military personnel and their dependents stationed in Georgia and on active duty unless such military personnel are assigned as students to System institutions for educational purposes.

Students who come to Georgia Tech from another state and work for companies in Georgia remain ineligible for in-state tuition in the absence of compelling evidence of intent to remain in Georgia permanently. Having Georgia voter registration, having employment in any position normally filled by a student (such as co-op, graduate research assistant, or graduate teaching assistant), having a lease of living quarters, having a Georgia automobile registration, and having a Georgia driver’s license do not constitute sufficient evidence of domicile to affect classification as an in-state student under the Board of Regents’ policy.

For further information concerning residency, students should contact the Residency Office, Room 103, Administration Building, in writing or by telephone at 404.894.6388. The Residency Office must receive an application for classification as a legal resident for fee payment purposes no later than one month prior to the academic registration date for the term in which the student seeks to pay fees as a resident of Georgia. Requests for tuition waivers must be received by the Registrar’s Office no later than the last day of registration for the term for which the out-of-state tuition is to be waived.
Student Tuition Charges

<table>
<thead>
<tr>
<th>Degree program of study</th>
<th>Georgia Resident</th>
<th></th>
<th>Amount per semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>$110/hour</td>
<td>< 12 Sem. Hours</td>
<td>$1,316</td>
</tr>
<tr>
<td>Graduate</td>
<td>$132/hour</td>
<td>> 12 Sem. Hours</td>
<td>$1,578</td>
</tr>
<tr>
<td>MSM Graduate</td>
<td>$180/hour</td>
<td></td>
<td>$2,153</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td>N/A</td>
<td></td>
<td>$25</td>
</tr>
<tr>
<td>M.S. in Building Constr.</td>
<td>$263</td>
<td></td>
<td>$3,153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Degree program of study</th>
<th>Non-Georgia Resident</th>
<th></th>
<th>Amount per semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undergraduate</td>
<td>$482/hour</td>
<td>< 12 Sem. Hours</td>
<td>$5,764</td>
</tr>
<tr>
<td>Graduate</td>
<td>$528/hour</td>
<td>> 12 Sem. Hours</td>
<td>$6,312</td>
</tr>
<tr>
<td>MSM Graduate</td>
<td>$718/hour</td>
<td></td>
<td>$8,612</td>
</tr>
<tr>
<td>Graduate Assistants</td>
<td>N/A</td>
<td></td>
<td>$25</td>
</tr>
<tr>
<td>M.S. in Building Constr.</td>
<td>$1,052</td>
<td></td>
<td>$9,612</td>
</tr>
</tbody>
</table>

Mandatory Student Fees

The fees listed in the next column, which are subject to change, should be considered estimates, and used only as a planning guide for future payments. The most up-to-date information on fees can be found at www.bursar.gatech.edu. All students registered for four or more semester hours are charged the mandatory student fees, which are due at the same time as tuition charges. These mandatory student fees are considered part of the registration process and must be paid in full for the student to be considered enrolled in school. The student activity, athletics, recreation, technology, transportation, and health fees are the mandatory student fees that are used to provide cultural, social, and athletic programs for the entire student body. In addition, these fees provide financial support for student facilities at the Institute, guest speakers and lecturers, student publications, and many special events that are available exclusively for the students of Georgia Tech. These fees also assist in defraying shuttle costs for transporting students around campus. The technology fee supports the infrastructure necessary to provide students with the latest technology in regards to online computing services. Students registering for fewer than four semester hours are only required to pay the transportation fee.

<table>
<thead>
<tr>
<th>Mandatory Fee Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fewer than 4 semester hours</td>
</tr>
<tr>
<td>4 or more semester hours</td>
</tr>
</tbody>
</table>

Refer to www.bursar.gatech.edu for a complete breakdown of the individual charges that comprise the mandatory fees.
Late Registration Fees
Students who do not meet fee payment deadlines may incur penalty fees. If a student does not pay all required fees by the published fee deadlines, his or her registration may be cancelled. The late payment fee is $75.

Billing Information
The Office of the Bursar bills students each term. For the academic year billing and fee payment dates, visit www.bursar.gatech.edu. Students registering or making schedule changes after early registration will not receive an invoice for student fees from the Bursar's Office. Invoices are mailed only for students who register during early registration. Those students registering after early registration or making additional schedule changes may access their student account via the Web. Access www.oscarweb.gatech.edu, then access registration. The student's Social Security number and PIN will be required. Make the following selections at each menu: 1. Student and Financial Aid Menu, 2. Student Records Information Menu, 3. Account Summary by Term. It is the student's responsibility to verify any additional charges incurred after the initial statements were produced.

Choosing a Payment Option
Credit Card
Credit cards are accepted over the telephone by using the GT Voice Response System at 404.894.4949 or 404.894.4968. Enter the student's Social Security number and Personal Identification Number (PIN). Press 2 from the main menu for billing information. The student's account will be updated immediately with this fee information.

You may also fax credit card information to 404.894.5536 or 404.894.9396. The following information must be included: student's name and ID number, account number, authorized signature, billing address of cardholder, expiration date, amount of payment, term to be applied, and telephone number where cardholder can be reached. Allow 24 hours for payment to be applied to the student's account. The Bursar's Office will not be able to answer any inquiries concerning the receipt of your fax until after this time. You may verify that the payments have been processed using the GT Voice Response System by calling 404.894.4949 or by accessing your account summary via the Web. Instructions for accessing these systems are included in the “Billing Information” section.

Mail In
Make all checks or money orders payable to the Georgia Institute of Technology. The student's ID number must be clearly printed on checks or money orders. Mail to the following address: Georgia Institute of Technology, Bursar's Office, 225 North Avenue, Atlanta, GA 30332-0255.

On Campus
Students who pay in person should bring their fee payment to one of the following payment locations: Bursar's Office Cashier Window; First Floor, Lyman Hall, or the drop box located at the entry to Lyman Hall. Payment (check or money order) can be deposited at any hour of the day before the fee deadline. Cash is not accepted.

Web
For information on web-based payment, see www.bursar.gatech.edu/student/paymentoption.htm.

Fee Payment
Payment may be made either by cash, VISA, MasterCard, Discover, or by check payable in U.S. currency and drawn on a financial institution located in the United States. (The university reserves the right to determine the acceptability of all checks.) Checks must be made payable to the Georgia Institute of Technology. Counter checks will not be accepted unless the bank routing and account number is encoded on the check. All checks not drawn in this manner will be returned to the remitter of the check. Payments (checks only) may be mailed to the Bursar's Office and must be received (not postmarked) by 4:00 P.M. on the fee deadline date. The university reserves the right at any time during the semester to drop any student from classes for failure to pay fees. A Student Account “Hold” will be placed on the records of any student who has a financial obligation to the university. Such students will not be permitted to register for further course work, or receive or have forwarded to external third parties transcripts of grades, until the obligation is settled.

Any person who has a credit card payment rejected or a check returned by the bank for any reason should settle that obligation with the
university promptly. Failure to do so will result in nonpayment of fees and can result in the cancellation of the student's class schedule. If a check or credit card number given in payment of a student's fees is not paid upon presentation to the banking institution, a Student Account "Hold" will be placed on the student's records. All returned checks will be assessed a returned check fee of $15 or 5 percent of the face amount of the check, whichever is greater. The Georgia Institute of Technology reserves the right to place a student on "cash only" status for issuing a check that is not honored upon presentation to the bank. It is the responsibility of the student to be informed of and to observe all regulations and procedures regarding the payment of fees and the entitlement to refunds. In no case will a regulation be waived or an exception be granted because a student pleads ignorance of the regulation or asserts that he or she was not informed of it by an advisor or other authority.

Students who owe the Institute money and have been placed on "Hold" because of failure to pay may have their accounts placed for collection by a professional collection agency, with the student incurring the full costs of collection.

All questions concerning fees and refunds should be directed to the Bursar's Office only. Verbal misinformation is not grounds for a waiver of a regulation. All tuition charges and other charges are subject to change without notice.

Refund Policy

The refund amount for students withdrawing from the Institute shall be based on a pro rata percentage determined by dividing the number of calendar days in the semester that the student completed by the total number of calendar days in the semester. The total number of calendar days in a semester is calculated by using the first day of class through the last day of final exams for the Institute and excludes scheduled breaks of five or more consecutive days. Institutional charges will be refunded up to the point in time that the percentage equals 60 percent. Students who withdraw from the Institute when the calculated percentage of completion is greater than 60 percent are not entitled to a refund of any portion of institutional charges.

Students will receive a 100 percent refund for any individual classes dropped through late registration if they cease to be enrolled at least full time (12 hours). No further refunds will be given for individual classes dropped after the end of late registration.

Refunds for Students with Financial Aid

A calculation will be made on all financial aid recipients to determine whether a student who completely withdraws during a term has "earned" the monies disbursed. Students "earn" their aid based on the period of time they remain enrolled. During the first 60 percent of the term, a student earns financial aid funds in direct proportion to the length of time the student remains enrolled. Beyond the 60 percent point, all aid is considered earned. The responsibility to repay "unearned" aid is shared by the Institute and the student in proportion to the aid each is assumed to possess. The most current refund schedule (actual dates) can be found at www.bursar.gatech.edu.

Undergraduate Financial Assistance

The Office of Student Financial Planning and Services at Georgia Tech assists students in the search for financial assistance to meet normal college expenses. The office works to provide assistance by assigning Institute funds or by directing students to other sources. The Office of Student Financial Planning and Services receives and administers all funds provided to Tech for undergraduate student assistance, including awards forwarded to the Institute from outside agencies for the use of designated students. Students may receive assistance through scholarships, grants, loans, employment, or a combination of these programs.

Because Georgia Tech will assist students either by awarding funds or by directing the student to other sources of aid, no student should fail to consider attending Tech because of financial problems. However, the financial aid applicant should realize that the amount of aid granted seldom meets all educational expenses, and financial assistance from the Institute will require supplements from the student, family members, and outside sources. The primary responsibility for financing an education rests with the student and the student's family. The student should help to defray expenses through summer or part-time
Undergraduate Information

*Estimated Costs (2001-2002 Academic Year)

<table>
<thead>
<tr>
<th></th>
<th>Resident of Georgia</th>
<th>Nonresident of Georgia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester Fees</td>
<td>$1,316</td>
<td>$5,764</td>
</tr>
<tr>
<td>Tuition</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Transportation</td>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>Health Service</td>
<td>113</td>
<td>113</td>
</tr>
<tr>
<td>Athletic</td>
<td>53</td>
<td>53</td>
</tr>
<tr>
<td>Technology</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>Recreation</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Subtotal</td>
<td>$1,727</td>
<td>$6,175</td>
</tr>
<tr>
<td>Books and Supplies</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>Room and Board</td>
<td>2,900</td>
<td>2,900</td>
</tr>
<tr>
<td>Personal Expenses</td>
<td>750</td>
<td>750</td>
</tr>
<tr>
<td>(clothing, laundry, recreation, travel, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Per Semester</td>
<td>$5,877</td>
<td>$10,325</td>
</tr>
<tr>
<td>Total Per Year (2 Semesters)</td>
<td>$11,754</td>
<td>$20,650</td>
</tr>
</tbody>
</table>

*Semester fees shown in this chart are estimated for the 2001-2002 academic year only. Final figures approved by the Board of Regents were not available at the time of printing.

jobs or by participating in the co-op program at Georgia Tech.

All entering students, including transfer students, who are interested in scholarships, grants, loans, and/or work opportunities for any semester of the academic year beginning in fall semester must submit the Georgia Tech Application for Financial Aid and the Free Application for Federal Student Aid (FAFSA). The priority application deadline for entering freshmen is March 1. The deadline for returning undergraduates, transfers, and graduate students is April 15.

Entering freshmen who meet the March 1 deadline usually receive estimated financial aid awards by April 1. Returning undergraduates, transfers, and graduate students who meet the April 15 deadline receive financial aid awards by June 1.

For additional information, contact the Office of Student Financial Planning and Services, Georgia Institute of Technology, Atlanta, Georgia 30332-0460 or visit www.enrollment.gatech.edu/finaid/.

President's Scholarship Program

The President's Scholarship is Georgia Tech's premier merit-based scholarship. Recipients are selected from the top applicants for admission to Georgia Tech, based on demonstrated excellence in leadership and academic performance. From the applicant pool, students selected as semifinalists will be asked to be interviewed and to submit teacher recommendations. The top semifinalists will be named finalists and invited with their parents to campus for an interview and information weekend in March. Current Georgia Tech students, transfer students, and international students are not eligible.

Each year approximately 75 incoming freshmen receive President's Scholarships, which are renewable for up to four academic years contingent upon honors-level performance and continued leadership development as evidenced by involvement in campus or community activities. Awards for students who entered in fall 2000 were worth
Financial Information

up to $6,000 per year (plus the HOPE scholarship) for Georgia residents and up to $11,000 per year for non-Georgia residents. Amounts for future years may change.

To apply, a student must be a U.S. citizen or permanent resident, apply as an incoming freshman, and submit the Georgia Tech Application for Freshman Admission, along with a high school transcript and the application fee, with a postmark no later than October 31 of the senior year.

For more information, contact the President's Scholarship Program at 404.894.2691 or psp@success.gatech.edu, or via the Web at www.enrollment.gatech.edu/pasp.

Medals and Prizes
Fraternities, academic schools and departments, professional groups, and community organizations award medals and prizes, such as the Phi Kappa Phi Award, and present them at the annual Honors Day exercises.

Graduate Financial Assistance

The Institute offers financial aid from a variety of sources to assist students with the pursuit and completion of their degrees as rapidly as circumstances permit. Some of these are briefly described here.

Students should address inquiries for financial assistance to the chair of the school in which they plan to study. Graduate school applicants should also investigate national fellowships offered by various foundations, professional organizations, and government agencies.

President’s Fellowships

Each year the Institute awards fellowships to supplement other awards to full-time doctoral matriculants with outstanding academic records and high research potential. The fellowship supplement consists of an annual $5,500 stipend (three semesters). These fellowships are renewable for three additional years, based on the major school’s evaluation and recommendation.

Graduate Research Assistantships

Students ordinarily receive these awards on a one-third or half-time basis. In addition to receiving a stipend, full-time students with at least one-third time appointments pay matriculation fees of only $25 per semester (plus student fees), and do not pay nonresident fees. Student fees are the same for all students.

Graduate Teaching Assistantships

Schools and departments ordinarily offer these awards on a one-third or half-time basis. In addition to receiving a stipend, full-time students with at least one-third time appointments pay matriculation fees of only $25 per semester (plus student fees), and do not pay nonresident fees. Student fees are the same for all students.

Federal Fellowships and Traineeships

The Institute participates in a number of fellowship and traineeship programs sponsored by agencies of the federal government. In addition, the following traineeships associated with specific training programs are available: water resources planning and management through the Environmental Resources Center, radiation health specialist training program through the School of Mechanical Engineering’s Nuclear and Radiological Engineering Program, air quality control through the School of Chemical Engineering, and minerals and mining through the School of Materials Science and Engineering.

Out-of-State Tuition Waivers

School chairs may recommend to the Office of Graduate Studies and Research a limited number of academically outstanding nonresident, full-time students for a waiver of the nonresident tuition fee.

Local Industry Work-Study Programs

Many industries located in and around Atlanta offer opportunities to pursue graduate degrees as an integral part of their employee training programs. In such a plan, the student may work and study on a reduced-work-week schedule that is
compatible with school, student, and company requirements. Additionally, the company may choose to pay academic fees, costs of texts, and a supply allowance.

Sponsored Fellowships
The Institute awards a number of fellowships sponsored by various industrial organizations, foundations, and trust funds for the support of outstanding graduate students. These fellowships assist students in pursuing their studies and research full time. Most of these fellowships are restricted to specific areas of study, and interested students should contact the chair of the school in which they plan to study. Fellowships and loans that are not restricted to specific schools include the following.

Domenico Rea D’Onofrio Fellowship
The recipient, who must be from Italy, receives a stipend of up to $11,000 and a waiver/out-of-state tuition.

National Consortium for Graduate Degrees for Minorities in Engineering Fellowship
Candidates for participation in this program are selected from minorities (African-Americans, Puerto Ricans, American Indians, and Chicanos). In addition to the tuition, fees, and a stipend, this program provides an opportunity for summer work experience in one of several off-campus research laboratories. The GEM fellowship supports master’s students in engineering and doctoral students in engineering or science. This application deadline is December 1. For further information, write to the College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0360 or the GEM Center, P.O. Box 537, Notre Dame, Indiana 46556.

National Physical Science Consortium Graduate Fellowship (NPSC)
This Ph.D. fellowship offers up to six years of funding to U.S. citizens in astronomy, chemistry, computer science, geology, materials science, mathematical science, physics, and their sub-disciplines. Students receive tuition, fees, a stipend, and two summers of employment with a private or government corporation doing research in the physical sciences and engineering. NPSC is open to all qualified applicants with a special emphasis on the recruitment of minorities and women. The application deadline is mid-November. For more information contact NPSC, c/o University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037-0516.

Regents’ Opportunity Scholarship
The recipients, who must be economically disadvantaged residents of Georgia, receive an award of $5,000 for the academic year. Awards are not available for summer term. Fellows are recommended by their major departments and selected by the Graduate Office.

United States Steel Foundation Loan Fund
This short-term loan fund is designated to assist graduate students in engineering, physics, chemistry, and mathematics and is administered by the Office of Student Financial Planning and Services.

Outside Sponsorships
A student whose tuition and fees are to be paid by a corporation or government sponsor must notify the Bursar’s Office of the entity’s billing address and the amount to be billed at least 60 days prior to the first fee payment deadline (Phase 1) of each semester. As a courtesy to students, the Bursar’s Office will send a billing statement to the entity, but the student remains responsible for payment by the fee payment deadline should the sponsoring entity fail to complete payment by that date.

Veterans Services
Because the Department of Veterans Affairs (VA) must receive certification of enrollment before issuing benefit payments, any student planning to enroll under any of the VA programs should initiate the certification procedure through the Georgia Tech Registrar’s Office as early as possible. For further information about the certification procedure, contact the Office of the Registrar, or the Department of Veterans Affairs Atlanta Regional Office, 1700 Clairmont Road, Decatur, Georgia 30033-4032. Veterans information is also available at www.registrar.gatech.edu.

Veterans must apply to Georgia Tech through the usual admissions procedure. Eligibility for VA benefits does not guarantee acceptance to the institution, nor does acceptance to Tech signify eligibility. The institution serves only as a source of certification and information to the VA; the student must carry out all financial transactions with the Veterans Administration directly.
Graduate Information

Estimated Costs (2001-2002 Academic Year)

<table>
<thead>
<tr>
<th>Semester Fees</th>
<th>Resident of Georgia</th>
<th>Nonresident of Georgia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matriculation</td>
<td>$1,563</td>
<td>$1,563</td>
</tr>
<tr>
<td>Nonresident tuition</td>
<td>0</td>
<td>4,689</td>
</tr>
<tr>
<td>Transportation</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>Student Activity</td>
<td>77</td>
<td>77</td>
</tr>
<tr>
<td>Health Service</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>Technology</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Athletic</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>Recreation</td>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>Total Per Semester</td>
<td>$1,974</td>
<td>$6,663</td>
</tr>
<tr>
<td>Total Per Year (2 Semesters)</td>
<td>$3,948</td>
<td>$13,326</td>
</tr>
</tbody>
</table>

Semester fees shown in this chart are estimated for the 2001-2002 academic year only. Final figures approved by the Board of Regents were not available at the time of printing. Figures for the next academic year will be available in May 2001.
College of Architecture
www.coa.gatech.edu

College established in 1975,
School in 1948, Department in 1908
Location: 247 4th Street, Atlanta,
Georgia 30332-0155
Phone: 404.894.4885 or
404.894.4886
Fax: 404.894.2678

Dean and Professor—Thomas D. Galloway;
Associate Dean and Professor—Thomas N. Debo.
Professor and Dean Emeritus—William L. Fash.
Professors—Douglas C. Allen, Cheryl K. Contant,
Robert M. Craig, Charles Eastman, Steven P.
French, Roozbeh Kangari, Joseph A. Koncelik,
Ronald B. Lewcock, Franklin K. Mooney, Arthur C.
Nelson, Catherine L. Ross, David S. Sawicki, Craig
M. Zimring.
Professors Emeriti—Arnall T. Connel, Roger F.
Rupnow, John A. Templer.
Associate Professors—Libero Andreotti, Godfried
Augenbroe, James Budd, Richard Dagenhart,
Harris H. Dimitropoulos, Elizabeth M. Dowling,
William J. Drummond, Garvin T. Dreger, Michael
L.P. Elliott, T. Russell Gentry, George B. Johnston,
Lorraine Justice, Edward L. Keating, Jude LeBlanc,
Nancy Green Leigh, Kate Nesbitt, Lee Payne, John
Peponis, H. Randal Roark, Saeid Sadri, Anne S.
Steinemann, Felix Uhlik.
Assistant Professors—W.J. Blane, William Caldwell,
Ellen Dunham-Jones, Athanassios Economou,
Lawrence D. Frank, Rita Gregory, Christopher
Jarrett, James G. Johnson, Sabir Khan, Terri
Laurenceau, Ron Mendola, Tahar Messadi, Kevin
Reeder, Charles Rudolph, William H. Russell,
Clifford H. Stern, Linda Thomas-Mobley, Andrea
Strauss.
Instructors—Eric Anderson, Mark Collins, Anja
Dagenhardt, Lane Duncan, Michael Gamble, Carol
Gill, Judy Gordon, David Green, Howard Herman,
Nadine Levy, Joyce Medina, Frederick M. Pearsall,
Stuart M. Romm, Maureen Weidner.

Research Engineers—Scott Barr, Scott Haynes,
Anatoliusz Lesniewski, Karen Milchus, R.
Sivakumar.
Research Scientists/Associates—William H.
Bachman, Paul Beary, Elizabeth Dillon Black, Rand
Bohrer, Sharon Bucci, Joanie Chembars, Yan Z.
Chen, Julius Daniel Corkran, Sarah Endicott,
Anthony Giarrusso, John Goldthwaite, Alan Harp,
Renee Jacokes, Shelley Kaplan, Arthur Murphy,
Hunter Ramseur, Zena Rubin, Brenan Stearns,
Robert Todd, Yi-Chang Tsai.

General Information
The College of Architecture offers three under-
graduate programs (Architecture, Building Con-
struction, Industrial Design) leading to the bache-
or of science degree and graduate programs in
architecture, building construction, city and
regional planning, and industrial design leading to
the Master of Architecture, Master of Science in
Building Construction and Integrated Facility
Management, Master of City Planning, Master of
Science, and Doctor of Philosophy degrees.

The original mission of the College, established
as the Department of Architecture in 1908, was to
prepare students for the professional practice of
architecture. During the past 90 years, the mission
of the College has expanded, both to provide con-
tinued leadership and to respond to changes in
the professions and society. From its original focus
on the practice of architecture, the College has
become a multidisciplinary setting for teaching,
research, and service at every scale of the con-
structed environment ranging from the design and
production of the smallest utilitarian object to
the planning and design of the city. The undergraduate
programs of study and the graduate programs of
study and research are fully described in the fol-
lowing sections.
All work executed in the College becomes the
property of the College and will be retained or
returned at the discretion of the faculty. The fac-
culty also reserves the right to refuse for credit any
project executed outside the precincts of the
College or otherwise executed without proper
coordination with the faculty.

Common First Year
All freshmen enter as undesignated majors within
the College of Architecture. All students, including
transfer students, must complete a three-course
sequence (COA 1060 — Introduction to Design
and the Built Environment, COA 1011 — Funda-
mentals of Design and the Built Environment I,
and COA 1012 — Fundamentals of Design and the
Built Environment II), in addition to other courses
scheduled for the freshman year or appropriate
courses for transfer students. During the spring
semester of the first year, students enrolled in COA
1012 will prepare a portfolio and application to
one of the three undergraduate programs within
the College of Architecture: Architecture, Building
Construction, or Industrial Design. Admission to
one of the three programs will be determined by
the student's performance at Georgia Tech, portfo-
ilo review, program application information, and
other academic information that was used to
admit the student to Georgia Tech. Admission to
a specific program may be limited by available
space and resources needed to accommodate a
maximum number of majors in the second-year
program courses. Students will be notified con-
cerning their acceptance to a specific program
before the end of the spring semester.

Undergraduate Programs

Architecture

The undergraduate program in architecture is a
four-year, preprofessional program leading to the
bachelor of science degree. It seeks to provide
(1) a general university education in the liberal
arts, fine arts, and technology; (2) a multidisci-
plinary foundation in architectural studies with the
design studio as a major focus of the curriculum;
and (3) substantial opportunities for students to
explore other disciplines, to concentrate studies in
certificate programs, cluster electives, or dual
degree programs. This bachelor of science pro-
gram prepares students for graduate-level studies
in architecture, for graduate study in related
fields, or a variety of careers related to architec-
ture, the building industry, or government service.

In the United States, most state registration
boards require a degree from an accredited pro-
fessional degree program as a prerequisite for
licensure. The National Architectural Accrediting
Board (NAAB), which is the sole agency author-
ized to accredit U.S. professional degree programs
in architecture, recognizes two types of degrees:
the Bachelor of Architecture and the Master of
Architecture. A program may be granted a five-
year, three-year, or two-year term of accreditation,
depending on its degree of conformance with
established educational standards.

Master's degree programs may consist of a pre-
professional undergraduate degree and a profes-
sional graduate degree, which, when earned
sequentially, comprise an accredited professional
education. However, the preprofessional degree is
not, by itself, recognized as an accredited degree.

Grade Requirements

Students must maintain a minimum 2.0 grade
point average in each year's grouping of architec-
tural design studio courses (e.g., ARCH 2011,
2012, etc.) in order to enter the next sequence of
studio courses. Each sequence of design studio
courses must be started in the fall semester. A
maximum of nine credit hours may be taken on a
pass/fail basis. Only courses taken as free electives
within the undergraduate curriculum are eligible
for pass/fail credit. See “Information for Under-
graduate Students” for Institute regulations
regarding pass/fail courses.

Students who complete both the bachelor's and
master's degrees in architecture in the College
may apply up to six credit hours of graduate
course work for both degrees, subject to approval
of the faculty and certain Institute regulations.

Bachelor of Science
(Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COA 1011</td>
<td>FUNDAMENTALS OF DESIGN I</td>
</tr>
<tr>
<td>COA 1060</td>
<td>INTRODUCTION TO DESIGN</td>
</tr>
<tr>
<td>CS 1321</td>
<td>INTRODUCTION TO COMPUTING</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>ENGLISH COMPOSITION I</td>
</tr>
<tr>
<td>MATH 1501</td>
<td>CALCULUS I</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>
First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COA 1012 FUNDAMENTALS OF DESIGN II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000</td>
<td>3</td>
</tr>
<tr>
<td>or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 2011 DESIGN STUDIO I</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 2111 HISTORY OF ARCH I</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 2211 CONSTRUCTION TECH.</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 2012 DESIGN STUDIO II</td>
<td>4</td>
</tr>
<tr>
<td>ARCH 2112 HISTORY OF ARCH. II</td>
<td>3</td>
</tr>
<tr>
<td>LAB SCIENCE ELECT. (CHEM, BIOL, EAS, PHYS)</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 3011 DESIGN STUDIO III</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 3241 FUND. OF STRUCTURES</td>
<td>3</td>
</tr>
<tr>
<td>COLLEGE OF ARCHITECTURE ELECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCH 3012 DESIGN STUDIO IV</td>
<td>5</td>
</tr>
<tr>
<td>ARCH 3231 SYS. & DESIGN INTEGRATION I</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 4411 OR 4420</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTER ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>COLLEGE OF ARCHITECTURE ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLUSTER ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>COLLEGE OF ARCH ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Total Program Hours = 129 Semester Hours plus Wellness (2 HRS)

Electives

Health and Performance Sciences Electives
Georgia Tech requires students to complete HPS 1040, 1062, 1063, or 1064 for the degree. Other health and performance science courses may count as free electives. No physical education course will count toward the degree.

Humanities Electives
Twelve credit hours of humanities courses are required. The required ENGL 1101 and 1102, and any other six credit hours of Institute-approved humanities courses, satisfy this requirement. ARCH 2111, 2112, 4105, and 4106 do not count toward this requirement for architecture majors.

Social Sciences Electives
Twelve credit hours of approved social sciences courses are required. To satisfy the state requirement regarding course work in the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200. Either ARCH 4126 or HTS 3011 is also required. Any other six credit hours of Institute-approved social science courses will satisfy the remainder of this requirement.

Science Electives
Eighty credit hours of science courses are required. The required PHYS 2211 and any other four credit hours of Institute-approved science courses satisfy this requirement.
Architectural Electives
Twelve credit hours of approved College of Architecture electives are required, including either ARCH 4411 or ARCH 4420. Courses chosen from the list of required courses for the M.Arch.I degree or any other courses taught in the College and not otherwise required will satisfy this requirement. The selection of any architecture elective should be made in consultation with the student's academic advisor.

Cluster Electives
A minimum of 10 credit hours in a concentrated cluster is required for the B.S. degree. Clusters may be made up from courses from within or outside of the College. This requirement may be fulfilled by several existing certificate programs offered on the campus, the senior year sequence of architectural design, or by a 10-hour concentration approved by the architecture faculty.

Free Electives
Twenty-one credit hours of free electives are included in the curriculum to allow students to pursue architectural studies in additional depth or to pursue other educational interests within or outside the College. Courses chosen from the list of required courses for the M.Arch. degree or any other courses taught in the College or Institute and not otherwise required will satisfy this requirement.

The selection of these courses should be made in consultation with the student's advisor. Military training is an optional program of the Institute. A degree program may include a maximum of four hours of basic ROTC and a maximum of six hours of advanced ROTC. No course covering the same material as other courses may be applied for credit for the B.S. degree. MATH 1113 will not be counted toward any degree requirement.

Senior Year Study Abroad Program

Study in Paris
The College of Architecture conducts an annual Study Abroad Program in Paris, France, in association with the Ecole d'Architecture Paris-LaVillette. This program is designed to give qualified senior students in architecture the opportunity to complete all or part of their senior year in residence in Paris as part of a true cultural exchange. The year-long program offers courses taught by Georgia Tech faculty and native French faculty that parallel those courses taught in Atlanta while offering an international experience. Group field trips to significant French architectural and cultural sites and a jointly taught Franco-American studio broaden and enhance the program's cultural value. Opportunities also exist for individual study and travel. Due to the importance of communication skills in a successful exchange experience, students planning to participate in the Paris Study Abroad Program are required to complete a minimum of one year of French language courses well in advance of their senior year. Further details of the Paris Study Abroad Program are available in the Undergraduate Architecture Student Handbook.

Summer Study in Italy
The College's five-week summer program introduces students to Italian architecture, painting, and sculpture through instruction on site at museums, in historic buildings, and on walking tours through Rome. During the five weeks, additional organized trips are taken to such sites as Venice, Florence, Tivoli, Ostia, or Siena. The curriculum requires 6 credit hours of humanities course work of all participants. A maximum of 12 credit hours of course work may be scheduled during the program, of which 6 may be in the form of independent study in areas such as visual communications. Graduate and undergraduate students from all majors are eligible for this program.

Building Construction
The construction industry is among the largest in the United States, employing more than 8 million people and contributing 8 percent of the U.S. gross national product. The Building Construction (BC) Program at Georgia Tech is one of the leading programs in building construction in the nation. The program's mission is to educate the leaders of tomorrow's construction industry in partnership with industry.

Employment prospects for BC students are excellent. Students are recruited by general contractors, residential home builders, project management firms, cost value and consulting firms, real estate and property development companies, building material suppliers, and local/state/federal government agencies. The average starting salary
for the BC graduate is among the highest on the Georgia Tech campus and ranks at the top of the industry. The degree granted is a Bachelor of Science in Building Construction.

Students in the BC Program learn the basic principles and practices of construction management, real estate development, science, and technology. BC students are educated on how to manage the functions and processes of every aspect of the construction industry. The business climate in Atlanta is vibrant and provides an excellent laboratory opportunity for students to observe various construction sites and activities. The construction companies in the Atlanta area also provide many internships and part-time jobs to students during their study in the BC Program.

Certificate Program in Building Construction
The Building Construction Program also offers the opportunity to industry professionals as well as students in all disciplines at Georgia Tech to broaden their building construction experience by granting recognition for study in building construction. The certificate program provides a course of study in the management and financial processes required to produce buildings in today's complex and dynamic industry. Industry professionals and students will acquire a working knowledge of the business of construction including the means and methods used to plan and manage the resources required in building delivery processes. The program should be particularly attractive to industry people and students in architecture, management, city planning, and the engineering disciplines.

The certificate requires a minimum of 12 semester hours of approved building construction program courses at the 3000 level or higher in which a grade of C or better must be earned. Participants must also satisfy the requirements for an undergraduate degree and be in good standing.

Bachelor of Science in Building Construction (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COA 1011 FUNDAMENTALS OF DESIGN I</td>
<td>3</td>
</tr>
<tr>
<td>COA 1060 INTRO. TO DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>COA 1012 FUNDAMENTALS OF DESIGN II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 2600 CONSTRUCT. CONTRACTING</td>
<td>3</td>
</tr>
<tr>
<td>BC 2610 CONSTRUCTION TECH. I</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2101 ACCOUNTING I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 2620 CONSTRUCTION TECH. II</td>
<td>3</td>
</tr>
<tr>
<td>BC 2630 CONSTRUCTION SEMINAR</td>
<td>1</td>
</tr>
<tr>
<td>MGT 2200 INFORMATION TECH.</td>
<td>3</td>
</tr>
<tr>
<td>EAS 1600 ENVIRONMENTAL FIELD SCI.</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>ECON 2100 ECON. ANALYSIS POLICY</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 3600 CONSTRUCTION COST MGT.</td>
<td>3</td>
</tr>
<tr>
<td>BC 3650 PROJECT MGT. I</td>
<td>3</td>
</tr>
<tr>
<td>LCC 3XXX HUMANITIES (COMMUNICATIONS)</td>
<td>3</td>
</tr>
<tr>
<td>ARCH 3241 FUND. OF STRUCTURE</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3150 PRINCIPLES OF MGT.</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>
Architecture

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 3610 CONSTRUCTION LAW</td>
<td>3</td>
</tr>
<tr>
<td>BC 3620 REAL ESTATE CONSTRUCTION, FINANCE, & ACCOUNTING</td>
<td>3</td>
</tr>
<tr>
<td>BC 4620 STRUCTURAL ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3062 FINANCIAL MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 4640 CONSTRUCTION MARKETING</td>
<td>3</td>
</tr>
<tr>
<td>BC 4680 PROFESSIONAL INTERNSHIP</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101 ORGANIZATIONAL BEHAVIOR</td>
<td>3</td>
</tr>
<tr>
<td>PROFESSIONAL ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC 4600 PROJECT MGT. II</td>
<td>3</td>
</tr>
<tr>
<td>BC 4610 BUILDING ECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>BC 4630 SENIOR CAPSTONE PROJECT</td>
<td>3</td>
</tr>
<tr>
<td>BC 4660 ENTREPRENEURSHIP IN CONSTRUCTION</td>
<td>3</td>
</tr>
<tr>
<td>BC 4670 CONSTR. INDUSTRY ISSUES</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 129 SEMESTER HOURS PLUS WELLNESS (2 HRS)

Electives

Free Electives
Six semester hours of free electives are required. Military training is an option allowed by the Institute. If basic ROTC is elected, six credit hours of free electives may be used.

The College of Architecture will accept only the two required hours of physical education (HP 1040, 1062, 1063, or 1064) toward meeting degree requirements.

Professional Electives
Six semester hours of professional electives are required, and these courses should be selected from the list of Recommended Professional Electives provided by the BC Program. The Building Construction professional electives provide students the opportunity to pursue specialized study and develop skills in construction management, construction development, and construction science. Construction management prepares students for managerial systems and practices utilized by constructors to manage the planning and delivery processes of buildings in the contemporary practice of construction. Managerial areas of study range from internal management systems used by general contractors and builders in office operations and practice to management and systems controls employed by construction managers in the planning, design, and construction phases of complex building projects. Construction development introduces students to entrepreneurial theories and practices used in the development of construction projects ranging from single facilities to multiple building complexes. It focuses on urban economic theories, planning legislation and regulation, and urban development methods applicable in land and real estate investment. Emphasis is on the development and marketing theories of building projects in the context of contemporary urban planning and urban development issues.

Construction science is an analytically and engineering-oriented study designed to encourage students to challenge current methods of building construction and delivery techniques and to seek innovative solutions through study, research, and technical inquiry. Emphasis is on the means and methods of constructing buildings, the intrinsic nature and use of construction materials, the anatomy of building systems and components, and prefabricated building systems and components development and production concepts.

Humanities Electives
Twelve credit hours are required by the Institute. The required English sequence, ENGL 1101-2, and 3000-level LCC Communication Intensive courses will satisfy nine hours. The remaining three hours are selected by the student from the approved catalog list of humanities courses.

Social Sciences Electives
Twelve credit hours of social sciences are required by the Institute. The required three credit hour U.S./Georgia history and constitution legislative course (HIST 2111, 2112; POL 1101; INTA 1200; or PUBP 3000) and ECON 2100 will satisfy six hours. The remaining six hours are selected by the student from the approved catalog list of social sciences courses.
College of Architecture

City and Regional Planning
The City and Regional Planning Program offers no undergraduate degrees. However, a number of undergraduate courses are offered each semester. In addition, three planning courses are available for social sciences credit: CP 4010 — Foundations of Urban and Regional Development; CP 4020 — Introduction to Urban and Regional Planning; and CP 4030 — The City and Its Technology. CP 4040 — The City in Fiction and Film is available for humanities credit.

An accelerated program is available to Georgia Tech undergraduate students wishing to pursue the master's degree in city planning simultaneously with their undergraduate degree. See details in the graduate section on City and Regional Planning.

Industrial Design
Industrial design is the professional service of creating and developing concepts and specifications that optimize the function, value, and appearance of products and systems for the mutual benefit of both user and manufacturer. Industrial designers, with their wide range of interests and generalist outlook in an age of specialization, must be part artist, part entrepreneur, and part engineer.

The industrial designer's work touches all of our lives in the form of home furnishings, transportation, appliances, recreational equipment, and a myriad of other consumer and industrial products and services. While giving form to the efforts of industry, the designer is at the same time a consumer advocate, providing the humanizing link between technology and the consumer.

The Georgia Tech program offers a well rounded course of study with early emphasis on basic design and design skills. Design projects stress realistic design situations. The program encourages students to develop a diverse background in order to expand individual talents and respond to changing opportunities in the field. Most faculty members are practicing designers with extensive experience in the field.

All work executed in the College becomes the property of the College and will be retained or returned at the discretion of the faculty. The faculty also reserves the right to refuse credit for any project executed outside the precincts of the College or otherwise executed without proper coordination with the instructor.

Grade Requirements
All industrial design courses must be completed with a grade of C or higher. A student may not enter a more advanced design course until this requirement is met; students with such academic deficiencies may be required to delay their studies for one year. Studio design courses must be taken in sequence beginning fall semester. Both transfer students and students already enrolled at Georgia Tech must have a cumulative minimum grade point average of 2.5. Students interested in transferring from another school should contact the Georgia Tech Office of Undergraduate Admission. A maximum of 9 credit hours may be taken on a pass/fail basis. Only courses taken as free electives in the undergraduate curriculum must be taken for pass/fail credit. See "Information for Undergraduate Students" for Institute regulations regarding pass/fail courses.

Bachelor of Science in Industrial Design
(Suggested Schedule)

First Year - First Semester
Course Number/Name Hours
COA 1011 FUNDAMENTALS OF DESIGN I 3
COA 1060 INTRODUCTION TO DESIGN 3
CS 1321 INTRO. TO COMPUTING 3
ENGL 1101 ENGLISH COMPOSITION I 3
MATH 1501 CALCULUS I 4

TOTAL SEMESTER HOURS 16

First Year - Second Semester
Course Number/Name Hours
COA 1012 FUNDAMENTALS OF DESIGN II 4
ENGL 1102 ENGLISH COMPOSITION II 3
HIST 2111 or 2112 or POL 1101 or 3
PUBP 3000 or INTA 1200
HPS 1040/1062/1063/1064 WELLNESS 2
MATH 1502 CALCULUS II 4

TOTAL SEMESTER HOURS 16

Second Year - First Semester
Course Number/Name Hours
ID 2011 INTRO. TO ID I 4
ID 3103 ID COMPUTING I 3
COA 2241 ART HISTORY I 3
SOCIAL SCIENCE ELECTIVE 3
PHYS 2211 PHYSICS I 4

TOTAL SEMESTER HOURS 17
Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 2012 INTRO. TO ID II</td>
<td>4</td>
</tr>
<tr>
<td>ID 3104 ID COMPUTING II</td>
<td>3</td>
</tr>
<tr>
<td>COA 2242 ART HISTORY II</td>
<td>3</td>
</tr>
<tr>
<td>LCC 3400 TECH. COMMUNICATIONS</td>
<td>1</td>
</tr>
<tr>
<td>SCI. ELECT. (CHEM, BIOL, EAS, PHYS)</td>
<td>4</td>
</tr>
<tr>
<td>ID 2202 HISTORY OF MODERN ID</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 3011 INTERMEDIATE ID I</td>
<td>5</td>
</tr>
<tr>
<td>ID 3301 MATERIALS/PROCESSES I</td>
<td>3</td>
</tr>
<tr>
<td>INDUSTRIAL DESIGN ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ID 4202 PROFESSIONAL PRACTICE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 3012 INTERMEDIATE ID II</td>
<td>5</td>
</tr>
<tr>
<td>ID 3302 MATERIALS/PROCESSES II</td>
<td>3</td>
</tr>
<tr>
<td>INDUSTRIAL DESIGN ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ID 4201 DESIGN/RESEARCH METHODS</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 4011 ADVANCED ID I</td>
<td>5</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>COA HISTORY ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID 4012 ADVANCED ID II</td>
<td>5</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>INDUSTRIAL DESIGN ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 129 SEMESTER HOURS PLUS WELLNESS (2 HRS)

Electives

Humanities Electives

Twelve credit hours of humanities courses are required. The required ENGL 1101, 1102, and COA 2241 and 2242 satisfy this requirement. ID 2202 does not count toward this requirement for industrial design majors.

Social Sciences Electives

Twelve credit hours of approved social sciences courses are required. To satisfy the state requirements regarding course work in the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200. Any other nine credit hours of Institute-approved social science courses will satisfy the remainder of this requirement.

Health and Performance Sciences Electives

Georgia Tech requires students to complete HPS 1040, 1062, 1063, or 1064 for the degree. Other health and performance science courses may count as free electives. No physical education course will count toward the degree.

General and Industrial Design Electives

Fourteen general elective hours are required. The general elective hours may include six hours of credit for ROTC courses. Those enrolling in ROTC must schedule appropriate ROTC courses in the freshman and sophomore years.

Students are encouraged to use general electives to fulfill one of several track elective options. Contact the Industrial Design program office for approved tracks.

Only nine hours of electives taken on a pass/fail basis may be applied toward fulfilling requirements for the B.S.I.D. degree.

Nine industrial design elective hours are required.

Track Electives

Students are encouraged to use general electives to fulfill one of several track elective options. Contact the Industrial Design program office for approved tracks.
Graduate Programs

Architecture
Graduate studies in architecture at Georgia Tech are comprised of three distinct degree-granting programs: the Master of Architecture I (M.Arch.I), the Master of Architecture II (M.Arch.II), and the Master of Science (M.S.).

The M.Arch.I Program is the professional program in architecture leading to the NAAB-accredited Master of Architecture degree. This program accommodates both a two-year curriculum for those students with a four-year, preprofessional degree in architecture and a three-and-a-half-year curriculum for those students without a preprofessional degree in architecture.

The M.Arch.II Program is a one-year, postprofessional program for those students already holding a professional degree in architecture and wishing to pursue advanced studies in architecture with an emphasis upon design.

The M.S. Program is a nonprofessional, research-oriented degree program that requires a minimum of one year of course work.

Together, these programs are linked through a rich array of studios and courses that engage both theoretical discourse and design speculation about architecture. Topical offerings in the areas of design, theory, history, technology, professional and social practice, culture and behavior, visual arts, and design computing comprise the five fields of study available within the graduate program:

1) The program emphasizes the city and its many manifestations as a context for architectural and urban speculation and explores solutions to urban problems through direct engagement with Atlanta and other environs as working design laboratories.

2) The program promotes the knowledge of architectural and urban history as a basis for theoretical discourse and as an impetus for both critical reflection and design speculation upon the social, economic, and political dimensions of a diverse cultural landscape.

3) The program stresses the central engagement of technology as both philosophical framework and constructional means for the generation of culturally responsible form that accommodates and integrates human, functional, and environmental concerns.

4) The program engages the intertwined contexts of both professional and social practice as fertile realms of inquiry across a wide range of issues — from the legal, financial, and business aspects of professional action to the cultural, behavioral, and experiential dimensions of everyday life.

5) The program cultivates the relationship between architecture and art and encourages the critical exploration of representational means in design ranging from traditional techniques to electronic media for purposes of both speculation about and production of architecture.

Master of Architecture (M.Arch.I)
The M.Arch.I Program, leading to the Master of Architecture as the first professional degree, is oriented toward the professional practice of architecture and is fully accredited by the National Architectural Accrediting Board (NAAB). This degree option provides flexibility for students who have an undergraduate degree with a major in architecture as well as those who have a degree in a field other than architecture. The M.Arch.I Program requires a minimum of 60 credit hours and a maximum of 108 credit hours of study, depending upon the applicant's prior education in architecture and the amount of advanced standing credit granted upon admission to the program. Normally, a student admitted to the program with maximum advanced standing can expect to complete the program within two academic years of full-time study. A student admitted to the program with no advanced standing can expect the program to require three and one-half academic years of full-time study. Graduates from a four-year undergraduate program in architecture similar to that at Georgia Tech can normally expect to complete the program in two academic years, if they have pursued architecturally related elective course work during their undergraduate years. In all cases, the Master's Project, or the optional Master's Thesis, is required for award of the Master of Architecture degree. Specific
information regarding applications for advanced standing and degree requirements is available from the Architecture Program.

The minimum requirements for the M.Arch.I degree, for a student with a previous degree in architecture, are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design Studios</td>
<td>15</td>
</tr>
<tr>
<td>Professional Core Requirements</td>
<td>15</td>
</tr>
<tr>
<td>Master's Project/The Thesis Option</td>
<td>9</td>
</tr>
<tr>
<td>Approved Professional Electives</td>
<td>21</td>
</tr>
<tr>
<td>TOTAL (Minimum)</td>
<td>60</td>
</tr>
</tbody>
</table>

Total Minimum Required Credit Hours for M.Arch.I Program = 60

The maximum requirements for the M.Arch.I degree, for a student with a previous degree in a discipline other than architecture, are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural Design Studios</td>
<td>30</td>
</tr>
<tr>
<td>Preparatory Requirements</td>
<td>15</td>
</tr>
<tr>
<td>Professional Core Requirements</td>
<td>33</td>
</tr>
<tr>
<td>Master's Project/The Thesis Option</td>
<td>9</td>
</tr>
<tr>
<td>Approved Professional Electives</td>
<td>21</td>
</tr>
<tr>
<td>TOTAL (Maximum)</td>
<td>108</td>
</tr>
</tbody>
</table>

Total Maximum Required Credit Hours for M.Arch.I Program = 108

Master of Science (M.S.)
The M.S. program is a nonprofessional program in advanced architectural and industrial design studies and is oriented toward scholarship and research. Applicants may have previous degrees in architecture or other related fields. The areas of specialized study include a) history and theory of architecture; b) urban design; c) architectural technology and building science; d) architecture, culture, and behavior; e) computing and information technologies in architecture; and f) industrial design study options. In addition, faculty interests support a wide range of other interests and study areas.

Multidisciplinary Study
Multidisciplinary studies are strongly encouraged in all of the master’s programs in architecture. These studies may be part of formal dual degree programs, including architecture and city planning, architecture and civil engineering, architecture and management, etc. Other multidisciplinary studies are possible within the College of Architecture, the Institute, and at Emory University, Georgia State University, and the Atlanta College of Art, among other Atlanta area colleges and universities. Course work outside the architecture program frequently includes city planning, public policy, history, philosophy, real estate development, engineering, and studio art.

Foreign Study Programs
Graduate students in architecture are eligible to participate in two College of Architecture foreign study programs. The first is the Summer Program in Europe, which has a primary focus on modern and contemporary architecture in Paris, Berlin, and Holland. The second is the Summer Study in Italy Program, which focuses on architecture, painting, and sculpture at a variety of sites in Italy. For more information, refer to “Summer Study in Italy.”

Applications
The deadline for applications is January 15 for the following fall semester. Each applicant must have an outstanding undergraduate record and must submit a portfolio of creative work. The Graduate Record Examination is required for all applicants. A minimum TOEFL score of 600 (paper-based) or 250 (computer-based) is required for all foreign applicants. All applicants should be aware that the
Master's Program in Architecture has specific application requirements; therefore, all applicants should request a complete application package and instructions by calling 404.894.4885, faxing to 404.894.0572, or writing to Architecture Program Graduate Admissions, College of Architecture, Georgia Institute of Technology, Atlanta, GA 30332-0155.

Building Construction
The master's program in Building Construction and Integrated Facility Management, the only program of its type in the southeastern United States, offers students the comprehensive education and knowledge base necessary for success in the facility management profession. Integrated facility management incorporates knowledge of design, building construction, development, and maintenance into the operation of a cost-effective facility, so it is often challenging for managers to develop a complete understanding of the many areas they are involved in and how to manage them all effectively. The master's program is designed to address this need by providing facility managers with a clear understanding of their complex field and its theoretical concepts while developing and fine-tuning management skills.

Students in the program come from a variety of backgrounds, often with experience in facility management, construction, architecture, engineering, city planning, management, or business. The program is tailored to meet the needs of professionals by offering evening classes, giving students the flexibility of continuing to work while taking courses.

Master of Science in Building Construction and Integrated Facility Management
This program offers a comprehensive education experience through relevant course work, seminars, and hands-on exercises that enable students to become industry leaders in the facility management profession. The master's program requires 36 semester hours. There are 18 hours of required courses in addition to two elective courses and a master's thesis. The course emphasis is on professional trends, environmental and safety concerns, planning and project management, real estate and facility maintenance, and management and financial topics.

The thesis/internship requirement integrates the course work of the master's curriculum with critical thinking and applications in facility management situations. This portion of the program is flexible and can be individually tailored to suit student needs and interests based on an individual's experience and demonstrated ability.

The minimum requirements for a degree in Building Construction and Integrated Facility Management are as follows:

<table>
<thead>
<tr>
<th>Course</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required Courses</td>
<td>18</td>
</tr>
<tr>
<td>Pre-approved Elective Courses</td>
<td>6</td>
</tr>
<tr>
<td>Master's Thesis/Intern. Research</td>
<td>12</td>
</tr>
</tbody>
</table>

The Graduate Record Exam (GRE) or Graduate Management Admission Test (GMAT) is required for all applicants. A minimum TOEFL score of 550 (paper-based) or 213 (computer-based) is required of all international applicants. An application packet can be requested by calling 404.894.4875, e-mailing bc.program@arch.gatech.edu or writing to: Building Construction Program, Graduate Admissions, Georgia Institute of Technology, Atlanta, GA 30332-0680.

City and Regional Planning
Founded in 1951, Georgia Tech's planning program is one of the oldest professional planning programs in the United States, with nearly 900 alumni. Graduates are employed in both the public and private sectors, at all levels of government, by banks, real estate development companies, public utilities, and private corporations. The program is fully accredited by the Planning Accreditation Board; it is the only accredited planning program in Georgia.

The City and Regional Planning Program offers course work in seven major areas of urban and regional planning: land development, environmental planning, transportation, economic development, geographic information systems, urban design, and land use policy. Several types of degree programs are available: the professional Master of City Planning; joint degrees with civil and environmental engineering, architecture, and public policy; and a five-year B.S./M.C.P. degree. Descriptions of each follow.

Master of City Planning Degree
This program educates the student whose career goal is to be a professional planner. The program requires 56 total credit units for graduation.
Approximately half of the program consists of required courses, called the core. The core is composed of three substantive streams: planning theory and process, including planning law, institutional analysis, plan implementation, and history and theory of planning; planning methods, including data analysis, computer applications, descriptive and inferential statistics, microeconomic analytic techniques, and planning information systems; and urban and regional theory, which explores the structure and function of urban systems. The core is largely contained within the student’s first two semesters. Students must choose one of the seven areas of concentration described above. Each specialization consists of at least four courses.

The two-year curriculum requires, for most students, four semesters of course work, including a 4-credit hour applied research paper. Some students choose to write a 10-credit hour thesis. An approved internship is required for those students with no previous planning work experience.

The Graduate Record Examination is required for all applicants to the Master of City Planning Program. A minimum TOEFL score of 600 is required for all international applicants. Since the course material is sequential in nature, fall matriculation is strongly recommended. Applications must be completed before March 1 to ensure consideration for financial aid.

The Joint Degree

The City and Regional Planning Program maintains joint degree programs with several other academic units at Georgia Tech: urban design in architecture; transportation and water resources in civil and environmental engineering; and public policy with the School of Public Policy. The concept behind these joint degree programs is that a student can structure his or her program so that required courses taken in one program can serve as elective credit in the other, thus allowing the student to receive two master’s degrees in less time than the two would take to complete if pursued separately. Candidates seeking the joint degree should state their intentions and be officially admitted into City and Regional Planning and simultaneously accepted internally by the second program. In addition to the joint degree programs, the business administration program in real estate at Georgia State University offers a certificate in real estate that some planning students elect to pursue; likewise, the history program at Georgia State University offers a heritage preservation certificate.

The Five-Year B.S./M.C.P. Degree

Upper-division undergraduates may work simultaneously on their bachelor’s degree and a master’s in planning. By enrolling in all required planning classes as electives for the baccalaureate degree, students may obtain both an undergraduate degree as well as complete course work toward a graduate degree. Students should request and receive permission from the director of the City and Regional Planning Program to begin their program of study in planning no later than fall of their junior year. Students with cumulative GPAs above 3.0 will be considered. With proper scheduling, students can complete the two-year master’s program in one year beyond the usual bachelor’s degree. The key is to carefully schedule the last two years of the undergraduate program. This five-year program may be particularly appropriate for architecture, management, economics, civil and environmental engineering, and earth and atmospheric sciences majors.

Master’s Certificate Program in Design Computing

Graduate students in the College of Architecture and the College of Computing may sign up to participate in the Certificate Program in Design Computing. This option allows students to enroll in a program jointly administered by the College of Architecture and the College of Computing, providing studies in computing, computer graphics, Web technologies, and other digital technology areas.

Students eligible for this certificate program are master’s students in the Colleges of Architecture or Computing. They are admitted through the regular admissions process, but are designated as being also signed up for this certificate option. Students admitted to the certificate program through the College of Architecture may do so through multiple degree programs:

a) Master of Architecture program: Students in the M.Arch.I program may also enroll in this certificate program as part of their professional electives.

b) Master of Science (undesignated) in the College of Architecture, Master of Building Construction, and Master of Industrial Design:
Students in these programs may enroll in this certificate program if their interests and background correspond to those of the certificate.

The requirements for the certificate program for College of Architecture students are 15 units of course work in computing or design. Students taking the certificate program from the College of Architecture are expected to focus on courses in computer science and design computing within the College. The core courses in design computing are those identified as crucial for base knowledge in the field. Students interested in the certificate program should discuss it with their advisor.

Ph.D. Program

The program leading to the Doctor of Philosophy degree in the College of Architecture has been developed to enable students of exceptional ability to undertake advanced study and original research in the fields of architecture, construction, and planning. Currently the program includes several fields of study: 1) city and regional planning; 2) architecture, culture, and behavior; 3) architectural history, theory, and criticism; 4) building technology; 5) design computing; 6) building construction; and 7) architectural and spatial morphology.

Several areas within city and regional planning studies are available for dissertation research: land use planning, economic development, land and housing economics, urban and regional development, information systems, transportation planning, and environmental planning. Students in the Architecture, Culture, and Behavior field pursue studies of human responses to the design of buildings and urban space, including morphological studies, studies of environmental perception and cognition, facilities programming, and evaluation. The Architectural History, Theory, and Criticism field addresses architectural history, philosophy, criticism, and practice, including design philosophies, methods, and criticism; it also allows study of preservation and conservation focusing on technical and methodological issues in the preservation of historical and contemporary building components, buildings, and cities. Studies in Building Technology are concerned with the interface between technology and design construction, including the development and application of advanced knowledge in materials, construction processes, industrial systems, and environmental factors. Design Computing focuses on the development of information technologies in support of creative design and building. Current areas of research include design databases and electronic design environments, building product models, direct fabrication of designs (building CAD/CAM), and visualization. Research in the field of Building Construction is focused on management and environmental aspects of construction. Current research areas are risk management, robotics and automation in building construction, indoor air, design-build, construction development and management, life cycle cost management, integrated facility management, and morphology. Spatial and Architectural Morphology is concerned with the principles that govern layouts, their meaning, functions, and social implications at urban and building scales. It includes analytical studies of spatial form.

For further details on the program, contact: Ph.D. Program Director, College of Architecture, Georgia Institute of Technology, Atlanta, Georgia 30332-0155.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

ARCHITECTURE

ARCH 2011. Architectural Design Studio I
0-12-4.
Prerequisite(s): COA 1012
Elementary design exercises exploring fundamental issues of form and space through analysis of architectural elements and compositions and their use in creative problem solving.

ARCH 2012. Architectural Design Studio II
0-12-4.
Prerequisite(s): ARCH 2011
Elementary design exercises focusing upon the compositional integration of building and site through the creative assimilation of programmatic, technical, and contextual requirements.

ARCH 2111. History of Architecture I
3-0-3.
Architectural history from antiquity through the eighteenth century emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions.
ARCH 2112. History of Architecture II
3-0-3.
Architectural history during the nineteenth and twentieth centuries emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions.

ARCH 2115. Modern Architecture and Art in Europe, America, and Australia: Nineteenth and Twentieth Centuries
3-0-3.
A brief survey of architecture and art in the nineteenth and twentieth centuries, including a discussion of related influences on developments in those fields.

ARCH 2211. Construction Technology and Design Integration I
3-0-3.
Introduction to building anatomy, technical and expressive characteristics of materials and their organizational assembly.

ARCH 3011. Architectural Design Studio III
1-12-5.
Prerequisite(s): ARCH 2012
Intermediate architectural design projects emphasizing the functional priorities and expressive potential of building technologies through studio problems of varying programmatic and contextual complexity.

ARCH 3012. Architectural Design Studio IV
1-12-5.
Prerequisite(s): ARCH 3011
Intermediate architectural design projects exploring the interrelationships of various programmatic models, normative building types, and technological themes within specific physical, urban, and cultural contexts.

ARCH 3231. Environmental Systems and Design Integration I
3-0-3.
Prerequisite(s): ARCH 2211
Human physiology, the occupation of space, and principles of sustainability. Microclimate, energy consumption, thermal loading, passive solar strategies, daylighting, optics, and acoustics.

ARCH 3241. Fundamentals of Structures
2-3-3.
Prerequisite(s): PHYS 2211
Physics of structure: principles of statics, strengths of materials, and the dynamic forces acting upon them.

ARCH 4011. Architectural Design Studio V
1-12-5.
Prerequisite(s): ARCH 3012
Advanced studies in architectural design emphasizing application of analytical, conceptual, and representational skills within projects that engage and problematize urban contexts culturally, ecologically, and technologically.

ARCH 4012. Architectural Design Studio VI
1-12-5.
Prerequisite(s): ARCH 4011
Advanced studies in architectural design emphasizing application of analytical, conceptual, and representational skills within projects that engage and problematize urban context culturally, ecologically and technologically.

ARCH 4021. Architecture Core Studio I
1-12-5.
Foundation studies in architectural design emphasizing analytical and analogical generative strategies applied to studio problems that engage architectural representation, composition, and fabrication.

ARCH 4022. Architecture Core Studio II
1-12-5.
Prerequisite(s): ARCH 4021
Intermediate studies in architectural design emphasizing integrative design strategies that engage the programmatic, contextual, and constructed dimensions of architecture and its representations.

ARCH 4023. Architecture Core Studio III
1-12-5.
Prerequisite(s): ARCH 4022
Advanced studies in architectural design emphasizing the interrelationship of architectural and urban history, theory, and practice through studio problems that engage all aspects of architectural design.

ARCH 4105. History of Architecture I
3-0-3.
Architectural history from antiquity through the eighteenth century emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions.

ARCH 4106. History of Architecture II
3-0-3.
Architectural history during the nineteenth and twentieth centuries emphasizing buildings in their cultural context as informed by social, technological, and constructive factors and theoretical positions.

ARCH 4113. History of Renaissance and Mannerist Architecture
3-0-3.
Investigation of the history and theory of Renaissance and Mannerist architecture with a primary emphasis on Italy.

ARCH 4114. Medieval Architecture
3-0-3.
Investigations of the architecture of Medieval Europe with an emphasis on English and French Romanesque and Gothic, including towns and castles.

ARCH 4117. Architecture and the Arts and Crafts Movement
3-0-3.
Investigations in the theory, design, and building methods of English and American architects associated with the Arts and Crafts Movement.
ARCH 4118. American Academic Architecture
3-0-3.
Investigations of the history and theory of late nineteenth and twentieth century classicism in America.

ARCH 4119. Architecture of Frank Lloyd Wright
3-0-3.
Investigations on the life and work of Frank Lloyd Wright.

ARCH 4120. Atlanta Architecture
3-0-3.
Investigations through lectures, reading, and research of the history of Atlanta architecture and significant architectural firms from the city's founding to the present.

ARCH 4123. European Modernism
3-0-3.
Survey of European architecture from Art Nouveau to LeCorbusier.

ARCH 4124. History of Architecture in the United States
3-0-3.
History investigations of architecture within the continental United States from the colonial period to the present.

ARCH 4125. French Architecture from Ledoux to LeCorbusier
3-0-3.
History of French architecture from Ledoux to LeCorbusier with special emphasis on Paris.

ARCH 4126. Paris Urban History
3-0-3.
The social, cultural, urban, and architectural history of the city of Paris, from its founding until the present. Course offered in Paris only.

ARCH 4151. History of Urban Form
3-0-3.
History of the city as a collective work of architecture with an emphasis on the city's physical form and space.

ARCH 4219. Construction Technology and Design Integration I
3-0-3.
Introduction to building anatomy, technical and expressive characteristics of materials and their organizational assembly.

ARCH 4220. Construction Technology and Design Integration II
1-6-3.
Prerequisite(s): ARCH 2211 or ARCH 4219
Integration, representation, and constructability of building assemblies and structural systems. Grading, drainage, foundations, structure, and enclosure in relation to building codes and principles of sustainability.

ARCH 4231. Environmental Systems and Design Integration II
3-0-3.
Prerequisite(s): ARCH 3231
Active building systems design: artificial lighting, mechanical, electrical, communication, transportation systems. Case studies of integrated and sustainable building assemblies.

ARCH 4251. Architectural Structures and Design Integration I
2-3-3.
Prerequisite(s): ARCH 3241

ARCH 4252. Architectural Structures and Design Integration II
2-3-3.
Prerequisite(s): ARCH 3241

ARCH 4253. Advanced Structures Seminar
3-0-3.
Prerequisite(s): ARCH 4252
Fundamentals of steel and concrete design and the computerized design of steel and concrete structural systems for multi-story buildings.

ARCH 4303. Programming and Building Evaluation
3-0-3.
Building programming and evaluation of building performance with respect to the aims of organizational users, policy development, and the process of planning and design decisions.

ARCH 4315. Professional Practice of Architecture
3-0-3.
Principles and framework of professional practice including ethics, legal climate, business practices and contracts, project process and management, office organization, and methods of building production.

ARCH 4316. Traditions of Architectural Practice
3-0-3.
Critical examination of architectural practice. Cultural derivation and technological transformation of various conventions of representation, construction, and design; speculation about future paradigms of architectural practice.

ARCH 4330. Understanding Clients and Users: Methods for Programming and Evaluation
3-0-3.
Theories and methods of architectural programming and evaluation.

ARCH 4334. Housing and Culture
3-0-3.
Examination of social, cultural, and behavioral issues as they influence the form of houses and housing.

ARCH 4335. The Social Practice of Architecture
3-0-3.
Introduction to theories and findings about human use and experience of architecture.
ARCH 4411. Introduction to Visual Arts
1-6-3.
Orientation to issues of visual perception and representation of form and space through freehand drawing, composition, color, texture, mixed-media, and journal making.

ARCH 4412. Drawing and the Human Figure
0-9-3.
Studio instruction in figure drawing from the live model with emphasis on the structure and dynamics of the human figure.

ARCH 4413. Collage Making
1-6-3.
Concepts of collage within art, architecture, and culture; manual and electronic approaches to two- and three-dimensional collage making.

ARCH 4414. Representation in Watercolor
1-6-3.
Introductory course in the use of transparent watercolor for field painting and architectural representation. Theory of pigment characteristics in applied painting.

ARCH 4415. Photography I
1-6-3.
Introduction to studio, darkroom, and field photography with emphasis on composition, processing, and printing.

ARCH 4416. Photography II
1-6-3.
Prerequisite(s): ARCH 4415
Advanced techniques in photography. Use of color, filters, four-by-five format cameras with emphasis on architectural photography.

ARCH 4420. Introduction to Design Computing
2-3-3.
Survey of computer representations and modeling techniques, including pixel-based images, vector-based drawing systems, and surface and solid modeling; use of applications built upon these systems.

ARCH 4770. Psychology and Environmental Design
2-3-3.
Introduction to psychological concepts relevant to environmental design. Survey of selected methods for assessing human-made environments. Crosslisted with PSYC 4770.

ARCH 4801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in the course number.

ARCH 4811. Special Topics: Architectural Design
0-3-1.

ARCH 4812. Special Topics: Architectural Design
0-6-2.

ARCH 4813. Special Topics: Architectural Design
0-9-3.

ARCH 4814. Special Topics: Architectural Design
0-12-4.

ARCH 4815. Special Topics: Architectural Design
0-15-5.

ARCH 4821, -22, -23. Special Topics: History, Theory, and Criticism
3-0-3, each.

ARCH 4831, -32, -33. Special Topics: Architectural Technology
3-0-3, each.

ARCH 4841, -42, -43. Special Topics: Professional and Social Practice
3-0-3, each.

ARCH 4851. Special Topics: Visual Arts and Computing
0-3-1.

ARCH 4852. Special Topics: Visual Arts and Computing
0-6-2.

ARCH 4853. Special Topics: Visual Arts and Computing
0-9-3.

ARCH 4901, -2, -3, -4, -5. Special Problems
Credit hours to be arranged.

ARCH 4911, -12, -13, -14, -15. Special Problems: Architectural Design
Credit hours to be arranged.

ARCH 4921, -22, -23. Special Problems: History, Theory, and Criticism
Credit hours to be arranged.

ARCH 4931, -32, -33. Special Problems: Architectural Technology
Credit hours to be arranged.

ARCH 4941, -42, -43. Special Problems: Professional and Social Practice
Credit hours to be arranged.

ARCH 4951, -52, -53. Special Problems: Visual Arts and Design Computing
Credit hours to be arranged.

ARCH 6031, -32, -33. Architecture Options
Studio I, II, III
1-12-5, each.

ARCH 6111. Theories of Ornament
3-0-3.

ARCH 6111. Theories of Ornament
3-0-3.

Study of the aesthetics of the surface in architecture through inquiry of current and historic theories and buildings.
ARCH 6112. Islamic and Indian Architecture and Urbanism 3-0-3.
Two-part survey of Asian architecture and urbanism (excluding East Asia). The Islamic world up to the eighteenth century: the Mughal, Raj, and post-independence periods in Indian subcontinent.

Critical study of theoretical writings and architectural production prior to the twentieth century.

Critical study of theoretical writings and architectural production of the twentieth century to the present.

Avant-garde influences on architectural thought and production within Modernity and Post-modernity.

ARCH 6134. Language of the City 3-0-3.
Representations and cultural significance of the city in film, the arts, and literature.

ARCH 6135. Architectural Representation 3-0-3.
Systems of architectural representation and codes of thinking, drawing, and reading architecture.

Architecture and politics in Italy, Germany, and the Soviet Union between the wars.

General exposure to questions pertaining to the production of building systems and assemblies through a series of case study projects by contemporary practicing architects.

ARCH 6151. Theories of Urban Design 3-0-3.
Contemporary theories of urban design and their relationship to the contemporary city examined through architects' writings, urban projects, and interdisciplinary criticism.

History and theory of the designed landscape and garden from the ancient world to the present.

ARCH 6153. History and Theory of the Modern City 3-0-3.
An examination of the evolution of the modern city in the nineteenth and twentieth centuries with particular reference to architectural, city planning, and urban design theories.

ARCH 6154. Introduction to Urban Design 3-0-3.
Introduction of urban design ideas, research, and practice, examining traditional qualities of the American city and their possible applications in the contemporary city.

Structural and cladding systems integration, environmental control, and tectonic representation explored through historical and contemporary case studies and applied design solutions.

Strategies of ecologically sustainable design and construction and the role of the architect in the stewardship of the environment.

ARCH 6215. Constructive Arts Workshops 2-3-3.
Exploratory construction drawing, qualities and performance of materials and their joinery, explored through a synthetic process of detailing and full-scale fabrication of artifacts.

ARCH 6218. The Material Logic of Architecture 2-3-3.
Prerequisite(s): ARCH 3241
Introduction to scientific and practical nature of architectural materials: soils, cements, metals, plastics, and glazing materials. Laboratory includes fabrication of, and experiments on, architectural materials.

ARCH 6231. Residential Building Thermal Design and Simulation 3-0-3.
Prerequisite(s): ARCH 4231
Manual and computer-aided thermal design and analysis with emphasis on residential buildings.
ARCH 6232. Commercial Building Thermal Design and Simulation
3-0-3.
Prerequisite(s): ARCH 4231
Manual and computer-aided thermal design and analysis with emphasis upon commercial buildings.

ARCH 6312. Ecological Practice: History, Polemics, and Poetics
3-0-3.
A historically and culturally grounded examination of the ecological perspective. Critical and productive engagement with green guidelines, laws, products, design briefs, and procedures.

ARCH 6331. Space and Culture of Institutional Buildings
3-0-3.
Application of theories of social and cultural function to considerations of spatial layout and design of a particular institutional building type.

ARCH 6404. Electronic Media: From Technique to Culture
3-0-3.
The influence of electronic media upon representation and invention in architecture.

ARCH 6424. Intelligent Computer-Aided Architectural Design
1-6-3.
Prerequisite(s): ARCH 4420
Use and evaluation of advanced CAD packages for use in architecture; multiple application packages will be addressed.

ARCH 6425. Electronic Design Conceptualization and Development
1-6-3.
Prerequisite(s): ARCH 4420
Advanced-level CAD approaches to early design conceptualization and development in electronic media; emphasis on 3D modeling and evolving abstract design concepts into architectural objects.

ARCH 6426. 3D Modeling in Architecture
1-6-3.
Prerequisite(s): ARCH 4420
Construction of 3D computer models of architectural structures. Topics include geometry creation, light and materials property, rendering, data exchange, and basic animation.

ARCH 6427. Advanced Modeling and Animation in Architecture
1-6-3.
Prerequisite(s): ARCH 6426
Advanced computer modeling of architectural form. Topics include: parametric design, parametric materials, special effects, object libraries, and animation and video production.

ARCH 7000. Thesis
Credit hours to be arranged.

ARCH 7042. Urban Design Workshop
0-9-3.
Advanced problems in urban design and development focusing on the Atlanta region. Integration of urban design theory and methods, economic development, political registration, and communication.

ARCH 7043. Urban Design Workshop
0-12-4.
See ARCH 7042 for course description.

ARCH 7044. Urban Design Workshop
0-15-5.
See ARCH 7042 for course description.

ARCH 7045. Urban Design Workshop
0-18-6.
See ARCH 7042 for course description.

ARCH 7060. Critical Positions in Architectural Design
3-0-3.
Prerequisite(s): ARCH 6132
Advanced topics in the theory of architectural production focusing upon contemporary ethical dilemmas and the development of critical positions of design.

ARCH 7090. Master's Project Studio
0-18-6.
Prerequisite(s): ARCH 6033 and ARCH 7060
Comprehensive studio problems emphasizing the integration of disciplinary and professional skills through the formulation of architectural propositions grounded in critical, speculative, and creative research.

ARCH 8801, -2, -3, -4, -5, -6. Special Topics
Credit and class hours equal last digit in course number.

ARCH 8811. Special Topics: Architectural Design
0-3-1.

ARCH 8812. Special Topics: Architectural Design
0-6-2.

ARCH 8813. Special Topics: Architectural Design
0-9-3.

ARCH 8814. Special Topics: Architectural Design
0-12-4.

ARCH 8815. Special Topics: Architectural Design
0-15-5.

ARCH 8821, -22, -23. Special Topics: History, Theory, and Criticism
3-0-3, each.

ARCH 8831, -32, -33. Special Topics: Architectural Technology
3-0-3, each.

ARCH 8841, -42, -43. Special Topics: Professional and Social Practice
3-0-3, each.
ARCH 8851. Special Topics: Visual Arts and Design Computing
0-3-1.

ARCH 8852. Special Topics: Visual Arts and Design Computing
0-6-2.

ARCH 8853. Special Topics: Visual Arts and Design Computing
0-9-3.

ARCH 8901, -2, -3. Special Problems
Credit hours to be arranged.

ARCH 8911, -12, -13, -14, -15. Special Problems: Architectural Design
Credit hours to be arranged.

ARCH 8921, -22, -23, -24, -25. Special Problems: History, Theory, and Criticism
Credit hours to be arranged.

ARCH 8931, -32, -33. Special Problems: Architectural Technology
Credit hours to be arranged.

ARCH 8941, -42, -43. Special Problems: Professional and Social Practice
Credit hours to be arranged.

ARCH 8951, -52, -53. Special Problems: Visual Arts and Design Computing
Credit hours to be arranged.

ARCH 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

ARCH 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

ARCH 9000. Doctoral Dissertation
Credit hours to be arranged.

BUILDING CONSTRUCTION

BC 2600. Construction Contracting
3-0-3.
The goal of this course is to teach students the basics of construction contracting, business methods, organizational models, bidding, construction insurance, and labor relations.

BC 2610. Construction Technology I
2-3-3.
An introduction to the planning and physical development process for the construction of projects of residential and light construction scale.

BC 2620. Construction Technology II
2-3-3.
Prerequisite(s): BC 2610
A continuation of Construction Technology I with an emphasis on large-scale and high-rise building, i.e., commercial building construction.

BC 2630. Construction Seminar
1-0-1.
Provides an introduction to the construction industry with emphasis on exploring career opportunities in construction.

BC 3600. Construction Cost Management
2-3-3.
Introduction to cost principles and cost analysis of construction projects, including classification of work, quantity survey techniques, construction operation costs, and bid proposals.

BC 3610. Construction Law
3-0-3.
Prerequisite(s): BC 2600
Legal aspects of construction contracts, bonds, insurance, and bidding. Owner, architect, contractor, and subcontractor relationships.

BC 3620. Real Estate and Construction Finance and Accounting
3-0-3.
Prerequisite(s): BC 2630
General introduction to the financing of construction and real estate development projects. Emphasis on financing requirements, activities, sources, and uses.

BC 3630. Project Management I
2-3-3.
This course will offer construction planning and management techniques for project design and construction with a focus on different scheduling methods and their use.

BC 4600. Project Management II
3-0-3.
Prerequisite(s): BC 3630
This course covers practical project management, technology, and tools for this approach and the required management skills for successful execution of projects.

BC 4610. Value Engineering and Building Economics
3-0-3.
Prerequisite(s): BC 2600
First part is an introduction to principles and methodology. Second part is an introduction to economic principles and theories and how to apply the concepts and methods of building economics.

BC 4620. Building Structural Analysis
3-0-3.
Prerequisite(s): ARCH 3241
Emphasis is placed on the practical design and construction of structural elements. The course includes basic design principles with a heavy emphasis on constructability and buildability.
BC 4630. Senior Capstone Project
2-3-3.
Prerequisite(s): BC 3600 and BC 3610 and BC 3620 and BC 3630
A senior construction project that includes redevelopment analysis and feasibility study, project development, and construction.

BC 4640. Construction Marketing
3-0-3.
Prerequisite(s): BC 2630
Methods of construction marketing and business development. Innovative computer applications, verbal skills development, professional strategies, market segmentation, and buyer behavior.

BC 4650. Laboratory for Sustainable Design and Construction
1-3-3.
The goal of the laboratory is to teach students a comprehensive sustainable design and construction information system and a program of real-world, hands-on projects.

BC 4660. Entrepreneurship in Construction
3-0-3.

BC 4670. Construction Industry Issues and Initiatives
3-0-3.
Major issues of the construction industry in productivity improvement, constructability, quality improvements, safety, computers, and innovative construction management.

BC 4680. Professional Internship
0-9-3.
Students work for a professional architecture/engineering/construction company in which they learn first-hand about the construction industry.

BC 4801, -2, -3. Special Topics
Credit and class hours equal last digit in the course number.

BC 4900. Special Problems
Credit hours to be arranged.

BC 6100. Professional Trends in Facility Management
3-0-3.
An introductory course covering the organizational, management, ethical and legal principles for the delivery of facility management services. Includes contracts and risk management.

BC 6200. Maintenance Management of Built Assets
3-0-3.
This course covers the processes by which a facility and its systems are serviced and maintained during the facility's life cycle. Includes acquisition, installation, operation, maintenance, and disposal of built assets.

BC 6300. Safety and Environmental Issues
3-0-3.
This course covers the environmental issues related to the performance of buildings and the health and risk factors for new and existing buildings.

BC 6400. Facility Planning, Project Management, and Benchmarking
3-0-3.
This course introduces the techniques of planning, project management, and benchmarking, and their applications to facility management. Includes space forecasting, scheduling and control of projects, and benchmarking studies.

BC 6500. Real Estate and Income Property
Financial Management
3-0-3.
This course covers real estate financial management and performance topics from a decision-making and strategic planning orientation for facilities management professionals.

BC 6600. Real Property Analysis
3-0-3.
This course covers real property concepts, issues, and topics pertinent to the facility management professional. The topics include site selection, property market analysis, legal documents, and land use control.

BC 7000. Master's Thesis
Credit hours to be arranged.

BC 8800, -01, -02. Special Topics
3-0-3, each.
Topics of special interest in building construction

BC 8901, -2, -3. Special Problems
Credit hours to be arranged.

BC 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

BC 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

COLLEGE OF ARCHITECTURE

COA 1011. Fundamentals of Design and the Built Environment I
0-9-3.
Co-requisite: COA 1060
Introduction to creative problem solving and the design realization cycle through project-based design exercises that emphasize the role of representation.

COA 1012. Fundamentals of Design and the Built Environment II
1-9-4.
Prerequisite(s): COA 1011
Introduction to the design of complex problems through an emphasis on integrative and collaborative design strategies, research, critical reflection, and interdisciplinary team work.
COA 1060. Introduction to Design and the Built Environment
3-0-3.
Co-requisite: COA 1011.
Introduction to architecture, building construction, and industrial design through case studies that illuminate past and present practices, as well as future possibilities within the disciplines.

COA 2115. Art and Architecture in Italy I
3-0-3.
Investigations of the painting, sculpture, and architecture of the Classical, Early Christian, Byzantine, and Medieval periods in Italy with special emphasis on Rome.

COA 2116. Art and Architecture in Italy II
3-0-3.
Investigations of the painting, sculpture, and architecture of the Renaissance and Baroque periods in Italy with special emphasis on the works of Rome.

COA 2241. History of Art I, II
3-0-3, each.
A survey of artistic manifestations from primitive times to the present. First semester sequence, prehistoric through Renaissance; second semester, Renaissance through the nineteenth and twentieth centuries.

COA 6115. Art and Architecture in Italy I
3-0-3.
Investigations of the painting, sculpture, and architecture of the Classical, Early Christian, Byzantine, and Medieval periods in Italy with special emphasis on Rome.

COA 6116. Art and Architecture in Italy II
3-0-3.
Investigations of the painting, sculpture, and architecture of the Renaissance and Baroque periods in Italy with special emphasis on the works of Rome.

COA 6763. Design of Design Environments
3-0-3.
Analysis of design processes; analysis of current design tools at both the user interface and functional levels; procedures for developing better design tools. Crosslisted with CS 6763.

COA 6764. Geometric Modeling
3-0-3.
Software development course focusing on 3D geometric constructions and modeling; emphasizes solid modeling and its role in design. Crosslisted with CS 6764.

COA 8000. Doctoral Seminar
1-0-1.

COA 8510. Research Design in Planning
3-0-3.
Examines the theoretical and practical foundations of research design within the field of city and regional planning.

COA 8520. Advanced Planning Theory
3-0-3.
Advanced seminar on planning theory, including philosophy of sciences, political philosophy, and ethical theory. The course explores the theoretical basis for planning as a social activity.

COA 8600. The Genesis of Architecture
3-0-3.
The nature of architecture illustrated from those of all cultures; determinist theories; its social values and its meanings to the individual – material, physical, anthropological, and cognitive.

COA 8610. Thought and Interpretation in Architecture from the Hellenic Period to the 1830s
3-0-3.
A survey of architectural thought and theory taking account of other fields; paralleled by a review of major critical texts and assessments to the present day.

COA 8612. Thought and Interpretation in Architecture from the 1830s to the Twentieth Century
3-0-3.
A survey of architectural thoughts and theory taking account of the fields; paralleled by a review of major critical texts and assessments to the present day.

COA 8620. The Design and Evolution of American Space
3-0-3.
Topical seminar on the development of urban, suburban, and rural American spatial forms, with emphasis on the relationship between public order and vernacular settlement.

COA 8625. Theories of Inquiry in Architecture
3-0-3.
Introduction to research paradigms and their assumptions. The formulation of questions and frameworks of description, representation, analysis, interpretation, and data control.

COA 8630. Theories of Architecture, Space, and Culture
3-0-3.
Accounts of the social functions of architectural space and associated design choices, across a variety of building types and scales of environmental design.

3-0-3.
Methods and theories of planning, design, facilities management, and evaluation as they relate to organizational policy and development.

COA 8640. Theories of Psychology for Architecture
3-0-3.
An examination of social and psychological theory as it is applied to the creation and use of space.

COA 8645. Analytical Models of Built Space and Its Functions
3-0-3.
Introduction to analytical ideas and methodologies for the quantitative description of built space, form, building use, and functions. Layouts as configurations: boundaries, accessibility, visibility, extensions.
COA 8650. Formal Descriptions of Designs: Analyses of Space, Shape, and Form
3-0-3.
Introduction to the form and computational description of designs, with an emphasis on spatial patterns. Geometrical constructions; combinatorial approaches, analyses of shape.

COA 8672. Research Seminar in Design Computation
3-0-3.
Seminar review of developments in computing applied to architecture; current major research issues.

COA 8674. Structuring Multimedia Design Knowledge
3-0-3.
Theories and tools for structuring multimedia knowledge for design and designers.

COA 8676. Design and Engineering Databases
3-0-3.
Survey of database use in design and engineering; surveys relational, object-oriented database technology, and ISO-STEP methods of integration.

COA 8680. Performance Aspects of Building Systems Design
3-0-3.
Engineering analysis of building (sub) systems based on a performance ontology. Criteria, metrics, and tools for performance aspect evaluations in different building technology domains.

COA 8685. Building Performance Simulation
3-0-3.

COA 8690. Integrated Design and Engineering Environments for Buildings
3-0-3.
Surveys of issues for effective integration of heterogeneous design tools for building; previous efforts, current approaches; advanced techniques, including ISO-STEP and IAI.

COA 8811, -12, -13. Special Topics in Architectural/Planning Studies
Credit and class hours equal last digit in course number.

COA 8821, -22, -23. Special Topics in Architecture and Behavior
Credit and class hours equal last digit in course number.

COA 8831, -32, -33. Special Topics in Design and Technology
Credit and class hours equal last digit in course number.

COA 8841, -42, -43. Special Topics in Design Computing
Credit and class hours equal last digit in course number.

COA 8851, -52, -53. Special Topics in History and Theory
Credit and class hours equal last digit in course number.

COA 8861, -62, -63. Special Topics in History and Theory
Credit and class hours equal last digit in course number.

COA 8901, -2, -3, -4. Special Problems
Credit hours to be arranged.

COA 8996. Qualifying Paper
Credit hours to be arranged.

COA 8997. Teaching Assistantship
Credit hours to be arranged.
For students holding a graduate teaching assistantship.

COA 8998. Research Assistantship
Credit hours to be arranged.
For students holding a graduate research assistantship.

COA 8999. Preparation for Doctoral Dissertation
Credit hours to be arranged.

COA 9000. Doctoral Thesis
Credit hours to be arranged.

CITY PLANNING

CP 4010. Foundations of Urban and Regional Development
3-0-3.
The course describes the economic function of cities and the significant factors that shape their growth and development.

CP 4020. Introduction to Urban and Regional Planning
3-0-3.
This course provides an overview of the planning of cities and metropolitan regions. The legal and historical context as well as substantive areas of urban planning are addressed.

CP 4030. The City and Its Technology
3-0-3.
This course places urban infrastructure technology within the larger context of planning and development. The social and economic aspects of these systems are highlighted.

CP 4040. The City in Fiction and Film
3-0-3.
Examines images and perceptions of the urban environment as portrayed in literature and cinema. Explores the social, economic, and cultural contexts that impact on conception of the city.

CP 4050. Negotiation, Facilitation, and Conflict Management
3-0-3.
Theoretical and practical instruction on techniques of negotiation and consensus building using case studies and training exercises.
CP 4210. Environmental Planning and Impact Assessment
3-0-3.
Covers the principles of environmental planning and decision making. Examines the methods and processes, and environmental impact assessment and regulation.

CP 4310. Urban Transportation and Planning
3-0-3.
This course is designed to introduce the fundamentals of urban transportation planning and policy and is applicable to students in a variety of concentrations of study. The purpose of the course will be to acquaint students with transportation planning as a profession and the types of projects that transportation planners are required to conduct.

CP 4510. Fundamentals of Geographic Information Systems
3-0-3.
The course provides a basic understanding of the tools for collecting, storing, and analyzing spatially distributed data. Basic issues of software design and application are covered.

CP 4610. Introduction to Real Estate Investment
3-0-3.
Introduction to real estate analysis and utilization. Subjects include attributes of real property, value determinations, appraisal, investment analysis, market analysis, asset management, and public aspects.

CP 4620. Housing and Real Estate Economics
3-0-3.
Examination of private and public sector approaches to housing. Economic theory of durable goods, demand elasticities, applied market research analyses, and history of public intervention.

CP 4801, -2, -3. Special Topics
3-0-3, each.

CP 6002. Introduction to Fields of Planning
2-0-2.
Introduction to the various subfields of planning through reading, discussion, and guest lectures by practicing planners. Course also covers professional ethics and career planning and development.

CP 6012. Theory and History of Planning
4-0-4.
Examines theories of planning and the public interest. Considers the roles of planners within the American political system and the historical development of the planning profession.

CP 6016. Growth Management Law and Implementation
3-0-3.
Study of legal framework of planning focusing on managing development to achieve desired outcomes for the economy, society, and the environment.

CP 6019. Quantitative and Computer Methods
3-0-3.
Introduction to computing and quantitative methods in planning. Discusses commonly used data sources, data management, presentation techniques, and planning analytical models.

CP 6023. Advanced Planning Methods
3-0-3.
Prerequisite(s): CP 6019
Analytical methods in planning including inferential statistics, linear regression, and analysis of variance and how they are applied to planning problems. Introduction to research design and the use of qualitative approaches in planning analysis.

CP 6031. Economic Analysis for Planning
3-0-3.
Applications of economic principles to planning, including market theory, public goods, externalities, cost benefit analysis, and project economics.

CP 6032. Urban and Regional Development Theory
3-0-3.
Study of theories in the structure and function of cities and regions. Emphasis on the economic forces shaping urban development.

CP 6034. Demographic and Economic Analysis of Urban Areas
3-0-3.
This course considers the social and economic structure of urban areas from a demographic perspective. Population structure, population change, and migration are explored.

CP 6052. Applied Planning Studio
0-12-4.
Analysis and preparation of alternatives for an existing neighborhood, community, or region. Emphasis on application of planning skills in a real-world situation.

CP 6112. Introduction to Land Use Planning
3-0-3.
This course introduces students to land use planning. The basic rationale for land use planning and its form in different states is covered.

CP 6122. Land Use Planning Methods
3-0-3.
This course explores the techniques of land use planning and applies them to specific land use types.

CP 6214. Environmental Planning and Impact Assessment
3-0-3.
Examines the principles, processes, and methods of environmental planning. Focus on environmental science and its use in impact assessment and project evaluation.

CP 6223. Policy Tools for Environmental Management
3-0-3.
The course covers the regulatory, market, and procedural tools used to manage the environment. It examines the strengths and weaknesses of alternative techniques.

CP 6233. Sustainable Urban Development
3-0-3.
Explores the principles and practice of sustainable urban development and the role of planning.
CP 6241. Water Resources Planning
3-0-3.
Fundamentals of water resources planning and watershed management. Emphasis on urban water resources problems, policies, and practices.

CP 6250. Hazardous Waste Planning and Management
3-0-3.
Examines the planning tools and management techniques for the proper use, storage, transport, and disposal of hazardous material and waste products.

CP 6261. Environmental Law
3-0-3.
This course introduces students to the framework of legislation that shapes environmental planning and policy, including NEPA, Clean Air Act, and Clean Water Act.

CP 6311. Introduction to Transportation Planning
3-3-4.
Overview course in transportation planning including basic principles to understanding transportation, current transportation problems, transportation policy, and decision-making processes and methods.

CP 6321. Transportation Planning Methods and Investment Decisions
3-3-4.
Prerequisite(s): CP 6311
Review of transportation methods and how they interface with investment decisions. How transportation planners at the local, regional, state, and federal levels employ methods.

CP 6331. Land Use and Transportation Interaction
3-0-3.
Prerequisite(s): CP 6311
Overview of land use and transportation planning principles, how development impacts transportation, how transportation investments impact development patterns and air quality.

CP 6341. Urban Design and Non-Motorized Accessibility
3-0-3.
Examines role and opportunity to make walking and biking viable travel options in urban environments and how urban environments need to be designed to encourage non-motorized travel.

CP 6351. Transportation and Economic Development
3-0-3.
Impact of transportation infrastructure investments on economic outcomes at a range of geographic scales including neighborhood, municipality, region, and state.

CP 6361. Regional Transportation Planning and Administration
3-0-3.
This course will address the administrative, political, methodological, and social issues underlying the regional transportation planning process.

CP 6412. Foundations of Local Economic Development Planning and Policy
3-0-3.
Introduction to local economic development planning, examining theory, process and practice, international and regional factors, public and private roles.

CP 6422. Economic Development Analysis and Practice
3-0-3.
This course focuses on strategy development, methods of analysis, and approaches to practice for urban and regional economic development policy and planning.

CP 6432. Industrial Restructuring and Its Planning Implications
3-0-3.
Examines industrial restructuring trends and theoretical frameworks; develops industry case studies; and considers economic development planning's role in industrial restructuring.

CP 6442. Equity, Social Justice, and Economic Development
3-0-3.
Explores concepts and theories of equity and social justice, analysis of indicators of (in)justice/equity, and economic development planning's role in promoting equity and social justice.

CP 6452. Urban Development Policy
3-0-3.
Introduces elements of urban policy and economic development by examining them historically, nationally, and locally. Approaches to urban development and redevelopment are analyzed.

CP 6514. Introduction to Geographic Information Systems
3-0-3.
This course introduces students to spatial analysis using geographic information systems. Fundamentals of software design and geographic data are covered.

CP 6521. Advanced Geographic Information Systems
2-1-3.
Prerequisite(s): CP 6514
The course provides students with advanced spatial analysis techniques including network analysis, three-dimensional surface modeling, and GIS application development.

CP 6531. Introduction to Remote Sensing
3-0-3.
This course introduces students to the collection and use of satellite imagery and other remote sensing data.

CP 6541. Environmental Analysis Using GIS
3-0-3.
Prerequisite(s): CP 6514
This course focuses on the application of geographic information systems (GIS) to environmental problems. It highlights the types and sources of data appropriate to those applications.
CP 6551. Spatial Analysis of Socioeconomic Data
3-0-3.
Prerequisite(s): CP 6514
This course provides students with an in-depth study of the spatial distribution of human activity, including population, housing, and employment.

CP 6561. Geodemographics: Data Sources and Methods
1-6-3.
Explores important secondary data sources used by planners and analysts working with smaller geographic areas. Experience with hardware and software used to analyze data.

CP 6611. Principles of Real Estate Finance and Development
3-0-3.
Introduction to the principles of real estate finance, focusing on the role the public sector plays in making desirable development projects financially feasible.

CP 6621. Real Estate Market Research
3-0-3.
Introduction to real estate market research with particular focus on analyses of housing and office markets.

CP 6630. Government and Housing Markets
3-0-3.
Examination of the operation of local housing markets and national, state, regional, and local housing policies.

CP 6640. Applied Real Estate Development Methods
3-0-3.
Prerequisite(s): (CP 6611 and CP 6621) or (CP 6611 and CP 6630)
Application of the development process, market and financial feasibility analyses, and public policy to large development projects. Extensive use of case studies involving professional developers.

CP 6811. Negotiation, Facilitation, and Conflict Management
3-0-3.
Theoretical and practical instruction on techniques of negotiation and consensus building using case studies and training exercises.

CP 6815. Cinema City
3-0-3.
Explores people's response to cities, augmenting the empirical analysis that is urban studies domain with the subjective perspectives of cinematic artists.

CP 6821. Basic Methods of Policy Analysis and Planning
3-0-3.
Synthesizes elements of the program core's analytic techniques and employs them in a case study context. Cases address urban policy, planning, and management.

CP 6825. Public Sector Finance and Budgeting
3-0-3.

CP 6831. Urban Growth and Infrastructure Systems
3-0-3.
This course provides students with a basic understanding of urban infrastructure systems and their role in shaping urban growth and development.

CP 6832. Introduction to Urban Design
3-0-3.
An introduction to the study, research, and practice of urban design examining traditional design principles and their application to the contemporary city.

CP 6834. Urban Design Policy: Analysis and Implementation
3-0-3.
Prerequisite(s): CP 6832
Urban design policy making and its implementation including an analysis of the behavioral basis for policies that promote quality in built form.

CP 7000. Master's Thesis
Credit hours to be arranged.
Provides students with an opportunity to pursue advanced research under the guidance of a faculty committee.

CP 8000. Doctoral Planning Seminar
1-0-1.
This course provides students and faculty an opportunity to present and discuss planning research.

CP 8800. Special Topics in City Planning
3-0-3.
Special topics of current interest in city planning.

CP 8801. Special Topics in Land Use Planning
3-0-3.
Special topics of current interest in land use planning.

CP 8802. Special Topics in Environmental Planning
3-0-3.
Special topics of current interest in environmental planning.

CP 8803. Special Topics in Transportation Planning
3-0-3.
Special topics of current interest in transportation planning.

CP 8804. Special Topics in Economic Development
3-0-3.
Special topics of current interest in economic development.

CP 8805. Special Topics in Planning Methods
3-0-3.
Special topics of current interest in planning methods.

CP 8806. Special Topics in Land Development
3-0-3.
Special topics of current interest in land development.

CP 8808. Special Topics in Urban Design
3-0-3.
Special topics of current interest in urban design.
CP 8900, -01, -02. Special Problems
Credit hours to be arranged.
Special problems of current interest.

CP 8990. Applied Research Paper
Credit hours to be arranged.
The applied research paper requires students to demonstrate their ability to organize and execute professional-level work in consultation with a faculty member.

CP 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

CP 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

CP 9000. Doctoral Dissertation
Credit hours to be arranged.
For City Planning Ph.D. candidates writing their dissertations.

INDUSTRIAL DESIGN

ID 2011. Introductory Design I
0-12-4.
Prerequisite(s): COA 1012
Foundation course in visual communications theory and practice, continuing the development of two-dimensional visual literacy. Emphasis on both analog and digital media.

ID 2012. Introductory Design II
0-12-4.
Prerequisite(s): ID 2011
Foundation course in form giving and representing, continuing the development of three-dimensional visual literacy. Emphasis on visual relationships between form and image.

ID 2201. Sustainable Issues for Design
3-0-3.
Introduction to the broad environmental issues that face humankind as a participant in the biosphere.

ID 2202. History of Modern Industrial Design
3-0-3.
History and development of industrial design from the beginning of the Industrial Revolution to the present.

ID 3011. Intermediate Design I
2-9-5.
The systematic design process as applied to industrial design and packaging problems.

ID 3012. Intermediate Design II
2-9-5.
Prerequisite(s): ID 3011
Various dimensions of human factors applied to design, including aging, disability, normal age change, childhood and adult anthropometrics, and human capability.

ID 3103. Industrial Design Computing I
1-6-3.
Introduction to 2-D computer drawing systems.

ID 3104. Industrial Design Computing II
1-6-3.
Prerequisite(s): ID 3103
Introduction to 3-D modeling systems.

ID 3301. Materials I: Renewables
2-3-3.
This course examines the characteristics, production technologies, histories, and environmental impacts of nine categories of renewable materials familiar to industrial design.

ID 3302. Materials and Processes II: Non-Renewables
2-3-3.
Prerequisite(s): ID 3301
Examination of characteristics, production technologies, histories, and environmental impacts of non-renewable materials used in industrial design.

ID 3801, -2. Special Topics
3-0-3, each.

ID 3901, -2. Special Problems
Credit hours to be arranged.

ID 4011. Advanced Design I
1-12-5.
Prerequisite(s): ID 3012 and ID 3302
Application of the design process to advanced multidisciplinary design problems. Experience in solving real design problems from areas such as consumer products and equipment, transportation and equipment.

ID 4012. Advanced Design II
1-12-5.
Prerequisite(s): ID 4011
Capstone industrial design project of student’s own choosing with consent of instructor, to refine problem-solving and design ability in preparation for professional practice.

ID 4103. Alias Studio I
0-9-3.
Introduction to modeling, rendering, and animation with Alias Studio software.

ID 4104. Alias Studio II
0-9-3.
Prerequisite(s): ID 4103
Introduction to product animation using Alias Studio software.

ID 4201. Design/Research Methods
3-0-3.
Research methods applicable to industrial design including task definition, information gathering, and analysis.

ID 4202. Professional Practice and Preparation
3-0-3.
Principles of consulting and corporate industrial design including preparation of the professional portfolio.

ID 4203. French Society and Culture
3-0-3.
Studies in French society and culture.
ID 4204. Theorizing Design
3-0-3.
Introduction to what designers do and how they undertake their tasks; examples will come from a variety of design disciplines.

ID 4205. French Design and Culture
3-0-3.
Studies in French design and culture.

ID 4801. Special Topics: Sustainability
3-0-3.
Special topics in sustainability not included in the professional curriculum.

ID 4802. Special Topics: Information Technology
3-0-3.
Special topics in information technology not covered in the professional curriculum.

ID 4803. Special Topics: Furniture
3-0-3.
Special topics in furniture design not covered in the professional curriculum.

ID 4804. Special Topics: Collaborative
3-0-3.
Application of the design process to advanced multidisciplinary problems by a team. Projects from a range of interest areas: consumer, industrial products, transportation, and furniture.

ID 4805. Special Topics: History and Theory
3-0-3.
Special topics in history and theory not covered in the professional curriculum.

ID 4900. Special Problems: Visual Communications
Credit hours to be arranged.
Special problems in communications not covered in the professional curriculum.

ID 4901. Special Problems: Mentor Program
Credit hours to be arranged.
Special problems in teaching pedagogy; mentoring by senior faculty in basic and intermediate design courses.

ID 4903. Special Problems: Research
Credit hours to be arranged.
Special research topics for advanced students not covered in the professional curriculum.

Department of Music

www.arch.gatech.edu/music

Location: Couch Building
Telephone: 404.894.3193
Fax: 404.894.9952
E-mail: christine.marks@music.gatech.edu

Department Chair and Director of Bands—Bucky Johnson; Associate Director of Bands and Director of Symphonic Bands—Andrea Strauss; Director of Jazz Ensemble and Director of Orchestra—Ron Mendola; Director of Choral Activities—William Caldwell; Assistant Band Director and Percussion Coordinator—Chris Moore.

General Information

Among the oldest traditions of the Institute, the Music Department provides a creative cultural outlet for Tech's many musically minded students. Whether a student's interest is casual or intense, the music faculty is dedicated to providing a quality experience in the theory, history, and practice of music. Students may elect to participate in various classroom courses, and in vocal or instrumental ensembles, enjoying a sense of community, pride, and accomplishment. Institute research also reveals that student retention is 4.5 times greater for students involved in music.

Music activities at Georgia Tech are centered around its major performing groups: Band, Chamber Choir, Chorale, Jazz Ensemble, Symphonic Band, and Orchestra. The Music Department is cognizant of the desires of students who wish to enrich their lives through music, and excellence in the program is clearly demonstrated in the level of student performance and the vitality and rapid growth of the program. Students involved in the program represent every major of the Institute on both undergraduate and graduate levels.

Students earn free elective or humanities credit for all ensembles and classroom courses. Upon completion of 13 credit hours of course work...
within a prescribed curriculum, a Certificate in Music may be awarded. A Minor in Music is also offered, requiring 19 credit hours, with at least 6 credit hours at the upper-division level (3000-4000). The minor can be completed in any one of the following areas: woodwinds, brass, strings, percussion, vocal, and jazz. Specific offerings may be checked each semester in the Online Student Computer-Assisted Registration booklet. The Department plans events with an awareness of the demands placed upon Tech students so that a great amount of musical experience is concentrated into a limited time. All ensemble classes schedule meetings and rehearsal times during the late afternoon and early evening hours. The Department enjoys a tradition of commitment to campus and community service that contributes greatly to the quality of life at Georgia Tech.

Humanities Credit for Ensemble Participation

Students are permitted to earn four hours of humanities credit for participating in ensembles in the Music Department, provided the selection and concentration criteria are satisfied. Specifically, the selection must satisfy Criterion 1, and the concentration must satisfy either Criterion 2 or Criterion 3.

Criterion 1. The ensemble is chosen from the following list: Percussion Ensemble, Chamber Orchestra, Chorale, Concert Band, Jazz Ensemble, Symphonic Band, Vocal Ensemble, and Men's Glee Club.

Criterion 2. The student earns at least four credits in one of the ensembles chosen from the list in Criterion 1.

Criterion 3. The student earns at least four credits in a combination of Symphonic Band and Concert Band.

Music Minor Requirement

A Music Minor can be earned by Georgia Tech students upon completion of 19 hours of study (12 hours must be at the 3000 level or higher) in music as approved by the Music Department. Students following the guidelines of the Minor Program will be exposed to musical study at considerable depth in areas that include theory, history, and an introduction to the study of music technology. An additional requirement component of the Minor Program involves sustained performance in one of Georgia Tech's instrumental or vocal ensembles chosen from the list below. All courses must be taken on a letter-grade basis with a grade of C or better, and must be completed with an overall GPA of 2.0. All other requirements outlined in the Georgia Tech Policy for Undergraduate Minors must be met.

Required Courses:

- 2 hours of Composers and Their Music 1500-1800
- 2 hours of Composers and Their Music 1800-Present
- 2 hours of Music Theory I
- 2 hours of Music Theory II
- 3 hours of Survey of Music Technology
- 2 hours of Introduction to Computer Music
- 3 hours of Applied Individual Instrumentation

Approved Ensembles Courses:

Three semester hours of participation in one vocal or instrumental ensemble at the 3000 level or above, chosen from the following list:
- Concert Band/Symphonic Band/Jazz Ensemble/Orchestra/Chorale/Vocal Ensemble/Men's Glee Club/Percussion Ensemble

Certificate in Fine Arts - Music

A Certificate in Fine Arts - Music can be earned by Georgia Tech students upon completion of 13 hours of course work in music as approved by the Music Department chair. Students following certificate guidelines will be exposed to an introduction to fine arts, including the development of personal aesthetic and critical skills, and will go on to more in-depth study in music analysis and history. A core component of this program involves sustained performance in one of Georgia Tech's instrumental or vocal ensembles. At least nine hours must be at the 3000 level or higher. All other Undergraduate Certificate Academic Requirements as they appear in the Undergraduate Certificate Program Guidelines must be met. Courses must be taken on a letter-grade basis, and a grade of C or better must be received in order to obtain course credit toward the Certificate. This Certificate Program is designed mainly for students with an interest in gaining an in-depth knowledge of music within the context of a technical undergraduate education.
Required and elective courses are as follows:

Required courses (11 credit hours):
- 3 hours of Survey of Music Technology (MUSI 3450)
- 2 hours of Composers and Their Music
- 2 hours of Music Theory (MUSI 2600, 3600)
- 4 hours core from one of the following areas:
 - Band (Concert Band - MUSI 1102-3, 2102-3, 3102-3, 4102-3 and/or Symphonic Band (1112-4, 2112-4, 3112-4, 4112-4)
 - Chamber Ensemble (MUSI 1401-3, 2401-3, 3401-3, 4401-3)
 - Chorale (MUSI 1201-3, 2201-3, 3201-3, 4201-3)
 - Jazz (MUSI 1301-3, 2301-3, 3301-3, 4301-3)
 - Orchestra (MUSI 1601-3, 2601-3, 3601-3, 4601-3)
 - Vocal Ensemble (MUSI 1211-3, 2211-3, 3211-3, 4211-3)

Elective courses (2 credit hours):
Two hours of elective music courses with MUSI prefix.

Athletic Bands
The Marching Yellow Jackets and Pep Bands are elements of the Georgia Tech Band Program. Since its inception in 1908, it has fulfilled two primary goals: to represent the Institute and to provide a musical outlet for Tech students. The Marching Band and Pep Band travel to several out-of-state events, including the ACC Tournament, NCAA Tournament, football games, and bowl appearances. These trips are financed by the Georgia Tech Athletic Association. The Georgia Tech Marching Band is one of the most well known musical organizations at Georgia Tech. The band performs at football games and makes special appearances during the year. Tryouts for the auxiliary units are held each spring and include flagline and majorettes. There is a band camp preparation the week before fall classes begin.

The *Georgia Tech Marching Band Handbook* provides detailed information about the organization. Contact the Music Department for further information.

Concert Band
The Concert Band is available during second semester and is sometimes offered during the summer term. It is open to experienced wind and percussion players. This is a performing ensemble that covers both traditional and contemporary music at a grade IV and V level. Students can earn humanities credit by participating in a series of Concert Band and/or Symphonic Band courses.

Symphonic Band
An auditioned instrumental ensemble for the more serious student has established a reputation of musical excellence through the performance of grade V, VI band literature. Individual performance time, sectionals, and a high level of musical standards in rehearsals are expected. Repertoire has consisted of the compositions of Grainger, Persichetti, Copland, Bernstein, Hindemith, Giannini, and Holst. Guest clinicians and conductors are frequently invited to enhance performance preparation. Auditions are scheduled by contacting the director before the first day of class.

Orchestra
The Georgia Tech Orchestra is a relatively young ensemble, founded to serve the expressed interests of string students, and quickly growing to symphonic orchestration including brass, woodwinds, and percussion. The group performs a balance of classical, romantic, contemporary, and popular literature. Orchestra concerts have become a campus tradition each year in the College of Architecture lobby, as a major part of Parent's Weekend, in the holiday concert, and in many other community appearances. Auditions are scheduled by contacting the director before the first day of class.

Jazz Ensemble
The Jazz Ensemble's repertoire ranges from the concert jazz compositions of Leonard Bernstein, Duke Ellington, and Stan Kenton to the contemporary works of Bob Mintzer and Pat Metheny, and to works commissioned for the band. The group performs at area jazz festivals and has appeared in hundreds of concerts on campus and in the community. Members sharpen their improvisational skills and strive to grow as instrumentalists in various jazz styles. Students rightfully take pride in
the group's accomplished level of performance. Professional clinicians, guest artists, and conductors bring additional musical perspective.

Auditions are scheduled by contacting the director before the first day of class.

Chamber Ensembles
Small ensembles for experienced instrumentals are organized prior to the first day of classes and must be pre-approved by a faculty member in the Music Department. These ensembles may include; string quartet, brass quintet, woodwind quintet, clarinet quartet, trumpet quartet, saxophone quartet, flute choir, etc. Students receiving class credit for these chamber groups must rehearse two to four hours a week and must be coached by a faculty member. Performances vary depending on the semester and may include appearances at school-related functions.

Percussion Ensemble
The Percussion Ensemble focuses on traditional and contemporary ensemble literature as well as transcriptions of popular music. This ensemble is offered to students with prior percussion background. In the fall it serves as the marching percussion section of the Marching Yellow Jacket Band.

The Chorale
With approximately 110 singers, the Chorale is Georgia Tech's largest vocal music organization. Students from nearly every school in the Institute are found among its membership. The Chorale specializes in music written for large groups and performs regularly on campus. The Chorale travels extensively during its biennial spring tour.

The Vocal Ensemble
This ensemble of 20-24 singers is selected through audition each spring and performs as the Georgia Tech Chamber Choir in campus and community concerts. The choir rehearses and performs quality choral music literature written especially for smaller choirs.

The Men's Glee Club
The Men's Glee Club was organized on the Tech campus in 1906 and is the oldest student organization on campus. The Glee Club rehearses and performs traditional men's chorus music as well as newer compositions.

Music Technology
"Introduction to Synthesized Computer Music" explores the basic theories of music sequencing and engraving utilizing the computer and integrated synthesizers. "Survey of Music Technology" is a detailed survey of historic and contemporary electronic music systems, providing an overview of the technological, cultural, and aesthetic factors that have shaped developments in the creation and production of modern electronic music.

"Integrating Music into Multimedia" provides students insight and basic proficiency in current techniques that utilize music and digital audio technologies as part of multimedia productions. Also covered are issues in software/hardware integration, data acquisition from various media, and intellectual property considerations. Other Special Topics classes such as "Music Recording and Mixing," "Multimedia Production and Post-production," and "Music and Sound Design" explore the intersection of music technology and digital media.

Electronic Percussion Ensemble
This ensemble performs a variety of student designed and arranged music. All pieces are performed on student designed and built instruments, as well as the latest in commercial controllers and interfaces. The use of multimedia is also encouraged in each arrangement.

Additional Information
Other courses currently taught in the Music Department include "Composers and Their Music" and "Music Theory." Further information is available from the Music Department at 404.894.3193, or visit http://murmur.arch.gatech.edu/music.

Music Department Humanities
Credit Information
CORE AREA C:
MUSIC: 2600, 3450, 3500, 3600, 3610, 3620, 4450
Students are permitted to earn four (4) hours of humanities credit for participation in ensembles.
Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

MUSIC

MUSI 1008, 2008, 3008, 4008. Marching Band
0-6-2.
The Georgia Tech Marching Yellow Jackets perform at all home and some away football games. Students are expected to attend a pre-season camp. All conflicts must be approved by director.

MUSI 1009, 2009, 3009, 4009. Pep Band
0-3-1.
Performance ensemble for men’s and women’s basketball games.

MUSI 1102, -3; 2102, -3; 3102, -3; 4102, -3. Concert Band
0-3-1, each.
An instrumental ensemble that performs traditional and contemporary winds literature and is offered to all students with wind, brass, or percussion experience.

MUSI 1112, -13, -14; 2112, -13, -14; 3112, -13, -14; 4112, -13, -14. Symphonic Band
0-3-1, each.
An auditioned instrumental ensemble for the more serious student interested in band performance; focusing on musical excellence of grade V, VI band literature. Contact director for audition requirements. Audition prior to the first day of class.

MUSI 1201, -2, -3; 2201, -2, -3; 3201, -2, -3; 4201, -2, -3. Chorale-Mixed Singing Group
0-3-1, each.
A large ensemble focused on rehearsal and performance of high-quality music of all genres. Choral music experience recommended.

MUSI 1211, -12, -13; 2211, -12, -13; 3211, -12, -13; 4211, -12, -13. Vocal Ensemble
0-3-1, each.
An auditioned vocal ensemble for the more serious student of vocal music; focused on rehearsal and performance of high-quality music of all genres. Audition and/or consent of instructor.

MUSI 1221, -22, -23; 2221, -22, -23; 3221, -22, -23; 4221, -22, -23. Men’s Glee Club
0-3-1, each.
An all-male choral ensemble focused on rehearsal and performance of male chorus literature.

MUSI 1301, -2, -3; 2301, -2, -3; 3301, -2, -3; 4301, -2, -3. Jazz Ensemble
0-3-1, each.
A traditional 20-member big band and small ensemble specializing in improvisation. Members learn various jazz styles, performance practices, and history.

MUSI 1401, -2, -3; 2401, -2, -3; 3401, -2, -3; 4401, -2, -3. Chamber Ensemble
0-3-1, each.
Small instrumental ensembles of various types selected by the director to perform literature for the specific ensemble.

MUSI 1501, -2, -3; 2501, -2, -3; 3501, -2, -3; 4501, -2, -3. Percussion Ensemble
0-3-1, each.
Percussion ensemble focuses on traditional and contemporary ensemble literature as well as transcriptions of popular music.

MUSI 1601, -2, -3; 2601, -2, -3; 3601, -2, -3; 4601, -2, -3. University Orchestra
0-3-1, each.
The Georgia Tech Orchestra maintains a full complement of woodwinds, brass, percussion, and strings, and performs classical through contemporary literature. Contact director prior to the first day of class to arrange an audition.

MUSI 2521, -22; 3521, -22; 4521, -22. Electronic Percussion Studio/Ensemble
2-3-3, each.
Applied design construction and programming for performance.

MUSI 2600. Music Theory I
2-0-2.
Fundamentals of music language to include basic notation, scales, key, signatures, and triads. Ability to read music required.

MUSI 3450. Survey of Music Technology
2-3-3.
A detailed survey of historic and contemporary electronic music systems and their applications in the creation, production, and reproduction of music.

MUSI 3500. Introduction of Synthesized Computer Music
1-3-2.
Introduction of synthesized computer music familiarizes the student with basic sequencing and music engraving using fundamentals of music theory and composition.

MUSI 3600. Music Theory II
2-0-2.
Prerequisite(s): MUSI 2600
Advanced music theory including Roman numeral analysis, voice leading in four-part harmony, seventh chords, melodic organization, and modulation.

MUSI 3610. Composers and Their Music: 1500-1800
2-0-2.
The history of western music from the Renaissance to the period of classicism.

MUSI 3620. Composers and Their Music: 1800 to Present
2-0-2.
The history of western music from the period of classicism to present day.
MUSI 3710, -20, -30. Individual Applied Instruction
1-0-1.
Private instruction for vocal, wind, and percussion students admitted to the Minor of Music program.

MUSI 3801, -2, -3. Special Topics
0-3-1, each.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4450. Integrating Music into Multimedia
2-3-3.
Techniques for effectively utilizing music and audio in the context of digital multimedia.

MUSI 4630. Music Recording and Mixing
2-3-3.
Overview of concepts, techniques, hardware and software used in audio production, as well as aesthetic concerns and considerations.

MUSI 4650. Music and Sound Design
2-3-3.
An investigation of principles and practice of audio and music design, in both contemporary digital and traditional analog systems.

MUSI 4670. Music Interface Design
2-3-3.
Theory and practice of designing and prototyping new forms of music interfaces, including percussion, haptic and augmented traditional constructs.

MUSI 4801. Special Topics
0-3-1.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4802. Special Topics
1-3-2.
Special ad hoc courses or projects not included in regular course offerings.

MUSI 4803. Special Topics
2-3-3.
Special ad hoc courses or projects not included in regular course offerings.
Established in 1963 Location: 801 Atlantic Drive Telephone: 404.894.3152 Fax: 404.385.1253 E-mail: inforequests@cc.gatech.edu

John P. Imlay Dean and Professor—Peter A. Freeman; Associate Dean and Professor—James D. Foley; Associate Dean—Kurt Eiselt; Assistant Dean for Continuing Education—Tom Pilsch; Assistant Dean for Space and Planning and Associate Professor—Ellen Witte Zegura; Fredrick G. Storey Chair in Computing and Professor—Richard J. Lipton; John P. Imlay Jr Chair in Software and Professor—Calton Pu.

Professors—Mustaque Ahamad, Mostafa H. Ammar, Ronald C. Arkin, Albert N. Badre, Jay D. Bolter (adjunct), Mark Borodovsky (adjunct), Lucio Chiaraviglio (emeritus), Charles M. Eastman (joint), Philip H. Enslow Jr. (emeritus), Richard M. Fujimoto, Robert E. Fulton (adjunct), Seymour Goodman (joint), Alton P. Jensen (emeritus), Janet L. Kolodner, Ray Miller (emeritus), Shamkant B. Navathe, Nancy Nersessian (joint), Umakishore Ramachandran, Jarek R. Rossignac, Karsten Schwan, Vladimir Sramecka (emeritus), Craig A. Tovey (joint), Vijay Vazirani, Sudhakar Yalamanchili (adjunct), Pranas Zunde (emeritus).

Assistant Professors—Snagata Basu (joint), Amy Bruckman, Andre L.M. dos Santos, Irfan A. Essa (Imlay Fellow), John J. Goda Jr., Sven Koenig, Blair MacIntyre, Ken Mackenzie, Vincent Mooney (adjunct), Melody Moore (adjunct), Elizabeth Mynatt, Dana Randall (joint), Yannis Smaragdakis, Thad Starner, Andrzej Szymczak, Greg Turk, Jun Xu.

Academic Professional—Allison Elliott Tew.
Principal Research Scientists—W. Michael McCracken, William Ribarsky.
Senior Research Scientist—J. Spencer Rugaber.

General Information
The founding of the College in 1990 as a focal point for the interdisciplinary advancement of computing caps a history that began in 1963 with the establishment of the School of Information Science. In 1972, this school was succeeded by the School of Information and Computer Science, the immediate predecessor of the current College of Computing. The College is organized around a strong core of computer science that provides the basis for interdisciplinary activities. This approach allows the computing program to build effectively on the strengths of Georgia Tech, accomplished through synergistic linkages to researchers and educators across campus as well as off campus.

Computer science is an important part of the basis for many activities and is a natural and powerful partner with a variety of other disciplines.

The College offers instructional and research programs in many areas including algorithms and data structures, intelligent systems and robotics, computer architecture, cognitive science, databases, distributed and parallel systems, educational technology, graphics and visualization, human-computer interaction, information systems, networking and telecommunications, operating systems, parallel architectures, programming languages, software engineering, and the theories of automata and computation.
The College conducts an increasing number of interdisciplinary research and instructional programs jointly with other campus units and operates four centers of interdisciplinary research for the campus: the Graphics, Visualization, and Usability (GVU) Center; the EduTech Institute; the Broadband Institute (BI); and the Georgia Tech Information Security Center (GTISC). The College's operations are housed in parts of five separate buildings on campus, including the College of Computing Building.

The College awards bachelor's, master's, and doctoral degrees in computer science. The College offers an undergraduate Certificate in Information Systems jointly with the DuPree College of Management and an undergraduate minor and undergraduate and graduate certificates in Cognitive Science jointly with the Schools of Psychology and Industrial and Systems Engineering. The College also offers the M.S. degree in Human-Computer Interaction in collaboration with the School of Literature, Communication, and Culture and the School of Psychology. The College is a sponsor of a multidisciplinary program in Algorithms, Combinatorics, and Optimization (ACO), an approved doctoral degree program at Georgia Tech, and master's and doctoral degrees in bioengineering can be pursued through the College as one of the units participating in the Institute-wide interdisciplinary Bioengineering Program.

Computing Facilities

The College maintains a variety of computer systems in support of academic and research activities. These include more than 50 Sun, Silicon Graphics, and Intel systems used as file and computer servers, many of which are quad-processor machines. In addition, there are more than 800 workstation class machines from Sun, Silicon Graphics, Intel, and Apple. A number of specialized facilities augment these general-purpose computing capabilities.

The Graphics, Visualization, and Usability (GVU) Center houses a variety of graphics and multimedia equipment, including high-performance systems from Silicon Graphics, Sun, Intel, and Apple. Augmenting the main GVU Lab, numerous affiliated labs provide facilities for specific research areas. These include the Multimedia, Computer Animation, Audio/Video Production, Usability/Human-Computer Interface, Virtual Reality/Environments, Electronic Learning Communities, Computational Perception, Software Visualization, Biomedical Imaging, Collaborative Software, and Future Computing Environments labs. A partial list of shared computing and graphics equipment includes:

- a Silicon Graphics Onyx2 quad-processor system with InfiniteReality2 graphics
- a Silicon Graphics Onyx dual-processor system with InfiniteReality graphics
- a Silicon Graphics Octane with MaxImpact MXE graphics
- 4 Silicon Graphics Origin200 computer and file servers
- 10 Silicon Graphics Indigo2 systems, 4 with MaxImpact graphics, 6 with Extreme graphics
- 13 Silicon Graphics O2 systems (6 R10000, 7 R5000) with 32-bit graphics
- 15 Sun SPARC and UltraSPARC workstations
- 12 Intel Pentium systems with 24-bit 3D accelerated graphics, 8 of which are dual- or quad-processors
- 3 Xerox/LiveWorks LiveBoards and 3 Smart Technologies SmartBoards
- Polhemus, Ascension, and Intersense tracking systems
- Virtual Technologies CyberGloves
- Virtual Research Flight Helmet and EYEGEN3 head-mounted displays
- FakeSpace Virtual Workbench

The Scientific Visualization Laboratory, providing additional equipment from Silicon Graphics, is jointly operated by the GVU Center and the Institute's Office of Information Technology (OIT). The High-Performance and Parallel Computation Experimentation Laboratory (HPPCEL), a joint operation between OIT (HPC Group), the College (Systems Lab), and the related Interactive High-Performance Computing (IHPC) Lab, serves as a focus for interdisciplinary research involving high-performance computer systems. These facilities are linked by a dedicated high-performance backbone utilizing OC12C ATM (622 Mbps) and Gigabit Ethernet (1000 Mbps), and include:

- a Silicon Graphics Origin 3400 (NUMAflex) system with 16 R12000 (MIPS superscalar RISC) processors, a Silicon Graphics Origin 2400 system with 8 R12000 processors, and a Silicon Graphics Origin 2000 system with 32 R10000 processors, operated by OIT
Computing

- a Silicon Graphics Origin 2000 system with 16 R10000 superscalar RISC processors, and InfiniteReality3 graphics
- a cluster of 16 eight-processor Pentium III Xeon systems utilizing a GigabitEthernet interconnect
- a cluster of 16 Pentium quad-processors utilizing Myrinet and full-duplex FastEthernet interconnects
- a cluster of 48 Pentium dual-processors utilizing a full-duplex FastEthernet interconnect
- a cluster of 16 Sun UltraSPARC processors and 5 UltraSPARC dual-processors utilizing Myrinet (16 systems), Dolphin (4 systems), and FastEthernet (all systems)
- a 16-node IBM RS/6000 SP and an eight-processor IBM RS/6000 Model R50, operated by OIT
- an SGI Origin 200 quad-processor video server
- a laboratory of Sun, SGI, and Intel workstations

The Networking and Telecommunications Group (NTG) is located in the Georgia Center for Advanced Telecommunications Technology (GCATT) Building. The group's labs are equipped with leading-edge computing, communications, and test equipment. These include the Hybrid Fiber/Coax (HFC), Asynchronous Transfer Mode (ATM), Home Information Infrastructure (HII), Protocols, Wireless Technologies, and Video Sources Labs. The Network Instruction Lab provides students access to equipment from many of the industry leaders in data communications and telephony.

Other specialized laboratories support instruction and research in databases, intelligent systems, robotics, educational technology, information security, and software engineering.

All of the College's facilities are linked via local area networks that can provide a choice of communications capabilities from 10 to 1,000 Mbps in most locations, including offices, labs, and classrooms. The College's network employs a high-performance OC12C (622 Mbps) ATM and GigabitEthernet (1,000 Mbps) backbone, with connectivity to the campus ATM network provided by an OC12C link and a redundant OC3C (155 Mbps) link for fail-over. The primary campus Internet connection is provided by a direct 100 Mbps link to the service provider's Atlanta switching center, augmented by OC3C ATM and OC12C connections, respectively, to the NSF vBNS (very high-performance Backbone Network Service) and Abilene research networks. Georgia Tech is also leading southern regional gigabit network efforts (SoX.net, the Southern Crossroads) as part of Internet2.

Additional computing facilities are provided to the Georgia Tech campus by the Institute's Office of Information Technology (OIT), including five public-access clusters of Sun, Apple, and Dell workstations; a collection of Sun multi-processors that are treated as a single computational resource via login load sharing; and various mainframes.

Undergraduate Program
The undergraduate program in computer science is designed to avoid the fragmentation of subject matter that is apparent in traditional computer science curricula. Rather than divide the aspects of computing expertise into isolated courses (which often obscures the connection between them), the new curriculum integrates the coverage of key aspects of computing. Each course in the first and second years is designed explicitly to teach methods and standards for the analysis, design, implementation, experimentation, and evaluation aspects of solving computational problems. All too often, many of these aspects are overlooked in computer science education.

This program also guarantees that students experience computing as a field of both great challenge and broad applicability. The curriculum includes students from across the spectrum of science, engineering, and other disciplines, ensuring that computing students work in teams with students from other disciplines.

At the freshman level, the first course focuses on the concepts, ideas, methods, and results fundamental to the emerging science of computing. It emphasizes the development of theoretical and empirical skills in the design and analysis of algorithms and data structures, as well as essential programming skills. The second course continues the study of algorithms and data structures, stressing algorithm implementation in an object-oriented programming language.

Sophomore-level courses are designed to give students the opportunity to work in areas that are usually reserved for upper-division students, such as systems programming, networking and telecommunications, and human-computer interaction. The sophomore-level courses serve as
"gateways" to more advanced courses in order to establish an early foundation, both in knowledge and in applied experience. In addition, while many traditional programs emphasize experience with a particular programming language and environment, sophomore-level courses provide hands-on training in multiple programming paradigms and languages. This approach ensures that students will be able to adapt easily to the new languages, environments, and paradigms that they are certain to encounter.

In the junior and senior years, undergraduates develop breadth in computational theory and the social impacts of computing. Students also pursuit specialization in three areas of computer science, choosing from areas such as computer systems, data management systems, educational technology, graphics and visualization, intelligent systems, networking and telecommunications, software engineering, theory of computation, and usability. Junior-level students also undertake a capstone design project that allows them to integrate what they have learned in order to solve real-world problems in computing.

Computer science majors take 20 semester hours of free electives, which provide the students with the flexibility to explore areas of study outside computer science or to build more depth within computer science. These free electives offer every CS major the opportunity to create an individualized interdisciplinary program of study.

In addition to the standard four-year plan, a five-year cooperative plan is offered for students who wish to combine their academic education with industry experience. The undergraduate program requires a total of 125 credit hours for graduation, plus a two-hour wellness course. With the exception of free electives, all bachelor of science degree course work must be taken on a letter-grade basis. Up to six hours of free electives may be taken on a pass/fail basis. See page 28 for additional pass/fail restrictions.

The College of Computing requires that all undergraduates who enter the computer science program earn a grade of C or better in all required CS courses, including CS specialization courses and the CS free elective course. A student whose final grade in a required CS course is a D or F must retake that course in the next semester it is offered and must earn a C or better for that course to be used as credit toward graduation.

Bachelor of Science in Computer Science (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
</table>
| ENGL 1101
ENGLISH COMPOSITION I | 3 |
| MATH 1501
CALCULUS I | 4 |
| CS 1321
INTRO. TO COMPUTING | 3 |
| LAB SCIENCE
(EAS, CHEM, OR BIOL) | 4 |
| HIST 2111 or 2112 or POL 1101 or
PUBP 3000 or INTA 1200 | 3 |
| TOTAL SEMESTER HOURS | 17 |

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
</table>
| ENGL 1102
ENGLISH COMPOSITION II | 3 |
| MATH 1502
CALCULUS II | 4 |
| HPS 1040/1062/1063/1064 WELLNESS | 2 |
| CS 1050
CONSTRUCTING PROOFS | 3 |
| CS 1322
OBJECT ORIENTED PROGRAMMING | 3 |
| TOTAL SEMESTER HOURS | 15 |

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
</tbody>
</table>
| MATH 2601
CALCULUS III FOR CS | 3 |
| CS 2130
LANGUAGES & TRANSLATION | 4 |
| SOCIAL SCIENCE ELECTIVE | 3 |
| ECE 2030
INTRO. TO COMPUTER ENGR. | 3 |
| TOTAL SEMESTER HOURS | 16 |

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
</tbody>
</table>
| MATH 3012
APPLIED COMBINATORICS | 3 |
| CS 2200
COMPUTER SYS. & NETWORKS | 4 |
| CS 2335
SOFTWARE PRACTICUM | 3 |
| CS 2340
OBJECTS & DESIGN | 3 |
| TOTAL SEMESTER HOURS | 16 |

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
</table>
| PHYS 2211
PHYSICS I | 4 |
| CS 3500
THEORY I | 4 |
| CS SPECIALIZATION | 3 |
| SOCIAL SCIENCE ELECTIVE | 3 |
| FREE ELECTIVE | 3 |
| TOTAL SEMESTER HOURS | 17 |
Computing

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>CS PROJECT</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3215 PROBABILITY/STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>CS 4000 COMPUTERIZATION IN SOC.</td>
<td>2</td>
</tr>
<tr>
<td>LCC 3401 TECHNICAL COMMUNICATION PRACTICES</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS SPECIALIZATION</td>
<td>6</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS SPECIALIZATION</td>
<td>3</td>
</tr>
<tr>
<td>CS ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 125 SEMESTER HOURS

PLUS WELLNESS (2 HRS)

Electives

Wellness Elective

The two-hour Wellness requirement may be fulfilled by HPS 1040, 1062, 1063, or 1064.

Humanities/Social Sciences Electives

ENGL 1101 and 1102 apply toward satisfaction of the 12-hour humanities requirement. An additional 6 hours of Institute-approved humanities courses are required to fulfill the 12-hour humanities requirement. To satisfy the state requirements regarding course work in the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200. One of these courses, combined with an additional 9 hours of Institute-approved social science courses, satisfy the 12-hour social sciences requirement.

Laboratory Science Electives

The laboratory science requirement may be fulfilled by CHEM 1310, BIOL 1510, BIOL 1520, EAS 1600, or EAS 1601.

Technical Electives and CS Areas of Specialization

Students are required to complete 12 hours of upper-division computer science technical electives, which include three areas of specialization.

Computer Systems

- CS 3210 (2-3-3) Design of Operating Systems
- CS 3220 (2-3-3) Computer Structures: Hardware/Software Codesign of a Processor
- CS 4210 (3-0-3) Advanced Operating Systems
- CS 4220 (2-3-3) Programming Embedded Systems
- CS 4230 (2-3-3) Distributed Simulation Systems
- CS 4240 (3-0-3) Compilers, Interpreters, and Program Analyzers
- CS 4290 (3-0-3) Advanced Computer Organization

Data Management Systems

- CS 4400 (3-0-3) Introduction to Database Systems
- CS 4420 (3-0-3) Database System Implementation
- CS 4432 (2-3-3) Information Systems Design
- CS 4440 (3-0-3) Emerging Database Technologies and Applications

Educational Technology

- CS 4660 (3-0-3) Introduction to Educational Technology
- CS 4665 (3-0-3) Educational Technology: Design and Evaluation
- CS 4670 (3-0-3) Computer Supported Collaborative Learning
Graphics and Visualization
CS 4451 (3-0-3) Computer Graphics
CS 4455 (3-0-3) Video Game Design and Programming
CS 4480 (3-0-3) Digital Video Special Effects
CS 4495 (3-0-3) Computer Vision
CS 4496 (3-0-3) Computer Animation

Intelligent Systems
CS 4495 (3-0-3) Computer Vision
CS 4600 (3-0-3) Introduction to Intelligent Systems
CS 4610 (3-0-3) Knowledge Systems
CS 4630 (3-0-3) Intelligent Robotics and Computer Vision
CS 4640 (3-0-3) Machine Learning
CS 4650 (3-0-3) Natural Language Understanding
CS 4752 (3-0-3) Philosophical Issues in Computation

Networking and Telecommunications
CS 3251 (3-0-3) Computer Networking I
CS 4251 (3-0-3) Computer Networking II
CS 4255 (1-6-3) Networking and Telecommunications Project Lab
CS 4260 (3-0-3) Telecommunications Systems
CS 4270 (1-6-3) Data Communications Laboratory

Software Engineering
CS 3300 (2-3-3) Introduction to Software Engineering
CS 4320 (3-0-3) Introduction to Software Processes
CS 4330 (2-3-3) Software Engineering Applications

Theory
CS 4500 (3-0-3) Theory II
CS 6510 (3-0-3) Automata Theory
CS 6520 (3-0-3) Computational Complexity Theory
CS 6550 (3-0-3) Design and Analysis of Algorithms
CS 7510 (3-0-3) Graph Algorithms
CS 7520 (3-0-3) Approximation Algorithms
CS 7530 (3-0-3) Randomized Algorithms

Usability
CS 4470 (3-0-3) Introduction to User Interface Software
CS 4750 (3-0-3) Human-Computer Interface Design and Evaluation

CS Free Elective
A student may satisfy the three-hour computer science free elective requirement with one or more computer science courses that are not used to fulfill any other specific requirement. Credit hours in excess of three may be used as free elective hours.

Free Electives
Twenty hours of free elective courses may be taken at any time during the course of study. Four hours of basic ROTC may be used as free elective credit toward the bachelor's degree. If basic ROTC is selected to satisfy these credit hours, it must be scheduled beginning the first semester of the freshman year. No 1000- or 2000-level Health and Performance Sciences (HPS) hours may be used as free electives. No course that covers the same material as other courses in a student's plan of study can be used as a free elective.

Certificate in Information Systems
The Information Systems Certificate is offered jointly by the College of Computing and the DuPree College of Management. The focus of the certificate is in database and database management applications, but additional course work dealing with the management of software projects and data communications is included. More information on specific requirements may be obtained from the DuPree College of Management.

Graduate Programs

Master of Science in Computer Science
The program for the Master of Science in Computer Science (MSCS) prepares students for more highly productive careers in industry. Graduates receive the MSCS for completing one of three options in the program as described in this section. Students may apply to the program if they possess a bachelor's degree in computer science from an accredited institution. Students without a bachelor's degree in computer science are encouraged to apply as well, with the understanding that they will be required to complete remedial course work appropriate to their background in addition to the requirements of the MSCS degree. All applicants are evaluated according to their prior academic record, scores on the Graduate Record Examination and the Subject Test
Computing in Computer Science, a personal statement, and letters of recommendation. Applicants are selected for fall semester admission only. The application deadline is April 1. However, all applicants are encouraged to apply as early as possible because the selection process may begin well before the April 1 deadline.

The College's master's degree requirements supplement the Institute's master's requirements listed in this catalog. Students must achieve a grade point average of at least 3.0 to graduate, and no course grades below C will count toward graduation. Undergraduate courses required for the BSCS degree may not be used toward the MSCS degree. In addition, no graduate credit will be given for 3000-level courses or lower-level courses. Students must take all master's degree course work on a letter-grade basis. The maximum total credit hours of Special Problems that may be applied toward the MSCS degree is three.

Students may choose from one of three options in pursuing the MSCS degree. These options are:

Course option - This option requires the student to complete 36 hours of course work.

<table>
<thead>
<tr>
<th>Total Credit Hours</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Credit Hours in CS</td>
<td>24</td>
</tr>
<tr>
<td>Minimum Credit Hours (6000/8000 Level) in CS</td>
<td>18</td>
</tr>
<tr>
<td>Minimum Credit Hours (6000/8000 Level)</td>
<td>24</td>
</tr>
</tbody>
</table>

Project option - This option requires the student to complete 27 hours of course work and a 9-hour project. The project requires approval by a faculty advisor and the M.S. program coordinator in the semester prior to its inception.

<table>
<thead>
<tr>
<th>Total Credit Hours</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Project Hours</td>
<td>9</td>
</tr>
<tr>
<td>Total Course Credit Hours</td>
<td>27</td>
</tr>
<tr>
<td>Minimum Credit Hours in CS</td>
<td>24*</td>
</tr>
<tr>
<td>Minimum Credit Hours (6000/8000 Level) in CS</td>
<td>18*</td>
</tr>
</tbody>
</table>

Thesis option - This option requires the student to complete 24 hours of course work and a 12-hour thesis. The thesis process is defined elsewhere in this catalog.

<table>
<thead>
<tr>
<th>Total Credit Hours</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS Thesis Hours</td>
<td>12</td>
</tr>
<tr>
<td>Total Course Credit Hours</td>
<td>24</td>
</tr>
<tr>
<td>Minimum Credit Hours in CS</td>
<td>24*</td>
</tr>
<tr>
<td>Minimum Credit Hours (6000/8000 Level) in CS</td>
<td>18*</td>
</tr>
</tbody>
</table>

* May not include MS project or MS thesis hours.

All three of these options require students to complete three hours of courses in each of the core areas of Systems and Theory at the graduate level. In addition, students entering the program must demonstrate a core competency in computing equivalent to undergraduate-level courses in the following areas: systems, design and analysis of algorithms, formal languages and automata theory, databases, networking and communications, computer architecture, and human-computer interaction. This requirement can be satisfied by having taken undergraduate courses as a part of an undergraduate degree, taking remedial courses in the MSCS program, or by examination. Beyond the core requirements, students may specialize in areas of their choice. A specialization is achieved by completing at least two graduate-level courses in the selected area. Every student must complete at least one specialization as a part of his or her degree program. The current ten specialization areas are: computer architecture, database systems, graphics and visualization, human-computer interaction, intelligent systems, networking and communications, programming languages and compilers, software methodology and engineering, systems, and theoretical computer science.

A student who is enrolled in another graduate program of the Institute may pursue an MSCS while that student is also pursuing his or her degree in the other major. To be granted permission to pursue the MSCS, a student must submit to the M.S. program coordinator of the College of Computing the material required for admission to the MSCS program. This includes transcripts, letters of recommendation, and GRE General Test and Computer Science Subject Test scores. If the student is approved by the College to pursue the MSCS, the student will be notified in writing. At no time will a student outside the College be allowed to pursue a concurrent degree without prior permission of the M.S. program coordinator of the College of Computing.

A student enrolled in the M.S. degree program
in computer science who wishes to be admitted to the Ph.D. program in computer science should apply via the same process as external students. It is expected that such a student will have at least two letters of recommendation from College of Computing faculty.

Master of Science in Human-Computer Interaction

The Georgia Institute of Technology and the GVU Center have established a Master of Science degree in Human-Computer Interaction. This interdisciplinary, collaborative program is a cooperative effort of the College of Computing, the School of Psychology, and the School of Literature, Communication, and Culture coordinated through the GVU Center. The program provides students with the practical, interdisciplinary skills and theoretical understanding they will need to become leaders in the design, implementation, and evaluation of the computer interfaces of the future.

Course of Study

The Master of Science degree in HCI is a three-semester program consisting of a total of 36 semester hours. Each student will be required to complete a set of core courses, a set of area specialization courses, and a multidisciplinary team project.

The core is divided into fixed and flexible sets of courses. Students are required to complete three courses in the fixed core and a subset of courses in the flexible core based upon their academic background. The specific courses for each student will be determined by the HCI program coordinator in consultation with the academic unit. The area specialization courses are determined by the academic unit in which the student resides.

Currently, the participating units are:

- College of Computing
- School of Psychology
- School of Literature, Communication, and Culture

Fixed Core (9 hours)

The following three courses are required of all students in the HCI program:

- CS/PSYC 6750 (3-0-3) Human-Computer Interaction
- PSYC 7101 (3-0-3) Engineering Psychology I: Methods
- PSYC 6018 (3-0-3) Principles of Research Design

Flexible Core (12 hours)

Four of the following courses will be chosen to satisfy the flexible core area in the HCI program. Course selections will be made under advisement by the HCI program coordinator in an effort to balance the student's academic background. Additional courses may be used to satisfy the flexible core, but must be approved by the HCI program coordinator.

Computing

- CS 6010 (2-3-3) Principles of Design
- CS 6455 (3-0-3) User Interface Design and Evaluation
- CS 6456 (3-0-3) Principles of User Interface Software
- CS 6460 (3-0-3) Educational Technology: Conceptual Foundations
- CS 6610 (3-0-3) Cognitive Systems
- CS 7450 (3-0-3) Information Visualization
- CS 7460 (3-0-3) Collaborative Computing

Psychology

- PSYC 6011 (3-0-3) Cognitive Psychology
- PSYC 6014 (3-0-3) Sensation and Perception
- PSYC 6019 (4-3-5) Statistical Analysis of Psychological Data I
- PSYC 6020 (4-3-5) Statistical Analysis of Psychological Data II
- PSYC 7102 (3-0-3) Engineering Psychology II: Displays, Controls, and Workplace Design
- PSYC 7104 (3-0-3) Psychomotor and Cognitive Skill Learning and Performance

Cognitive Science

- CS/PSYC/ISYE 6795 (3-0-3) Introduction to Cognitive Science
- CS/PSYC/ISYE 7790 (3-0-3) Cognitive Modeling

Literature, Communication, and Culture

- LCC 6210 Studies in Communication and Culture
- LCC 6211 Digital Aesthetics
- LCC 6212 Historical Approaches to New Media
- LCC 6213 Educational Applications of New Media
- LCC 6214 New Media Project Design and Assessment
- LCC 6215 Issues in Media Studies
- LCC 6216 Globalization and New Media Architecture
- COA 8570 Design of Design Environments

Industrial and Systems Engineering

- ISYE 6215 Models in Human-Machine Systems
- ISYE 6401 Statistical Modeling and Design of Experiments
Areas of Specialization (11 hours)
The specialization courses are determined by the student's home unit:

Computing: Students concentrate on interface software and usability issues, choosing courses in the areas of software, design and evaluation/methods, and cognitive modeling.

Psychology: Students choose courses in the areas of statistics, cognitive psychology, engineering psychology, perception, and allied disciplines.

Literature, Communication, and Culture: Students choose courses in the areas of design practice, communication theory, and allied disciplines.

Multidisciplinary Team Project (4 hours)
Each student must complete a multidisciplinary team project.

Master of Science in Bioengineering
Students who wish to pursue a master's degree in bioengineering may also do so through the College of Computing. The specific requirements differ from those of the computer science master's program, and while the degree is granted from the College, applications for this program are processed through the Bioengineering Center of the Office of Interdisciplinary Programs.

Doctoral Program
The computer science doctoral program begins with research and breadth components. The research component helps students place an early focus on research. Students must complete an "Introduction to Graduate Studies" course (CS 7001) and then take at least three hours of directed research study (CS 8903) under faculty guidance each semester until their dissertation. The breadth component is intended to facilitate students' learning about a variety of areas within computing, as well as core computer science areas. Students must take at least one course per semester for their first five semesters from a different area of study within the College. The current ten areas are computer architecture, database systems, graphics and visualization, human-computer interaction, intelligent systems and robotics, networking and communications, programming languages and compilers, software methodology and engineering, systems (including operating systems, distributed and parallel systems), and theoretical computer science. Students must include courses from the systems and theory areas in those five semesters.

As students' research progresses, they must select a primary, and possibly secondary, area of focus from the areas listed previously, and then pass a qualifier (comprehensive exam) in that area or areas. The qualifier consists of three parts:

1. A one-day written examination covering the pertinent research area(s);
2. The submission of a high-quality research deliverable, as evidenced by a portfolio consisting of at least an exam committee-reviewed and publishable article, and possibly other work products as approved by the exam committee; and
3. An oral presentation and examination.

After successfully completing the Qualifier, a student focuses on research leading toward a dissertation. The topic of the student's research is formalized through a written dissertation proposal followed by an oral presentation. When the student passes his or her proposal, the student is admitted to candidacy and proceeds with dissertation research. This phase is completed with the successful defense and submission of the approved doctoral dissertation.

Students are also required to complete a nine-hour minor outside the College.

Further details about the degree program can be found at www.cc.gatech.edu/student.services/phd. Inquiries should be directed to the Graduate Coordinator, College of Computing.

Cognitive Science
Doctoral students desiring to approach their graduate studies from the perspective of cognitive science are encouraged to obtain a Certificate in Cognitive Science in addition to the doctoral degree. Interested students will receive their degree from one of the participating units and follow an interdisciplinary curriculum tailored to their specific interests in cognitive science.

Although doctoral students from any unit on campus may receive a Certificate in Cognitive Science, the program is currently tailored to doctoral students in the College of Computing, the School of Psychology, and the School of Industrial and Systems Engineering. Students enter the certificate program after being admitted to one of the doctoral programs of the Institute.
In order to earn the Certificate of Cognitive Science, students fulfill the doctoral requirements in some unit of the Institute, have at least two members of their dissertation advisory committee from faculty affiliated with the cognitive science program, and take a series of core cognitive science courses consisting of at least three introductory cognitive science disciplinary courses, one methodology course outside their home discipline, a minimum of four topical courses and/or seminars, and participation in the continuing “Colloquium in Cognitive Sciences” (CS 8795). Inquiries concerning this program may be directed to the Office of Student Services, College of Computing.

Algorithms, Combinatorics, and Optimization (ACO)
The College of Computing is one of the sponsors of the multidisciplinary program in Algorithms, Combinatorics, and Optimization (ACO), an approved doctoral degree program at Georgia Tech. The other sponsoring units are the School of Industrial and Systems Engineering and the School of Mathematics. The degree program is administered by an oversight committee drawn primarily from the sponsoring units.

The study of discrete structures is a rapidly growing area in computer science, applied mathematics, and operations research, most obviously in the analysis of algorithms, combinatorics, and discrete optimization. Collaborative work among the three traditionally separate disciplines is already common. The doctorate in Algorithms, Combinatorics, and Optimization will prepare students for careers in this exciting and expanding new field.

Students are expected to be well prepared in at least one of the three fields represented by the sponsoring units (computer science, mathematics, and operations research). Each student in the program is admitted through one of the three sponsoring units, which serves as the home department. Course work is drawn from all three disciplines. The research advisor may be any member of the ACO program faculty, which is drawn from electrical and computer engineering, management, and other disciplines in addition to the three sponsoring units.

Bioengineering
In response to the increased need for engineers and medical scientists with advanced training in bioengineering, Georgia Tech now offers master's and Ph.D. degrees in bioengineering. The purpose of bioengineering as a research discipline is to develop new and better physical and mathematical concepts and techniques that may be applied to problems in medicine and biology, to the development of new medical technologies, and to the organization and delivery of cost-effective health care. Interdisciplinary graduate programs in bioengineering are offered by the College of Computing in conjunction with the Bioengineering Center (in the Office of Interdisciplinary Programs), the College of Engineering, and the College of Sciences. The student's home unit will be the College of Computing, which, upon completion of the student's requirements, will recommend the degree. This interdisciplinary approach has been approved by the faculty in the Schools of Aerospace Engineering, Chemical Engineering, Electrical and Computer Engineering, Materials Science and Engineering, Mechanical Engineering, and Textile and Fiber Engineering, and by the deans of the Colleges of Computing, Engineering, and Sciences.

The program is for computer science or engineering graduates who wish to pursue a degree in bioengineering rather than in a traditional field of computing or engineering, or who have done bioengineering research in other disciplines. In addition, those interested students with non-engineering backgrounds (with degrees in such fields as physics, chemistry, biology, or mathematics) who meet the admission requirements will be admitted to the program. Applications from physicians with undergraduate degrees in engineering or the physical sciences will also be considered. All applications will be processed through the Bioengineering Center.

Research Centers in the College of Computing

Broadband Institute
The Broadband Institute explores the technology required to bring advanced interactive services to the home and the applications that will exploit this technology.

Today, digital communication to the home is very limited. Low communication rates can be achieved by digital modems, but they greatly limit the types of services that can be offered. There is,
Computing

however, emerging technology that offers large digital capacity to every home, completing the final link to the information highway. Some examples of services that can be provided are distance learning, community information services, and entertainment services such as interactive games. Most of the technology required to provide these services already exists. The challenge is to provide complete scalable systems inexpensively. Much invention and innovation is needed to supply missing pieces of specific technologies and to compare the effectiveness of different approaches.

Researchers at Georgia Tech are active in exploring technology for the delivery of services. Examples are: data over cable, linear optical modulation, blind equalization, and video servers. The program is divided into five areas: Applications; Business and Economic Issues; Systems and Software; Networking; and Physical Layer. At the moment, there are approximately 15 faculty active in this program within computer science and electrical engineering. Students at both the undergraduate and graduate levels may participate through special topics classes in computer science and electrical engineering. For more information, contact the BI office at 404.894.1404.

Within Georgia Tech, the Broadband Institute is supported by the College of Computing, the School of Electrical and Computer Engineering, and the Georgia Tech Research Institute.

The EduTech Institute

The EduTech Institute was created in 1993, when the Woodruff Foundation awarded funds to Georgia Tech to investigate the application of technology to enhancing and facilitating scientific and technological education. Its primary focal areas are design and science education. The EduTech Institute’s efforts are guided by the knowledge of the cognition of learning, problem solving, and understanding.

EduTech uses technology to ensure that education in these areas is relevant and effective for all students (not just those for whom learning comes easily), and prepares them for the complexities of the environments they will encounter as they enter the workplace. EduTech’s projects include new curricula, teaching styles and guidelines, classroom activities, and software – assessed in a variety of education situations.

EduTech aims to make educational advances in several specific areas: making science education relevant and engaging; educating students for a lifetime of learning; educating engineers for the workplace of the future; and supporting team activities (especially over distances and developing improved forms of assessment of educational innovations). Advances in such areas will allow great strides in educating students to be productive members of modern society.

Georgia Tech Information Security Center (GTISC)

The Information Security Center conducts interdisciplinary research and development focusing on all aspects of information security. The primary emphasis is on developing new technologies and methods for ensuring security of information, including systems-level vulnerability assessment and theory development. A strong secondary emphasis is on public and organizational security policies.

Graphics, Visualization, and Usability (GVU) Center

The GVU Center is an interdisciplinary teaching and research center housed in the College of Computing. Through education, research, and service, the GVU Center is working toward its vision of a society in which computers are as commonplace and accessible as the telephone or automobile.

In GVU’s educational role, its multidisciplinary faculty teach the principles and methods of graphics, visualization, user interface design, and usability to members of the academic community ranging from undergraduate and graduate students to other faculty. The GVU Center is not an academic unit in and of itself; its students are drawn from campus units as diverse as Architecture; Computing; Engineering; Literature, Communication, and Culture; Psychology; and others.

Research projects are as varied as the academic units affiliated with GVU, and the interdisciplinary focus encourages fresh perspectives and innovative approaches. The Center also has established a usability testing lab in which real users can “test drive” new interfaces, and maintains close relationships with industry in an effort to keep its research on track and relevant to real-life problems.

GVU’s service mission is carried out through the Scientific Visualization Lab, a joint undertaking with the Office of Information Technology, which provides state-of-the-art computer graphics hardware and software capabilities to the entire
university. More than 600 faculty, staff, and students use the lab's facilities. The SciVis Lab regularly sponsors seminars for members of the Georgia Tech community to familiarize them with new equipment and software.

For more information about the GVU Center, contact the Office of Student Services, College of Computing, and request a GVU brochure, or visit www.cc.gatech.edu/gvu/.

Cooperative Programs
The College participates in the Undergraduate and Graduate Cooperative Programs. Further details of the programs are found in this catalog. See “Information for Undergraduate Students” and “Information for Graduate Students.”

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

COMPUTER SCIENCE

CS 1050. Understanding and Constructing Proofs
3-0-3.
Techniques of rigorous argumentation, emphasizing reading and writing of formal and informal proofs. Application of techniques to domains of relevance to computer science.

CS 1321. Introduction to Computing
3-0-3.
Foundations of computing with an emphasis on the design, construction, and analysis of algorithms. Laboratory-based instruction to computers and software tools.

CS 1322. Object-Oriented Programming
3-0-3.
Prerequisite(s): CS 1321
Introduction to techniques and practices for implementing algorithms. Emphasis on professional software practices. Projects focus on interactive and computationally intensive programs, including large project management.

CS 1801. -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 2150. Languages and Translation
3-3-4.
Prerequisite(s): CS 1322
Introduces issues of machine translation including tokenizing, parsing, data representation, and run-time environments. Discusses implementation of object-oriented and functional languages. Laboratory exercises cover tools and techniques for writing parsers and translators.

CS 2200. Computer Systems and Networks
3-3-4.
Prerequisite(s): EGE 2030 and CS 2150
A broad exposure to computer system structure and networking including software abstractions in operating systems for orchestrating the usage of the computing resources.

CS 2335. Software Practicum
2-3-3.
Prerequisite(s): CS 2150
Methods for solving large programming problems. Techniques for quality assurance, managing programs, working in teams, analyzing problems, and producing effective solutions.

CS 2340. Objects and Design
3-0-3.
Prerequisite(s): CS 2335*
Object-oriented programming methods for dealing with large programs. Focus on quality processes, effective debugging techniques, and testing to assure a quality product.

CS 2600. Knowledge Representation and Processing
3-3-4.
Prerequisite(s): CS 1322
Introduction to the representation and manipulation of complex symbolic and sub-symbolic information.

CS 2801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.
Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 3210. Design of Operating Systems
2-3-3.
Prerequisite(s): CS 2200
Operating systems concepts, including multi-threading, scheduling, synchronization, communication, and access control. Projects will cover design and implementation of several operating systems components.

CS 3220. Computer Structures: Hardware/Software Codesign of a Processor
2-3-3.
Prerequisite(s): CS 2200
Principles in pipelined processor design, with emphasis on the need for a close interaction between code generation and architecture.

CS 3251. Computer Networking I
3-0-3.
Prerequisite(s): CS 2200
Introduction to problems in computer networking, including error recovery, medium access, routing, flow control, and transport. Emphasis on current best practice. Includes programming of networked applications.

CS 3300. Introduction to Software Engineering
2-3-3.
Prerequisite(s): CS 2340
Team-based project class to introduce and apply software engineering principles and practices.
Computing

CS 3351. Studio Project
1-6-3.
Prerequisite(s): CS 3300
A project-oriented laboratory course to familiarize students with software engineering methods in a realistic environment.

CS 3352. Studio Project
1-6-3.
Prerequisite(s): CS 3351
See CS 3351 for course description.

CS 3353. Studio Project
1-6-3.
Prerequisite(s): CS 3352
See CS 3351 for course description.

CS 3500. Theory I
4-0-4.
Prerequisite(s): CS 1050 and CS 1322 and MATH 3012*
Computational machine models and their language classes. Decidability and undecidability. Data structures and efficient algorithms for fundamental computational problems. Tractability and intractability.

CS 3790. Introduction to Cognitive Science
3-0-3.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with PST, PSYC, and ISYE 3790.

CS 3801. -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number. Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 3901. Research Project
Credit hours to be arranged. Individual investigation of significant areas of computer science. Guided study and research.

CS 3902. Research Project
Credit hours to be arranged. Prerequisite(s): CS 3901
See CS 3901 for course description.

CS 3903. Research Project
Credit hours to be arranged. Prerequisite(s): CS 3902
See CS 3901 for course description.

CS 3911. Design Project
Credit hours to be arranged. Prerequisite(s): CS 3911
Intensive team-based project experience in the specification, design, and implementation of software and/or hardware for subsequent use in research, industry, and teaching.

CS 3912. Design Project
Credit hours to be arranged. Prerequisite(s): CS 3912
Intensive team-based project experience in the specification, design and implementation of software and/or hardware for subsequent use in research, industry, or teaching.

CS 3913. Design Project
Credit hours to be arranged. Prerequisite(s): CS 3912
See CS 3912 for course description.

CS 4000. Computerization in Society
2-0-2.
Examines computing as a social process with emphasis on ethical issues and the social impact of computerization on local and global organizations.

CS 4010. Introduction to Computer Law
3-0-3.
Provides an introduction to copyrights, patents, trade secrets, trademarks, and commercial law pertaining to computer software and hardware.

CS 4210. Advanced Operating Systems
3-0-3.
Prerequisite(s): CS 2200
Operating system abstractions and their implementations, multi-threading, efficient inter-address communication, high-level synchronization, introduction to multi-processor and distributed operating systems, real-time systems.

CS 4220. Programming Embedded Systems
2-3-3.
Prerequisite(s): CS 2200
Design principles, programming techniques, and case studies of embedded real-time systems. Interface techniques and devices. Representations and reasoning about physical processes.

CS 4230. Distributed Simulation Systems
2-3-3.
Prerequisite(s): CS 2200
Parallel and distributed computing algorithms and systems for distributed simulation applications such as virtual environments and analytic models.

CS 4240. Compilers, Interpreters, and Program Analyzers
3-0-3.
Prerequisite(s): CS 2200
Study of techniques for the design and implementation of compilers, interpreters, and program analyzers with consideration of the particular characteristics of widely used programming languages.

CS 4251. Computer Networking II
3-0-3.
Prerequisite(s): CS 3251
Principles of computer networks, including medium access, ARQ protocols, routing, congestion avoidance, and control. Emphasis on design options and tradeoffs. Includes significant network application programming.

CS 4255. Introduction to Network Management
3-0-3.
Prerequisite(s): CS 3251
Introduction to SNMP-based network management. Practical application to network and system management including hands-on lab practice.
CS 4260. Telecommunications Systems 3-0-3.
Prerequisite(s): CS 2200 and (MATH 3215 or MATH 3225)
Study of telecommunication systems emphasizing functional roles of the various portions of the system and how various functional components support and interact with one another.

CS 4270. Data Communications Laboratory 1-6-3.
Prerequisite(s): CS 4260 and CS 4251*
Detailed study of the principles of data transmission systems and their performance reinforced by laboratory exercises.

Overview of telecommunication regulation at the federal, state, and judicial levels; review of FCC policies and restrictions on Bell operating companies under the AT&T Consent Agreement.

Prerequisite(s): CS 3220
Topics concern the hardware design of computer systems. Advanced techniques in high-performance pipelined central processing units. Memory and I/O systems. Parallel processors including shared-memory multiprocessors and cluster computers.

CS 4320. Introduction to Software Processes 3-0-3.
Prerequisite(s): CS 3300
The course will provide students with an overall context in which software systems are developed from the viewpoint of processes that support the development. Software engineering is described as the set of activities developers engage in to create high-quality products within schedule and budget constraints.

CS 4330. Software Engineering Applications 2-3-3.
Prerequisite(s): CS 3300
Software engineering methods specific to classes of application or system, including information systems and embedded, real-time systems.

CS 4400. Introduction to Database Systems 3-0-3.
Prerequisite(s): CS 1322
Comprehensive coverage of mainstream database concepts such as the entity-relationship model, relational databases, query languages, and database design methodology. Includes a project.

CS 4420. Database System Implementation 3-0-3.
Prerequisite(s): CS 4400
Study of fundamental software components/algorithms of a database system, including the file manager, query engine, lock manager, and recovery manager. Includes a project component.

CS 4432. Information Systems Design 2-3-3.
Prerequisite(s): CS 3500 and CS 4400
The analysis, design, and implementation of information systems. Topics include requirements analysis, design representations, implementation techniques, and evaluation of systems.

CS 4440. Emerging Database Technologies and Applications 3-0-3.
Prerequisite(s): CS 4400
The course will cover current developments including distributed object-oriented, temporal-spatial, Web-based, mobile, and active database technologies, and data warehousing and mining applications.

Prerequisite(s): MATH 2601 and CS 2130
An introduction to computer graphics, including graphics hardware, 2D rendering, 2D and 3D transformations, visible surface determination, illumination, modeling, and ray tracing.

CS 4455. Video Game Design and Programming 3-0-3.
Prerequisite(s): CS 1322
Techniques for electronic game design and programming, including graphics game engines, motion generation, behavior control for autonomous characters, interaction structure, social and interface issues of multi-user play, and the business aspects of game development.

CS 4470. Introduction to User Interface Software 3-0-3.
Prerequisite(s): CS 2340 and (CS 4750 or PSYC 4750)
Concepts, techniques, structures, and strategies for implementation of interactive software.

CS 4480. Digital Video Special Effects 3-0-3.
Prerequisite(s): CS 1322
A study of digital multimedia and the analysis and synthesis of digital video. Special attention paid to techniques for generating video special effects.

CS 4495. Computer Vision 3-0-3.
Prerequisite(s): MATH 2601 and CS 2130
An introduction to computer vision and machine perception. An intensive study of the process of generating a symbolic description of the scene by interpretation of images(s).

CS 4496. Computer Animation 3-0-3.
Prerequisite(s): CS 4451
Motion techniques for computer animation and interactive games (keyframing, procedural methods, motion capture, and simulation) and principles for storytelling, composition, lighting, and interactivity.
CS 4500. Theory II
3-0-3.
Prerequisite(s): CS 3500
Sample topics include cryptography, pseudorandomness, approximation algorithms, randomized algorithms, complexity, parallel algorithms, distributed protocols, information theory, coding theory, and computational geometry.

CS 4600. Introduction to Intelligent Systems
3-0-3.
Prerequisite(s): CS 2340
An introduction to artificial intelligence, cognitive science, vision, and robotics. Topics covered include intelligent system design methodologies, machine problem solving, learning and perception, robotics, and cognitive modeling.

CS 4610. Knowledge Systems
3-0-3.
Prerequisite(s): CS 4600
Knowledge-based problem solving and knowledge system engineering. Topics include expert systems, knowledge acquisition, problem solving, and explanation.

CS 4630. Intelligent Robotics and Computer Vision
3-0-3.
Prerequisite(s): CS 4600
Methodologies for embedding artificial intelligence in robotics systems. Assembly planning, autonomous navigation, learning, and visual processing are among the topics to be covered.

CS 4640. Machine Learning
3-0-3.
Prerequisite(s): CS 4600
Machine learning techniques and applications. Topics include foundational issues; inductive, analytical, analogical, numerical, subsymbolic, and theoretical approaches; and real-world applications.

CS 4650. Natural Language Understanding
3-0-3.
Prerequisite(s): CS 4600
Methodologies for designing systems that comprehend natural language. Topics include lexical analysis, parsing, interpretation of sentences, semantic representation, organization of knowledge, and inference mechanisms.

CS 4660. Introduction to Educational Technology
3-0-3.
Prerequisite(s): CS 2340
Introduction to the theory and practice of educational technology. Covers learning theory applicable to educational technology, explains major research findings.

CS 4665. Educational Technology: Design and Evaluation
3-0-3.
Prerequisite(s): CS 4660
Intensive project class in which students design, implement, and evaluate a piece of educational technology, applying the theory learned in Introduction to Educational Technology.

CS 4670. Computer-Supported Collaborative Learning
3-0-3.
Prerequisite(s): CS 4660
Research and practice in computer-supported collaborative learning. Review of existing systems and research, as well as evaluation and design methods.

CS 4710. Introduction to Computing Concepts for Bioinformatics
3-3-4.
Introduction to programming concepts and computing tools such as formal models and algorithms with applications from conceptual biology. May not be used by computer science majors for degree credit.

CS 4750. Human-Computer Interface Design and Evaluation
3-0-3.
Human computer interface is considered in terms of user-system compatibility. Concepts in human factors and interface design are covered in relation to capabilities of both humans and computers. Crosslisted with PSYC 4750.

CS 4752. Philosophical Issues in Computation
3-0-3.
Metaphysical and epistemological issues in the foundations, methods, and implications of computing. Issues include minds, brains, and machines; representation and language; simulating nature. Crosslisted with PST 4752.

CS 4761. Models of Human Information Processing
3-0-3.
Prerequisite(s): PSYC 1101
General and unified approaches to psychological and computer modeling of human information processing. Crosslisted with PSYC 4761.

CS 4777. Vector and Parallel Scientific Computing
3-0-3.
Prerequisite(s): MATH 2601
Scientific computational algorithms on vector and parallel computers. Speedup, algorithmic complexity, interprocess communication, synchronization, modern algorithms for linear systems, programming techniques, code optimization. Crosslisted with MATH 4777.

CS 4790. Seminar in Cognitive Science
3-0-3.
A seminar-type course in cognitive science focusing on integrating and deepening students' cognitive science knowledge and skills. Topics include memory, language, problem solving, learning, perception, and action. Crosslisted with PST, PSYC, and ISYE 4790.

CS 4791. Integrative Project in Cognitive Science
3-0-3.
An integrative course in cognitive science focusing on the integration and use of concepts and skills from cognitive science. A different integrative project or set of projects will be taken on each semester; students will contribute on the basis of their background and skill. Crosslisted with PST, PSYC, and ISYE 4791.
CS 4792. Design Project in Cognitive Science
3-0-3.
Individual project with a cognitive science faculty member, designed as a supplement to the student's senior design project or thesis in the major area. Crosslisted with PST, PSYC, and ISYE 4792.

CS 4801. -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit of course number. Courses of timely interest to the profession, conducted by resident or visiting faculty.

CS 4901. -2, -3. Special Problems
Credit hours to be arranged. An investigation of significant areas of information in computer science. Guided study and research.

CS 6010. Principles of Design
2-3-3.
This is an interactive, hands-on course that will teach students the principles of design at the individual level.

CS 6210. Advanced Operating Systems
3-0-3.
Prerequisite(s): CS 3210
Introduction to graduate-level topics in operating systems, using research papers, textbook excerpts, and projects. Provides students thorough comprehension of distributed and parallel computer systems.

CS 6230. High-Performance Parallel Computing: Tools and Applications
3-0-3.
Prerequisite(s): CS 3210
Introduction to MIMD parallel computation using textbook excerpts, research papers, and projects on multiple parallel machines. Emphasizes practical issues in high-performance computing.

CS 6235. Real-Time System Concepts and Implementation
3-0-3.
Prerequisite(s): CS 3210
Principles of real-time systems, as occurring in robotics and manufacturing, interactive and multimedia applications. Reviews and uses real-time operating systems.

CS 6236. Parallel and Distributed Simulation Systems
3-0-3.
Prerequisite(s): CS 3210
Algorithms and techniques used in parallel/distributed discrete event simulation systems. Synchronization algorithms, data distribution, applications to high-performance analytic simulations and distributed virtual environments.

CS 6241. Design and Implementation of Compilers
3-0-3.
Prerequisite(s): CS 4240
Design and implementation of modern compilers, focusing upon optimization and code generation.

CS 6245. Compiling for Parallelism
3-0-3.
Prerequisite(s): CS 4240
Design and implementation of compilers for parallel and distributed computers, focusing upon optimization and code generation.

CS 6250. Computer Networks
3-0-3.
Principles and practice of computer networks, including signaling and framing, error control, medium access, routing, congestion control, end-to-end transport, and network APIs.

CS 6255. Principles of Network Management
3-0-3.
Prerequisite(s): CS 6250
Focus on network, system, and applications management. Principles and practice of various network management standards will be presented. Course includes project assignment.

CS 6280. Performance Evaluation of Communication Networks
3-0-3.
Prerequisite(s): (MATH 3215 or MATH 3225) and CS 6250
Methods for evaluating the performance of communication networks with emphasis on modeling, mathematical analysis, computer simulation, and measurement.

CS 6290. High-Performance Computer Architecture
3-0-3.
Prerequisite(s): CS 2200
Topics concerning very high-performance computers including techniques exploiting parallelism in single and multiple processor systems. Credit not given for both CS 4290 and CS 6290.

CS 6300. Software Development Process
3-0-3.
The process of developing software systems. Includes development and assessment of processes, their instantiation in actual product development, and techniques ensuring quality of developed products.

CS 6310. Software Architecture and Design
3-0-3.
Prerequisite(s): CS 6300
Principles and concepts involved in the design and analysis of large software systems.

CS 6320. Software Requirements Analysis and Specification
3-0-3.
Prerequisite(s): CS 6300
Methods and principles for determining, documenting, analyzing, and formally specifying requirements for software systems.

CS 6330. Software Generation, Testing, and Maintenance
3-0-3.
Prerequisite(s): CS 6300
Introduction to methods and principles for programming, testing, and managing the evolution of software systems.
Computing

CS 6390. Programming Language Design
3-0-3.
Design, structure, and goals of programming languages. Object-oriented, logic, functional, and traditional languages. Semantic models. Parallel programming languages.

CS 6400. Database Systems Concepts and Design
3-0-3.
Prerequisite(s): CS 4400
Study of fundamental concepts with regard to relational databases. Topics covered include database design, query processing, concurrency control and recovery. Credit not given for both CS 6400 and CS 6754.

CS 6411. Object-Oriented Database Models and Systems
3-0-3.
Prerequisite(s): CS 6400
Study of advanced database concepts as they apply to object-oriented database systems. Topics include semantic data models, object-oriented query languages, tools, and applications.

CS 6421. Temporal, Spatial, and Active Databases
3-0-3.
Prerequisite(s): CS 6400
Study of advanced database concepts for temporal databases with emphasis on storage structure, processing and query languages, and active database concepts and implementation.

CS 6430. Parallel and Distributed Database Systems and Applications
3-0-3.
Prerequisite(s): CS 4420 or CS 6400
Study of algorithms and performance in advanced databases. Systems include parallel, distributed, and client-server databases. Applications include data mining and online analytical processing.

CS 6455. User Interface Design and Evaluation
3-0-3.
Prerequisite(s): CS 6750 or PSYC 6750
Examines usability in the software development process with an emphasis on usability, requirements, methodology, design, and evaluation.

CS 6456. Principles of User Interface Software
3-0-3.
Prerequisite(s): CS 6750 or PSYC 6750
Considers the architectural and algorithmic principles behind the implementation of interactive software systems and the tools that support them.

CS 6460. Educational Technology: Conceptual Foundations
3-0-3.
Introduction to educational technology with an emphasis on theoretical foundations. Introduces basic philosophies, approaches, and technologies. Analyzes issues surrounding technology's impact on education.

CS 6470. Design of Online Communities
3-0-3.
Introduction to the design of online communities. Students study an existing community in depth, and then develop a new community design.

CS 6480. Computer Visualization Techniques
3-0-3.
Prerequisite(s): CS 4451
Principles, techniques, and practice in data, information, multivariate, and scientific visualization. Includes visualization methods, data structures, examples, and tools.

CS 6485. Visualization Methods for Science and Engineering
3-0-3.
Algorithms, software, and practical applications of visualization techniques in science, engineering, business, and medicine. Includes data structures, multivariate visualization, interactive visualization, and visual representations and examples.

Computer science students cannot receive credit for this course.

CS 6491. Foundations of Computer Graphics
3-0-3.
Prerequisite(s): CS 4451
Mathematical/physical/perceptual principles and modeling/rendering techniques used to create, represent, display, and animate models of 3D shapes and their properties.

CS 6500. Introduction to Algorithms
3-0-3.
Prerequisite(s): CS 3500
Basic techniques of design and analysis of efficient algorithms for standard computational problems. Not appropriate for Ph.D. students.

CS 6510. Automata Theory
3-0-3.
Study of the significant results concerning finite automata, pushdown automata, and Turing machines, and their associated language classes.

CS 6520. Computational Complexity Theory
3-0-3.
Prerequisite(s): CS 3500
Introduction to resource-bounded computations, central complexity-theoretic concepts such as complexity classes, reducibility, completeness, and intractability.

CS 6550. Design and Analysis of Algorithms
3-0-3.
Prerequisite(s): CS 3500
Advanced techniques for designing and analyzing efficient algorithms for combinatorial, algebraic, and number-theoretic problems.

CS 6610. Cognitive Systems
3-0-3.
Prerequisite(s): CS 4600
Concepts, theories, and designs of cognitive systems. Topics include problem solving, learning, knowledge representation, knowledge systems, and cognitive interfaces.
CS 6660. Intelligent Agents
3-0-3.
Prerequisite(s): CS 4600
Concepts, theories, designs, and implementations of intelligent hardware and software agents. Topics include action selection, planning, learning, user modeling, agent-human interaction, and multi-agent systems.

CS 6670. Distributed Control Algorithms
3-0-3.
Prerequisite(s): CS 4600
Algorithms for synchronous, asynchronous, and partially synchronous networks; analysis, control, and implementation of distributed systems such as robot fleets, animal groups.

CS 6705. Applications of Artificial Intelligence
3-0-3.
A study of the principles and practice of artificial intelligence in areas other than computer science, with particular focus on engineering, science, and business applications. Computer science majors cannot receive credit for this course.

CS 6750. Human-Computer Interaction
3-0-3.
Describes the characteristics of interaction between humans and computers and demonstrates techniques for the evaluation of user-centered systems. Crosslisted with PSYC 6750.

CS 6754. Engineering Database Management Systems
3-0-3.
Modeling and managing engineering information systems, integration of design and manufacturing functions in engineering product development, logical models of engineering product and processes. Crosslisted with ME 6754. Credit not given for both CS 6400 and CS 6754.

CS 6763. Design of Design Environments
3-0-3.
Analysis of design processes; analysis of current design tools at both the user interface and functional levels; procedures for developing better design tools. Crosslisted with COA 6763.

CS 6764. Geometric Modeling
3-0-3.
Software development course focusing on 3D geometric constructions and modeling; emphasizes solid modeling and its role in design. Crosslisted with COA 6764.

CS 6780. Medical Image Processing
3-0-3.
Prerequisite(s): ECE 6786
A study of methods for enhancing, analyzing, interpreting, and visualizing information from two-and-three-dimensional data obtained from a variety of medical image modalities. Crosslisted with ECE and BMED 6780.

CS 6795. Introduction to Cognitive Science
3-0-3.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with ISYE and PSYC 6795.

CS 7000. Master's Thesis
Credit hours to be arranged

CS 7001.Overview of Graduate Studies in Computing
3-0-5.
Research tools including computer systems, as well as fundamental problem-solving skills are introduced. Lectures on current computing research are presented and projects are required. Credit not allowed in a program of study for a graduate degree.

CS 7110. Parallel Computer Architectures
3-0-3.
Prerequisite(s): CS 6290
Issues in the design, implementation, and programming of parallel machines.

CS 7210. Distributed Computing
3-0-3.
Prerequisite(s): CS 6210
Fundamental concepts in distributed systems, including global states, logical clocks, and failure models. Distributed algorithms and their implementations using advanced distributed programming systems.

CS 7230. Systems Software Design, Implementation, and Evaluation
1-6-3.
Design, implementation, and evaluation of systems software. Distributed/parallel applications will be constructed and evaluated using the systems support that is developed.

CS 7250. Broadband Networking Systems
3-0-3.
Prerequisite(s): CS 6250
Focus on the data link layer and its relationship to layers below and above. Gigabit Ethernet, SONTET, fiber channel; media including wireless, satellite, xDSL, cable.

CS 7260. Internetworking Architectures and Protocols
3-0-3.
Prerequisite(s): CS 6250
Detailed discussion of the problems and solution techniques that arise in internetworking. Topics include routing, addressing, quality of service, and security.

CS 7270. Networked Applications and Services
3-0-3.
Prerequisite(s): CS 6250
End-to-end functional building blocks and their use in adaptive and nonadaptive applications including multimedia: coding, compression, security, and directory services.

CS 7450. Information Visualization
3-0-3.
Prerequisite(s): CS 6456
Study of computer visualization principles, techniques, and tools used for explaining and understanding symbolic, structured, and/or hierarchical information. Includes data and software visualization.
CS 7460. Collaborative Computing
3-0-3.
Prerequisite(s): CS 6750 or PSYC 6750
Introduction to computer-supported collaborative work, workflow automation, and meeting augmentation. The course deals with models, enabling technology, systems, and applications.

CS 7465. Educational Technology: Design and Evaluation
3-0-3.
Prerequisite(s): CS 6460
Intensive project class in which students design, implement, and evaluate a piece of educational technology, applying the theory learned in Educational Technology: Conceptual Foundations.

CS 7467. Computer-Supported Collaborative Learning
3-0-3.
Prerequisite(s): CS 6460
Computer-supported collaborative learning is the use of Internet-based technologies to support learning in social settings. Focus on issues of implementation and evaluation.

CS 7470. Mobile and Ubiquitous Computing
3-0-3.
Prerequisite(s): CS 6750 or PSYC 6750
Investigates the infrastructure required to develop mobile and ubiquitous computing applications and establishes major research themes and experimental practices.

CS 7490. Advanced Image Synthesis
3-0-3.
Advanced techniques in realistic image synthesis based on the physics of light. Anti-aliasing, textures, surface reflectance, distribution ray tracing, volume rendering, radiosity, and image-based rendering.

CS 7491. 3D Complexity Techniques for Graphics, Modeling, and Animation
3-0-3.
Prerequisite(s): CS 6491
Multiresolution, compression, collision, morphing, visibility, and computational geometry techniques for accessing, rendering, and animating complex 3D models in engineering, scientific, business, or entertainment applications.

CS 7495. Computer Vision
3-0-3.
Prerequisite(s): CS 4630
An introduction to computer vision and machine perception. An intensive study of the process of generating a symbolic description of the scene by interpretation of image(s).

CS 7496. Computer Animation
3-0-3.
Motion techniques for computer animation and interactive games (keyframing, procedural methods, motion capture, and simulation) and principles for storytelling, composition, lighting, and interactivity.

CS 7497. Virtual Environments
3-0-3.
An introduction to virtual reality and virtual environments. Issues covered will include VR technology, software design, 3D human-computer interaction, and applications for VR.

CS 7510. Graph Algorithms
3-0-3.
Prerequisite(s): CS 6500 or CS 6550
Algorithms for graph problems such as maximum flow, matching, network reliability, and minimum cuts.

CS 7520. Approximation Algorithms
3-0-3.
Prerequisite(s): CS 6500 or CS 6550
Approximation algorithms for NP-hard optimization problems, design, and analysis techniques for such algorithms.

CS 7530. Randomized Algorithms
3-0-3.
Prerequisite(s): CS 6500 or CS 6550
Techniques for designing and analyzing randomized algorithms, derandomization techniques.

CS 7610. Modeling and Design
3-0-3.
Prerequisite(s): CS 6610
Information-processing theories of modeling and design; topics include design decision making, problem solving and learning, and knowledge-based modeling and design.

CS 7615. Knowledge Agents
3-0-3.
Prerequisite(s): CS 6660
Knowledge-based interactive systems, knowledge-based autonomous agents, agent architectures, learning and adaptation, agent evolution.

CS 7620. Case-Based Reasoning
3-0-3.
Prerequisite(s): CS 6610
Topics include case representation, indexing and retrieval, adaptation, interpretive CBR, the cognitive model that CBR implies, and its implications for creativity, decision aiding, and education.

CS 7630. Autonomous Robotics
3-0-3.
Prerequisite(s): CS 4600
The principles and practice of autonomous robotics including behavior-based design and architectures, adaptive learning and team behavior, and the role of perception within robotic systems.

CS 7635. Computational Perception
3-0-3.
Prerequisite(s): CS 4600
Study of methods for extraction and interpretation of perceptual/sensory signals. Topics include techniques for face, gesture, and speech recognition from audio and video.
CS 7640. Learning in Autonomous Agents
3-0-3.
An in-depth look at agents that learn, including intelligent systems, robots, and humans. Design and implementation of computer models of learning and adaptation in autonomous intelligent agents.

CS 7645. Numerical Machine Learning
3-0-3.
Prerequisite(s): CS 4640
This course explores problems in classification/pattern recognition (OCR, speech, vision, fault detection, medical diagnosis), regression/function approximation, robot control, and reinforcement learning.

CS 7695. Philosophy of Cognition
3-0-3.
Examines problems in the foundations of cognition in relation to current issues in cognitive sciences. Topics include meaning, mental imagery, consciousness, and mind/body problem.

CS 7696. Cognitive Models of Science
3-0-3.
Examines how models of reasoning and representation that are developed in the cognitive sciences can provide the basis for an enriched understanding of scientific theories and practices.

CS 7790. Cognitive Modeling
2-6-4.
Prerequisite(s): CS 6795 or ISYE 6795 or PSYC 6795
A hands-on course covering a range of cognitive modeling methodologies. It explores the analysis, development, construction, and evaluation of models of cognitive processing. Crosslisted with ISYE and PSYC 7790.

CS 7999. Preparation for Doctoral Qualifying Exams
Credit hours to be arranged.

CS 8001, -2, -3, -4, -5, -6. Seminar
Credit and class hours equal last digit in course number.
Group discussion of advanced topics in information and computer science. May not be used by computer science majors for degree credit.

CS 8030. Software Engineering Seminar
1-0-1.
This seminar provides students with an opportunity to explore contemporary topics in software engineering.

CS 8795. Colloquium in Cognitive Sciences
1-0-1.
Reading of research papers by leading cognitive scientists, attendance at their colloquia, and meeting with them to discuss research. Crosslisted with ISYE and PSYC 8795.

CS 8801, -2, -3, -4, -5, -6. Special Topics
Credit and class hours equal last digit in course number.
Special topics of current interest. Treatment of new developments in various areas of computing.

CS 8890. Special Topics in Cognitive Science
3-0-3.
Special topics of current interest.

CS 8901, -2, -3. Special Problems
Credit hours to be arranged.
Small-group or individual investigation of advanced topics in computing. Guided study and research.

CS 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

CS 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

CS 8999. Doctoral Thesis Preparation
Credit hours to be arranged.

CS 9000. Doctoral Thesis
Credit hours to be arranged.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.
Established in 1913 as School of Commerce
Location: 755 Ferst Drive
Telephone: 404.894.2600 or 404.894.2624
Fax: 404.894.6030
E-mail: dcom@mgt.gatech.edu

Dean and Todd Munchak Professor—Terry C. Blum; Associate Dean and Professor—Nate Bennett; Director of M.S.M. Program—Ann Johnston Scott; Director of M.S.M. Career Services—Mary McRee; Director of Undergraduate Programs—Yvette McDonald; Director of Executive and Professional Programs—Peter Vantine; Faculty Director of EMSMOT, Faculty Director for Information Technology, and Associate Professor—Dennis Nagao; Fuller E. Callaway Chair—Eugene E. Comiskey; Regents’ Professor—Naresh K. Malhotra; Interim Director of the DuPree Center for Entrepreneurship and New Venture Development—Alan Flury; Director of the Center for Management of Technology and Associate Professor—Soumen Ghosh; Director of the Center for International Business Education and Research and Professor—John R. McIntyre; Director of the iXl E-Commerce Center—Nick Voigt; Hal and John Smith Chair of Entrepreneurship and Small Business Management and Professor Emeritus—Philip Adler; Thomas R. Williams Chair in Finance and Professor—Cheol Eun; Intesco Chairboilder in Finance and Professor—Charles Mulford.

Associate Professors—Goutam Challagalla, Bryan Church, Andrew J. Cooper (emeritus), Anindya Datta, Kirsten Ely, Donald Fedor, NarayananJayaraman, Jackie Kleiner, Ajay Khorana, Saby Mitra, Sridhar Narasimhan, Arnold Schneider, Christina Shalley, Vinod Singhal, Deborah Turner, Francis Ulgado.

Assistant Professors—Pat Dickson, Nagesh Murthy, Sue Rhee, Frederick Riggins, Gregory Robbins, Samit Soni, Han Zhang.

Instructors—Rajesh Chakrabartit, Anil Kumar, Subhankar Nayak, Jeff Stratman.

General Information
The DuPree College of Management offers a full range of undergraduate and graduate programs. The undergraduate program in management leads to the bachelor of science degree. The Master of Science in Management (MSM) is a full-time, two-year program of study. The Executive Master's in Management of Technology (MSMOT) is for professionals who wish to continue their careers while earning a master's degree. The doctoral program leads to a Ph.D. in management. The DuPree College is accredited by the American Assembly of Collegiate Schools of Business (AACSB).

The College is committed to being a recognized leader in developing business leaders to operate in changing technological environments. Programs combine excellence in the functional areas of business education with the multidisciplinary focus on management of technology, international business, and entrepreneurial and innovative processes and e-business for a global economy. Programs equip students to create value that will make a social and economic difference in the lives of individuals, groups, communities, and societies. Through a curriculum that emphasizes collaborative learning based on real-world experience, the College offers the resources of multidisciplinary centers in international business, entrepreneurship, e-business, and management of technology that foster research, teaching excellence, and
dialogue across the major functional areas of management.

The use of computers is an integral part of each program. Both undergraduate and graduate students are required to have their own computers. For more information, visit the College website at www.dupree.gatech.edu.

Undergraduate Program

Students with a broad interest in all management activities and operating problems should profit from the management degree program. The program builds upon knowledge of the functional, environmental, behavioral, and legal aspects of business and provides analytic and conceptual tools for analyzing complicated problems. It prepares the student for managerial responsibilities and decision making. The large number of elective hours allows the student to tailor a program to his or her individual educational objectives. Students may take a concentration of electives in areas such as finance, accounting, marketing, operations management, international management, and information technology management.

Pass/Fail Courses

Up to nine credit hours in the named category of free electives may be taken on a pass/fail basis if no nonresident credit has been awarded. (See the table of allowed pass/fail credit hours on pages 28-29 for more information.)

Prerequisites

Management majors should complete all required 2000-level management courses prior to registering for 3000- and 4000-level management courses. Course prerequisites are enforced.

Transfer Credit Policy for Undergraduate Students

Students may transfer courses taken at another accredited institution if the courses are passed with a grade of C or better and are deemed by the College of Management to be equivalent to a Georgia Tech course. Such courses will be transferred for the same number of credits as the corresponding College of Management courses, provided they are equal to three or more semester hours of credit.

For institutions within the University System of Georgia, the total number of credit hours transferred for courses within the core curriculum* will match the number of credit hours granted by the originating institution. Hours of credit in excess of the corresponding Georgia Tech courses may be transferred only as free electives. For courses taken outside the core curriculum, the rules in the previous paragraph will apply.

Junior- or senior-level courses with three or more semester hours of credit that have no corresponding College of Management course may transfer as electives in management if they are approved by the College of Management.

Because of the difference in the intellectual level of various courses, freshman- or sophomore-level courses taken at other institutions may only be transferred for equivalent freshman- or sophomore-level courses offered at Georgia Tech. (Exception: University System of Georgia schools may transfer the equivalent of MGT 2106, Business Law and Ethics, if taught at the freshman or sophomore level. Business Law and Ethics has been designated as a core course.)

* Core curriculum for this purpose may be defined as 2000-level management courses plus Business Law and Ethics.

Bachelor of Science in Management
(Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 OR MATH 1712</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 OR 2112 OR POL 1101 OR PUBP 3000 OR INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>LAB SCIENCE ELECTIVE (BIOL, CHEM, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 OR MATH 1711</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>LAB SCIENCE (BIOL, CHEM, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>
Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2105 MACROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2250 MANAGEMENT STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2101 OR 2111 ACCOUNTING I</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2106 MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2106 LEGAL ASPECTS - BUSINESS</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2102 OR 2112 ACCOUNTING II</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2251 INTRO. TO MANAGEMENT SCIENCE</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2200 INFORMATION TECHNOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3062 FINANCIAL MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101 ORGANIZATIONAL BEHAVIOR OR</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3150 PRINCIPLES OF MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3102 HUMAN RESOURCES</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 3300 MARKETING MANAGEMENT I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3501 OPERATIONS MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3660 INTERNATIONAL BUSINESS</td>
<td>3</td>
</tr>
<tr>
<td>MANAGEMENT ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>NON-MANAGEMENT ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MANAGEMENT ELECTIVES</td>
<td>12</td>
</tr>
<tr>
<td>NON-MANAGEMENT ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT 4195 STRATEGIC MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>MANAGEMENT ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>11</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HRS)

Electives

Health and Performance Science Electives
Students are required to complete two hours of Health and Performance Science courses selected from HPS 1040, 1062, 1063, or 1064.

Humanities Electives
Students are required to complete six hours of humanities selected from CORE AREA C. Humanities/Fine Arts listed on page 31 of this catalog. Humanities electives transferred from other institutions may be used to fulfill this six-hour requirement.

Note: Any courses completed that were listed in prior catalogs as satisfying the Humanities requirement and were completed while that catalog was in effect may also be used to satisfy this requirement.

Social Sciences Elective
Students must complete 12 hours of social science electives. Students are required to complete the U.S. and Georgia History and Constitution requirement with 3 semester hours selected from HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200.

Students must complete 6 hours of Economics: ECON 2105 and ECON 2106.

Three additional semester hours of social science are to be completed. This course may be selected from CORE AREA E Social Sciences listed on page 32 of this catalog.

Mathematics Elective
Students must complete eight hours of mathematics electives to be selected from MATH 1501 or MATH 1712 and Math 1502 or Math 1711.

School-Specific Electives/College of Management Electives
Students must complete 18 hours of College of Management electives. Management courses not otherwise required will satisfy this requirement. These electives may not be taken pass/fail.

Non-College of Management Electives
Students must complete six semester hours of non-College of Management electives. These courses may be selected from any academic area outside the College of Management. HPS and PE courses are not allowed. The courses must be taken on a letter-grade basis.
Management

Free Electives
Students must complete 14 hours of free electives. These electives may be selected from any academic area including the College of Management. These courses may not be required otherwise by this curriculum or used elsewhere in this curriculum. Unlimited hours of HPS courses and 3 hours of PE courses are allowed. A maximum of 9 pass/fail hours are allowed. The student must consult the table on page 28 of this catalog and/or obtain advising in the DCOM Office of Undergraduate Programs, DCOM Suite 103, regarding allowable pass/fail hours.

Certificate Programs
In addition to its degree programs, the College of Management offers students in good standing an opportunity to broaden their areas of expertise or acquire skills or information beyond their major degree requirements. Students who satisfactorily complete this special program will receive a certificate of recognition.

Certificate programs available for undergraduate students are the following:
- Accounting
- Finance
- Information Technology Management
- International Management
- Marketing
- Operations Management

Graduate Programs
The DuPree College of Management offers graduate programs leading to the Master of Science in Management (M.S.M.), the undesignated Master of Science, the Executive Master of Science in Management of Technology (MSMOT), and the Doctor of Philosophy.

The Master of Science in Management Program (M.S.M.)
The M.S.M. program, which is accredited by the American Assembly of Collegiate Schools of Business, provides a professional management education for students with baccalaureate degrees in any discipline. Calculus is the only prerequisite. For students who want to review and sharpen their quantitative and computer knowledge, review courses are offered in mathematics and computer skills prior to the fall semester.

The Master of Science in Management is an innovative and rigorous two-year, full-time business program with a technical and quantitative instructional focus. Highly qualified candidates from all academic backgrounds enter the program, which is small, intentionally designed to foster teamwork and a closely knit class.

In the summer term between the first and second academic years, M.S.M. students work as interns in companies such as The Coca-Cola Company, UPS, and BellSouth. The internship program provides an opportunity to apply managerial skills in an actual business environment.

The M.S.M. program is full time and comprises 20 courses (60 hours), 10 of which are required. These 10 courses form a common core of knowledge required of all M.S.M. students. The remaining 10 elective courses provide flexibility for students to build competence in one or more concentration areas. This freedom permits each student to fashion a curriculum directed toward individual educational and career goals.

Concentration areas may include accounting, finance, information technology, international business, marketing, operations management, organizational behavior, and strategic management. Students may also elect to earn a certificate in the entrepreneurship, international business, e-business, or management of technology certificate programs, and take up to two courses outside the DuPree College.

Entry is in the fall semester only, and enrollment is strictly full time. The typical course load is five courses per semester. As no graduate courses are offered during the summer, students are encouraged to participate in the College's internship program during the summer between the first and second years.

Some M.S.M. core classes are restricted to only M.S.M. students. Students in other graduate programs at Georgia Tech should check with the College of Management's Graduate Office regarding eligibility to register for these courses.

Applicants to the M.S.M. program should note that supplementary application materials are required by the College of Management in addition to those requested by Georgia Tech's Office of Graduate Studies. Incomplete applications will not be reviewed. M.S.M. application forms, as well as program description materials, may be obtained through the website at www.dupree.gatech.edu or by writing to the DuPree College of Management, Room 212, Georgia Institute of Technology,
The undesignated master of science degree program serves students whose educational and career goals may not be best served by the M.S.M. program. Under these circumstances, the student can pursue a specially tailored master’s-level curriculum that satisfies the American Assembly of Collegiate Schools of Business (AACSB) common body of knowledge requirements and provides a coherent concentration of elective courses chosen in consultation with an academic advisor. This specialized degree program is designed primarily for students who are admitted to Georgia Tech on approved foreign education programs. Admission to this program must be approved by the M.S.M. Committee of the DuPree College of Management prior to enrollment.

The Ph.D. Program in Management

The Ph.D. program in management is designed to produce graduates who can make scholarly contributions to their chosen fields. Most graduates undertake careers as teachers, scholars, and researchers in academic environments. The doctoral degree also can lead to careers in industry and government.

The doctoral program in the DuPree College of Management is intended for full-time students who will complete their entire doctoral program prior to leaving the campus. Full-time residence in or near Atlanta is expected. The doctoral program is strongly research oriented and emphasizes early and effective involvement in research, with students experiencing considerable personal attention and close interaction with faculty. The Ph.D. program complements and reflects the technological emphasis of the Institute and places considerable weight on learning outside the classroom. The tutorial model is the basic educational model employed throughout the program.

All doctoral students take comprehensive examinations, which include both a general and a special examination. The student becomes a candidate for the degree after successful completion of both exams and the approval of the prospectus of his or her dissertation. On completion of the dissertation, the student must take a final oral examination as prescribed in the general regulations of the graduate division.

Applicants to the doctoral program in management should note that supplementary application materials are required by the College of Management in addition to those required by Georgia Tech’s Office of Graduate Studies. Incomplete applications will not be reviewed. Ph.D. application forms, as well as program description materials, may be obtained through the website at www.dupree.gatech.edu or by writing to the DuPree College of Management, Room 212, Georgia Institute of Technology, Atlanta, Georgia 30332-0520, or by calling 404.894.8722.

The Master of Science in Management of Technology (Executive)

The curriculum provides technically knowledgeable individuals with the breadth in business and management issues needed to more effectively manage in a technology-intensive environment. The program builds on the participants’ technical knowledge and provides application-oriented management tools. Since participants continue to work, they have the maximum opportunity to immediately apply their new knowledge in their jobs. MSMOT students typically have a technical undergraduate education and a minimum of five years of work experience in a technology-intensive environment. Participants are expected to have the cooperation of their employers, who will provide them with release time for classes and financial support for program costs.

The curriculum utilizes a systems/processes framework in which business enterprises are viewed as consisting of multiple, interdependent processes. The focus on organizational work processes leads to a broader, more integrative, cross-functional perspective than the more traditional orientation of the M.S.M. In addition to the specified sequence of courses, the program features:

- **Group learning and team building:** Teams are an important learning element of the program. Teams allow individuals from different industries, companies, and functional areas to pool their knowledge and expertise as they work on individual and team assignments.

- **Communication skills development:** The expertise and insight of management graduates is virtually useless if they are unable to write and speak articulately about their ideas. The curriculum includes modules focusing on composition.
and presentation skills taught by faculty trained in technical and creative writing and in public speaking. Course requirements will provide students with many opportunities to practice their communication skills through oral presentations and a variety of writing assignments.

Computer skills enhancement: The Georgia Tech environment reinforces the importance of familiarity with computer-based techniques of analysis and communication. Basic computer applications including word processing, spreadsheets, database and statistics packages, as well as the use of electronic mail and networks, are integrated throughout the curriculum.

Degree Requirements and Schedule
The MSMOT degree requires 36 semester credit hours of study consisting of a fixed sequence of courses over a 19-month period. The curriculum sequence begins with a weeklong residency on campus followed by classes on alternating weekends (all day Friday and Saturday) during the term. A second weeklong campus residency begins the second half of the program. The program concludes with a two-week international residency. A new class enters and begins the sequence each summer semester. Student performance in most classes is graded on the traditional A, B, C, D, F scale. To graduate, students must have no more than three grades of C or lower and must have a cumulative grade point average of 3.0.

Dual Degree Program
Through the dual degree program, qualified graduate students wishing to pursue an M.S.M. degree and a graduate degree in another Georgia Tech graduate program can efficiently earn two graduate degrees in almost the same time it would take to earn the M.S.M. degree alone. For example the M.S.M. program is normally 60 hours. For students pursuing another graduate degree at Tech, the length of the program is reduced to 39 hours. Students in the dual degree program take 30 hours of required core management courses, plus nine hours of graduate management electives.

Those interested in dual master's degrees should consult with the respective graduate program directors to determine the feasibility of this approach. Dual degree students must complete applications for and meet the admission requirements of both programs.

Master of Science in Quantitative and Computational Finance
The master's degree in Quantitative and Computational Finance (MSQCF) is a collaboration of the DuPree College of Management, the School of Mathematics, and the School of Industrial and Systems Engineering. This is a 16-month interdisciplinary degree program that provides students with the practical skills and theoretical understanding they need to become experts in the formulation, implementation, and evaluation of the models used by the financial sector to structure transactions, manage risk, and construct investment strategies. Students require a thorough understanding of the principles, structures, and everyday activities of finance, an understanding of the mathematics used to model these financial activities, and knowledge of the techniques used to implement these models in finance — techniques in programming, numerical analysis, statistics, and optimization — along with the intuition within finance itself. Contact Dr. Robert Kertz, director, at 404.894.4311, kertz@math.gatech.edu, or www.qcf.gatech.edu.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

MANAGEMENT

MGT 2106. Legal, Social, Ethical Aspects of Business
3-0-3.
Development and function of the law, court organization, procedure, and substantive law in contracts, business organizations, and agencies. Also exposes social responsibility and ethics in business.

MGT 2200. Management Applications of Information Technology
3-0-3.
An introduction to management computing with a focus on the support of management functions through information technology. Students are introduced to database and spreadsheet applications.

MGT 2250. Management Statistics
3-0-3.
Prerequisite(s): MATH 1712 or 17X2 or MATH 1501 or MATH 15X1
Introduction to basic statistics for management students.
MGT 2251. Introduction to Management Science
3-0-3.
Prerequisite: MGT 2250
This course focuses on the problem-solving and decision-making processes that use quantitative management science concepts and techniques.

MGT 3000. Accounting for Decision Making
3-0-3.
A foundation course in measuring and reporting the financial performance and status of the firm as well as basic concepts in cost and managerial accounting.

MGT 3062. Financial Management
3-0-3.
Prerequisite: ACCT 2101
An introduction to finance. Topics include time value of money, capital budgeting, risk and return, capital structure, dividend policy, and working capital management.

MGT 3075. Security Valuation
3-0-3.
Prerequisite(s): MGT 3062 or MGT 3078
The valuation of securities using fundamental and technical analysis. Topics include DCF valuation, price multiples, free cash flow, and the construction of quantitative trading models.

MGT 3076. Investments
3-0-3.
Prerequisite: MGT 3062
Introduction to the securities markets and a study of the theory and practice of security analysis and portfolio management as applied to stocks and bonds.

MGT 3078. Finance and Investments
3-0-3.
An introduction to finance and to the securities markets. Topics include time value of money, risk and return, capital budgeting, security analysis and portfolio management of stocks, bonds, and derivatives.

MGT 3079. Management of Financial Institutions
3-0-3.
Prerequisite(s): MGT 3062 or MGT 3078
Introduction to the various risks faced by financial institutions and a detailed analysis of the tools used to manage these risks.

MGT 3084. Derivative Securities
3-0-3.
Prerequisite(s): MGT 3062 or MGT 3078
An introduction to options, futures, and swaps is provided. Concepts of arbitrage, index trading, and portfolio insurance are discussed.

MGT 3101. Organizational Behavior
3-0-3.
Introduction to how the behavior of individuals, groups, and organizations affects organizational effectiveness.

MGT 3102. Managing Human Resources within a Regulatory Environment
3-0-3.
Analysis of various frameworks for understanding the social regulatory environments of human resources management and how they influence management decision making.

MGT 3150. Principles of Management
3-0-3.
Explores functions of management: planning, organizing, staffing, leading, and controlling. Lectures, case studies, and business exercises are used to reinforce principles that are taught.

MGT 3300. Marketing Management I
3-0-3.
The course presents and develops the primary marketing variables that are used in designing an overall marketing program. A systems approach is taken with the variables managed to optimize overall results.

MGT 3310. Marketing Research: Qualitative Aspects
3-0-3.
Prerequisite: MGT 3300
Covers the fundamentals of the qualitative aspects of marketing research. The course has an applied orientation with application to contemporary issues in marketing.

MGT 3325. Product Planning
3-0-3.
Prerequisite(s): MGT 2250 and MGT 3300
Overviews issues inherent in product development and product management. These include product strategy, idea generation, market development, product positioning, test marketing, launch, and brand management.

MGT 3501. Operations Management
3-0-3.
Prerequisite: MGT 2251
This course focuses on the issues and techniques relevant to the management of the operations function within an organization, emphasizing its strategic significance.

MGT 3510. Managing Resources of the Technological Firm
3-0-3.
Prerequisite(s): MGT 2251
This course explores the competitive advantage manufacturing and service firms derive from the effective management of their technology, work force, materials, and information resources.

MGT 3660. International Business
3-0-3.
Prerequisite(s): MGT 3101 or MGT 3150
Examines the position of the United States in world markets, various types of international business transactions, and the relationship of business to global economic, political-legal, and cultural forces.
MGT 3661. Advanced Concepts in International Business
3-0-3.
Prerequisite: MGT 3660
Covers significant aspects of international business with a particular focus on the challenges associated with transnational corporations.

MGT 4010. Business Taxation
3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
Comprehensive survey of federal taxation of business. A focus on tax planning and decision making will extend to the study of the tax code and regulations.

MGT 4015. Advanced Managerial Accounting
3-0-3.
Prerequisite(s): ACCT 2102 or ACCT 2112
The course will examine current issues in managerial accounting using case studies and emphasizing service industries.

MGT 4026. Financial Reporting and Analysis I
3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
Intermediate-level treatment of revenue recognition, inventories, contracts, interest capitalization, property and equipment, intangibles, long-term liabilities, and shareholder’s equity. Significant emphasis on financial analysis.

MGT 4027. Financial Reporting and Analysis II
3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
Advanced topics including tax reporting, leases, pensions, foreign currency transactions, hedging, statement translation, and business combinations and consolidations. Significant emphasis in financial analysis.

MGT 4028. Financial Reporting and Analysis for Technology Firms
3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
An in-depth look at reporting standards for and the financial characteristics of technology firms, with an emphasis on the financial analysis of such firms.

MGT 4030. International Accounting
3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
An overview of accounting issues arising from the increased internationalization of business. Topics include comparative financial reporting among countries and accounting treatments of international transactions.

MGT 4041. Auditing and Financial Control Systems
3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
This course covers professional issues surrounding auditing and financial control systems. Topics include management fraud, legal liability, audit evidence, etc.

MGT 4045. Seminar in Advanced Accounting Topics
3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
An intensive treatment of a selection of contemporary accounting topics. Topical coverage may span subject matter ranging across the fields of auditing, systems, and managerial and tax accounting.

MGT 4051. Decision Support and Expert Systems
3-0-3.
Prerequisite: MGT 2200
This course discusses the basic features of decision support systems and expert systems. It covers development tools and business applications.

MGT 4052. Systems Analysis and Design
3-0-3.
Prerequisite: MGT 2200
An introductory course on the development life cycle of business information systems. It covers analysis and design tools and methodology.

MGT 4053. Business Data Communications
3-0-3.
Prerequisite: MGT 2200
Introductory data communication concepts. Data communication applications in organizations. Overview of data communication products and services available from a technology consumer perspective.

MGT 4055. International Issues in Information Technology Management
3-0-3.
Prerequisite: MGT 2200
An overview of international issues in the Information Technology Management (ITM) area. Topics include offshore software development, transborder data flow restrictions, and global connectivity issues.

MGT 4056. Electronic Commerce
3-0-3.
This course examines the business and technical issues related to electronic commerce applications, such as the Internet, WWW, EDI, and electronic linkages between trading partners.

MGT 4057. Business Process Analysis and Design
3-0-3.
Prerequisite: MGT 2200
Business processes are the mechanisms by which work is organized and performed. This course covers the analysis of business processes and efficient redesign through technology.

MGT 4058. Database Management Systems
3-0-3.
Prerequisite: MGT 2200
An introductory course on databases providing hands-on experience with a DBMS. Topics include data modeling, relational database design, and SQL.

MGT 4070. International Finance
3-0-3.
Prerequisite(s): MGT 3062 or MGT 3078
Financial management in an international setting. Topics
include foreign exchange markets, exchange risk management, international portfolio investment, and foreign direct investment.

MGT 4071. Multinational Financial Management
3-0-3.
This course emphasizes decision making for the multimedia firm amidst exchange rate fluctuations, differing tax structures across countries, and political risk via lectures, case-discussion and analysis, and project-based learning.

MGT 4190. Strategic Quality Management and Competitiveness
3-0-3.
Prerequisite: MGT 3150
This course examines the philosophy and techniques of strategic quality management (e.g. cycle time management, learning organizations, quality control) as means to promote individual productivity and improve organizational competitiveness.

MGT 4191. The Entrepreneurship Forum
3-0-3.
This course provides an understanding of the entrepreneurial process, explores the role of the entrepreneur, and identifies the critical issues in starting ventures and working in entrepreneurial organizations.

MGT 4195. Strategic Management
3-0-3.
Prerequisite(s): MGT 3062* and MGT 3300* and MGT 3501* and (MGT 3101* or MGT 3150*)
The use of cases, guest lecturers, and gaming to integrate analysis and measurement tools, functional areas, and public policy issues. The objective is to develop skills in broad areas of rational decision making in the administrative context of uncertainty.

MGT 4303. Sales Management
3-0-3.
Prerequisite: MGT 3300
Students will obtain an understanding of the management of the sales function. The importance of the marketing-sales interface will be stressed.

MGT 4305. Business to Business Marketing
3-0-3.
Prerequisite: MGT 3300
This course studies the marketing of products and services for resale, for use in producing other goods and services, and for the operations of an enterprise.

MGT 4307. Strategic Marketing
3-0-3.
Prerequisite: MGT 3300
Students will obtain an understanding of strategic marketing development and alternatives. Analysis and implementation through functional marketing strategies will be stressed.

MGT 4331. Consumer Behavior
3-0-3.
Prerequisite: MGT 3300
An applied course that provides a basic understanding of the behavioral science concepts to explain the behavior of consumers in the marketplace.

MGT 4335. International Marketing
3-0-3.
Prerequisite: MGT 3300
Students will obtain an understanding of marketing across national borders and cultures. The differences and similarities throughout the marketing functions are explored.

MGT 4352. Operations Resource Planning and Execution
3-0-3.
Prerequisite: MGT 3501
The management of material flows within an enterprise will be covered by tracking the evolution of operational planning and execution systems through the enterprise resource planning (ERP) framework.

MGT 4353. Operations Strategy
3-0-3.
Prerequisite: MGT 3501
Provides knowledge about developing, implementing, and evaluating operations strategy. It stresses the relationships between the operations and other functions of the organization.

MGT 4360. Global Operations and Supply Chain Management
3-0-3.
Prerequisite: MGT 3501
This course is designed to present issues critical to the globalization of operations and addresses strategic and tactical issues pertaining to an organization's global operations and supply chain activities.

MGT 4365. Quality Control and Improvement
3-0-3.
Prerequisite: MGT 3501
This course focuses on statistical process control, acceptance sampling, robust design, and other general methodologies for quality improvement.

MGT 4366. Service Operations Management
3-0-3.
Prerequisite: MGT 3501
This course analyzes operational performance for the service and for service support functions of manufacturers. Industries include information services, health care, parking, transportation, distribution, and retail.

MGT 4660. Entrepreneurship for Engineers
3-0-3.
Prerequisite(s): ACCT 2101 and MGT 3062 and MGT 3300
Provides engineering students with an understanding of the process of establishing a technology-based venture. Students learn how to evaluate market opportunities, conduct feasibility studies, create venture teams, and write business plans.

MGT 4661. Database Management
3-0-3.
Prerequisite: MGT 2200
An introductory course on databases providing hands-on experience with a DBMS. Topics include data modeling, relational database design, and SQL.
MGT 4803. Special Topics
3-0-3.
Permits a group of students and a professor to pursue areas of management not extensively treated in any other course.

MGT 4811, -12, -13, -14, -15. Special Topics in Management
Credit and class hours equal last digit in course number.
Permits a group of students and a professor to pursue areas of management not extensively treated in other courses.

MGT 4901, -2, -3. Individual Research in Management
Credit hours to be arranged.
Designed to permit independent study with a faculty member.

MGT 4990. Internship Program
Credit hours to be arranged.
Broadens the scope of the College by offering students a community-based learning experience that stresses the completion of a specific task.

MGT 6000. Financial and Managerial Accounting I
3-0-3.
A foundation course in measuring and reporting the financial performance and status of the firm, as well as basic concepts in cost and managerial accounting.

MGT 6010. Business Taxation
3-0-3.
Prerequisite(s): MGT 6000
Comprehensive survey of federal taxation of business. A focus on tax planning and decision making will extend the study of the tax code regulations.

MGT 6015. Managerial Accounting II
3-0-3.
Prerequisite: MGT 6000
The course covers cost estimation, standard costs, variable costing, relevant costs, transfer pricing, performance evaluation, cost of quality, and activity-based costing for service.

MGT 6020. Financial Reporting and Analysis I
3-0-3.
Prerequisite: MGT 6000

MGT 6022. Financial Reporting and Analysis II
3-0-3.
Prerequisite: MGT 6000
Advanced topics including tax reporting, leases, and pensions.

MGT 6028. Financial Reporting and Analysis of Technology Firms
3-0-3.
Prerequisite: MGT 6000
An in-depth look at reporting standards for and the financial characteristics of technology firms, with an emphasis on the financial analysis of such firms.

MGT 6030. International Accounting
3-0-3.
Prerequisite: MGT 6000
An overview of accounting issues arising from the increased internationalization of business. Topics include comparative financial reporting among countries and accounting treatments of international transactions.

MGT 6042. Auditing and Financial Control Systems
3-0-3.
Prerequisite: MGT 6000
This course covers professional issues surrounding auditing and financial control systems. Topics include management fraud, legal liability, audit evidence, etc.

MGT 6045. Seminar in Advanced Accounting Topics
3-0-3.
Prerequisite: MGT 6000
An intensive treatment of a selection of contemporary accounting topics. Topical coverage may span subject matter ranging across the fields of auditing, systems, and managerial and tax accounting.

MGT 6050. Management Information Systems
3-0-3.
This course provides an introduction to the use of information systems in modern organizations. Various issues relating to the management of information technology are discussed.

MGT 6051. Database Development and Applications
3-0-3.
Prerequisite: MGT 6050
The role of databases in the modern enterprise. Design and development of database systems. Applications in accounting, marketing, operations, and human resource systems.

MGT 6052. Systems Analysis and Design
3-0-3.
Prerequisite: MGT 6050
An introduction to the development life cycle of business information systems. It covers analysis and design tools and methodology.

MGT 6053. Business Data Communications
3-0-3.
Prerequisite: MGT 6050
Introductory data communication concepts. Data communication applications in organizations. Overview of data communications products and services available from a technology consumer perspective.

MGT 6054. International Issues in Information Technology Management
3-0-3.
Prerequisite: MGT 6050
An overview of international issues in the Information Technology Management area. Topics include offshore software development, transborder data flow restrictions, and global connectivity.
MGT 6055. Decision Support and Expert Systems
3-0-3.
Prerequisite: MGT 6050
This course discusses the basic features of decision support systems and expert systems. It covers development tools and business applications.

MGT 6056. Electronic Commerce
3-0-3.
Prerequisite(s): MGT 6050
This course examines the business and technical issues related to electronic commerce applications, such as the Internet, WWW, EDI, and electronic linkages between trading partners.

MGT 6057. Business Process Analysis and Design
3-0-3.
Prerequisite: MGT 6050
Business processes are the mechanisms by which work is organized and performed. This course covers the analysis of business processes and efficient redesign through technology.

MGT 6060. Financial Management
3-0-3.
Prerequisite: MGT 6000
An introduction to finance. Topics include time value of money, capital budgeting, risk and return, capital structure dividend policy, and working capital management.

MGT 6066. Corporate Restructuring
3-0-3.
Prerequisite: MGT 6060
This course seeks to give students an understanding of issues in corporate restructuring. Topics include valuation, mergers, acquisitions, spin-offs, financial distress, corporate governance, and high leveraged transactions.

MGT 6070. International Finance
3-0-3.
Prerequisite: MGT 6060
Financial management in an international setting. Topics include foreign exchange markets, exchange risk management, international portfolio investment, and foreign direct investments.

MGT 6071. Multinational Financial Management
3-0-3.
Prerequisite: MGT 6060
This course emphasizes decision-making for the multinational firm amidst exchange rate fluctuations, differing tax structures across countries, and political risk via case discussion and analysis.

MGT 6078. Basic Finance and Investments
3-0-3.
An introduction to finance, including the fundamental concepts of financial accounting, corporate finance, and portfolio optimization. This course emphasizes basic concepts related to both equities and fixed-income securities.

MGT 6080. Investments
3-0-3.
Prerequisite: MGT 6060
Introduction to securities markets and study of theory and practice of security analysis and portfolio management concepts as applied to equities and fixed-income securities.

MGT 6081. Derivative Securities
3-0-3.
Prerequisite: MGT 6060
An introduction to options, futures, and swaps is provided. Concepts of arbitrage, index trading, and portfolio insurance are discussed.

MGT 6085. Entrepreneurial Finance
3-0-3.
Prerequisite: MGT 6060
This course teaches future managers and entrepreneurs the financial perspectives in value creation.

MGT 6090. Management of Financial Institutions
3-0-3.
Prerequisite: MGT 6060
Introduction to the various risks faced by financial institutions and a detailed analysis of the tools used to manage these risks.

MGT 6100. Leadership and Organizational Behavior
3-0-3.
The focus of this course is on behavioral issues in the management of individual, team, and organizations performance.

MGT 6101. Managing Human Resources
3-0-3.
An examination of the tools and procedures used by organizations to attract, select, and retain employees within the context of the legal and regulatory environment.

MGT 6106. Teamwork in Organizations
3-0-3.
Prerequisite: MGT 6100
The focus of the course is on understanding the use, management and performance of teams and teamwork in organizational settings.

MGT 6107. Leadership and Organizational Change
3-0-3.
Prerequisite: MGT 6100
An examination of theories and practices for designing and implementing major organizational change and the role played by leadership, power, and influence in change process.

MGT 6109. Management Aspects of Advanced Manufacturing Technology
3-0-3.
Examines organizational and human resources management implications of advanced manufacturing technology. Focuses on key management choices that impact the successful implementation of the new technologies.

MGT 6110. Negotiation and Conflict Resolution
3-0-3.
Prerequisite: MGT 6100
This course covers the theory and process of negotiation and conflict resolution as it is practiced in different settings.
MGT 6111. Innovation and Entrepreneurial Behavior 3-0-3.
An examination of organizational policies, practices, and cultures that foster innovative and entrepreneurial behavior even in the context of large organizations.

MGT 6112. Managing Organizational Learning, Quality, and Business Process Improvement 3-0-3.
An examination of theories and methods used by organizations to achieve higher levels of product and service quality through improvements in learning and work processes.

MGT 6165. Venture Creation 3-0-3.
Focuses on creating a new business venture. Requires completing a business plan, which describes and analyzes a proposed venture.

This course examines the challenges associated with the successful management of growth. Models and theories of firm growth will be reviewed.

MGT 6184. International Trade/Export-Import Management 3-0-3.
An examination of U.S. trade policy, laws, and regulations as well as the mechanics of export and import management.

This graduate course explores international environmental factors impacting firms' globalizing operations. Factors covered range from economic, political, and legal to socio-cultural and technology forces.

MGT 6195. Strategic Management 3-0-3.
This course examines the environmental and organizational factors that affect the performance of firms as well as the role of top managers in the organizational governance process.

MGT 6197. Global Strategic Management 3-0-3.
This course provides a forum for the in-depth examination of the managerial and organizational demands associated with effectively competing in global industries.

MGT 6198. Corporate Entrepreneurship for Global Competitiveness 3-0-3.
This course examines how strategic pioneering actions and innovation are used by organizations to renew themselves, their markets, and their industries.

This course focuses on the activities of managers who make the everyday decisions that guide the marketing of goods and services. Students take the principles that they learn and apply them directly to solving relevant case problems.

MGT 6302. Consumer Behavior 3-0-3.
This course exposes students to behavior science concepts and approaches in understanding and predicting the behavior of consumers.

MGT 6303. Sales Management 3-0-3.
Prerequisite: MGT 6300
Students will obtain an understanding of the management of the sales function. The importance of the marketing-sales interface will be stressed.

MGT 6305. Strategic Marketing 3-0-3.
Prerequisite: MGT 6300
Students will obtain an understanding of integration of marketing planning into the strategic planning process. Focuses on concepts that facilitate the development of a strategic plan.

Prerequisite: MGT 6300
This course studies the marketing of products or services for resale, for use in producing other goods and service operations of an enterprise.

MGT 6310. Marketing Research: Qualitative Aspects 3-0-3.
Prerequisite(s): MGT 6300 and MGT 6600
This course seeks to impart an understanding of the various applied multivariate techniques available for analyzing and interpreting marketing data.

MGT 6315. Marketing Analysis 3-0-3.
Prerequisite(s): MGT 6300 and MGT 6600
This course seeks to impart an understanding of the various applied multivariate techniques available for analyzing and interpreting marketing data.

MGT 6318. Marketing Technology 3-0-3.
Prerequisite: MGT 6600
Technological breakthroughs alone will not enable a company to survive. Marketing makes products. The course covers the ingredients for marketing success for technological products.

Prerequisite(s): MGT 6300 and MGT 6600
Knowing that a company can take actions that affect its own sales market response models can be used to aid in planning and forecasting.

MGT 6325. Product Planning 3-0-3.
Prerequisite: MGT 6300
Study of new product development process. Use of market research data and marketing models for product design, test marketing, product positioning, market segmentation, market share estimation, and product portfolio management.
MGT 6326. Collaborative Product Development
3-0-3.
Examines issues inherent in product development and product management. These include product strategy, idea generation, market development, product positioning, test marketing, and launched brand management.

MGT 6335. International Marketing
3-0-3.
Students will obtain an understanding of marketing across national borders and cultures. The differences and similarities throughout marketing functions are explored.

MGT 6340. Electronic Commerce and Marketing
3-0-3.
Examines the impact that the Internet is having on business-to-consumer and business-to-business marketing of goods and services, and considers appropriate corporate strategies.

MGT 6350. Operations Management
3-0-3.
Prerequisite: MGT 6600
This course focuses on the issues and techniques relevant to the management of the organization within and recognizing its strategic significance.

MGT 6351. Operations Resource Planning and Execution
3-0-3.
Prerequisite: MGT 6350
The management of material flows within an enterprise will be covered by tracking the evolution of operational planning and execution systems through the enterprise resource planning (ERP) framework.

MGT 6353. Operations Strategy
3-0-3.
Prerequisite: MGT 6350
Provides knowledge about developing, implementing, and evaluating operations strategy. It stresses the relationships between the operations and other functions of the organization.

MGT 6357. Service Operations Management
3-0-3.
Prerequisite: MGT 6350
This course analyzes operational performance for the service sector and service support functions of manufacturers. Industries include information services, health care, banking, transportation, distribution, and retail.

MGT 6358. Quality Control and Improvement
3-0-3.
Prerequisite: MGT 6350
This course focuses on statistical process control, acceptance sampling, robust design, and other general methodologies for quality improvement.

MGT 6360. Global Operations and Supply Chain Management
3-0-3.
Prerequisite: MGT 6350
This course is designed to present issues critical to the globalization of operations and addresses strategic and tactical issues pertaining to an organization's global operations and supply chain activities.

MGT 6600. Analytical Tools for Decision Support
3-0-3.
Examines issues inherent in product development and product management. These include product strategy, idea generation, market development, product positioning, test marketing, and launched brand management.

MGT 6753. Principles of Management for Engineers
3-0-3.
The course provides an introduction to selected topics needed to be successful in the technology industries. Crosslisted with ME 6753.

MGT 6769. Fixed-Income Securities
3-0-3.
Prerequisite(s): (MATH 3215 or MATH 3225) and (MGT 6060 or MGT 6078)
Description, institutional features, and mathematical modeling of fixed-income securities. Use of both deterministic and stochastic models. Crosslisted with ISYE 6769 and MATH 6769.

MGT 6772. Managing Resources of the Technological Firm
3-0-3.
This course explores the competitive advantage manufacturing and service firms derive from effective management of their technology, workforce, materials, and information resources. Crosslisted with ISYE 6772.

MGT 6773. Strategic Management of Technology-Based Ventures
3-0-3.
This course provides a forum for the in-depth examination of issues involving the strategic management of high-tech corporate start-ups and small technology-based businesses. Crosslisted with ISYE 6773.

MGT 6774. Management of Technology Project
3-0-3.
This course organizes students into multidisciplinary teams devoted to solving a real problem for a technology-based firm. Crosslisted with ISYE 6774.

MGT 6775. Management of Technology Seminar
1-0-1.
This course introduces the frontiers of key technologies, provides a forum for visiting speakers from the corporate world, and supplements topics from other MOT courses. Crosslisted with ISYE 6775.

MGT 6777. Analysis of Emerging Technologies
3-0-3.
The course develops skills in the use of selected methods for technology monitoring, forecasting, and assessment. Also examines current status and prospects in selected emerging technology domains. Crosslisted with ISYE and PUBP 6777.
MGT 6780. Knowledge Management
3-0-3.
Prerequisite: MGT 6050
The purpose of this course is to enable students to think conceptually about the modern organization as a knowledge-based, information-processing organization. Crosslisted with PUBP 6780.

MGT 6785. The Practice of Quantitative and Computational Finance
3-0-3.
Case studies, visiting lecturers from financial institutions, student group projects of an advanced nature, and student reports, all centered around quantitative and computational finance.

MGT 6788. Legal Issues in Biomedical Engineering
3-0-3.
Study and analysis of U.S. government laws applicable to the development and clinical use of biomedical engineering technology. Crosslisted with ECE, CHE, ME, and BMED 6788.

MGT 6789. Technology Ventures
3-0-3.
Team discussion and case studies in biomedical engineering technology transfer, including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with BMED, ECE, CHE, and ME 6789.

MGT 6793. Advanced Topics in Quantitative and Computational Finance
3-0-3.
Advanced foundational material and analysis techniques in quantitative and computational finance.

MGT 6811. Integrative Management Analysis
3-0-3.
Integrates the functional areas of management and economics, with the external environment of businesses. Provides understanding of the current surroundings and pressures under which managers operate.

MGT 6813. Economic Analysis for Managers
3-0-3.
Economic reasoning and principles useful in understanding and solving managerial and public policy questions. Practice in analyzing major domestic and international economic events is included.

MGT 6814. Law, Management, and Economics
3-0-3.
Prerequisite: MGT 6100
The interrelationships among law, economics, and managerial decision making. Focuses on the legal and economic environments that impinge on profit-seeking enterprises.

MGT 6820. Unstructured Managerial Problems
3-0-3.
Prerequisite(s): ECON 6000 and MGT 6813
Solving unstructured managerial problems. Emphasis is placed on understanding the behavioral and economic theories that impinge on the environment of the firm and affect managerial choice.

MGT 6901. Consulting
3-0-3.
Students work in teams for client firms in a consulting capacity. The client firms are preselected, but the problem definition is derived from client-team negotiations.

MGT 7000. Master's Thesis
Credit hours to be arranged.

MGT 7060. Theory of Finance
3-0-3.
This Ph.D. course is an introduction to theoretical financial economics. This course focuses on individuals' consumption and investment decisions under uncertainty and their implications on the valuation of securities.

MGT 7061. Empirical Finance
3-0-3.
This Ph.D. course is a survey of selected current empirical research topics in finance and related econometric issues.

MGT 7062. Corporate Restructuring
3-0-3.
This Ph.D. course is an analysis of empirical research in corporate finance with a focus on issues related to corporate restructuring.

MGT 7063. International Finance
3-0-3.
This Ph.D. course is an introduction to the foundations of modern international finance. Topics include international portfolio diversification, design of country funds, tests of asset pricing, and international corporate finance.

MGT 7101. Human Resources Management
3-0-3.
This Ph.D. course is an analysis of advanced practice, research, and theory in human resource management. Topics will vary by instructor and student interest.

MGT 7102. Organization Behavior Research Methods
3-0-3.
This Ph.D. course is an overview and analysis of research methodologies used in conducting scientific research of organizational behavior.

MGT 7105. Individual Behavior in Organizations
3-0-3.
This Ph.D. course is designed to investigate organizational behavior research topics at the individual level of analysis.

MGT 7106. Group Dynamics
3-0-3.
This Ph.D. course provides a fundamental understanding of group processes in organizations by analyzing and critiquing classic and contemporary theories and research on groups.

MGT 7107. Organizational Theory
3-0-3.
This Ph.D. course provides a preview of contemporary organizational theories and empirical studies of them to provide a framework to understand organizational structures, environments, and goals.
This Ph.D. course provides a survey of research and theory in the marketing management and strategy literature.

MGT 7320. Marketing Science 3-0-3.
This Ph.D. course addresses the literature on state-of-the-art research on quantitative approaches to marketing problems.

This Ph.D. seminar will discuss research papers dealing with strategic issues in operations management.

This Ph.D. seminar is a continuation of MGT 7350 and will deal with more advanced strategic issues in operations management.

This doctoral seminar will discuss research papers dealing with tactical and operational (planning and control) issues in operations management.

This doctoral seminar is a continuation of MGT 7352 and will discuss advanced papers dealing with tactical and operational (planning and control) issues in operations management.

This doctoral seminar will discuss papers dealing with research methods in operations management.

MGT 8803. Special Topics in Management 3-0-3.
Topics of current interest in the field of management.

MGT 8850. Research Topics in Finance 3-0-3.
Topics of current interest in finance.

MGT 8851. Research Topics in Organizational Behavior 3-0-3.
Topics of current interest in organizational behavior.

MGT 8853. Research Topics in Marketing 3-0-3.
Topics of current interest in marketing.

MGT 8855. Research Topics in Operations Management 3-0-3.
Special research topics of current interest in operations management.

MGT 8903. Special Problems in Management 3-0-3.
Credit hours to be arranged.
Provides project work experience in the field of management.

MGT 8997. Teaching Assistantship 3-0-3.
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

MGT 8998. Research Assistantship 3-0-3.
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

Credit hours to be arranged.

ACCOUNTING

An introduction to the measurement and financial reporting of organizations and the interpretation of the resulting financial statements.

ACCT 2102. Accounting II: Managerial Accounting 3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
The course deals with determining the costs of products and services and using cost information for planning and decision making.

An introduction to the measurement and financial reporting of organizations and the interpretation of the resulting financial statements.

ACCT 2112. Honors Accounting II: Managerial Accounting 3-0-3.
Prerequisite(s): ACCT 2101 or ACCT 2111
Course deals with determining the costs of products and services and using information for planning and decision making.

INTERNATIONAL EXECUTIVE MASTER'S IN BUSINESS ADMINISTRATION

IMBA 6000. Strategic Decision Making and Compromise Game 1-0-1.
A multifirm, competitive management simulation. The objective is to sharpen intra-firm communications skills using the Internet as the communications channel and the art of compromise.

Participants learn tools and information to improve communications skills with new approaches and increased understanding while taking into account the effects of cross-cultural differences on communications.

Widely used organization and simulation techniques that are useful for analyzing decision situations. Emphasis is placed on the application and use of theoretical knowledge.
IMBA 6030. Organizational Behavior and Theory
3-0-3.
Students learn the basic concepts and principles of organizational behavior and utilize such to analyze and solve organizational decision-making problems.

IMBA 6040. Economic Analysis of Decisions in a Global Economy
3-0-3.
Participants are provided with a nontraditional approach using an analytical method with a global perspective to the concepts and role of economics in the world environment.

IMBA 6050. Financial and Managerial Accounting
3-0-3.
Course covers financial reporting and analysis issues facing firms, and managerial accounting information necessary for planning, controlling, and decision making within such firms.

IMBA 6060. Information Systems for Management
3-0-3.
Students focus on managing the information technology function and make extensive use of cases to illustrate key IT decisions that need to be made by organizations.

IMBA 6070. Managerial Finance in World Markets
4-0-4.
A two-part course providing an understanding of finance concepts and how they are used. The course then further integrates international and ethical considerations wherever applicable.

IMBA 6080. Operations and Logistics Management
3-0-3.
Concepts and issues critical to the globalization of manufacturing and services operations.

IMBA 6090. Marketing and Consumer Behavior
3-0-3.
Students are provided with an understanding of marketing and consumer behavior concepts and tools with an international environment approach.

IMBA 6100. New Product Design and Marketing Research
1-0-1.
The interdisciplinary nature of product development and management, and market research. Students cover product issues that emerge during the product life cycle.

IMBA 6110. Risk Management and Technology Transfer
2-0-2.
A course based upon a combination of cases, historical data, and theoretical interpretation on the analysis and allocation of risk in international investment and technology transfer.

IMBA 6120. Human Resource Management
3-0-3.
Participants learn how to manage people to gain global competitive advantage, and are exposed to international cases.

IMBA 6130. Strategy, Policy, and Planning
3-0-3.
Teaches the design and implementation of corporate business, and functional strategies that will achieve sustainable competitive advantage in the international arena.

IMBA 6140. Comparative Management Systems
2-0-2.
This course utilizes case studies of companies in various industries and in national cultures to highlight organizational and cultural differences between major economies in the global environment.

IMBA 6150. Entrepreneurship and Entrepreneurial Firms
1-0-1.
Participants explore the increasing importance of small and medium-sized businesses and new ventures in international business.

IMBA 6160. National and International Regulation of Business
2-0-2.
Deals with learning how to control the legal aspects of international decisions.

IMBA 6170. Quality, Sustainable Technology, and Competitiveness
1-0-1.
Students learn the philosophy and techniques of strategic quality management while focusing on assessment and group decisions centered on sustaining technology and competitiveness.

IMBA 6180. Leadership Skills and Processes
1-0-1.
Focuses on identifying and developing the attributes of successful leadership.

IMBA 6200. Strategic Business Simulation
2-0-2.
A unifying course providing a simulated application of the material taught in the core courses of the program.

IMBA 6210. Analysis of Emerging Technology
2-0-2.
A case-based course dealing with the role and impact of digital technology in large and small organizations, with special emphasis on multinational companies.

IMBA 6220. Applied Entrepreneurship Seminar
1-0-1.
A case course building an information bank of theory and practice on start-up enterprises. Several entrepreneurs will co-teach the course with a faculty leader.

IMBA 6230. International Business Negotiations
1-0-1.
A role-play course involving the complex international negotiation simulation dealing with an international business enterprise and its relationship with one or more governments.
MASTER OF SCIENCE IN THE MANAGEMENT OF TECHNOLOGY

MOT 6101. Frameworks for Managing Technology 1-0-1.
The sociotechnical aspects of organizations are examined, and participants' technological and people skills (communications, teamwork, conflict resolution) are enhanced.

Studies the economic concepts that describe and explain the environment within which firms operate.

MOT 6103. Financial and Managerial Accounting 2-0-2.
Covers the basic concepts that underlie the use of accounting information. Includes balance sheet, income statement, alternative costing systems.

Course focuses on financial concepts and how they are used to maximize the value of the firm and choose among alternative courses of action.

Focuses on statistics and mathematical modeling of use to decision makers in technology environments with significant uncertainty.

MOT 6106. Processes of Technological Innovation 2-0-2.
This course addresses the processes involved in technological innovation, focusing on models, sources, flows, and the protection of innovation.

This course examines information systems and their impact in manufacturing and service operations.

This course introduces basic issues and techniques relevant to project and quality management.

This course focuses on the management and leadership of people and human resource systems in modern organizations.

Focuses on how work processes within organizations can be designed and managed to optimize output effectiveness.

This course introduces methods to adapt, evolve, or create change in the way organizations structure themselves to increase effectiveness in responding to competitive demands.

This course focuses on the marketing function, its relationship to other functions within the firm, and its strategic significance to high-tech organizations.

The impact of globalization on the management of technology is explored through a two-week study tour in Europe.

This seminar features senior executives from organizations that develop or use technology discussing current practices, policies, and issues.

MOT 6115. Forecasting and Analysis of Emerging Technologies 2-0-2.
This course examines key emerging technologies, their development patterns, and the associated impact on industries, industrial competitiveness, and society.

This course examines and discusses how technology-based firms develop and implement business, functional, and technology strategies.

Participants develop and present a proposal for a technology-based research project of interest to them and of importance to their organization.

MOT 6121. Management of Technology Project II 2-0-2.
Participants execute their MOT project research proposals, including data collection and preliminary analysis.

Participants complete their MOT project research, submit a written report, and present their results to their organization.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.
College of Engineering
www.coe.gatech.edu

College established in 1948, first engineering program in 1885
Location: 225 North Avenue
Atlanta, GA 30332-0360
Telephone: 404.894.3350
Fax: 404.894.0168
E-mail: coe@coe.gatech.edu

Dean—Jean-Lou Chameau; Associate Deans—April S. Brown, J. Narl Davidson, Jack R. Lohmann;
Assistant Deans—Lydia R. Howard, Jane G. Weyant;
Director of Continuing Engineering Education—R. Dale Atkins; Director of Development—Raymond H. Reynolds Jr.; Director of Special Projects—Robert G. Haley.

General Information
The College of Engineering comprises nine degree-granting schools of instruction and research. The schools offer programs of study and research leading to bachelor's, master's, and doctoral degrees. Some of the schools also offer programs in one or more subdisciplines or subspecialties.

The programs in engineering are designed to provide a fundamental understanding of the engineering sciences, which are based on mathematics and the natural sciences, of the basic concepts of the humanities and social sciences, and an understanding of the manner in which these elements are interwoven in engineering practice. Each curriculum provides enough flexibility through elective course opportunities to permit a certain amount of program individualism while meeting basic requirements.

Transfer Programs in the College of Engineering
To encourage and accommodate students who desire to study engineering, but who for various reasons may prefer to attend another college before coming to Georgia Tech, the College of Engineering offers the opportunity to transfer to Georgia Tech through the Regents' Engineering Transfer Program (RETP) or the Dual Degree Program.

Regents' Engineering Transfer Program
The RETP is a cooperative program between Georgia Tech and 11 colleges in the University System of Georgia:
- Albany State University
- Armstrong Atlantic State University
- Columbus State University
- Gainesville College
- Georgia Southern University
- Macon State College
- Middle Georgia College
- North Georgia College & State University
- Savannah State University
- Valdosta State University
- State University of West Georgia

For the first two years, students in this program attend one of the participating institutions, where they take all of the mathematics and science and many of the engineering courses required in the first two years of the Georgia Tech engineering curricula. Upon successful completion of the RETP requirements at the RETP institution, students are admitted to Georgia Tech to work toward completion of a bachelor of science in engineering degree.

By enrolling in RETP, students may attend a college close to home, thereby decreasing the cost of their education and easing the adjustment to college life. At the same time, RETP students enjoy many of the following advantages of Tech students: they have equal access to engineering majors at Tech, they can participate in the co-op program, and they are invited to the Tech campus once a
year for campus tours, information sessions, and meetings with advisors in their engineering major.

Dual Degree Program
Under the Dual Degree Program, students attend the participating Dual Degree school for three years and then come to Georgia Tech for approximately two years. Students participating in the Dual Degree Program may seek a degree from any undergraduate degree-granting program in the College of Engineering. Upon completion of the program, the student receives a bachelor's degree from the first school and a bachelor's degree in one of the engineering disciplines at Georgia Tech.

Participating in the Dual Degree Program are many of the schools in the University System of Georgia, Morehouse College, Spelman College, Clark Atlanta University, Morris Brown College, and other traditionally black colleges and predominantly women's colleges in the Southeast.

For additional information on either of these programs, contact the College of Engineering at Georgia Tech or the RETP or Dual Degree coordinator at a participating RETP or Dual Degree institution.

Georgia Tech Regional Engineering Program (GTREP)
The Georgia Tech Regional Engineering Program currently offers two programs of study and research, leading to bachelor of science degrees in civil engineering and computer engineering.

During the freshman and sophomore years of the program, students are enrolled through one of three partner institutions: Armstrong Atlantic State University, Georgia Southern University, or Savannah State University. These universities offer all of the mathematics and science courses and some of the engineering courses required in the first two years of the Georgia Tech engineering curricula. Students also have the opportunity to register for some Georgia Tech courses during this time.

Prior to the junior year, students apply for transfer admission to Georgia Tech and complete their degree program as a Georgia Tech student. Students remain physically located at the campus of their partner institution, but are taught by local Georgia Tech faculty supplemented by distance learning connections. Nonengineering portions of the degree program continue to be offered by the partner institutions during the junior and senior years. Students graduating from GTREP receive a Georgia Tech diploma with the designation "Regional Engineering Program."

Graduate Programs

Bioengineering
In response to the increased need for engineers and medical scientists with advanced training in bioengineering, Georgia Tech now offers master's and doctoral degrees in bioengineering. The purpose of bioengineering as a research discipline is to develop new and better physical and mathematical concepts and techniques that may be applied to problems in medicine and biology, to the development of new medical devices, and to the organization and delivery of cost-effective health care. Interdisciplinary in scope, the program offers advanced courses in engineering specialties, life sciences, and bioengineering combined with training in biomedical research.

The interdisciplinary graduate programs in bioengineering are offered by the College of Engineering in conjunction with the Institute for Bioengineering and Biosciences (in the Office of Interdisciplinary Programs), the College of Sciences, and the College of Computing. The student will have a home school within the College of Engineering, which, upon completion of the student's requirements, will recommend the degree. This interdisciplinary approach has been approved by the faculty in the schools of Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil and Environmental Engineering (Engineering Science and Mechanics Program), Electrical and Computer Engineering, Materials Science and Engineering, Mechanical Engineering, and Textile and Fiber Engineering, and by the deans of the colleges of Engineering, Sciences, and Computing.

The program is for engineering graduates who wish to pursue a graduate degree in bioengineering rather than in a traditional field of engineering, or who have done bioengineering research in other disciplines. In addition, those interested students with nonengineering backgrounds (with degrees in such fields as computer science, physics, chemistry, biology, or mathematics) who meet the admission requirements will be admitted to the program. Applications from physicians with undergraduate degrees in engineering or the
appropriate recommendation, by the director of PERC to the school of residence desired by the applicant. Admission to the graduate degree programs requires the approval of PERC and the school of residence. The final decisions regarding admission and financial aid are made by the school of residence. Since the requirements for the polymer program are the same in each school, applicants should consider the research projects available in each school. If admission or financial aid is denied by the intended school of residence to an applicant who receives positive recommendation from PERC, consideration will be given by the other schools participating in the Graduate Polymer Degree Programs.

Multidisciplinary Certificate Programs in Engineering

In addition to its degree programs, the College of Engineering provides opportunities for specialized study in engineering through its multidisciplinary certificate program offerings. Any student in good academic standing who is pursuing a degree in one of the participating schools of the College of Engineering or a participating school in any of the other colleges may select elective courses and the subjects of special problems to satisfy simultaneously both the requirements of his or her major degree program and those of a specialized multidisciplinary program. Upon graduation, the student receives both the degree in the major field of study and a certificate attesting to successful completion of the particular related multidisciplinary program. The following table shows available program offerings and the degree levels of the programs.

Multidisciplinary Programs

<table>
<thead>
<tr>
<th>Program</th>
<th>Degree Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoustical Engineering</td>
<td>M Ph.D.</td>
</tr>
<tr>
<td>Composites Engineering</td>
<td>B M Ph.D.</td>
</tr>
<tr>
<td>Geohydrology</td>
<td>M Ph.D.</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>M Ph.D.</td>
</tr>
<tr>
<td>Mechanical Properties of Solids</td>
<td>Ph.D.</td>
</tr>
<tr>
<td>Polymer Engineering</td>
<td>B M Ph.D.</td>
</tr>
<tr>
<td>Pulp and Paper Engineering</td>
<td>B Ph.D.</td>
</tr>
</tbody>
</table>

General Requirements of Undergraduate Multidisciplinary Programs

The specific design of the multidisciplinary program of any participating undergraduate student, while individualized, must meet certain general requirements as well as requirements that are specific to that multidisciplinary area. The general
Aerospace Engineering

(minimum) undergraduate multidisciplinary requirements are as follows:
1) the program must relate the student's major area to the given multidisciplinary area;
2) courses must be taken under more than one academic unit;
3) at least 12 credit hours (not required by name and number in the student's major) must be taken in a coherent program;
4) at least 9 credit hours must be at the 3000 level or higher;
5) at least 3 credit hours must be outside the major field (crosslisted courses may be counted outside the student's major); and
6) courses must be taken on a letter-grade basis, and a grade of C or better must be earned in each course counting toward a multidisciplinary certificate.

General Requirements of Graduate Multidisciplinary Programs

The specific design of the multidisciplinary program of any participating graduate student, while individualized, must meet certain general requirements as well as requirements that are specific to that multidisciplinary area. The general (minimum) graduate multidisciplinary requirements are the same as those listed previously for the undergraduate programs, with the following exceptions:
1) at least 3 of the coherent multidisciplinary program courses as well as 9 credit hours must be at the 6000 level or higher;
2) students at the doctoral level must, on an individual basis, meet additional requirements specified by the student's doctoral committee, consistent with a program beyond the master's level whose objective is to develop a doctoral-level multidisciplinary program.

Interested students may obtain detailed information on the various undergraduate-level and graduate-level multidisciplinary programs from the main office of the school in which they are enrolled.

Certificate Procedures

Petitions for multidisciplinary program certificates are processed as follows:
1) During the semester in which the student expects to graduate, the student obtains a Petition for Multidisciplinary Certificate from the academic advisor of his or her major school, or from the chairperson of the relevant multidisciplinary program. The student completes the form, then obtains the signature of the chair of his or her school, as well as the signature of the chairperson of the certificate program.
2) When complete, the petition is forwarded to the Office of the Dean of Engineering.
3) At the end of the semester, if the appropriate school director and the multidisciplinary chairperson have certified that the major program requirements and special program requirements have been satisfactorily met, and the registrar has verified that all graduation requirements have been met, each certificate will be signed by the multidisciplinary chairperson and by the dean.
4) Multidisciplinary certificates are sent to recipients after graduation. A copy of the petition and certificate are on file in the Office of the Dean of the College of Engineering.

School of Aerospace Engineering

www.ae.gatech.edu

Daniel Guggenheim School of Aeronautics, Established in 1930
Location: Montgomery Knight Building
Telephone: 404.894.3000
Fax: 404.894.2760
E-mail: info@ae.gatech.edu

Chair and William R.T. Oakes Professor—Robert G. Loewy; Associate Chair and Professor—Jechiel I. Jagoda; David S. Lewis and Regents' Professor—Ben T. Zinn; Regents' Professor—Lakshmi N. Sankar; Regents' Professors Emeriti—Robin B. Gray, Edward W. Price.

Professors—K.K. Ahuja (joint, GTRI), Erian A. Armanios, Olivier A. Bauchau, Anthony J. Calise, James I. Craig, Don Giddens (joint, BME), Wassim M. Haddad, Sathyanarayana V. Hanagud, Dewey H. Hodges, Manohar P. Ramat, George A. Kardomeates, Narayanan M. Komerath,
The School of Aerospace Engineering prepares students at the bachelor’s, master’s, and doctoral levels for a career in vehicle engineering, with primary emphasis on flight vehicles. The School is housed in five buildings having a floor space of approximately 93,000 square feet, most of which is devoted to instructional and research laboratories. Additional information can be found on the School of Aerospace Engineering website at www.ae.gatech.edu.

General Information
The first two years focus on course work in the areas of chemistry, mathematics, physics, humanities, social sciences, and general engineering sciences. The third and fourth years emphasize aerospace disciplines and vehicle systems integration. The undergraduate curriculum is designed to provide each student with a general background for either employment in industry or government laboratories, or advanced study in graduate school at the end of four years. The program stresses the theoretical, experimental, and design aspects of aerospace engineering. Courses do not have to be taken during the specific semester indicated in the curriculum, but all prerequisites must be satisfied for each course. Advisement by an assigned faculty member is required before registration. A certain degree of specialization is available to undergraduate students through the proper choice of electives, as are opportunities for undergraduate research, depending on the student’s abilities and career objectives. Students should consult with academic advisors for the availability of courses and recommended course sequences.

Bachelor of Science in Aerospace Engineering
(Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>CS 1521 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>AE 1350 INTRO. TO AE</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>AE 2120 INTRO. TO MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>AE/ME/CEE 1770 ENGR. GRAPHICS</td>
<td>3</td>
</tr>
<tr>
<td>LCC 3401 TECH. COMMUNICATION PRACTICES</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>
Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 2020 LOWSPEED AERODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>AE 2220 DYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100 ECONOMICS & POLICY</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS 16

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 3120 INTRO. STRUCTURAL ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>AE 3520 VIBRATIONS & SYS. DYNAM.</td>
<td>3</td>
</tr>
<tr>
<td>AE 3450 THERMODYNAMICS & COMPRESS. FLOW</td>
<td>3</td>
</tr>
<tr>
<td>AE 3051 EXPER. FLUID DYNAMICS</td>
<td>2</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2001 ENGR. MATERIALS</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS 17

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 3021 HIGH-SPEED AERODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>AE 3121 STRUCTURAL ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>AE 3521 FLIGHT DYNAMICS</td>
<td>4</td>
</tr>
<tr>
<td>AE 3310 INTRO. VEHICLE PERFORMANCE</td>
<td>3</td>
</tr>
<tr>
<td>AE 3145 STRUCTURES LAB</td>
<td>1</td>
</tr>
<tr>
<td>ECE 3710 CIRCUITS & ELECTRONICS</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS 16

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 4451 JET & ROCKET PROPULSION</td>
<td>3</td>
</tr>
<tr>
<td>AE 4520 FEEDBACK CONTROL SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>AE 4350 DESIGN PROJECT I</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3741 INSTRUM./ELECTRONICS LAB</td>
<td>1</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS 16

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE 4220 AEROELASTICITY</td>
<td>3</td>
</tr>
<tr>
<td>AE 4351 DESIGN PROJECT II</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>10</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS 19

TOTAL PROGRAM HOURS = 130 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Requirements

A grade of C or better is required in each 1000- and 2000-level math and physics course; a course with a D or F grade must be repeated the next semester the student is in residence. A 2.0 overall average or better is required to schedule AE 2120 or AE 2020. No more than two D grades are permitted in AE courses listed by number in the sophomore, junior, and senior years. Courses in which a D was earned may be repeated at any time with the approval of an advisor. A student with two Ds and one F must repeat at least one of these courses before graduation.

Electives

Humanities/Social Sciences Electives

A total of 12 credit hours in humanities and 12 credit hours in social sciences are required for graduation. See pages 31-32 for a list of acceptable courses. Courses taken in humanities and social sciences must be scheduled on a letter-grade basis.

To satisfy the state requirements regarding course work in the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200.

Free Electives

The required 10 credit hours of free electives may be taken at any time during the course of study. If ROTC is elected, 4 credit hours of basic and 6 hours of advanced ROTC may be applied toward these electives. Physical education courses may not be applied toward the free electives. Health and Performance Sciences courses, except for HPS 1040 and 1062/63/64, may be applied toward the free electives. Up to 9 hours of free electives may be taken on a pass/fail basis. Transfer students are restricted to fewer pass/fail hours.

Further details on the undergraduate program are available at www.ae.gatech.edu/undergraduate.

Graduate Programs

At the graduate level, the School offers master's and doctoral degrees. The master's degree may be
earned by completing 33 semester hours of course work, which must include up to 3 hours of Special Problems research credit. Alternatively, the candidate may elect to complete 24 semester hours of course work along with 12 hours of M.S. thesis. The candidate must propose a thesis topic, complete the thesis, and successfully defend it before being awarded the degree. The Ph.D. degree is a research degree. It requires 50 semester hours of course work beyond the bachelor’s degree; however, the main emphasis is on the research leading to a Ph.D. thesis. The candidate must pass a qualifying examination and present a thesis proposal and a thesis defense. GPAs of 2.7 and 3.25 are required to graduate with M.S. and Ph.D. degrees, respectively. All course work, including Special Problems, must be taken on a letter-grade basis.

The programs of study for both the master’s and doctoral degrees are very flexible and can be tailored, in agreement with the student’s advisor, to meet the candidate’s professional goals. Further details governing the graduate program can be found in the Aerospace Engineering Graduate Handbook, available on the School’s website at www.ae.gatech.edu/graduate/.

Graduate students may specialize in the following areas: aerodynamics and fluid mechanics, aeroelasticity and structural dynamics, flight mechanics and control, propulsion and combustion, structural mechanics and materials behavior, and system design and optimization. Further information on these areas of specialization and research can be found at www.ae.gatech.edu/research/.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

AEROSPACE ENGINEERING

AE 1350. Introduction to Aerospace Engineering
2-0-2.
Introduction to the field of aerospace engineering, discussion of basic aerospace systems and disciplines, working vocabulary of the field. Demonstration through examples: Wind tunnel visit.

AE 1355. Aerospace Systems Design Competition I
1-6-3.
Team-oriented aerospace systems design project directed by a faculty advisor. Typically a national student competition in aircraft, rotorcraft, or spacecraft design. Technical role commensurate with freshman standing.

AE 1750. Introduction to Bioengineering
3-0-3.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with BMED, CHE, ECE, ME, and MSE 1750.

AE 1770. Introduction to Engineering Graphics and Visualization
2-3-3.
Prerequisite(s): MATH 1501* or MATH 1511*
Introduction to engineering graphics and visualization including sketching, line drawing, simple wire-frame and solid modeling. Development and interpretation of drawings and specifications for product realization. Crosslisted with CEE 1770 and ME 1770.

AE 2020. Low-Speed Aerodynamics
3-0-3.
Prerequisite(s): (MATH 2401 or MATH 2411 or MATH 24X1) and AE 1350 and PHYS 2211
Basic results, conservation laws, potential, airfoil, and wing analysis. Boundary layers on plates and airfoils. Pressure gradients. Introduction to turbulence and vortex-dominated flows.

AE 2120. Introduction to Mechanics
3-0-3.
Prerequisite(s): (MATH 2401* or MATH 2411* or MATH 24X1) and PHYS 2211
Forces and movements; equilibrium in two and three dimensions; multi-force members; friction; stress and strain; axial loading, torsion, and bending of beams.

AE 2220. Dynamics
3-0-3.
Prerequisite(s): AE 2120 and (MATH 2403* or MATH 2413* or MATH 24X3)
Motion of particles and mass center of bodies, kinematics and kinetics of rigid bodies in plane motion, work-energy and impulse-momentum methods, 3-D dynamics of rigid bodies.

AE 2355. Aerospace Systems Design Competition II
1-6-3.
Team-oriented aerospace systems design project directed by a faculty advisor. Typically a national student competition in aircraft, rotorcraft, or spacecraft design. Technical role commensurate with sophomore standing.

AE 2801. -2, -3. Special Topics
Credit and class hours equal last digit in course number. Normally taken by sophomores. Course material devoted to special topics in aerospace engineering.
AE 2901. -2, -3. Special Problems
Credit hours to be arranged.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 3021. High-Speed Aerodynamics
3-0-3.
Prerequisite(s): AE 2020 and AE 3450
Compressibility effects on airfoil and wing aerodynamics: supersonic potential flow; method of characteristics; boundary layer effects on airfoil and wing performance.

AE 3051. Experimental Fluid Dynamics
1-3-2.
Prerequisite(s): AE 2020 and AE 3450*
Experiments in fluid mechanics, aerodynamics, and propulsion with emphasis on data acquisition and analysis, e.g., measurement techniques, laboratory instrumentation, measurement errors/noise, and digital sampling.

AE 3120. Introduction to Structural Analysis
3-0-3.
Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3) and AE 2120

AE 3121. Aerospace Structural Analysis
2-3-3.
Prerequisite(s): AE 3120
Principles of virtual displacements and virtual forces. Introduction to energy concepts. Introduction to finite elements. Bending, shear, and torsion of thin-walled structures.

AE 3145. Structures Laboratory
0-3-1.
Prerequisite(s): AE 3120*
Introduction to mechanical measurements, instrumentation principles and practice, measurement of stress and strain, shear center, column stability, properties of composite structural materials, fracture toughness test.

AE 3310. Introduction to Aerospace Vehicle Performance
3-0-3.
Prerequisite(s): AE 2020 and AE 2220
Introduction to aerospace vehicle performance: VTOL, STOL, CTOL aircraft and spacecraft. Drag estimation, thrust required and available, basic point and path performance, special performance items, maneuvers.

AE 3355. Aerospace Systems Design Competition III
1-6-3.
Team-oriented aerospace systems design project directed by a faculty advisor. Typically a national student competition in aircraft, rotorcraft, or spacecraft design. Technical or leadership role commensurate with junior standing.

AE 3450. Thermodynamics and Compressible Flow
3-0-3.
Prerequisite(s): (MATH 2401 or MATH 2411 or MATH 24X1) and PHYS 2212

AE 3520. Vibrations and System Dynamics
3-0-3.
Prerequisite(s): AE 2220 and (MATH 2403 or MATH 2413 or MATH 24X3)
Simple, damped, and forced vibrations of one degree of freedom systems. Analogies with electrical and hydraulic aircraft control systems. Linear system analysis using Laplace transforms.

AE 3521. Aircraft and Spacecraft Flight Dynamics
4-0-4.
Prerequisite(s): AE 2020 and AE 3520
Three-dimensional rigid body dynamics, aircraft and spacecraft equations of motion, principles of static stability and control, dynamic stability of uncontrolled motion, gyroscopic instruments.

AE 3801, -2, -3. Special Topics
Credit and class hours equal last digit in course number. Normally taken by juniors. Course material devoted to special topics in aerospace engineering.

AE 3901, -2, -3. Special Problems
Credit hours to be arranged.
Research topic selected in consultation with advisor. A brief description, endorsed by the faculty advisor, must be approved by the School.

AE 4040. Computational Fluid Dynamics
3-0-3.
Prerequisite(s): AE 3021
Discretization of PDEs, stability and accuracy considerations, iterative and time/space marching schemes, aerospace applications.

AE 4051. Flow Diagnostics
2-3-3.
Prerequisite(s): AE 3051
Overview of experimental techniques. Flow visualization; statistical methods. Laboratory operation, data acquisition, analysis, interpretation, reporting.

AE 4060. Aeroacoustics
3-0-3.
Prerequisite(s): AE 3450 and AE 3520
Concepts and techniques, noise sources, data acquisition and reduction, aeroacoustic resonances, commonalities in the music of wind instruments and sources of aircraft noise, community impact.

AE 4070. Introduction to Propeller and Rotor Theory
3-0-3.
Prerequisite(s): AE 3021
A study of the theory and equations used in the design of propellers and helicopter rotors.
AE 4080. Aerothermodynamics
3-0-3.
Prerequisite(s): AE 3021
Convective heat transfer and viscous drag in high-temperature and high-speed flowfields. Inviscid hypersonic theory, real gas effects, and wall thermal protection strategies.

AE 4120. Introduction to Aerospace Engineering Composite Structures
3-0-3.
Prerequisite(s): AE 2120 or ME 2211

AE 4131. Introduction to Finite Element Methods
2-3-3.
Prerequisite(s): AE 3121
Finite Element Method and its application to linear structural problems. The basic formulations of various structural elements are discussed.

AE 4170. Structural Integrity and Durability
3-0-3.
Prerequisite(s): AE 3120
Multi-axial stress states, inelasticity in metals and polymers, yield criteria, metal fatigue, fracture, stress intensity factors, fracture toughness, fatigue crack growth, metal creep, and polymer viscoelasticity.

AE 4220. Structural Dynamics and Aeroelasticity
3-0-3.
Prerequisite(s): AE 3121 and AE 3520
Structural dynamics of one-dimensional systems. Analysis of static aeroelastic phenomena, unsteady aerodynamics, and flutter. Equations of motion for complete aeroelastic systems; solution techniques.

AE 4350. Aerospace Engineering Design Project I
2-3-3.
Prerequisite(s): AE 3021 and AE 3510 and AE 3521* and AE 4451*
Conceptual design methodology developed and applied incorporating center of gravity, inertias, structural layout, materials, propulsion integration, stability and control, vehicle sizing, performance, and acquisition costs.

AE 4351. Aerospace Engineering Design Project II
2-3-3.
Prerequisite(s): AE 4350 and AE 4520*
Design methodology further developed and applied. Teams formed to prepare competitive proposals in response to given mission requirements. Designs publicly presented and defended.

AE 4355. Aerospace Systems Design Competition IV
1-6-3.
Team-oriented aerospace systems design project directed by a faculty advisor. Typically a national student competition in aircraft, rotorcraft, of spacecraft design. Technical or leadership role commensurate with senior standing.

AE 4375. Fundamentals of Computer-aided Engineering and Design
3-0-3.
Prerequisite(s): CS 1321 and (MATH 2403 or MATH 2413 or MATH 24X3)
Introduction to the principles of geometric modeling; 2-D systems; 3-D wireframe, surface and solid representations; mathematical representations of curves, surfaces, and solids; application to aerospace design problems.

AE 4380. Astronautics
3-0-3.
Prerequisite(s): AE 2220
Introduction to the space environment, two-body orbital mechanics, rocket vehicle propulsion, performance, and staging. Interplanetary trajectories, atmospheric entry and heating, spacecraft communications.

AE 4451. Jet and Rocket Propulsion
3-0-3.
Prerequisite(s): AE 3450

AE 4461. Introduction to Combustion
3-0-3.
Prerequisite(s): AE 3450
Basics of combustion and combustion devices. Chemical thermodynamics, reaction rates, premixed/nonpremixed flames, ignition, stabilization, and pollutants. Applications in turbine, rocket, and internal combustion engines.

AE 4520. Feedback Control Systems
2-3-3.
Prerequisite(s): AE 3521
Dynamic response of linear systems. Classical methods of feedback control system design. Aerospace vehicle flight control system design, laboratory with emphasis on control system design.

AE 4521. Vehicle Guidance and Simulation
3-0-3.
Prerequisite(s): AE 3521

AE 4757. Biofluid Mechanics
3-0-3.
Prerequisite(s): AE 2020 or ME 3340
Introduction to the study of blood flow in the cardiovascular system. Emphasis on modeling and the potential of flow studies for clinical research application. Crosslisted with CHE and ME 4757.

AE 4758. Biosolid Mechanics
3-0-3.
Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3) and (ME 3201 or AE 3121)
The mechanics of living tissue, e.g., arteries, skin, heart muscle, ligament, tendon, cartilage, and bone. Constitutive

AE 4760. Engineering Acoustics and Noise Control 3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3
Study of acoustics related to noise and its control; acoustics terminology wave propagation, wave equation solutions, instrumentation, data processing, room acoustics, noise control, noise legislation. Crosslisted with ME 4760.

AE 4791. Mechanical Behavior of Composites 3-0-3.
Prerequisite(s): MSE 2001 and AE 3120
Stress-strain behavior of composites, property of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with MSE 4791.

Prerequisite(s): CHEM 1310
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with CEE, CHE, ME, MSE and TFE 4793.

AE 4794. Composite Materials and Manufacturing Testing 3-3-4.
Prerequisite(s): CHEM 1310
Basic principles of selection and sign of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with CEE, CHE, ME, MSE and TFE 4794.

Prerequisite(s): AE 6010

AE 6020. High-Speed Flow 3-0-3.
Prerequisite(s): AE 3021

AE 6030. Unsteady Aerodynamics 3-0-3.
Prerequisite(s): AE 3021
Unsteady potential theory for various speed ranges. Calculation of steady and unsteady aerodynamic loads on airfoils and wings. Vortex flows. Topics of current research interest.

AE 6042. Computational Fluid Dynamics 4-0-4.
Prerequisite(s): AE 3021

AE 6050. Gas Dynamics 3-0-3.
Prerequisite(s): AE 6765 or ME 6765
Defining equations for compressible flows, real gas properties and their effect on the behavior of equilibrium and non-equilibrium flows.

AE 6052. Flow Diagnostics and Control 2-3-3.
Prerequisite(s): AE 3021 and AE 3051
Introduction to experimental techniques; flow visualization; statistical methods; pressure, velocity, temperature, density, particle size, reaction rate measurements. Experiment design, data acquisition, and interpretation. Flow control.

AE 6060. Aeroacoustics 3-0-3.
Prerequisite(s): AE 3021
Lighthill's theory of aerodynamic noise and extensions, flow/acoustic interactions, feedback phenomenon, supersonic jet noise, aeroacoustics of ducts, propeller noise, helicopter noise, sonic boom.

AE 6070. Rotary Wing Aerodynamics 3-0-3.
Prerequisite(s): AE 3021
Vortex wake modeling; analytical inflow theories; modern computational methods for rotary wing aerodynamic analysis; aeroacoustics of ducts, propeller noise, helicopter noise, sonic boom.

AE 6080. Dynamics of Turbulence 3-0-3.
Prerequisite(s): AE 6012
AE 6100. Structural Stability I
3-0-3.
Prerequisite(s): AE 3121

AE 6101. Structural Stability II
3-0-3.
Prerequisite(s): AE 6100
Buckling of beams on elastic foundations, rings, and arches; elasticity theory; torsional buckling of shafts, buckling of plates, circular cylindrical shells, rotating beams, nonconservative problems.

AE 6103. Energy Methods
3-0-3.
Prerequisite(s): AE 3121
Virtual work and energy principles in solid mechanics, energy-based approximate numerical methods such as Rayleigh-Ritz, weighted residual and finite elements for analysis of structures and solids.

AE 6104. Computational Mechanics
3-0-3.
Prerequisite(s): AE 6106
Development of finite element methods for linear, static structural analysis. The basic tools of the finite element method. The formulation of various structural elements.

AE 6106. Analysis of Aerospace Structural Elements
3-0-3.
Prerequisite(s): AE 3121
This course focuses on the analysis of advanced aerospace structures. Beam theory is reviewed, plate theory is introduced. Classical and energy solutions are presented.

AE 6110. Elasticity I
3-0-3.
Prerequisite(s): AE 3121
Analysis of stresses and deformations in linear elastic media. Stress and equilibrium equations; strain and compatibility equations. Applications to two- and three-dimensional problems.

AE 6111. Elasticity II
3-0-3.
Prerequisite(s): AE 6110
Stresses and deformations in continuum media. Stress and strain measures used in nonlinear elasticity. Equilibrium equations and energy principles. Nonlinear beam, plate, and shell applications.

AE 6123. Design of Fiber-Reinforced Composite Structures
2-3-3.
Prerequisite(s): AE 2120 or ME 2211
Composite material systems, composite structures including anisotropic plate and shell theory, shear deformation, hygrothermal and interlaminar stresses. Finite element modeling. Design case studies and cost-effective applications for thin-walled sections.

AE 6161. Theory of Plates
3-0-3.
Prerequisite(s): AE 6106
Development of isotropic and anisotropic plate theories. Classical and energy solutions for various geometries and loadings. Aerospace applications including elastically coupled composite and sandwich plates.

AE 6162. Shell Structures
3-0-3.
Prerequisite(s): AE 6161
Analysis of stresses and deformation of shells with and without bending, shells forming surfaces of revolution, asymptote methods, buckling of shells, nonlinear theories.

AE 6165. Principles of Fracture and Fatigue
3-0-3.
Prerequisite(s): AE 2120 or ME 2211

AE 6170. Structural Optimization
3-0-3.
Prerequisite(s): AE 3121
Mathematical methods of constrained optimization, sensitivity analysis, approximation concepts, decomposition techniques, shape optimization in the context of structural design.

AE 6200. Aeroelasticity
3-0-3.
Prerequisite(s): AE 6230
Understanding and analysis of aeroelastic phenomena in fixed-wing aircraft, static aeroelasticity, dynamic aeroelasticity, and dynamic response and transient stresses in aircraft structures.

AE 6210. Advanced Dynamics I
3-0-3.
Prerequisite(s): AE 2220
Kinematics of particles and rigid bodies, angular velocity, inertia properties, holonomic and nonholonomic constraints, generalized forces.

AE 6211. Advanced Dynamics II
3-0-3.
Prerequisite(s): AE 6210
A continuation of AE 6210. Equations of motion, Newtonian frames, consistent linearization, energy and momentum integrals, collisions, mathematical representation of finite rotation.

AE 6220. Rotorcraft Structural Dynamics and Aeroelasticity
3-0-3.
Prerequisite(s): AE 6210 AND AE 6230
Elementary blade dynamics, flap-lag dynamics, ground resonance, structural dynamics of rotating beams, nonlinear elastic blade analysis, harmonic balance and trim, Floquet theory.
Aerospace Engineering

AE 6230. Structural Dynamics
3-0-3.
Prerequisite(s): AE 3120 and AE 3520
Dynamic response of single-degree-of-freedom systems, Lagrange's equations; modal decoupling; vibration of Euler-Bernoulli and Timoshenko beams, membranes, and plates.

AE 6231. System Identification in Structural Dynamics
3-0-3.
Prerequisite(s): AE 6230
System identification by complex exponential methods, poly ref techniques, eigen-realization methods, and frequency domain methods. Effects of noise, generalized least squares, and recursive online identification.

AE 6240. Numerical Methods in Structural Dynamics
3-0-3.
Prerequisite(s): AE 6230
Rayleigh quotient, Rayleigh-Ritz and Galerkin methods; extraction of eigenvalues and eigenvectors; analysis of forced harmonic response; direct time integration of large-scale systems.

AE 6251. Experimental Methods in Structural Dynamics
2-3-3.
Prerequisite(s): AE 6230
Experimental methods for measurement of structural vibration, random vibration, analytical methods for analysis of vibration data, applications to single and multi-degree of freedom problems.

AE 6252. Smart Structures and Structural Control
2-3-3.
Prerequisite(s): AE 6230
Modeling smart sensors and actuators, development of closed loop models, design of controllers, validation of controllers, application to vibration control, noise control and shape control.

AE 6263. Flexible Multi-body Dynamics
3-0-3.
Prerequisite(s): AE 6211 and AE 6230
Nonlinear, flexible multi-body dynamic systems, parametrization of finite rotations, strategies for enforcement of holonomic and nonholonomic constraints, formulation of geometrically nonlinear structural elements, time-integration techniques.

AE 6270. Applied Nonlinear Dynamics
3-0-3.
Prerequisite(s): AE 6230
Nonlinear vibration methods through averaging and multiple scales, bifurcation, periodic and quasi-periodic systems, transition to chaos, characterization of chaotic vibrations, thermodynamics of chaos, chaos control.

AE 6280. Wave Propagation
3-0-3.
Prerequisite(s): AE 6230
Dilational, equivalue mixed waves; Rayleigh and Lamb waves, reflection, refraction, impact problems, plastic waves, N.D.E., vibration control, numerical methods, finite deformation wave propagation, constitutive equations.

AE 6320. Astronautics
3-0-3.
Prerequisite(s): AE 2220
Introduction to the space environment, two-body orbital mechanics, rocket propulsion, performance, and staging. Interplanetary trajectories, atmospheric entry and heating, spacecraft communications. Credit not allowed for both AE 4380 and AE 6320.

AE 6322. Spacecraft Launch and Vehicle Design
2-6-4.
Prerequisite(s): AE 6320

AE 6331. Rotorcraft Design I
2-3-3.
Prerequisite(s): AE 6331
Students work together on this application to complete the preliminary design stage of a specific rotorcraft. Participants are exposed to disciplinary and interdisciplinary issues.

AE 6332. Rotorcraft Design II
3-3-4.
Prerequisite(s): AE 6331
Students work together on this application to complete the preliminary design stage of a specific rotorcraft. Participants are exposed to disciplinary and interdisciplinary issues.

AE 6341. Fixed-Wing Aircraft Design I
2-3-3.
Prerequisite(s): AE 6370
Stochastic approach to conceptual design of aerospace systems with emphasis on aircraft. Comprehensive methodologies for aerospace vehicle synthesis and sizing. Integration of technologies.

AE 6342. Fixed-Wing Aircraft Design II
3-3-4.
Prerequisite(s): AE 6341
Stochastic approach to conceptual design of aerospace systems with emphasis on aircraft. Comprehensive methodologies for aerospace vehicle synthesis and sizing. Integration of technologies.

AE 6354. Advanced Orbital Mechanics
3-0-3.
Prerequisite(s): AE 6320
Advanced concepts in orbital mechanics including orbit determination, orbital perturbations, time of flight, rendezvous, low-thrust trajectories, and multi-body problems. Taught in alternate years.

AE 6361. Air Breathing Propulsion System Design I
3-0-3.
Prerequisite(s): CS 1321
Air breathing propulsion design with emphasis on multidisciplinary design issues related to system integration, cycle selection, performance, cost, reliability, maintainability, etc.
AE 6362. Safety by Design
3-3-4.
Prerequisite(s): AE 6320 or AE 6331 or AE 6341
Autonomous situational flight model allows students to examine complex behaviors in the “pilot-vehicle-operational conditions” system. Flight certification and airworthiness requirements are mapped into formal scenarios.

AE 6370. Systems Design for Affordability through IPPD
4-0-4.
Prerequisite(s): CS 1321
Introduction to integrated product and process development and life cycle analysis. Systems engineering and quality engineering methods and tools. Top-down design decision support process. Computer-integrated environment and robust design simulation will be addressed.

AE 6371. Multidisciplinary Design Optimization
3-0-3.
Prerequisite(s): CS 1321 and (MATH 2403 or MATH 2413 or MATH 24X3)
Introduction to numerical optimization applied to the design of complex aerospace systems. Unconstrained and constrained optimization methods, stochastic methods, approximate methods, and multidisciplinary design optimization.

AE 6380. Fundamentals of Computer-aided Design and Engineering
3-0-3.
Prerequisite(s): CS 1321 and (MATH 2403 or MATH 2413 or MATH 24X3)
Introduction to the principles of geometric modeling; 2-D systems; 3-D wireframe, surface and solid representations; mathematical representations of curves, surfaces, solids; application to aerospace design problems. Credit not allowed for both AE 4375 and AE 6380.

AE 6381. Software Development for Engineering Applications
2-3-3.
Prerequisite(s): CS 1321
Introduction to the development of engineering analysis and visualization software for UNIX workstations with emphasis on rapid prototyping, information modeling, distributed processing, and client/server architectures.

AE 6440. Turbine Engine Aerothermodynamics
3-0-3.
Prerequisite(s): AE 4451
Analysis and design of gas turbine engine components including axial flow compressors, turbines, inlets and nozzles. Heat transfer and turbine blade cooling.

AE 6450. Rocket Propulsion
3-0-3.
Prerequisite(s): AE 4451
Analysis and design of rocket engines including liquid, solid, hybrid, and advanced propulsion systems.

AE 6503. Helicopter Stability and Control
3-0-3.
Prerequisite(s): AE 3520 and AE 4070
Helicopter general equations of motion, rotor forces and moments, helicopter stability and control characteristics, handling qualities, flight control system design.

AE 6504. Modern Methods in Aircraft Flight Control
3-0-3.
Prerequisite(s): AE 4520
Linear quadratic regulator design. Model following control. Stochastic control. Fixed structure controller design. Applications to aircraft flight control.

AE 6505. Random Processes and Kalman Filtering
3-0-3.
Prerequisite(s): AE 4520
Probability and random variables and processes; correlation; shaping filters; simulation of sensor errors; Wiener filter; random vectors; covariance propagation; recursive least-squares; Kalman filter; extensions.

AE 6506. Aerospace Guidance and Navigation
3-0-3.
Prerequisite(s): AE 4520

AE 6511. Optimal Guidance and Control
3-0-3.
Prerequisite(s): AE 4520
Euler-Lagrange formulation; Hamilton-Jacobi approach; Pontryagin’s minimum principle; systems with quadratic performance index; second variation and neighboring extremals; singular solutions; numerical solution techniques.

AE 6520. Advanced Flight Dynamics
3-0-3.
Prerequisite(s): AE 3520
Reference frames and transformations, general equations of unsteady motion, application to fixed wing, rotary wing and space vehicles, stability characteristics, flight in turbulent atmosphere.

AE 6531. Aerospace Robust Control I
3-0-3.
Prerequisite(s): ECE 6550

AE 6532. Aerospace Robust Control II
3-0-3.
Prerequisite(s): AE 6531
Advanced treatment of robustness issues. Controller analysis and design for linear and nonlinear systems with structured and unstructured uncertainty. Reduced-order control, stability, multipliers, and mixed-mu.
Aerospace Engineering

AE 6534. Control of Aerospace Structures
3-0-3.
Prerequisite(s): AE 6230 and AE 6531
Advanced treatment of control of flexible structures. Topics include stability of multi-degree of freedom systems, passive and active absorbers and isolation, positive real models, and robust control for flexible structures.

AE 6580. Aerospace Nonlinear Control
3-0-3.
Prerequisite(s): ECE 6550

AE 6760. Acoustics I
3-0-3.
Prerequisite(s): MATH 2403
Fundamental principles governing the generation, propagation, reflection and transmission of sound waves in fluids. Crosslisted with ME 6760.

AE 6761. Acoustics II
3-0-3.
Prerequisite(s): AE 6760 or ME 6760
Radiation and scattering of sound waves in fluids, duct acoustics, dissipation phenomena. Crosslisted with ME 6761.

AE 6762. Applied Acoustics
3-0-3.
Prerequisite(s): AE 6760 or ME 6760
Mufflers, resonators, acoustic materials, barriers, industrial noise, room acoustics, active noise control. Crosslisted with ME 6762.

AE 6765. Kinetics and Thermodynamics of Gases
4-0-4.
Prerequisite(s): AE 3450 or ME 3522
Thermodynamics of nonreacting and reacting gas mixtures. Introductory quantum theory, statistical thermodynamics and gas kinetic theory. Crosslisted with ME 6765.

AE 6766. Combustion
3-0-3.
Prerequisite(s): AE 6765 or ME 6765
Introductory chemical kinetics, detonations and deflagrations, laminar flame propagation in premixed gases, ignition and quenching, laminar diffusion flames and droplet burning, turbulent reacting flows. Crosslisted with ME 6766.

AE 6767. Advanced Topics in Combustion
3-0-3.
Prerequisite(s): AE 6766 or ME 6766
Turbulent combustion, combustion instability and control, solid propellants and explosives, chemical kinetics, pollutant formation and destruction, computational and experimental methods for reacting flows. Crosslisted with ME 6767.

AE 6779. Dynamic System Simulation and Modeling
3-0-3.
Prerequisite(s): AE 2220
Models of dynamic systems, such as aircraft, ground vehicles and machinery, and manual control. Numerical simulation techniques and applications. Interactive simulators. Student programming project. Crosslisted with ISYE 6779.

AE 7000. Master's Thesis
Credit hours to be arranged.

AE 7764. Acoustic Propagation
3-0-3.
Prerequisite(s): AE 6760 or ME 6760
Propagation of sound in inhomogeneous fluids; ray acoustics, ocean and atmospheric acoustics, nonlinear acoustics. Crosslisted with ME 7764.

AE 7772. Fundamentals of Fracture Mechanics
3-0-3.
Prerequisite(s): AE 3120 or ME 3201 or MSE 3005
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with CHE, CEE, ME, and MSE 7772.

AE 7773. Advanced Fracture Mechanics
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with CEE, CHE, ME, and MSE 7773.

AE 7774. Fatigue of Materials and Structures
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multi-axial loading, and fatigue crack propagation. Crosslisted with CEE, CHE, ME, and MSE 7774.

AE 7775. Topics in Fracture and Fatigue of Metallic and Composite Structures
3-0-3.
Prerequisite(s): AE 2120 or ME 2211

AE 7791. Damage, Failure, and Durability of Composite Materials
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791
AE 7792. Advanced Mechanics of Composites
3-0-3.
Prerequisite(s): AE 7791 or CHE 7791 or CEE 7791 or ME 7791 or MSE 7791 or TFE 7791
Anisotropic elasticity, hygrothermal behavior, stress analysis of laminated composites including 3D effects, stress concentrations, free-edge effects, thick laminates, adhesive and mechanical connections, fracture of composites. Crosslisted with CHE, CEE, ME, MSE, and TFE 7792.

AE 7793. Manufacturing of Composites
3-0-3.
Prerequisite(s): AE 4794 or CEE 4794 or CHE 4794 or ME 4794 or MSE 4794 or TFE 4794
Major manufacturing techniques of metal-ceramic and polymer-matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with CHE, CEE, ME, MSE, and TFE 7793.

AE 8001. Design Seminar
1-0-1.
Case studies of existing aerospace systems; assessment of design payoffs and risks; industry experts provide case examples and knowledge transfer to course participants; field trips.

AE 8800. Special Topics
3-0-3.
Special topics of current interest.

AE 8801, -2, -3. Special Topics
Credit and class hours equal last digit in course number. Special topics of current interest.

AE 8900, -01, -02, -03. Special Problems
Credit hours to be arranged.

AE 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

AE 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

AE 8999. Preparation for Doctoral Dissertation
Credit hours to be arranged.

AE 9000. Doctoral Thesis
Credit hours to be arranged.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.

Georgia Tech/Emory School of Biomedical Engineering

www.bme.gatech.edu

Established in 1997
Location: Bioengineering and Bioscience Building
Telephone: 404.385.0124
Fax: 404.894.4243
E-mail: bme@bme.gatech.edu

Lawrence L. Gellerstedt Jr. Chair in Bioengineering and Professor of Biomedical Engineering (Emory University School of Medicine)—Don P. Giddens; Associate Chair for Biomedical Engineering Graduate Programs and Regents’ Professor—Ajit P. Yoganathan; Associate Chair for Biomedical Engineering Undergraduate Programs and Associate Professor—Paul J. Benkeser. Professors—William L. Ditto, Biomedical Engineering; Stephen R. Hanson, Biomedical Engineering; Allen Tannenbaum, Electrical and Computer Engineering.
Associate Professors—Gang Bao, Biomedical Engineering; Stephen P. DeWeerth, Electrical and Computer Engineering; Hanjoong Jo, Biomedical Engineering; Cheng Zhu, Mechanical Engineering.
Assistant Professors—Julia E. Babensee, Biomedical Engineering; Gregory S. Berns, Psychiatry-Emory University; Zorina S. Galis, Cardiology-Emory University; Michelle C. LaPlaca, Biomedical Engineering; Joseph M. LeDoux, Biomedical Engineering.
Director, Learning Sciences Research—Wendy C. Newstetter

General Information
Georgia Tech has been involved in biotechnology-related research and education since the mid-1980s. In 1997, after an intense planning and review process that involved faculty from both institutions, the Georgia Tech College of Engineering joined with the Emory University School of Medicine to establish the Georgia Tech/Emory
School of Biomedical Engineering (BME). This academic unit is a unique partnership between a public institution and a private university.

Both universities have identified six thrust areas in which to focus research and faculty recruiting: cardiovascular biomechanics and biology, cellular and tissue engineering, neuroscience/engineering, biomedical imaging, biomedical modeling and computing, and cancer technology. Research in these biomedical engineering thrust areas can result in major breakthroughs in medicine, basic science, and applied technology.

Innovations in medical imaging, computer-assisted surgery, medical devices, and more efficient delivery of drugs to disease sites may be research pursuits for graduates in this field. Biomedical engineers may be called upon in a wide range of capacities: to design instruments, devices, and software; to bring together knowledge from many technical sources to develop new procedures; or to conduct the research and/or product testing needed to solve clinical problems.

Undergraduate Program
The objective of the B.S. degree program of the School of Biomedical Engineering is to provide state-of-the-art biomedical engineering education to students in order that they may pursue careers in industry or continue their education in graduate, medical, and professional schools. Students will learn to identify, formulate, and solve technological problems that integrate, at the basic level, life sciences with engineering, particularly problems related to medicine and healthcare. Students will also develop the ability to function and communicate effectively in a multidisciplinary environment, especially with life scientists, engineers, clinicians, and other health professionals.

The curriculum includes a solid foundation in fundamental engineering, mathematics, and the sciences—biology, chemistry, and physics—as well as grounding in the humanities, social sciences, and communication skills. To achieve depth, students will select concentration electives that reflect one of the School’s six research areas. A unique aspect of the curriculum is the incorporation of problem-based learning methodologies to foster the development of problem-solving skills in a team-based environment and self-directed learning skills.

Senior year will include a two-semester design project where students will have access to the Emory Health Care System hospitals for developing real-world, relevant design projects and interacting with health care professionals. This experience will provide students with a broad understanding of the impact of technological solutions in a global, societal, environmental, and health care context.

Bachelor of Science in Biomedical Engineering (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 3511 SURVEY OF BIOCHEMISTRY</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2112 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>BMED 2300 PROBLEMS IN BME II</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1315 SURVEY OF ORGANIC CHEMISTRY</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>BMED 1300 PROBLEMS IN BME I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 3511 SURVEY OF BIOCHEMISTRY</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2112 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>BMED 2300 PROBLEMS IN BME II</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>
Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 2334 GENETICS</td>
<td>4</td>
</tr>
<tr>
<td>ECE 3710 CIRCUITS & ELECTRONICS</td>
<td>2</td>
</tr>
<tr>
<td>ECE 2025 INTRO. TO SIGNAL PROCESSING</td>
<td>4</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3741 INSTRUMENTATION & ELECTRONICS</td>
<td>1</td>
</tr>
<tr>
<td>BMED 3400 INTRO. TO BIOMECHANICS</td>
<td>4</td>
</tr>
<tr>
<td>BMED 3200 FUND. OF ENGINEERING SCIENCE</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3160 SYSTEMS PHYSIOLOGY I</td>
<td>4</td>
</tr>
<tr>
<td>MSE 2001 PRIN. & APPL. OF ENGR.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 3500 SENSORS AND INSTRUMENTATION</td>
<td>3</td>
</tr>
<tr>
<td>BMED 3161 SYSTEMS PHYSIOLOGY II</td>
<td>4</td>
</tr>
<tr>
<td>BMED 3300 BIOTRANSPORT</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>LCC 3401 TECH. COMM. PRACTICES</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYYE/CEE/MATH 3770 STATISTICS AND APPLICATIONS</td>
<td>3</td>
</tr>
<tr>
<td>BMED 4600 DESIGN PROJECT I</td>
<td>2</td>
</tr>
<tr>
<td>BME/COE/COS ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMED 4601 SENIOR DESIGN PROJECT II</td>
<td>3</td>
</tr>
<tr>
<td>BME/COE/COS ELECTIVES</td>
<td>8</td>
</tr>
<tr>
<td>ECON 2100 ECONOMICS AND POLICY</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 130 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Graduate Programs

- Joint Biomedical Engineering Ph.D.
- M.S. Program in Bioengineering
- Ph.D. Program in Bioengineering
- M.D./Ph.D. Program

Joint Ph.D. Program

The Joint Biomedical Engineering Ph.D. program is offered through the Georgia Tech/Emory School of Biomedical Engineering. The degree is conferred jointly by both Georgia Tech and Emory. The curriculum is based on an integration of life sciences, engineering, and mathematics. The goal is to enable students to postulate and solve biomedical problems quantitatively and with a systems perspective. Both Georgia Tech and Emory faculty will provide an integrative teaching medium for students by "team-teaching" courses.

Two years of core courses establish the fundamental principles in both life science and engineering. All students entering the program, regardless of undergraduate major, will be integrated into the same classes and are subject to the same program prerequisites. Problem-based learning in the first year will complement the engineering and life science courses. During the second year, core material and problem-based learning will be integrated into the same course. During the second and third semesters, students will be required to do a minimum of two lab rotations. Other requirements include a bioethics course, a teaching course, a teaching practicum, a minimum of nine hours of technical electives, and a nine-hour minor program of study outside the student’s thesis research area.

After successfully passing the qualifying examination at the end of the first summer semester, students will be matched with a thesis advisor/mentor and co-advisor during the following semester. The student is required to successfully defend a written Ph.D. proposal to his/her thesis committee within nine semesters after entering the program. The student should complete his/her thesis research, prepare a written dissertation, and defend the dissertation in an oral examination within five years after entering the Ph.D. program.

Students will be awarded a joint Ph.D. degree upon successful completion of this final examination and dissertation acceptance by the graduate schools of Georgia Tech and Emory.

Joint Ph.D. Minimum Prerequisites

B.S. in Engineering or Life Sciences
One year of calculus-based physics
One year of organic chemistry
Calculus up to ordinary differential equations
(normally two years)

M.S. and Ph.D. in Bioengineering

This program is interdisciplinary in scope, where advanced courses in engineering specialties, life sciences, and bioengineering are combined with training in biomedical research. Both the M.S. and Ph.D. in bioengineering are being offered by the College of Engineering, in conjunction with the Bioengineering Center and the colleges of Sciences and Computing. The program draws on the resources of three colleges at Georgia Tech: Engineering, Sciences, and Computing. Students select a home school within the College of Engineering (Aerospace Engineering, Biomedical Engineering, Chemical Engineering, Civil Engineering, Materials Science and Engineering, Mechanical Engineering, and/or Textile and Fiber Engineering). Only students selecting biomedical engineering as their home school are reviewed and admitted by the School of Biomedical Engineering. High-quality students with non-engineering backgrounds (degrees in computer science, physics, chemistry, biology, or mathematics, or physicians with undergraduate degrees in engineering or the physical sciences) who meet the admission requirements will be admitted to the program.

M.S. in Bioengineering Requirements

The requirements for the M.S. in bioengineering program include the satisfactory completion of a set of core courses in engineering, science, mathematics, and bioengineering. Each student must also complete a thesis and orally defend it in accordance with Institute policies.

M.S. in Bioengineering Prerequisites

The minimum requirements for each student in the M.S. in bioengineering program include: a B.S. in engineering or science, one year of calculus-based physics, and calculus up to ordinary differentials (normally two years).

Ph.D. in Bioengineering Requirements

The requirements for each student in the Ph.D. in bioengineering program include the satisfactory completion of a set of core courses in engineering, science, mathematics, and bioengineering; passing a comprehensive examination; and a Ph.D. thesis proposal examination. Each student must also complete a minor and a Ph.D. dissertation and orally defend the dissertation in accordance with Institute policies.

Ph.D. in Bioengineering Prerequisites

The minimum requirements for each student in the Ph.D. in bioengineering program include: a B.S. in engineering or science, one year of calculus-based physics, and calculus up to ordinary differentials (normally two years). Students with a B.S. in science will need to complete the M.S. in bioengineering before proceeding to the Ph.D. program.

M.D./Ph.D. Program

The School of Biomedical Engineering participates with the Emory University School of Medicine with regard to the M.D./Ph.D. program.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

BIOMEDICAL ENGINEERING

BMED 1300. Problems in Biomedical Engineering 1

1-6-3.
Prerequisite(s): MATH 1501
Biomedical engineering problems from industrial and clinical applications are addressed and solved in small groups using problem-based learning methodologies.

BMED 1750. Introduction to Bioengineering

3-0-3.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, CHE, ECE, ME, and MSE 1750.

BMED 1801. Special Topics

Credit and class hours equal last digit in course number. Courses in special topics of current interest not included in the regular course offerings.
BMED 1811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in course number.
Courses in special topics of current interest not included in the
regular course offerings.

BMED 2300. Problems in Biomedical Engineering II
1-6-3.
Prerequisite(s): BMED 1300
Biomedical engineering problems from industrial and clinical
applications are addressed and solved in small groups using
problem-based learning methods.

BMED 2801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.
Courses in special topics of current interest not included in the
regular course offerings.

BMED 2811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in course number.
Courses in special topics of current interest not included in the
regular course offerings.

BMED 3160. Systems Physiology I
2-5-4.
Prerequisite(s): BMED 2300 and BIOL 2234 and (CHEM
3511* or CHEM 4511*)
A study of physiologic properties of human cells and tissues,
with specific attention focused on organization, membrane level transport and kinetics, cell signaling, and energy
requirements.

BMED 3161. Systems Physiology II
2-5-4.
Prerequisite(s): BMED 3160
Quantitative model-oriented approaches to the study of major
human physiologic functions and integrative analysis of the
control of homeostatic processes.

BMED 3200. Fundamentals of Engineering Science
3-0-3.
Prerequisite(s): MATH 2403 and PHYS 2211 and BMED 3160*
Study of material and energy balances, thermodynamics, chemical reaction equilibria and kinetics, for biomedical engineering applications.

BMED 3300. Biotransport
4-0-4.
Prerequisite(s): BMED 3200
Fundamental principles of fluid, heat, and mass transfer with particular emphasis on physiological and biomedical systems.

BMED 3400. Introduction to Biomechanics
4-0-4.
Prerequisite(s): MATH 2403
An introduction to the basic concepts and methods in biomechanics, including statistics and the mechanics of biomaterials. The biomedical applications of mechanics will be illustrated.

BMED 3500. Biomedical Sensors and Instrumentation
2-3-3.
Prerequisite(s): ECE 2025 and ECE 3741 and BMED 3161*
A study of basic concepts and design of electronic sensors and instrumentation used in biomedical measurements. Standard clinical measurement techniques will also be examined.

BMED 4600. Senior Design Project I
1-3-2.
Prerequisite(s): LCC 3401 and BMED 3161*
Team-oriented major design project in biomedical engineering, incorporating engineering standards and realistic design constraints.

BMED 4601. Senior Design Project II
1-6-3.
Prerequisite(s): BMED 4600
Team-oriented major design project in biomedical engineering incorporating engineering standards and realistic design constraints.

BMED 4801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in course number.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4823, -33. Special Topics
3-0-3.
Courses in special topics of current interest not included in the regular course offerings.

BMED 4900, -01, -02, -03. Special Problems
Credit hours to be arranged.
Individualized studies in certain specialized areas of interest in biomedical engineering.

BMED 6753. Principles of Management for Engineers
3-0-3.
The course will provide an introduction to selected topics needed to be successful in the technology industries. Cannot count toward major area requirements in M.S. or Ph.D. programs of study.

BMED 6778. Introduction to Biomaterials
3-0-3.
Introduction to a variety of biomaterials and their biomedical applications. Crosslisted with CHE, ME, and TEE 6778.

BMED 6779. Bioprocess Engineering
3-0-3.
Study of enzymes and microbial and mammalian cells for production of biochemicals and protein therapeutics in bioreactors; downstream separation and purification; integrated view of bioprocesses. Crosslisted with CHE 6779.

BMED 6780. Medical Image Processing
3-0-3.
A study of methods for enhancing, analyzing, interpreting, and visualizing information from two- and three-dimensional data obtained from a variety of medical imaging modalities. Crosslisted with ECE and CS 6780.

BMED 6782. Cellular Engineering
3-0-3.
Engineering analysis of cellular systems. Crosslisted with CHE and ME 6782.
BMED 6783. Orthopedic and Injury Biomechanics
3-0-3.
Structure-function relationships in a variety of tissues, with an emphasis on orthopedic and neural systems through an understanding of mechanical, adaptational, and failure properties. Crosslisted with ME 6783.

BMED 6784. Cardiovascular Biomechanics
3-0-3.
Mechanical analysis of the cardiovascular system emphasizing the normal and pathologic function in relation to clinical cardiovascular medicine. Crosslisted with CHE and ME 6784.

BMED 6786. Medical Imaging Systems
3-0-3.
A study of the principles and design of medical imaging systems such as X-ray, ultrasound, nuclear medicine, and nuclear magnetic resonance. Crosslisted with ECE 6786.

BMED 6787. Quantitative Electrophysiology
3-0-3.
A quantitative presentation of electrophysiological systems in biological organisms, emphasizing the electrical properties and modeling of neural and cardiac cells and systems. Crosslisted with PHYS and ECE 6787.

BMED 6788. Legal Issues in Biomedical Engineering
3-0-3.
Study and analysis of U.S. government laws applicable to the development and clinical use of biomedical engineering technology. Crosslisted with ECE, CHE, ME, and MGT 6788.

BMED 6789. Technology Ventures
3-0-3.
Team discussion and case studies in biomedical engineering technology transfer, including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with ECE, CHE, ME, and MGT 6789.

BMED 6793. Systems Pathophysiology
3-0-3.
Overview of human pathophysiology from a quantitative perspective. A brief introduction to the application of quantitative models to the understanding of biological systems. Crosslisted with CHE, ECE, and ME 6793.

BMED 6794. Tissue Engineering
3-0-3.
Biological, engineering, and medical issues in developing tissue-engineered constructs. Emphasis in the integration of these disciplines at a basic molecular and cell biology level. Crosslisted with CHE and ME 6794.

BMED 7000. Master's Thesis
Credit hours to be arranged.

BMED 8010. Seminar in Bioengineering
1-0-1.
Seminars involving current research projects presented by faculty and invited speakers.

BMED 8015, -16, -17. Biomedical Engineering Laboratory Rotation I, II, III
0-3-1, each.
Prerequisite(s): BMED 8100 and BMED 8101 and BMED 8110
Students will do lab rotations to learn lab techniques, research methods, and experimental design.

BMED 8100. Engineering Science I
5-0-5.
Prerequisite(s): MATH 2403 and PHYS 2212
Fundamentals of mechanics, basic conservation laws, and their application to various mechanical model systems and biological problems, elements of partial differential equations and vector analysis.

BMED 8101. Engineering Science II
3-3-4.
Prerequisite(s): MATH 2403 and PHYS 2212
Important fundamentals in the measurement and computer-based processing of biomedical signals; laboratory projects to reinforce lecture topics.

BMED 8102. Engineering Science III
5-0-5.
Prerequisite(s): BMED 8100 and BMED 8101
Fundamental analysis of biomedical systems: system transient behavior and steady state analysis; transport and reaction limitations diffusion and convective transport. Reaction networks; feedback and feedforward control.

BMED 8105. Problems in Biomedical Engineering I
2-0-2.
Co-requisites: BMED 8100 and BMED 8101
Biomedical engineering problems from industrial and clinical applications are addressed and solved in small groups utilizing lecture material from first-year courses and outside resources.

BMED 8106. Problems in Biomedical Engineering II
2-0-2.
Prerequisite(s): BMED 8105; Co-requisites: BMED 8102 and BMED 8111
Biomedical engineering problems from industrial and clinical applications are addressed and solved in small groups utilizing lecture material from first-year courses and outside resources.

BMED 8110. Life Science I
5-0-5.
Prerequisite(s): CHEM 2312
Fundamental concepts of genetics function and basic chemical building blocks of cells: proteins, enzymes, carbohydrates, lipids, nucleic acids, replication, transcription, translation, and genetic engineering.

BMED 8111. Life Science II
5-0-5.
Prerequisite(s): BMED 8110
Cellular transport, cytoskeleton, cell cycle, cell signaling; and cellular interactions of mammalian cells; current research in cell biology.
BMED 8120. Physiologic Systems I
5-0-5.
Prerequisite(s): BMED 8100 and BMED 8101 and BMED 8102 and BMED 8110 and BMED 8111
Physiologic properties of cells and tissues, membrane-level transport and kinetics, cell signaling, energy requirements, tissues organization, and electrical, chemical, and mechanical functions of cells.

BMED 8121. Physiologic Systems II
5-0-5.
Prerequisite(s): BMED 8120
Common principles of physiology, quantitative description of homeostasis, cardiorespiratory and renal systems, nutrition, motor systems, and adaptations; physiologic modeling.

BMED 8125. Molecular and Cellular Bioengineering: Laboratory Techniques
0-3-1.
Laboratory practices in mammalian cell culture, gene analysis, protein analysis, and genetic engineering for bioengineering research; alternative methods, experimental design, and critical interpretation of results.

BMED 8130. Bioethics-Values in Science
1-0-1.
Brief introduction to ethics and to the common modes of moral reasoning in science.

BMED 8799. Teaching Assistant Training and Teaching Opportunity Program
1-0-1.
Workshops on syllabus writing; intellection and teaching strategies; characteristics of the teaching assistantship.

BMED 8801, -2, -3. Special Topics
3-0-3.
Topics of special interest in biomedical engineering.

BMED 8901, -2, -3. Special Problems
Credit hours to be arranged.
Individual studies and/or experimental investigations of problems of current interest in Bioengineering.

BMED 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding a teaching assistantship.

BMED 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding a research assistantship.

BMED 9000. Doctoral Thesis
Credit hours to be arranged.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.

School of Chemical Engineering

www.che.gatech.edu

Established in 1901
Location: Bunger-Henry Building
Telephone: 404.894.2865
Fax: 404.894.2866

Chair and Professor—Ronald W. Rousseau;
Associate Chair and Professor—F. Joseph Schork;
Associate Chair and Regents’ Professor—Amyn S. Teja; J. Erskine Love Institute Chair in Engineering—Charles A. Eckert; William W. LaRoche Chair—Dennis W. Hess; Roberto C. Goizueta GRA Chair—William J. Koros; Parker H. Pettit Distinguished Chair for Engineering in Medicine—Robert M. Nerem; Regents’ Professors—Ajit Yoganathan, Paul A. Kohl, Charles L. Liotta.

Assistant Professors—Clifford Henderson, Christopher Jones, J. Carson Meredith, Jeffrey F. Morris, Mark Prausnitz.

Adjunct Professors—Yaman Arkun, Charlene W. Bayer, Elliott L. Chaikof, Yulin Deng, W. James Frederick, Peter Pfromm.

General Information
Chemical engineering is a discipline whose study prepares students for an enormously varied set of career paths. Graduates have become corporate executives, plant engineers, inventors, lawyers,
Chemical Engineering researchers, bankers, money managers, physi-
cians, consultants, financial officers, and sales
engineers; they have found employment with oil,
chemical, biomedical, pharmaceutical, microelec-
tronics, environmental, pulp and paper, food, tex-
tile, fertilizer, fragrance, and automobile compa-
ies, and with academia, government, banks, and
brokerages. Chemical engineers have led the
development of biomedicine and biotechnology;
they have been crucial to the materials revolution,
especially in computer chip manufacture, nano-
technology, and plastics and fibers; and they are
essential in providing the everyday energy needs
of the nation. Chemical engineering emphasizes
environmentally benign manufacturing and sus-
tainable development.

The chemical engineering undergraduate cur-
riculum leads to a Bachelor of Science in Chemi-
cal Engineering. Chemical engineering principles
are taught as the foundation of that degree, but
students also are expected to develop an ability to
solve all kinds of problems, to view systems in
their entirety, and to formulate and test solutions
irrespective of the framework of the problem.
Completion of the B.S. degree prepares students
for entry into the workforce, advanced study in
chemical engineering, or countless other graduate
programs. Special opportunities exist for students
wishing to pursue minors or certificates in fields
of particular interest, and students are encouraged
to explore the frontiers of knowledge through
involvement in faculty-directed research.

In addition to the B.S., the School of Chemical
Engineering offers programs leading to the master
of science and the Ph.D. Students should check
the school website for detailed curriculum infor-
mation and recent updates.

Undergraduate Program
The following curriculum is designed to provide
coverage of core areas of chemical engineering,
and to allow students the opportunity to explore
the breadth of the discipline. The curriculum
requires a total of 132 hours for the B.S. degree.
It has been substantially revised so that there are
now a total of 18 elective hours to be split among
chemical engineering electives, technical electives,
and free electives. This program will allow chemi-
cal engineering students to tailor their educations
to their particular interests and plans for their
professional careers. Students are encouraged to
use the elective hours to earn a minor or certifi-
cate, or at least to focus their electives in an area
of particular interest.

Many graduates have found international experi-
ence obtained as a student to be valuable later in
their careers. The School is developing special ini-
tiatives to facilitate such experiences, and it has a
longstanding six-week summer program at
University College London in which students
receive five hours of elective credit and credit
for CHE 4200 (Transport and Unit Operations
Laboratory).

Finally, although the focus of the curriculum is
development of technical skills, it has elements
gearied to enhance communication, team work,
and business skills.

Transfer Students
Due to the sequence of CHE courses and the order
in which they must be taken, students who trans-
fer into chemical engineering from another uni-
versity should expect to be enrolled for a mini-
um of five terms (a term is a semester or a sum-
mer session). Students should transfer to Georgia
Tech having sufficient non-chemical engineering
courses remaining to enroll full time for five
terms. All prerequisites and co-requisites will be
strictly enforced.

Bachelor of Science in
Chemical Engineering
(Suggested Schedule)

First Year – First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>
College of Engineering

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1311</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1312</td>
<td>1</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>4</td>
</tr>
<tr>
<td>CS 1521</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Year – First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 3225</td>
<td>3</td>
</tr>
<tr>
<td>CHE 4400</td>
<td>4</td>
</tr>
<tr>
<td>CHE 4515</td>
<td>1</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHE 4200</td>
<td>3</td>
</tr>
<tr>
<td>CHE 4505</td>
<td>3</td>
</tr>
<tr>
<td>CHE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 130 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Electives

The chemical engineering curriculum contains 42 hours of electives to be chosen from 4 groups in the normal distribution indicated to satisfy the requirements of the School of Chemical Engineering: undesignated humanities electives (6 hours plus ENGL 1101 and 1102); social sciences (12 hours, including 3 hours each in economics and history/political science); chemical engineering electives (3 hours); technical electives (9 hours); and free electives (6 hours). To qualify as a technical elective, a course must be chosen from courses in the colleges of Engineering, Sciences, or Computing, and may include one course at the 2000 level plus the remainder at the 3000 level or higher. As an exception, BIOL 1510 or CHE 1750 may be substituted for the one course (three hours) at the 2000 level. Students may count up to 6 hours of undergraduate research (CHE 490x) toward fulfilling the technical elective requirements, and research hours in excess of 6 credits may be used to satisfy free electives requirements. CHE 490x may NOT be used as a chemical engineering elective. Any other non-required chemical engineering course may be used to satisfy the chemical engineering elective requirement. Up to 9 hours of undesignated
humanities and social science electives may be taken on a pass/fail basis. All other courses in the chemical engineering curriculum must be taken on a letter-grade basis. Transfer students are restricted to fewer pass/fail hours. All students must satisfy a state requirement regarding course work in the history and constitutions of the United States and Georgia by taking one of the following: HIST 2111, HIST 2112; POL 1101; PUBP 3000; or INTA 1200. A listing of acceptable humanities and social science electives can be found on pages 31-32.

Graduate Programs
The School of Chemical Engineering offers graduate programs of advanced study and research leading to the master of science and the Ph.D. degrees, both involving a combination of advanced-level courses and independent research.

All degree candidates must complete a research thesis. Course selection for both the master's and doctoral degrees is quite flexible, with individual plans of study developed for each student.

Research opportunities exist in a broad range of areas of importance to chemical engineers and society, including air pollution control, biochemical engineering, polymer science, process design and simulation, catalysis, chemical reaction engineering, biomedical engineering, pulp and paper engineering, transport phenomena, fine particle technology, thermodynamics, electrochemical engineering, process control, separations, and microelectronics. The School of Chemical Engineering participates with several other schools in offering the M.S. and Ph.D. in bioengineering and in polymers.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

CHEMICAL ENGINEERING

CHE 1750. Introduction to Bioengineering
3-0-3.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, ECE, ME, and MSE 1750.

CHE 2100. Chemical Process Principles
3-0-3.
Prerequisite(s): CHEM 1311
Material and energy balances for single-phase and multi-phase processes common to chemical engineering. Phase equilibrium and analysis of reacting systems.

CHE 2110. Chemical Engineering Thermodynamics I
3-0-3.
Prerequisite(s): CHE 2100 and CHE 2120*

CHE 2120. Numerical Methods in Chemical Engineering
3-0-3.
Prerequisite(s): CHE 2100 and (MATH 1502 or MATH 1512) or (MATH 15X2 and MATH 1522)
Numerical methods are introduced and applied to the solution of chemical engineering problems. An introduction to chemical process simulation, and the appropriate software is provided.

CHE 3110. Chemical Engineering Thermodynamics II
3-0-3.
Prerequisite(s): CHE 2110 and CHE 2120

CHE 3200. Transport Process I
3-0-3.
Prerequisite(s): CHE 2100 and CHE 2110
Fundamentals of fluid mechanics and heat transfer. The design and analysis of equipment using the principles of fluid mechanics and heat transfer.

CHE 3210. Transport Processes II
3-0-3.
Prerequisite(s): CHE 3200
Fundamental principles and applications of mass transfer. The analysis of chemical engineering processes and operations involving mass transfer.

CHE 3225. Separations Processes
3-0-3.
Prerequisite(s): CHE 3110 and CHE 3210*
Fundamentals of equilibrium-stage and continuous contacting operations. Applications of principles to distillation, absorption/stripping, extraction, absorption, and other separation technologies.

CHE 3600. Engineering Ethics and Leadership
3-0-3.
Development of quantitative and qualitative assessment tools to resolve moral and ethical dilemmas that arise in the performance of engineering duties.
CHE 4200. Transport Phenomena/Unit Operations Laboratory
2-3-3.
Prerequisite(s): CHE 3225* and CHE 4300*
This course illustrates engineering/scientific principles and physical models important to the data collection/interpretation of processes important to the practice of chemical engineering.

CHE 4300. Kinetics and Reactor Design
3-0-3.
Prerequisite(s): CHE 3110 and CHE 3210*
Reacting systems are analyzed in terms of reaction mechanisms, kinetics, and reactor design. Both homogeneous and heterogeneous reactions are considered.

CHE 4400. Chemical Process Control
3-3-4.
Prerequisite(s): CHE 4300*
Dynamics of chemical processes and their control. Techniques of conventional process control as well as digital control. Laboratory experiments to illustrate these concepts.

CHE 4505. Process Design and Economics
3-0-3.
Prerequisite(s): CHE 3225 and CHE 4300
Principles of flowsheet synthesis and economic analysis and optimization. A complete design on a chemical process will be undertaken, including concepts of unit operations, design, economics, and safety.

CHE 4515. Chemical Process Safety
1-0-1.
Prerequisite(s): CHE 4300; Co-requisite: CHE 3110
Fundamental sources of chemical hazards and degree of risk. Process design and hazard avoidance are used to reduce risk.

CHE 4573. Pulping and Bleaching Laboratory
0-6-2.
Experiments of pulping, bleaching, fiber, and chemical testing are performed. Hands-on experience from chip preparation, cooking, pulp processing, and bleaching are provided.

CHE 4574. Papermaking and Recycled Pulp Laboratory
0-6-2.
Experiments of pulp preparation, refining, paperforming, handsheet testing, deinking, and recycled pulp processing are performed. Small paper machine operation will be taught.

CHE 4600. Effective Communication for Professional Engineering
3-0-3.
How engineers communicate with engineering and non-engineering professionals. Industry speakers from different fields. Engineering case study. Weekly written and/or oral presentations.

CHE 4757. Biofluid Mechanics
3-0-3.
Prerequisite(s): AE 2020 or ME 3540

CHE 4758. Biosolid Mechanics
3-0-3.
Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3) and ME 3201

CHE 4763. Pulping and Chemical Recovery
3-0-3.
Pulping and chemical recovery processes are studied on the reaction, delignification, energy, and liquor reuse. The process optimization, air and water pollution minimization are taught. Crosslisted with ME 4763.

CHE 4764. Bleaching and Papermaking
3-0-3.
Pulp bleaching and formation of paper/board products are studied along with testing, end uses, chemical and mechanical treatment of pulp, non-wood, and recycled fiber utilization.

CHE 4775. Polymer Science and Engineering I: Formation and Properties
3-0-3.
Prerequisite(s): CHEM 2312 and CHEM 3411
An introduction to the chemistry, structure, and formation of polymers, physical states and transitions, physical and mechanical properties to polymer fluids and solids. Crosslisted with CHEM, ME, MSE, and TFE 4775.

CHE 4776. Polymer Science and Engineering II: Analysis, Processing, and Laboratory
2-3-3.
Prerequisite(s): CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted with CHEM, ME, MSE, and TFE 4776.

CHE 4781. Biomedical Instrumentation
3-0-3.
Prerequisite(s): ECE 3050 or ECE 3710
A study of medical instrumentation from a systems viewpoint. Pertinent physiological and electro-physiological concepts will be covered. Crosslisted with ECE and ME 4781.

CHE 4782. Biosystems Analysis
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Analytical methods for modeling biological systems, including white-noise protocols for characterizing nonlinear systems. Crosslisted with ECE and ME 4782.
CHE 4791. Mechanical Behavior of Composites
3-0-3.
Prerequisite(s): ME 3201
Stress-strain behavior of composites, property of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CEE, ME, MSE, and TFE 4791.

CHE 4793. Composite Materials and Processes
3-0-3.
Prerequisite(s): CHEM 1310
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. (Laboratory exercises on manufacturing and tests.) Crosslisted with AE, CEE, ME, MSE, and TFE 4793.

CHE 4794. Composite Materials and Manufacturing
3-3-4.
Prerequisite(s): CHEM 1310
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. (Laboratory exercises on manufacturing and tests.) Crosslisted with AE, CEE, ME, MSE, and TFE 4794.

CHE 4801. -2, -3, -4, -5, -6. Special Topics in Chemical Engineering
Credit and class hours equal last digit in course number.
Topics relevant to chemical engineering not currently covered in the undergraduate curriculum are presented as demand or interest warrants.

CHE 4901. -2, -3. Special Problems
Credit hours to be arranged.
The student is given an opportunity to develop initiative and to apply fundamental principles by doing semi-original laboratory or theoretical investigation of a chemical engineering problem.

CHE 6003. Chemical Process Safety
1-0-1.
The course focuses on risk reduction through design and hazard avoidance. Sources of chemical hazards and risks are discussed.

CHE 6004. Communication Skills for Technical Problem Solving
0-3-1.
Applications of both written and oral communication skills to the solution of technical problems. Includes focus, audience analysis, visual aids, and organization.

CHE 6100. Advanced Chemical Engineering Thermodynamics
3-0-3.
Equations of state, corresponding states and activity coefficient models and their relationship to intermolecular forces. Phase and chemical equilibria in chemical engineering.

CHE 6110. Thermodynamics of Systems of Large Molecules
3-0-3.
Prerequisite(s): CHE 6100
Classical and statistical thermodynamics of systems that are important in chemical, biochemical, and polymer processing.

CHE 6120. Molecular Modeling
3-0-3.
Introduction to computational chemistry techniques for modeling substances at the molecular level, including ab initio and semi-empirical quantum methods, molecular dynamics, and Monte Carlo methods.

CHE 6130. Electrochemical Engineering
3-0-3.
Electrochemical thermodynamics and kinetics. Corrosion. Applications to semiconductor devices, fuel cells, and batteries.

CHE 6200. Advanced Transport Phenomena, Fluid Mechanics, and Heat Transfer
3-0-3.
Viscous fluid mechanics and convective heat transfer. Scaling analysis and lubrication. Stokes and boundary layer flows. Transport about solid bodies. Linear stability theory.

CHE 6210. Fluid Mechanics of Two-Phase Flow
3-0-3.
Prerequisite(s): CHE 6200
Two-phase flow of nondeformable particles in Newtonian fluids. Rigorous results in the limit of small Reynolds number motions and applications to suspensions and colloids.

CHE 6220. Computational Fluid Dynamics: Applications in Environmental and Chemical Processes
2-3-3.
Prerequisite(s): CHE 6200
Introduction to numerical methods for solving transport problems. Applications to problems of interest in environmental and chemical processes.

CHE 6230. Industrial Emissions Control
3-0-3.
Analysis of air quality criteria, ambient and emission standards, and industrial pollution sources. Recovery and utilization of waste gases and particulate matter.

CHE 6240. Advanced Separation Processes
3-0-3.
This course provides an advanced analysis of separation process technology, with special emphasis on new separation techniques and their applications.

CHE 6250. Mass Transport through Solids
3-0-3.
An in-depth introduction to transport of penetrants in and through solids. Convective flow through porous media, and conductive flow through homogenous solids. Membrane separations.

CHE 6300. Kinetics and Reactor Design
3-0-3.
A study of chemical kinetics and mechanisms in complex homogeneous and heterogeneous reaction systems. Design and analysis of chemical reactors for such systems.

CHE 6310. Applied Chemical Kinetics
3-0-3.
Applications of chemical kinetics to homogeneous and heterogeneous gas and liquid reactions, including techniques and analyses.
CHE 6320. Heterogeneous Catalysis
3-0-3.
Prerequisite(s): CHE 6300
Physics and chemistry of surfaces; thermodynamics, kinetics, and mechanism of adsorption and surface reactions; modern instrumental analyses, and industrial catalysis.

CHE 6400. Advanced Process Control
3-0-3.
Fundamentals of multivariate control theory as applied to chemical processes.

CHE 6410. Dynamic Behavior of Process Systems
2-3-3.

CHE 6600. Polymerization Reaction Engineering
3-0-3.
Polymerization processes are analyzed with regard to reaction mechanism, kinetics, and reactor design. Control of polymer structure during polymerization is emphasized.

CHE 6609. Polymers in Microelectronics
3-0-3.
Use of polymers in microelectronics applications such as photolithography, inter-level dielectrics, encapsulation, packaging, magnetic media, and optical storage.

CHE 6750. Preparation and Reactions of Polymers
3-0-3.
Prerequisite(s): CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775
A detailed treatment of the reactions involved in the synthesis of both artificial and natural polymers, including preparation and degradative reactions of polymer systems. Crosslisted with CHEM and TFE 6750.

CHE 6751. Physical Chemistry of Polymer Solutions
3-0-3.
Prerequisite(s): (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777 or TFE 4777)
Study of polymer solutions, polymer miscibility, adsorption, sorption, plasticization, molecular weights, molecular weight distributions, and interfacial phenomena using thermodynamics and statistical mechanics. Crosslisted with CHEM, MSE, and TFE 6751.

CHE 6752. Polymer Characterization
3-3-4.
Prerequisite(s): (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777 or TFE 4777)
This course introduces the student to surface, near-surface, and structural methods of polymer characterization. Specialized techniques critical to physical structure are emphasized. Crosslisted with CHEM, MSE, and TFE 6752.

CHE 6759. Plasma Processing of Electronic Materials and Devices
3-0-3.
Fundamental physics, chemistry, chemical engineering, and electrical engineering principles inherent in plasma processes. Includes etching, deposition, diagnostic methods, and control schemes. Crosslisted with ECE 6759.

CHE 6768. Polymer Structure, Physical Properties, and Characterization
3-0-3.
Prerequisite(s): CHE 4776 or CHEM 4776 or ME 4776 or MSE 4776 or TFE 4776
Formulations and analysis of molecular and phenomenological models of elastic and viscoelastic behavior, development and description of structure, and fundamental aspects of structure-property relations. Crosslisted with ME, TFE, and MSE 6768.

CHE 6778. Introduction to Biomaterials
3-0-3.
Introduction to a variety of biomaterials and their biomedical applications. Crosslisted with BMED 6778.

CHE 6779. Bioprocess Engineering
3-0-3.
Study of enzymes and microbial and mammalian cells for production of biochemicals and protein therapeutics in bioreactors; downstream separation and purification; integrated view of bioprocesses. Crosslisted with BMED 6779.

CHE 6782. Cellular Engineering
3-0-3.
Engineering analysis of cellular systems. Crosslisted with BMED and ME 6782

CHE 6784. Cardiovascular Biomechanics
3-0-3.
Mechanical analysis of the cardiovascular system emphasizing the normal and pathologic function in relation to clinical cardiovascular medicine. Crosslisted with BMED and ME 6784.

CHE 6788. Legal Issues in Biomedical Engineering
3-0-3.
Study and analysis in U.S. government laws applicable to the development and clinical use of biomedical engineering technology. Crosslisted with BMED, ECE, ME, and MGT 6788.

CHE 6789. Technology Ventures
3-0-3.
Team discussion and case studies in biomedical engineering technology transfer, including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with BMED, ECE, ME, and MGT 6789.

CHE 6793. Systems Pathophysiology
3-0-3.
Overview of human pathophysiology from a quantitative perspective. A brief introduction to the application of quantitative models to the understanding of biological systems. Crosslisted with BMED, ECE, and ME 6793.
CHE 6794. Tissue Engineering
3-0-3.
Biological, engineering, and medical issues in developing tissue-engineered constructs. Emphasis on the integration of these disciplines at a basic molecular and cell biology level. Crosslisted with CHE and ME 6794.

CHE 7000. Master's Thesis
Credit hours to be arranged.

CHE 7650. Advanced Physical Chemistry of Polymers
3-0-3.
Prerequisite(s): CHEM 6422 and (CHEM 6751 or CHE 6751 or MSE 6751 or TFE 6751)
Thermodynamics and microscopic dynamics of polymers. Fundamental concepts, including scaling concepts, governing anisotropy of polarizability, phase transitions, morphology, time-dependent correlations, etc.

CHE 7771. Mechanics of Polymer Solids and Fluids
3-0-3.
Prerequisite(s): ME 3201 or MSE 3005
Continuum mechanics of solids and fluids; mechanics of deformation of anisotropic polymers; yield, breaking, and fatigue; non-Newtonian viscous and viscoelastic behavior of polymer fluids. Crosslisted with ME, MSE, and TFE 7771.

CHE 7772. Fundamentals of Fracture Mechanics
3-0-3.
Prerequisite(s): ME 7772 or CHE 7772 or CHE 7772 or ME 7772 or MSE 7772
Advanced study of fracture of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with AE, CEE, ME, and MSE 7772.

CHE 7773. Advanced Fracture Mechanics
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CEE, ME, and MSE 7773.

CHE 7774. Fatigue of Materials and Structures
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multi-axial loading, and fatigue crack propagation. Crosslisted with AE, CEE, ME, and MSE 7774.

CHE 7775. Topics in Fracture and Fatigue of Metallic and Composite Structures
3-0-3.

CHE 7791. Damage, Failure, and Durability of Composite Materials
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791
Provides knowledge of the fundamental concepts and methods related to analysis and assessment of damage, failure, and durability of composite materials. Crosslisted with AE, CEE, ME, MSE, and TFE 7791.

CHE 7792. Advanced Mechanics of Composites
3-0-3.
Prerequisite(s): CHE 4791 and CEE 6321
Anisotropic elasticity; failure theories; hydrothermal behavior; three-dimensional analysis of laminates; thick laminates; free-edge effects; stress concentrations; joints, creep, and fracture of composites; and advanced topics. Crosslisted with AE, CEE, ME, MSE, and TFE 7792.

CHE 7793. Manufacturing of Composites
3-0-3.
Prerequisite(s): CHE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791
Major manufacturing techniques for metal, ceramic, and polymer matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CEE, ME, MSE, and TFE 7793.

CHE 8001. Seminar in Chemical Engineering
1-0-1.

CHE 8002. Seminar in Chemical Engineering
1-0-1.

CHE 8801, -2, -3, -4. Special Topics
3-0-3.

CHE 8901. Special Problems
Credit hours to be arranged.

CHE 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding teaching assistantships.

CHE 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding research assistantships.

CHE 9000. Doctoral Thesis
Credit hours to be arranged.
An asterisk (*) denotes prerequisite courses that may be taken concurrently.
Established in 1896
Location: Mason Building
Telephone: 404.894.2201
Fax: 404.894.2278

Chair and Professor—Bruce R. Ellingwood;
Associate Chair for Graduate Programs and
Associate Professor—Kenneth M. Will; Associate
Chair for Undergraduate Programs and
Professor—Laurence J. Jacobs; Associate Chair for
Research and Professor—Aris Georgakakos;
Associate Chair for Information Technology and
Associate Professor—Nelson Baker; Dean of the
College of Engineering, Professor of CEE, and
Eminent Scholar in Water and Land Quality
Engineering—Jean-Lou Chameau; President,
Georgia Institute of Technology, and
Professor—G. Wayne Clough; Georgia Power
Professor of Environmental Engineering—
Armistead Russell.

Professors—Appiah Amirtharajah, Mustafa Aral,
Leroy Z. Emkin, J. David Frost, Barry J. Goodno,
Roobhah Kangari (joint-ARCH), James S. Lai,
Roberto Leon, Paul W. Mayne, Michael D. Meyer,
Spyros G. Pavlostathis, Philip J.W. Roberts, Carlos
Santamarina, E. Michael Saunders, Wan-Lee Yin,
Abdul-Hamid Zureick.

Director Emeritus—J. Edmund Fitzgerald.

Professors Emeriti—Richard D. Barksdale, Samuel
Martin, Peter S. Parsonson, Charles Ueng, Paul H.
Wright.

Associate Professors—Paul Chinowsky, Leonid N.
Germanovich, Randall Guensler, Lawrence F. Kahn,
John Leonard, James A. Mulholland, Kurt Pennell,
Glenn J. Rix, Fotis Sotiropoulos, Terry W. Sturm,
Jorge Vanegas, Simon Washington, Don White,
Sotira Yiacoumi.

Assistant Professors—Adjo Amekudzi, Michael
Bergin (joint-EAS), Reginald DesRoches, Karen
Dixon, Rita Gregory (joint-ARCH), Rami Haj-Ali,
Ching Hua-Huang, Kimberly Kurtis, Frank E.
Lofler, Christa Peters-Lidard, Don Webster, Billy
Williams.

Academic Professionals—David Elrod, Mahera
Philobos, Lisa Rosenstein.

Senior Research Engineers—Mehmet Talat
Odman, Michael H. Swanger, Huaming Yao.
Research Engineers II—Jiabo Guan, Gijsbertus
Nicolaas G. Hilhorst, Yeonsoo Kim, Hamid Zand.
Research Engineers I—Robert S. Abernathy, Lisa
Corley, P. Klochko, Jennifer Ogle.

Principal Research Scientist—Michael O. Rogers.

Research Scientists II—Mikhail Folgelson, Thomas
Malecki, James Pearson, Stacy V. Stringer,
Guangxuan Zhu.

Research Associate II—Leisha Dehart-Davis.
Research Associate I—David Key.

General Information
The School of Civil and Environmental Engineering
offers courses in civil engineering, environmental
ingineering, engineering science and mechanics, as
well as engineering computer graphics and
programs leading to the degrees Bachelor of
Science in Civil Engineering, Master of Science in
Civil Engineering, Master of Science in Engineer-
ing Science and Mechanics, Master of Science in
Environmental Engineering, Master of Science
(undesignated), and Doctor of Philosophy. Also
offered is a program leading to the degrees Master
of Science in Civil Engineering or Master of
Science (undesignated), a major in transportation
engineering, and Master of City Planning.

Undergraduate Program
Bachelor of Science
The four-year curriculum leading to the Bachelor of
Science in Civil Engineering (BSCE) enables the
graduate to enter professional practice as an engi-
neer or to continue his or her studies in programs
leading to advanced degrees in the following
broad fields of specialization: construction engi-
neering and management, environmental engi-
neering, environmental hydraulics, geotechnical
engineering, hydrology, materials, structural
engineering and mechanics, transportation, and water resources planning and management. The Bachelor of Science in Civil Engineering degree program is designed to offer depth in course material considered essential for all civil and environmental engineers, as well as flexibility in selecting elective courses that offer breadth of topic exposure. Civil engineers contribute to society in numerous ways; thus, the School's philosophy is to provide the student with a range of electives that meet student interests. Civil engineers must not only be technically proficient, but also must be effective in working with people and with professionals in other disciplines. Accordingly, the School faculty have adopted the following objectives for the undergraduate degree program: 1) provide an educational experience that prepares students for the challenges of the civil and environmental engineering profession that they will face during their professional careers; 2) promote scholarship and problem-solving skills in the curriculum; 3) provide opportunities for students to exhibit leadership and team-building skills; 4) promote service to the profession and to society; 5) incorporate interdisciplinary concepts and problem-solving exercises into educational programs; and 6) provide exposure to the civil and environmental engineering technologies of today and those likely of tomorrow. The Bachelor of Science in Civil Engineering degree is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Graduates of the BSCE curriculum are eligible to seek licensing as registered professional engineers.

In addition to campuswide academic requirements for graduation with a bachelor's degree, the following are also required for the BSCE degree. (a) A grade of C or better must have been earned in MATH 1501-1502, PHYS 2211, BIOL 1510, CHEM 1310, and CEE 2020. (b) The number of quality points earned in civil engineering courses taken toward the degree must be at least twice the number of credit hours in those courses. If a course is repeated, the latest grade will be included in applying this rule. No CEE course may be repeated for the purpose of satisfying this rule if the original grade was a C or higher.

Joint B.S./M.S. Degree Program
The American Society of Civil Engineers has adopted a policy of urging students to obtain a master's degree as the entry-level degree in the profession. The faculty of the School of Civil and Environmental Engineering have concluded that in many civil engineering program areas, a master's degree is necessary for students to have sufficient background to be successful professionally. The School allows students who are admitted to the master's degree program to use six credit hours of graduate-level course work (CEE 6000 or higher) in the major discipline for both degrees. In order to qualify for this option, the student must complete the undergraduate degree with a cumulative grade point average of 3.5 or higher and complete the master's degree within two years after the award date of the bachelor's degree.

Bachelor of Science in Civil Engineering (Suggested Schedule)

<table>
<thead>
<tr>
<th>First Year — First Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501</td>
<td>CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CS 1321</td>
<td>INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year — Second Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502</td>
<td>CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>ME/CEE 1770</td>
<td>ENGR. GRAPHICS</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>
Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>CEE 2010 COMPUTATIONAL MODELING</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100, ECON 2105, or ECON 2106</td>
<td>3</td>
</tr>
<tr>
<td>CEE/ISYE/MATH 3770 STATS. & APPS.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 1510 BIOLOGICAL PRINCIPLES</td>
<td>4</td>
</tr>
<tr>
<td>CEE 2020 STATICS & DYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3000 CIVIL ENG. SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 3040 FLUID MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3020 CE MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3030 STRENGTH OF MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>EAS 2601 EARTH PROCESSES</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 4200 HYDRAULIC ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>CEE BREADTH ELECTIVE•</td>
<td>6</td>
</tr>
<tr>
<td>COE ELECTIVE – GROUP A••</td>
<td>3</td>
</tr>
<tr>
<td>PST 3105, 3109, or 3127 ETHICS ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE BREADTH ELECTIVE•</td>
<td>3</td>
</tr>
<tr>
<td>CEE TECHNICAL ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>APPROVED ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>COE ELECTIVE – GROUP B•••</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE XXX XXXمم CEE TECHNICAL ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>CEE 4090 CEE CAPSTONE DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>APPROVED ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Total Program Hours = 126 Semester Hours plus Wellness (2 Hours)

Electives

Humanities/Social Sciences

A total of 12 credit hours of humanities and 12 credit hours of social sciences are required. Humanities consists of ENGL 1101, ENGL 1102, a 3-hour humanities elective*, and an ethics course: PST 3105, 3109, or 3127. Social sciences consists of a U.S. history/government course, economics (2100, 2105, or 2106), and 6 hours of general social science*, of which 3 hours must be at the 3000/4000 level. All courses taken to satisfy humanities and social sciences must be taken on a letter-grade basis.

To satisfy the state requirements regarding course work in the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, INTA 1200, or PUBP 3000.

*See pages 31-32 for a list of acceptable courses.

Technical Electives

There are 18 hours of elective credit in the senior year. Students may use these electives to pursue a specific area of interest within Civil and Environmental Engineering. A maximum of 6 hours, with faculty approval, may be chosen from outside the School of Civil and Environmental Engineering.

- **CEE 3010 Geomatics (2-3-3)**
- **CEE 4110 Construction Planning, Estimating, and Scheduling (3-0-3)**
- **CEE 4120 Construction Equipment and Methods (3-0-3)**
- **CEE 4210 Hydrology (3-0-3)**

*Choose three of the following five courses: CEE 3055 Structural Analysis, CEE 4100 Construction Eng. & Mgt., CEE 4300 Environmental Eng. Systems, CEE 4400 Geosystems Eng., or CEE 4600 Transportation Plan./Op./Des.

Choose one of the following three courses from Group A: MSE 5001 Chem. Thermodynamics of Materials, ME 3322 Thermodynamics, or CEE 2110 Chemical Eng. Thermodynamics I.

Choose one of the following three courses from Group B: MSE Principles and Apps. of Eng. Materials, ECE 3710 Circuits and Electronics AND ECE 3741 Instrumentation and Electronics Lab, or ECE 2025 Intro. to Signal Processing
Graduate Programs

Master of Science
Four master's degrees are available in the School of Civil and Environmental Engineering. M.S. programs are available in the areas of construction engineering and management, environmental engineering, environmental fluid mechanics and water resources, geosystems, structures mechanics and materials, and transportation. The four master's degrees are described below:

Master of Science in Civil Engineering
Students seeking this degree must have previously earned a BSCE or its equivalent.

a. **Course option**
 - Required Courses in Major Area of Specialization: 18
 - (Construction Management, Environmental, Geosystems, Structures Mechanics and Materials, Transportation, Environmental Fluid Mechanics and Water Resources)
 - Approved Electives: 12
 - Semester Hours: 30*

b. **Thesis option**
 - Required Courses in Major Area of Specialization: 12
 - (Construction Management, Environmental, Geosystems, Structures Mechanics and Materials, Transportation, Environmental Fluid Mechanics and Water Resources)
 - Approved Electives: 12
 - Thesis: 6
 - Semester Hours: 30**

Master of Science in Engineering Science and Mechanics
Students seeking this degree must have a B.S. in engineering or the physical sciences.

a. **Course option**
 - Required Courses in Mechanics: 18
 - Mathematics: 6
 - Approved Electives: 6
 - Semester Hours: 30*

Other requirements include additional CEE courses and approved courses from other units.
b. Thesis option
Required Courses in Mechanics 12
Mathematics 6
Approved Electives 6
Thesis 6
Semester Hours 30**

Master of Science in
Environmental Engineering
The degree Master of Science in Environmental Engineering (MSEnVE) is accredited by the Engineering Accreditation Commission of the Accreditation Board for Engineering and Technology. Students seeking this degree must have an engineering undergraduate degree.

a. Special Research Problem Option
Required EnvE core 12
EnvE electives 15
Special Research Problem (CEE 8950) 3
Semester Hours 30*

b. Thesis Option
Required EnvE core 12
EnvE electives 12
Thesis 6
Semester Hours 30**

Undesignated Master of Science
Students who do not meet the undergraduate degree requirements above but satisfy all the other requirements in their M.S. area of specialization receive the undesignated master of science degree.

a. Course option
Required Courses in Major Area of Specialization 18
(Construction Management, Environmental, Geosystems, Structures Mechanics and Materials, Transportation, Environmental Fluid Mechanics and Water Resources)
 Approved Electives 12
Semester Hours 30*

b. Thesis option
Required Courses in Major Area of Specialization 12
(Approved Electives 12
Thesis 6
Semester Hours 30**
*21 of the 30 hours of course work must be at the 6000 level or higher.
**12 of the 24 hours of course work must be at the 6000 level or higher.

Students who complete both the bachelor’s and any of the above master’s degrees in the School of Civil and Environmental Engineering may use up to six credit hours of graduate-level course work (CEE 6000 or higher) in the major discipline for both degrees. In order to qualify for this option, the student must complete the undergraduate degree with a cumulative grade point average of 3.5 or higher and complete the master’s degree within two years after the awarding of the bachelor’s degree.

Video-Based Master’s Program
The School of Civil and Environmental Engineering offers working professionals the opportunity to enroll in graduate courses in environmental engineering through video technologies. Qualified individuals may complete the requirements for the master’s program in environmental engineering utilizing the video-based delivery system.

Doctor of Philosophy
1. Admission to the Ph.D. Program
The Ph.D. program is offered to students with an excellent academic background and a capacity for independent research. Doctoral students tailor a highly individualized program of study directed toward completion of a dissertation that is expected to make an important contribution in their selected area. Doctoral degrees are offered in civil and environmental engineering and engineering science and mechanics.

After consultation with the appropriate specialty group, the associate chair for graduate programs
may grant the applicant admission to the Ph.D. program in civil engineering. Applicants must have received an acceptable master's degree or a BSCE or equivalent from an ABET-accredited program of study.

Students currently pursuing a master's degree who wish to continue studies toward the Ph.D. degree must get written approval from the head of the appropriate specialty group. Admission to the Ph.D. program does not constitute admission to candidacy for the Ph.D. degree.

2. Specialty Groups

Applicants are encouraged to pursue inter-disciplinary programs of study and research. For admission to the Ph.D. program, students must select a specialty group from one of the following:

- Construction Engineering and Management
- Environmental Engineering
- Environmental Fluid Mechanics and Water Resources
- Geosystems
- Structural Engineering, Mechanics, and Materials
- Transportation

If the student wishes to change from one specialty to another, the student must obtain written permission from both specialty groups.

3. Requirements for the Degree

a. A program of study must be approved by the student's Guidance Committee and the associate chair of graduate studies. There are no fixed course requirements for the Ph.D. degree. The student must have a major and minor field. The minor field is preferably outside the School of Civil and Environmental Engineering and must include at least nine hours of course work. The minor field must be approved by the Office of Graduate Studies.

b. Pass a Ph.D. comprehensive (qualifying) examination consisting of written and oral portions.

d. Pass the Final Doctoral Examination

Courses of Instruction

Figures entered below the course number and the title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

CIVIL AND ENVIRONMENTAL ENGINEERING

CEE 1770. Introduction to Engineering Graphics and Visualization
2-3-3.
Prerequisite(s): MATH 1501* or MATH 1511* or MATH 15X1
Engineering graphics and visualization including sketching, line drawing, simple wire frame, and solid modeling.
Development and interpretation of drawings and specifications for product realization. Crosslisted with AE and ME 1770.

CEE 2010. Computational Modeling in Civil and Environmental Engineering
3-0-3.
Prerequisite(s): (MATH 1502 or MATH 1512 or MATH 15X2) and MATH 1522 and PHYS 2211 and CS 1321
Fundamentals of numerical methods and development of programming techniques for implementing them to solve civil and environmental engineering problems via computers.

CEE 2020. Statics and Dynamics
3-0-3.
Prerequisite(s): (MATH 1502 or MATH 1512 or MATH 15X2) and MATH 1522 and PHYS 2211
Elements of statics in two and three dimensions, centroids, friction, kinematics and kinetics of rigid bodies in plane motion.

CEE 3000. Civil Engineering Systems
3-0-3.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 24X1
Infrastructure viewed from a systems perspective; analytical approaches and modeling of civil engineered facilities; sustainability; engineering economy applications.

CEE 3010. Geomatics
2-3-3.
Prerequisite(s): CS 1321 and (AE 1770 or CEE 1770 or ME 1770) and (MATH 2401* or MATH 2411* or MATH 24X1)
Spatial data collection methods including surveying, photogrammetry, remote sensing, and global positioning systems; management, manipulation, and analysis of spatial and associated attribute data.

CEE 3020. Civil Engineering Materials
2-3-3.
Prerequisite(s): CEE 3030*
Physical, mechanical, and durability properties of concrete, metals, unreinforced and reinforced plastics, timber, asphalt, and asphalt concrete.
CEE 3030. Strength of Materials
3-0-3.
Prerequisite(s): CEE 2020 and CEE 3020* and (MATH 2403* or MATH 2413* or MATH 24X3)
Stress and strain, axially loaded members, torsion of circular sections, bending of beams, transformation of stress and strain, and column buckling.

CEE 3040. Fluid Mechanics
3-0-3.
Prerequisite(s): CEE 2020
Elementary mechanics of fluids with emphasis on hydrostatics, control volume analysis of flowing fluids using kinematics, continuity, energy, and momentum principles; similarity, pipe flow.

CEE 3055. Structural Analysis
3-0-3.
Prerequisite(s): CEE 3030
Determination of internal forces and deflection in statically determinate trusses, beams, and frames. Introduction to analysis of statically indeterminate structures.

CEE 3770. Statistics and Applications
3-0-3.
Prerequisite(s): MATH 2401
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression, and analysis of variance. Example applied to the field of civil and environmental engineering. Crosslisted with MATH 3770 and ISYE 3770.

CEE 4090. Capstone Design
2-3-3.
An interdisciplinary civil and environmental design experience. Problem definition, data acquisition, modeling and analysis, evaluation of design alternatives, oral and written presentation of final design.

CEE 4100. Construction Engineering and Management
3-0-3.
Fundamental concepts in planning, design, and construction of civil engineering projects. Introduction to project scheduling, cost estimating, controls, procurement, value engineering, quality assurance, and safety.

CEE 4110. Construction Planning, Estimating, and Scheduling
3-0-3.
An integrated approach to planning, estimating, and scheduling of construction projects, including basic and advanced concepts, applications, and tools for developing plans, estimates, and schedules.

CEE 4120. Construction Equipment and Methods
3-0-3.
An integrated approach to construction operations, including basic and advanced concepts, applications, and tools for planning, design, modeling, and analysis of construction operations.

CEE 4200. Hydraulic Engineering
2-3-3.
Prerequisite(s): CEE 3040
Applications of fluid mechanics to engineering and natural systems including fluid drag, open channel flow, turbomachinery, and environmental hydraulics; laboratory experiments; computational hydraulics.

CEE 4210. Hydrology
3-0-3.
Prerequisite(s): CEE 3040
Global circulation and the hydrologic cycle, precipitation mechanisms and analysis, evaporation and other losses, streamflow, hydrographs, river and reservoir routing, and frequency analysis.

CEE 4230. Environmental Transport Modeling
3-0-3.
Prerequisite(s): CEE 4200
Introduction to mixing of pollutants and natural substances in the surface water environment. Use of mathematical models for mixing zones and water quality.

CEE 4300. Environmental Engineering Systems
3-0-3.
Prerequisite(s): BIOL 1510 and CHEM 1310
Environmental engineering issues associated with water, air, and land pollution, including risk assessment, groundwater contamination, global climate change, and sustainable technologies.

CEE 4310. Water Quality Engineering
3-0-3.
Prerequisite(s): CEE 4300
Reclamation of water and wastewater for potable and industrial uses, groundwater remediation. Principles of physical, chemical, and biological treatment processes.

CEE 4320. Hazardous Substance Engineering
3-0-3.
Prerequisite(s): CEE 3040 and CEE 4300
Technical aspects of hazardous waste management and treatment including legislation, exposure and risk assessment, contaminant fate and transport, waste treatment methods, and remediation technologies.

CEE 4330. Air Pollution Engineering
3-0-3.
Prerequisite(s): CEE 4300
Introduction to the physical and chemical processes affecting the dynamics and fate of air pollutants at the local, regional, and global scales. Particular emphasis is on tropospheric pollutant chemistry and transport.

CEE 4390. Environmental Engineering Water/Resources Design
2-3-3.
Prerequisite(s): CEE 4200 and CEE 4210 and CEE 4310*
Interdisciplinary design course in environmental engineering and water resources including process design, hydraulic design, reservoir operations and analysis, cost estimates, plans, and specifications.
CEE 4400. Geosystems Engineering
3-0-3.
Prerequisite(s): EAS 2601 and CEE 3030
Introduction to engineering behavior of soils; mechanical, chemical, electrical, and thermal properties; continuum design principles including theory of elasticity and limiting equilibrium applied to particulate soils.

CEE 4410. Geosystems Engineering Design
3-0-3.
Prerequisite(s): CEE 4400
Analysis and design in geosystems engineering projects, including the evaluation of pile foundations, slope stability, earth retaining structures, and embankments.

CEE 4420. Subsurface Characterization
2-3-3.
Prerequisite(s): CEE 4400
Introduction to field and laboratory methods for characterizing subsurface geological, hydrological, geotechnical, and contaminant conditions.

CEE 4430. Environmental Geotechnics
3-0-3.
Prerequisite(s): CEE 4400*
Chemical equilibria and partitioning in subsurface systems, hazardous waste site assessment technologies and data including soil gas data, monitoring wells, and direct-push technology.

CEE 4510. Structural Steel Design
3-0-3.
Prerequisite(s): CEE 3055
Principles of behavior of tension and compression members, beams, and connections with application to the design of elementary structures.

CEE 4520. Reinforced Concrete Design
3-0-3.
Prerequisite(s): CEE 3055
Principles of behavior of reinforced concrete beams, short columns, and slabs, with application to the design of elementary concrete structures, foundation, and earth retaining structures.

CEE 4530. Timber and Masonry Design
3-0-3.
Prerequisite(s): CEE 3055
Stress-based design of tension, compression, and flexural members; design of building systems, unreinforced and reinforced walls using timber and masonry construction materials and techniques.

CEE 4540. Infrastructure Rehabilitation
2-3-3.
Prerequisite(s): CEE 3000 and CEE 3030 and CEE 4100
Rehabilitation of civil infrastructure systems including aspects of deterioration science, nondestructive assessment, renewal engineering, construction planning and management, and public policy and finance.

CEE 4550. Structural Analysis II
3-0-3.
Prerequisite(s): CEE 3055
Analysis of two- and three-dimensional statically indeterminate structures by classical and matrix methods of solution. Flexibility and stiffness techniques, influence lines, approximate analysis, and nonlinear analysis.

CEE 4600. Transportation Planning, Operations, and Design
2-3-3.
Prerequisite(s): CEE 3000 and CEE 2010*
Introduction to transportation engineering with specific emphasis on the planning, design, and operation of transportation facilities.

CEE 4610. Multimodal Transportation Planning, Design, and Operations
3-0-3.
Prerequisite(s): CEE 4600
Planning, design, and operation of systems of air, rail, water, and highway facilities, including those for bicycles and pedestrians.

CEE 4620. Environmental Impact Assessment
3-0-3.
Key policy, planning, and methodological issues in the environmental impact assessment of engineering systems including the regulatory framework and analytical techniques.

CEE 4630. Computer-Aided Site and Roadway Design
2-3-3.
Prerequisite(s): CEE 4600 and (AE 1770 or CEE 1770 or ME 1770)
Site development principles and application to a comprehensive design project using computer-based digital terrain model software tools.

CEE 4791. Mechanical Behavior of Composites
3-0-3.
Prerequisite(s): CEE 3030
Stress-strain behavior of composites, property of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CHE, ME, MSE, and TIE 4791.

CEE 4793. Composite Materials and Processes
3-0-3.
Prerequisite(s): CHEM 1310
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and testing. Crosslisted with AE, ME, MSE, and CHE 4793.

CEE 4794. Composite Materials and Manufacturing
3-3-4.
Prerequisite(s): CHEM 1310
Basic principles of selection and sign of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with AE, CHE, ME, MSE, and TIE 4794.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 4795</td>
<td>Groundwater Hydrology</td>
<td>3-0-3</td>
<td></td>
<td>Dynamics of flow and solute transport in groundwater, including theory, implementation, and case studies. Crosslisted with EAS 4795.</td>
</tr>
<tr>
<td>CEE 4801</td>
<td>-2, -3, -4, -5, -6. Special Topics</td>
<td></td>
<td></td>
<td>Credit and class hours equal last digit in course number.</td>
</tr>
<tr>
<td>CEE 4900</td>
<td>Undergraduate Honors Research Project</td>
<td></td>
<td></td>
<td>Individual research projects conducted in conjunction with and under the direction of a CEE faculty member. Participation by invitation and agreement with individual faculty members. Project culminates in a thesis and presentation.</td>
</tr>
<tr>
<td>CEE 4901</td>
<td>-2, -3. Special Problems</td>
<td></td>
<td></td>
<td>Credit hours to be arranged.</td>
</tr>
<tr>
<td>CEE 6100</td>
<td>Construction Project Planning</td>
<td>3-0-3</td>
<td></td>
<td>Introduction to project planning concepts including organization development, computer-based scheduling, computer-based estimating, regulatory agencies, and project financing.</td>
</tr>
<tr>
<td>CEE 6110</td>
<td>Computer Applications in Construction</td>
<td>3-0-3</td>
<td></td>
<td>Introduction to computing tools impacting the construction industry and the analysis techniques used to determine company automation requirements.</td>
</tr>
<tr>
<td>CEE 6120</td>
<td>Environmentally Conscious Design and Construction</td>
<td>3-0-3</td>
<td></td>
<td>Introduction to framework, concepts, principles, strategies, and tools for environmentally conscious design and construction of facilities and civil infrastructure systems.</td>
</tr>
<tr>
<td>CEE 6130</td>
<td>Construction Project Controls</td>
<td>3-0-3</td>
<td>CEE 6100</td>
<td>Introduction to project control concepts and advanced implementation techniques. Project control concerns including project budgeting, project productivity, cash flow, and resource allocation will be introduced.</td>
</tr>
<tr>
<td>CEE 6140</td>
<td>Advanced Planning and Estimating Methods</td>
<td>3-0-3</td>
<td>CEE 4110</td>
<td>Overview of advanced methods for planning and estimating construction projects including resource allocation/management, project control techniques, interpretation of schedules and estimates, and value engineering.</td>
</tr>
<tr>
<td>CEE 6150</td>
<td>Construction Law</td>
<td>3-0-3</td>
<td></td>
<td>Overview of construction law and legal issues encountered by the construction engineer and manager.</td>
</tr>
<tr>
<td>CEE 6170</td>
<td>Project Delivery and Procurement</td>
<td>3-0-3</td>
<td></td>
<td>Analysis of construction project delivery including traditional, design-build, construction management, multiple prime contractors, and related financing. The course focuses on the owner's role in construction.</td>
</tr>
<tr>
<td>CEE 6180</td>
<td>Construction Organizations</td>
<td>3-0-3</td>
<td></td>
<td>Introduction to organizational concepts of the construction industry including strategic management, company financing, human resources, and market analysis.</td>
</tr>
<tr>
<td>CEE 6190</td>
<td>Construction Field Engineering</td>
<td>3-0-3</td>
<td></td>
<td>Introduction to construction engineering techniques and practices including site excavation, shoring structures, heavy equipment, site layout, and temporary facility construction.</td>
</tr>
<tr>
<td>CEE 6221</td>
<td>Physical Hydrology</td>
<td>3-0-3</td>
<td></td>
<td>Occurrence, movement, and distribution of water. Topics: hydrologic cycle, global circulation, climate, atmospheric water vapor, thermodynamics, precipitation, evaporation, snowmelt, soil moisture, unsaturated flow, infiltration, geomorphology, runoff, and routing.</td>
</tr>
<tr>
<td>CEE 6222</td>
<td>Hydrometeorology</td>
<td>3-0-3</td>
<td></td>
<td>Estimation of hydrologic variables from on-site and remote sensors; operational hydrologic models; parameter estimation; operational forecasting.</td>
</tr>
<tr>
<td>CEE 6231</td>
<td>Probability and Statistics for Civil and Environmental Engineers</td>
<td>3-0-3</td>
<td></td>
<td>Probability distributions applicable to civil engineering systems; function of random variables; regression and correlation analysis; parameters estimation and statistical hypothesis tests.</td>
</tr>
<tr>
<td>CEE 6232</td>
<td>Stochastic Hydrology</td>
<td>3-0-3</td>
<td></td>
<td>Stochastic modeling of hydrologic processes. Problems of model specifications and parameter identification, and validation. Application to forecasting and synthetic events.</td>
</tr>
<tr>
<td>CEE 6241</td>
<td>Water Resources Management I</td>
<td>3-0-3</td>
<td></td>
<td>Operations research methodologies, including linear and nonlinear programming, and their applications to water resources systems.</td>
</tr>
<tr>
<td>CEE 6242</td>
<td>Water Resources Management II</td>
<td>3-0-3</td>
<td>CEE 6231 and CEE 6241</td>
<td>Design of decision support systems for water resources planning and management.</td>
</tr>
</tbody>
</table>
CEE 6244. Random Fields and Geostatistics
3-0-3.
Probability density function; moments; scales of fluctuations; spectral representation; simulation of random fields; cross-correrlated random fields; vector fields; kriging; conditional simulation.

CEE 6251. Intermediate Fluid Mechanics
2-3-3.
Prerequisite(s): CEE 3040 and CEE 4200
Concepts of linear and angular deformation, vorticity, and conservation of mass. Development of Navier-Stokes with solutions: steady and unsteady uniform laminar, vortex, creeping, and potential flow.

CEE 6252. Advanced Fluid Mechanics
3-0-3.
Prerequisite(s): CEE 6251
Theory of three-dimensional turbulent boundary layers with application to environmental flows in rivers, estuaries, and the atmosphere of interest in water resources engineering.

CEE 6261. Environmental Fluid Mechanics
3-0-3.
Dynamics, mixing, and contaminant transport in surface water bodies, including lakes, rivers, estuaries, and coastal waters. Introduction to numerical models. Prediction of mixing zones.

CEE 6262. Advanced Environmental Fluid Mechanics
3-0-3.
Prerequisite(s): CEE 6261
Buoyancy modifications to the mixing and dynamics of pollutant discharges and surface water bodies. Gathering and analysis of laboratory and field data for mixing problems.

CEE 6271. Flow and Transport through Porous Media I
3-0-3.
Prerequisite(s): CEE 6221
Basic principles governing ground water flow. Topics covered: fundamental principles of saturated and unsaturated ground water flow, contaminant transport, and saltwater intrusion.

CEE 6272. Flow and Transport through Porous Media II
3-0-3.
Prerequisite(s): CEE 6271
Principles of numerical methods used in solving ground water flow, contaminant transport models, building on materials covered in CEE 6271. Topics: finite element, difference methods, saturated, unsaturated ground water flow and contaminant transport.

CEE 6274. Flow and Transport in Heterogeneous Porous Media
3-0-3.
Prerequisite(s): CEE 6271
Advanced treatment of transport processes in natural porous media: classical description; stochastic description of variability; dynamic models; flow and transport in aquifers; model uncertainty.

CEE 6281. Open Channel Hydraulics
2-3-3.
Prerequisite(s): CEE 4200

CEE 6282. Sediment Transport
3-0-3.
Prerequisite(s): CEE 4200
Engineering importance of erosion and sedimentation problems. Topics: properties of non-cohesive/cohesive sediments including specific weight/gravity/shape/size/distribution/fall velocity/mineral structure/rheological properties.

CEE 6284. Hydraulic Transients in Fluid Systems
3-0-3.
Prerequisite(s): CEE 3040 and CEE 4200
Transient flow of liquids in piping systems. One-dimensional wave equations and method of characteristics. Effects of valves and pumps on waterhammer. Cavitation and liquid-column separation.

CEE 6293. Hydrodynamic Stability and Turbulence
3-0-3.
Prerequisite(s): CEE 6251
Flow in stability and turbulence are important in virtually all environmental flows. Fundamental stability, transition, and turbulent concepts along with their engineering relevance will be introduced.

CEE 6310. Process Principles in Environmental Engineering
3-0-3.
Principles that can be used in the analysis and modeling of environmental engineering processes, including material and energy balances, mass transfer, and reaction engineering.

CEE 6311. Microbial Principles in Environmental Engineering
3-0-3.
Microbiological principles with emphasis on microbial nutrition and growth, inhibition and control of growth, biochemical thermodynamics, metabolic pathways, enzyme and microbial kinetics.

CEE 6312. Chemical Principles in Environmental Engineering
3-0-3.
Fundamental principles of chemical equilibria and environmental organic chemistry in dilute aqueous systems with emphasis on chemical speciation and environmental engineering applications.

CEE 6313. Fate of Contaminants in the Subsurface
3-0-3.
Effects of physical, chemical, and biological processes on the fate and transport of contaminants in unsaturated and saturated porous media.
CEE 6319. Environmental Sciences and Engineering Laboratory
2-3-3.
Prerequisite(s): CEE 6310 and CEE 6311 and CEE 6312
Laboratory exercises and discussions for the understanding of fundamental chemical analytical, physicochemical, and applied microbiological principles in environmental engineering.

CEE 6330. Physicochemical Processes
3-0-3.
Prerequisite(s): CEE 6310 and CEE 6312
Theory and application of the physical and chemical processes of coagulation, flocculation, sedimentation, softening, filtration, and disinfection in water and wastewater treatment.

CEE 6331. Biological Processes
3-0-3.
Prerequisite(s): CEE 6310 and CEE 6311 and CEE 6312
Microbial growth kinetics and bioenergetics, theory, modeling, and application of biological processes employed in water, wastewater, and hazardous waste treatment systems as well as subsurface bioremediation.

CEE 6332. Separation Processes
3-0-3.
Prerequisite(s): CEE 6310 and CEE 6312
Theory and applications of the physical and chemical processes of sorption, membrane separation, and absorption in both gas-phase and liquid-phase environmental engineering systems.

CEE 6333. Hazardous Waste Site Remediation
3-0-3.
Prerequisite(s): CEE 6313
Selection, design, and implementation of hazardous waste site remediation technologies including pump-and-treat, soil vapor extraction, thermal processes, bioremediation, surfactant flushing, and barrier-treatment walls.

CEE 6340. Solid-Liquid Separations
3-0-3.
Prerequisite(s): CEE 6310 and CEE 6311 and CEE 6312
Characterization, stabilization, conditioning, thickening, dewatering, conversion, recovery, transportation, and disposal of air, water, and wastewater treatment residues.

CEE 6341. Industrial Waste Treatment and Disposal
2-3-3.
A review of current policies and approaches in industrial waste treatment, and application of engineering principles and processes for waste treatment, recovery, and disposal.

CEE 6342. Solid Waste Technology
2-3-3.
An introduction of the current regulations and fundamentals of solid waste management, characterization, handling, recycling, transportation, and final disposal systems.

CEE 6343. Membrane Processes
3-0-3.
Prerequisite(s): CEE 6310 and CEE 6312
An introduction of the theories of membrane separation processes with special emphasis on desalination, softening, THM precursors reduction using reverse osmosis and nanofiltration.

CEE 6350. Advanced Environmental Chemistry
3-0-3.
Prerequisite(s): CEE 6312
Chemical behavior of inorganic and organic compounds in natural waters. Topics include chemistry of metal ions, partitioning, and distribution of organic pollutants, surface reactions.

CEE 6351. Biotransformation of Xenobiotic Compounds
3-0-3.
Prerequisite(s): CEE 6311
Biotransformation pathways and kinetics of anthropogenic recalcitrant compounds and biological, biochemical, and environmental factors affecting these transformations in natural and engineered systems.

CEE 6355. Industrial Ecology in Environmental Engineering
3-0-3.
Introduces the principles of environmentally conscious products, processes, and manufacturing systems.

CEE 6360. Design of Treatment Facilities for Drinking Water
2-3-3.
Prerequisite(s): CEE 6330
Theory and design of process tanks and equipment for capture, purification, conditioning, storage, and distribution of safe drinking water.

CEE 6361. Modeling and Simulation of Biological Treatment Systems
2-3-3.
Prerequisite(s): CEE 6331
Theory and design of biological treatment systems for water reclamation; nutrient removal; and integrated process design and optimization using advanced computer models.

CEE 6390. Air Pollutant Formation and Control
3-0-3.
Analysis of air pollutants through the study of radical reaction pathways, combustion processes, and removal of particles and gaseous pollutants from exhaust gas streams.

CEE 6391. Advanced Topics in Air Pollution
1-0-1.
Current topics in air pollution engineering presented and discussed.

CEE 6402. Soil Mechanics
3-0-3.
Prerequisite(s): CEE 4400
Fundamental concepts related to the mechanical behavior of soils, including effective stress, strength, stiffness, permeability, and time-dependent behavior.

CEE 6403. Environmental Geotechnics
3-0-3.
Prerequisite(s): CEE 4400
Evaluation of equilibria and partitioning as applied to site assessment techniques including soil gas data, monitoring wells, soil samples, and direct-push technology.
CEE 6421. Laboratory Characterization of Geomaterials 2-3-3.
Prerequisite(s): CEE 4400
Instruction in the procedures, methods of interpretation, and apparatus limitations and influences for geotechnical laboratory index, strength, deformation, and permeability tests.

Macrobehavior and microlevel phenomena in particulate media are experimentally studied. Topics in experimental research include: scale effects, similarity, falsification, errors, transducers, and design of experiments.

CEE 6423. In-Situ Testing and Site Characterization of Geomaterials 3-0-3.
Field testing and sampling of geomaterials, primarily soils and rocks. Introduces methods of drilling, probing, and in-situ measurement of soils for determining stratigraphy and engineering parameters for analysis, including soil borings, cone penetration tests, pressuremeter, dilatometer, and other tests.

Prerequisite(s): CEE 6422
Geophysical techniques used to characterize near-surface soils and rocks including seismic, magnetic, electromagnetic, radar, and resistivity methods.

CEE 6441. Analysis of Earth Structures 3-0-3.
Prerequisite(s): CEE 6402
Instruction in techniques for assessing the stability of earth-retaining structures including unreinforced slopes, reinforced slopes, freestanding retaining structures, and reinforced retaining structures.

CEE 6442. Dynamic Analysis in Geotechnical Engineering 3-0-3.
Prerequisite(s): CEE 6402
Dynamic soil properties; response of foundations to dynamic loads; construction and blast vibration criteria; dynamic analysis of pile driving; introduction to liquefaction potential.

CEE 6443. Foundation Systems 3-0-3.
Evaluation and design of foundations for civil engineering structures, including the settlement and bearing capacity of shallow spread footings, mats, and deep foundations. Footings, driven piles, bored piles, and drilled shafts analyzed using elastic continuum theory, limit plasticity, and cavity expansion solutions, supplemented with numerous case studies. Ancillary topics include axial load transfer, pile group interaction, lateral and moment loading, and pile dynamics.

CEE 6444. Geosynthetics in Civil Engineering 3-0-3.
Prerequisite(s): CEE 3020 and CEE 4400
Development, fabrication, design, and applications of geotextiles, geogrids, geonets, and geomembranes.

CEE 6445. Geotechnical Earthquake Engineering 3-0-3.
Earthquake magnitude and intensity, seismic hazard evaluation using deterministic and probabilistic approaches, site response analyses and ground motion amplification liquefaction, and response of earth structures.

CEE 6446. Geotechnical Seepage Analysis 3-0-3.
Prerequisite(s): CEE 6402
Seepage and its effects on engineering behavior of soils and its consequences for design of geo-infrastructure.

CEE 6447. Ground Modification 3-0-3.
Prerequisite(s): CEE 6402
Methods for improving marginal construction sites for geotechnical engineering projects and rehabilitation of geo-infrastructure.

CEE 6448. Landfill Design and Management 3-0-3.
Prerequisite(s): CEE 6402
The course deals with geomaterial selection and characterization, chemical compatibility, placement procedures (including compaction), design strategies, seepage issues, instrumentation, and environmental monitoring.

CEE 6449. Design of Remediation Systems 3-0-3.
Prerequisite(s): CEE 6403
Design of remediation systems and management approaches for the petrochemical, power generation, metals finishing, and mining industries are emphasized. Risk analysis and case histories are presented.

CEE 6450. Pavement Design 3-0-3.
Prerequisite(s): CEE 4400
Analysis and design of flexible and rigid pavement for highway and airfield runway, evaluation of pavement performance and distress, and pavement rehabilitation strategy and techniques.

CEE 6451. Rock Mechanics 3-0-3.
Prerequisite(s): CEE 6751 or EAS 6751
Rock characterization, scale effect, in-situ stresses, mechanisms of rock deformation and fracture, rock engineering; special attention to common principles unifying presented set of topics.

CEE 6461. Mathematical Applications for Civil and Environmental Engineering 3-0-3.
Mathematical techniques are reviewed in the context of CEE problems. The simplified yet mathematically rigorous approach highlights the internal mathematical connections between different engineering problems.

CEE 6462. Signals and Inverse Problems in Civil Engineering 3-0-3.
Prerequisite(s): CEE 6402
Civil engineering signals and systems. Discrete time and

CEE 6463. Constitutive Modeling of Soils 3-0-3.
Prerequisite(s): CEE 6402
Fundamental concepts in modeling behavior of soils. Implementation of models into numerical solution codes. Evaluation of models used in practice.

Prerequisite(s): CEE 6402
This course presents many of the fundamental concepts behind the mechanical behavior of unsaturated soils.

Prerequisite(s): CEE 6451
Application of fracture mechanics toward practical problems. General fracture behavior studied in the context of a variety of applied topics. Computer and experimental demonstrations.

CEE 6483. Geotechnical Image and Spatial Analysis 3-0-3.
Prerequisite(s): CEE 6402
Presentation of techniques for spatial and image processing and analysis of subsurface data at micro and macro scales.

CEE 6484. Industrial Byproduct Reutilization 2-3-3.
Prerequisite(s): CEE 6402
The objective of this course is to explore more fully the interface between geotechnology, geochemistry, and sustainable engineering to develop new applications using industrial byproducts.

CEE 6485. Wave-based Characterization of Particulate Materials 3-0-3.
Prerequisite(s): CEE 6402
Characterization of materials with mechanical and electromagnetic waves. Emphasis on particulates with extensions to other materials. Laboratory and field applications.

CEE 6501. Matrix Structural Analysis 3-0-3.
Prerequisite(s): CEE 4550
Static analysis of framed structures by flexibility and stiffness methods; computer models and solution for applied loads, temperature, support settlement, and member prestrain effects.

CEE 6504. Finite Element Method of Structural Analysis 3-0-3.
Prerequisite(s): CEE 6551
Introduction to the element method with emphasis on analysis of solids and structures. One-, two-, and three-dimensional finite. Modeling, approximations, and errors.

CEE 6507. Nonlinear Finite Element Analysis 3-0-3.
Prerequisite(s): CEE 6504
Lagrangian formulations for nonlinear analysis of solids and structures, including consistent linearization and state determination. Incremental-iterative solution approaches; computational plasticity. Software implementation.

CEE 6510. Structural Dynamics 4-0-4.
Prerequisite(s): CEE 6501
Vibration and dynamic response of linear and nonlinear structures to periodic and general disturbing forces, with and without damping effects. Wind and earthquake SDOF and MDOF effects.

Generalization of finite element concepts; Galerkin-weighted residual and variational approaches; mixed and hybrid finite element formulations, applications, transient dynamic analysis; software implementation.

CEE 6521. Reinforced Concrete Members 3-0-3.
Prerequisite(s): CEE 4520
Behavior and design of RC members; ductility and inelastic response; deep beams; corbel and torsion design; column biaxial bending; shearwalls; effects of creep and shrinkage.

CEE 6522. Reinforced Concrete Slab Systems 3-0-3.
Prerequisite(s): CEE 4520
Analysis and design of two-way slab systems, structural walls, and complex building configurations. Equivalent frame and analysis, strip and yield-line technique, application of finite element method to design of slab and wall systems.

CEE 6523. Prestressed Concrete 3-0-3.
Prerequisite(s): CEE 4520
Principles and practice of pre-stressed concrete. Analysis and design of statically determinate and indeterminate beams, and one-way and two-way slabs; pre-cast, pre-tensioned, post-tensioned.

CEE 6527. Advanced Structural Steel Design 3-0-3.
Strength, behavior, and design of steel structures according to WSD and LRFD. Plate girders, composite beams, bolted and welded connections, beam-columns, and torsion.

CEE 6530. Structural Systems 3-0-3.
Prerequisite(s): CEE 4550
Behavior and design of steel and concrete building and bridge systems. Introduction to structural planning with emphasis on economics, structural behavior, serviceability, and strength considerations.
CEE 6533. Design of Polymer Composite Structures
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791 or TFE 4791
Strength, behavior, and design of polymeric composites, structural members, and connections for civil engineering applications.

CEE 6536. Rehabilitation of Existing Structures
3-0-3.
Deterioration science; corrosion of steel, alkali-silica reaction, freezing and thawing. Assessment and evaluation of existing structures, non-destructive testing, and non-destructive evaluation.

CEE 6541. Earthquake Engineering
3-0-3.
Prerequisite(s): CEE 6510
Characteristics of earthquakes; design and rehabilitation of civil engineering structures for earthquake ground motion; code provisions; case studies.

CEE 6544. Structural Modeling
3-0-3.
Modeling of structures for static, dynamic, and nonlinear analysis using finite elements. Effects of parameters on the structural behavior.

CEE 6547. Nonlinear Design of Frame Structures
3-0-3.
Prerequisite(s): CEE 6527
Analysis and design of structures based on ultimate load capacity. Application of the fundamental theorems of plastic design to continuous beams, frames, and grillages.

CEE 6551. Advanced Strength of Materials
3-0-3.
Study of advanced topics from mechanics of materials with application to structures. Typical topics: energy methods, failure theories, post-yield behavior, generalized bending, and torsion.

CEE 6554. Theory of Elastic Stability
3-0-3.
Concepts of elastic stability, simple mechanical models, buckling of beam-columns and frames, beams on elastic foundation, and plates energy methods; torsional and lateral buckling.

CEE 6557. Theory of Plates and Shells
3-0-3.
Plate bending, approximate methods, nonlinearity, stiffened and anisotropic plates. Stress and deformation of shells with and without bending, surfaces of revolutions, and shallow shells.

CEE 6560. Applied Elasticity
3-0-3.
Introduction to traction, stress, and equilibrium; deformations, strain compatibility; constitutive equations; two-dimensional problems in Cartesian and polar coordinates; application to extension, bending, and torsion.

CEE 6563. Energy Methods in Mechanics
3-0-3.
Virtual work, principles of potential energy and complementary energy, Castigliano's theorems, generalized and stationary variational principles, energy methods, structural applications, nonlinear problems, and Hamilton's principle.

CEE 6566. Plasticity and Viscoelasticity
3-0-3.
Prerequisite(s): CEE 6581 or CEE 6572
Plastic deformation, yield conditions, flow rules and normality, relaxation and creep, viscoelasticity, tubes and spheres, torsion and bending, slip line fields, and viscoelastic boundary value problems.

CEE 6569. Wave Propagation in Solids
3-0-3.
Prerequisite(s): CEE 6560
Plane waves in elastic half-spaces, reflection and refraction; Rayleigh and Stoney waves; waveguides, Love waves, Rayleigh-Lamb modes; Cagniard-de Hoop method; in anisotropic media.

CEE 6571. Experimental Stress Analysis
2-3-3.
Study of surface stress and strain using brittle coatings and strain gauges. Strain gauge circuits, static and dynamic problems, transducer design and circuits.

CEE 6581. Engineering Programming Methods
2-3-3.
Engineering programming concepts through the application of numerical solution techniques including program development, efficiencies, documentation, and testing using formal data structures and algorithms.

CEE 6582. Knowledge-Based Programming Methods in Engineering
2-3-3.
Prerequisite(s): CEE 6581
The usage and development of knowledge-based computer systems in engineering is studied. Topics include knowledge acquisition, representation, and verification.

CEE 6583. Object-Oriented and Multimedia Programming in Engineering
3-0-3.
Prerequisite(s): CEE 6581
Coverage of object-oriented and multimedia technologies is presented for their proper development and utilization in solving engineering problems.

CEE 6601. Linear Statistical Models in Transportation
3-3-4.
Prerequisite(s): CEE 3001
Theory of simple and multivariate regression and analysis of variance models. Assessment of modeling assumptions and remedial measures. Applications in the field of transportation planning.

CEE 6602. Urban Transportation Planning
3-3-4.
An overview course on the history, finance, operations, modeling, politics, environmental impacts, and planning of urban transportation systems in the United States.
CEE 6603. Traffic Engineering
2-3-3.
Prerequisite(s): CEE 4601

CEE 6604. Geometric Design of Transportation Facilities
2-3-3.
Prerequisite(s): CEE 4601
Geometric configurations of streets, expressways, busways, railways, and their terminals to meet characteristics of vehicle performance and operator limitations.

CEE 6605. Transportation Administration and Policy Analysis
3-0-3.
Overview of institutions and policy processes in the transportation sector: organizational analysis and implementation; policy analysis.

CEE 6621. GIS in Transportation
2-3-3.
Theory and application of GIS applied to transportation engineering and planning (GIS-T). Laboratory focuses on GIS-T development.

CEE 6622. Travel Demand Analysis
2-3-3.
Prerequisite(s): CEE 6602
Examination of methods for forecasting future site- and regional-level travel demand. Model specification, calibration and validation.

CEE 6623. Survey Design and Analysis
3-0-3.
Prerequisite(s): CEE 6601
Design of telephone, mail out, and personal interview survey instruments. Subsequent estimation of choice-based models from cross-sectional and panel survey data.

CEE 6624. Land Use - Transportation Interaction
3-0-3.
Prerequisite(s): CP 6311
Overview of land use and transportation planning principles, how development impacts air transportation, how transportation investments impact development patterns and air quality.

CEE 6625. Transportation, Energy, and Air Quality
3-0-3.
Prerequisite(s): CEE 4008
Students investigate relationships between transportation demand, energy supply and consumption, fuel types, greenhouse gas emissions, and relationships between vehicle technology, pollutant emissions, modeling techniques, and air quality.

CEE 6631. Signaled Intersections and Networks
2-3-3.
Prerequisite(s): CEE 6603

CEE 6632. Simulation Models in Transportation
2-3-3.
Prerequisite(s): CEE 6603
Simulation models in transportation: development, calibration, applications, and analysis of outputs.

CEE 6633. Advanced Traffic Detection and Control
3-0-3.
Prerequisite(s): CEE 6603 and CEE 6631

CEE 6634. Transportation Safety Analysis
3-0-3.
Prerequisite(s): CEE 6601
Understanding the human factors elements of transportation safety and how to appropriately model the highly complex and stochastic occurrence of accidents on a transportation network.

CEE 6635. Technology Innovation in Transportation
3-0-3.
Technology innovations in transportation including Intelligent Transportation Systems. Planning and design of ITS systems.

CEE 6636. Traffic Flow Theory
3-0-3.
Prerequisite(s): CEE 6603
Advanced study of underlying principles and analytical procedures used in performing capacity analyses of transportation facilities. Highway Capacity Manual procedures and other analytical techniques presented.

CEE 6641. Transportation Infrastructure Management and Traffic Control
3-0-3.
Prerequisite(s): CEE 6603 and CEE 6604
Transportation infrastructure traffic control and safety-related issues are addressed for initial implementation of transportation facilities as well as daily operational aspects.

CEE 6642. Transit Systems Planning and Design
3-0-3.
Introduction to transit system planning and design concepts. Course will discuss the planning, design, and operations of transit systems, and the operations of intermodal terminals.

CEE 6644. Airport Planning and Design
2-3-3.
Prerequisite(s): CEE 4601
Airport site selection, runway length and orientation, traffic control, drainage and lighting, long-range planning, and government responsibility for air transportation.

CEE 6651. Infrastructure Systems Management
3-0-3.
Analytical approaches and tools for infrastructure and asset management, sustainable systems development.
CEE 6751. Physical Properties and Rheology of Rocks
2-3-3.
Structure, properties, and rheology of minerals and rocks with applications to engineering structures and natural phenomena in the earth. Fundamentals of rock mechanics and crack propagation. Crosslisted with EAS 6751.

CEE 6754. Engineering Communication
3-0-3.
Writing and editing engineering documents; designing and explaining visuals; creating and delivering electronic presentations. Crosslisted with MSE 6754.

CEE 6761. Contaminated Sediment Geochemistry
3-0-3.
Prerequisite(s): CEE 6312
Acquaints students with fate of major pollutants, nutrients, and organic compounds such as pesticides, PAHs, and trace metals in sedimentary systems. Crosslisted with EAS 6761.

CEE 6790. Air Pollution Physics and Chemistry
3-0-3.
Introduction to physical and chemical processes affecting dynamics and fate of air pollutants at local, regional, and global scales; emphasis on tropospheric pollutant chemistry and transport. Crosslisted with EAS 6790.

CEE 6792. Air Pollution Meteorology and Chemistry
3-0-3.
Vertical temperature and wind structure, topographic effects, natural removal processes, atmospheric dispersion of stack effluents, air pollution climatology, and meteorological management of air pollution. Crosslisted with EAS 6792.

CEE 6793. Atmospheric Boundary Layer
3-0-3.
Structure and dynamics of atmospheric boundary layer. Introduction to turbulence and turbulent transport. Crosslisted with EAS 6793.

CEE 6794. Atmospheric Chemical Modeling
3-0-3.
Prerequisite(s): EAS 6410 or EAS 6790 or CEE 6790
Application of modern numerical methods to the prediction of atmospheric chemical and physical compositions; specific applications using computer models developed by the students are included. Crosslisted with EAS 6794.

CEE 6795. Atmospheric Aerosols
3-0-3.
Prerequisite(s): EAS 6410 or EAS 6790 or CEE 6790
Chemical and physical properties of natural and anthropogenic aerosols. Sources, transport, transformation, and fate of primary/secondary, organic/inorganic, atmospheric semi-volatiles and aerosols. Crosslisted with EAS 6795.

CEE 7000. Master's Thesis
Credit hours to be arranged.

CEE 7310. Master's Thesis and Research Presentation
1-0-1.
Oral presentation of master's thesis and research projects.

CEE 7751. Computational Fluid Mechanics
3-0-3.
Prerequisite(s): CEE 6251 and ME 6601
Numerical methods for solving the time-dependent Navier-Stokes equations in complex geometries, including theory, implementation, and applications. Crosslisted with ME 7751.

CEE 7772. Fundamentals of Fracture Mechanics
3-0-3.
Prerequisite(s): AE 3120 or MSE 3005
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with AE, CHE, ME, and MSE 7772.

CEE 7773. Advanced Fracture Mechanics
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CHE, ME, and MSE 7773.

CEE 7774. Fatigue of Materials and Structures
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791
Provides knowledge of the fundamental concepts and methods related to analysis and assessment of damage, failure, and durability of composite materials. Crosslisted with AE, CHE, ME, MSE, and TFE 7791.

CEE 7791. Damage, Failure, and Durability of Composite Materials
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791
Provides knowledge of the fundamental concepts and methods related to analysis and assessment of damage, failure, and durability of composite materials. Crosslisted with AE, CHE, ME, MSE, and TFE 7791.

CEE 7792. Advanced Mechanics of Composites
3-0-3.
Prerequisite(s): CEE 4792
Anisotropic elasticity, failure theories, hygrothermal behavior, three-dimensional analysis of laminates, thick laminates, free-edge effects, stress concentrations, joints, creep and fracture of composites. Crosslisted with AE, CHE, ME, MSE, and TFE 7792.

CEE 7793. Manufacturing of Composites
3-0-3.
Prerequisite(s): AE 4793 or CEE 4793 or CHE 4793 or ME 4793 or MSE 4793 or TFE 4793
Major manufacturing techniques for metal-, ceramic-, and polymer-matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CHE, ME, MSE, and TFE 7793.
CEE 7999. Doctoral Examination Preparation
Credit hours to be arranged.
For students preparing for the doctoral qualifying examination.

CEE 8091. Construction Seminar
1-0-1.
Introduction to leading-edge industry practices not part of the regular curriculum using field trips and guest lectures.

CEE 8092. Fluid Mechanics and Hydraulics Seminar
1-0-1.
Presentation and discussion of current research developments in water resources by outside speakers, faculty, and graduate students.

CEE 8093. Hydrology and Water Resources Seminar
1-0-1.
Presentation and discussion of current research developments in water resources by outside speakers, faculty, and graduate students.

CEE 8094. Environmental Engineering Seminar
1-0-1.
Developments in environmental engineering science and technology, current practice, current research, and special topics related to environmental quality assessment and control.

CEE 8095. Research Seminar in Environmental Engineering
1-0-1.
Discussion of current research topics in environmental engineering. Presentations by master's and doctoral students.

CEE 8800. Special Topics
1-0-1.

CEE 8801. Special Topics
2-0-2.

CEE 8802. Special Topics
3-0-3.

CEE 8803. Special Topics
4-0-4.

CEE 8804. Special Topics
5-0-5.

CEE 8900. -01, -02, -03. Special Problems
Credit hours to be arranged.

CEE 8950. Master's Special Research Project
Credit hours to be arranged.
Master's research project to be scheduled by M.S. students not writing thesis.

CEE 8956. Master's Special Research Problem
Credit hours to be arranged.
For non-thesis students performing research.

CEE 8997. Teaching Assistantship
Credit hours to be arranged.
For students holding a graduate teaching assistantship.

CEE 8998. Research Assistantship
Credit hours to be arranged.
For students holding a graduate research assistantship.

CEE 8999. Preparation for Doctoral Dissertation
Credit hours to be arranged.
For students in the preliminary stages of formulating their doctoral research program who have not obtained formal approval of dissertation topic.

CEE 9000. Doctoral Thesis
Credit hours to be arranged.
An asterisk (*) denotes prerequisite courses that may be taken concurrently.

School of Electrical and Computer Engineering

www.ece.gatech.edu

Established in 1896
Principal location: Van Leer Building
Telephone: 404.894.2901
Fax: 404.894.4641
E-mail: info@ece.gatech.edu

Chair and Georgia Power Distinguished Professor—Roger P. Webb; Associate Chair for Faculty Development and Operations and Professor—J. Alvin Connelly; Associate Chair for External Affairs and Professor—Hans B. Piittgen; Associate Chair for Graduate Affairs and Professor—David R. Hertling; Associate Chair for Undergraduate Affairs and Professor—William E. Sayle; Associate Chair for Computer Engineering and Program Development and Associate Professor—Joseph L.A. Hughes; Assistant to the Chair for Laboratory Instruction—Thomas E. Brewer; Assistant to the Chair for Computer Services—David S. Webb; Julius Brown Chair and Regents' Professor—Thomas K. Gaylord; John O. and Marilu McCarty Chair and Regents' and Institute Professor—Ronald W. Schafer; Byers Professor in Telecommunications—Ian F. Akyildiz; Schlumberger Professor in Microelectronics—Phillip E. Allen; Byers Professor in Microelectronics—Kevin F. Brennan; Weitnauer Technology Transfer Chair and GRA Eminent Scholar and Professor—John A. Copeland;
Duke Power Distinguished Professor—Ronald G. Harley; Pippin Chair in Wireless Communications and GRA Eminent Scholar and Professor—Nikil S. Jayant; Hightower Chair in Manufacturing Engineering and Professor—Edward W. Kamen; GRA Eminent Scholar and Professor—John O. Limb; Motorola Professor—Gary S. May; Byers Professor in Signal Processing—James H. McClellan; Joseph M. Pettit Chair in Microelectronics and Professor—James D. Meindl; Georgia Power Distinguished Professor and Regents’ Professor—Ajeet Rohatgi; Pippin Chair in Electromagnetics and Regents’ Professor—Glenn S. Smith; Hightower Chair and Professor—Allen Tannenbaum; Joseph M. Pettit Chair in Electronic Packaging and GRA Eminent Scholar and Professor—Rao R. Tummala; Demetrius T. Paris Jr. Professor and Assistant Professor—Linda M. Wills.

Regents’ Professor—Russell M. Mersean.
ON Semiconductor Junior Professor—J. Stevenson Kenney.

Regents’ Professors Emeriti—John W. Hooper, George P. Rodrigue, Kendall L. Su.

Laboratory Coordinator/Instructor—W. Bruce McFarland.

*GTRI, **Georgia Tech Regional Engineering Program

General Information
The cornerstones of electrical engineering—the control of information and electric power—result from the fact that electrical energy is the only form of energy that can be transmitted efficiently and under controlled conditions, even over great
distances, from point of origin to point of use. Utilization of this fact has enabled electrical engineers to pioneer such diverse and important fields as computers, electric power, and telecommunications.

Computer engineering is a rapidly growing discipline that encompasses the principles, methods, and tools for the design and implementation of digital systems and the integration of computer technology into a wide range of applications. Rapid advances in underlying technologies have resulted in ever smaller, less costly, and higher-performance computer systems, as well as the use of computers as embedded elements in applications ranging from highly complex communication systems to sophisticated consumer products to common household appliances. The computer engineering program provides a balanced perspective of both hardware and software elements of computing systems, design trade-offs, and applications.

The School of Electrical and Computer Engineering (ECE) provides undergraduate and graduate programs that prepare students to participate in a broad range of career opportunities. Modern facilities and laboratories support experimental and theoretical programs of instruction and research. Additional information about the School is available at www.ece.gatech.edu/academic or upon request by calling the School at 404.894.2900.

Undergraduate Programs
The School of Electrical and Computer Engineering offers two undergraduate degree programs: electrical engineering (EE) and computer engineering (CmpE). Both programs include elective hours, enabling students to individually tailor their programs to provide emphasis in a particular specialization or exposure to a broad range of subjects. Elective courses are available in a wide variety of major areas including analog electronics, bioengineering, computer engineering, systems and controls, microelectronics, packaging, digital signal processing, optics and photonics, electric power, energy processing, electromagnetics, and telecommunications. Additionally, students may elect to take advanced courses in other programs such as computer science, physics, or management. Engineering analysis and design concepts are integrated throughout both the electrical engineering and computer engineering programs. Both programs culminate in major design experiences involving a broad range of issues including economics, safety, and societal considerations.

Bachelor of Science in Electrical Engineering (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1322 OBJECT-ORIENTED PROGRAMMING</td>
<td>3</td>
</tr>
<tr>
<td>ECE 2030 INTRO. TO COMPUTER ENGINEERING</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 2025 INTRO. TO SIGNAL PROC.</td>
<td>4</td>
</tr>
<tr>
<td>LCC 3401 TECHNICAL COMM. PRAC.</td>
<td>2</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 2031 DIGITAL DESIGN LAB</td>
<td>2</td>
</tr>
<tr>
<td>ECE 2040 CIRCUIT ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>LAB SCIENCE ELECTIVE (CHEM, PHYS, BIOL, EAS)</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>
Electrical and Computer Engineering

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3025 ELECTROMAGNETICS</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3040 MICROELECTRONIC CIRCUITS</td>
<td>4</td>
</tr>
<tr>
<td>ECE 3041 INSTRUMENT & CIRC. LAB</td>
<td>2</td>
</tr>
<tr>
<td>ECON 2100 ECONOMIC ANALYSIS & POLICY</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>APPROVED ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 3042 MICROELECTRONICS LAB</td>
<td>2</td>
</tr>
<tr>
<td>ELECTRICAL ENG. BREADTH ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>APPROVED ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>CEE/ISEY/MATH 3770 STATISTICS AND APPLICATIONS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 4000 PROJ. ENGR. & PROE PRAC.</td>
<td>3</td>
</tr>
<tr>
<td>ECE ELECTIVES</td>
<td>4</td>
</tr>
<tr>
<td>ME 3720 THERMO. & FLUID ENGR.</td>
<td>3</td>
</tr>
<tr>
<td>APPROVED ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRICAL ENG. DESIGN ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ECE ELECTIVES</td>
<td>4</td>
</tr>
<tr>
<td>ENGINEERING ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>APPROVED ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 130 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Electives

The electrical engineering curriculum includes 55 semester hours of electives, subject to the following requirements:

1) Wellness, 2 hours: HPS 1040, 1062, 1063, or 1064.

2) Humanities, 6 hours: refer to pages 31-32 for a list of approved courses.

3) Social Sciences, 9 hours: must include HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200; refer to pages 31-32 for a list of approved courses to satisfy the remaining hours.

4) Sciences, 3 hours: BIOL 1510, BIOL 1520, CHEM 1311, EAS 1600, EAS 1601, PHYS 2213, PHYS 3225, or course(s) approved by the School.

5) Engineering breadth, 3 hours: AE 2120, CEE 2020, ME 2211, or a course at the 3000 level or above in the College of Engineering outside ECE, subject to School approval.

6) ECE, 20 hours: 3000 level or above in ECE, at least 9 hours at the 4000 level or above; must include an approved electrical engineering major design course; must include three of the following course options: ECE 3050, ECE 3055 or 3060, ECE 3065, ECE 3070, ECE 3075, ECE 3080, or ECE 3085.

7) Approved (Free), 12 hours: ECE, other engineering, mathematics, sciences, computing, management, humanities, social sciences, or ROTC; all other courses subject to School approval. Additionally, an approved ethics course must be completed; this is normally taken as part of either the humanities or social sciences electives.

Bachelor of Science in Computer Engineering (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1322 OBJECT-ORIENTED PROG.</td>
<td>3</td>
</tr>
<tr>
<td>ECE 2030 INTRO. TO COMP. ENGRNG.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

172
Electives
The computer engineering curriculum includes 47 semester hours of electives, subject to the following requirements:

1) Wellness, 2 hours: HPS 1040, 1062, 1063, or 1064.
2) Humanities, 6 hours: refer to pages 31-32 for a list of approved courses.
3) Social Sciences, 9 hours: must include HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200; refer to pages 31-32 for a list of approved courses to satisfy the remaining hours.
4) Sciences, 3 hours: BIOL 1510, BIOL 1520, CHEM 1311, EAS 1600, EAS 1601, PHYS 2213, PHYS 3225, or course(s) approved by the School.
5) Advanced Programming, 4 hours: CS 2130 or course(s) approved by the School.
6) Discrete Mathematics, 3 hours: MATH 2602, MATH 3012, course(s) approved by the School; course must be taken on a letter-grade basis.
7) ECE/CS, 14 hours: 3000 level or above in ECE or CS, at least 9 hours at the 4000 level or above; must include an approved computer engineering major design course.
8) Approved (Free), 6 hours: ECE, other engineering, mathematics, sciences, management, humanities, social sciences, or ROTC; all other courses subject to School approval.

Additionally, an approved ethics course must be completed; this is normally taken as part of either the humanities or social science electives.
Graduate Programs
Programs leading to the master's and doctoral degrees in electrical and computer engineering are provided by the School. Technical interest areas include bioengineering, computer engineering, digital signal processing, electric power, energy processing, electromagnetics, electronic design and applications, microelectronics, packaging, optics and photonics, systems and controls, and telecommunications.

The master's degree program requires 30 semester credit hours beyond the bachelor's degree. Courses are offered all three terms. Full-time students planning to complete the M.S. degree in 12 months should start their programs in the fall semester.

The doctoral degree program is research-oriented and highly individualized. Typically, at least four years of study beyond the bachelor's degree are required to complete the doctoral program.

Georgia Tech Lorraine
Students may choose to pursue graduate degrees in electrical and computer engineering at Georgia Tech Lorraine, the European platform of the Georgia Institute of Technology, located in Metz, France. A summer undergraduate program is also offered at Georgia Tech Lorraine. In addition to courses taught in English by regular Georgia Tech faculty, students also may participate in courses and academic programs offered by partner French universities. For further information, see page 19.

Distance-Learning Programs
The School of Electrical and Computer Engineering offers working professionals throughout the continental United States the opportunity to enroll in many of its graduate courses through video and online technologies. Qualified individuals can complete the requirements for the master's degree utilizing the video-based and online delivery system. See page 18, Distance-Learning Instruction.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

ELECTRICAL AND COMPUTER ENGINEERING

ECE 1750. Introduction to Bioengineering
3-0-3.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, CHE, ME, and MSE 1750.

ECE 1801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.

ECE 1811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in course number.

ECE 1881. Special Topics
0-3-1.

ECE 1882. Special Topics
1-3-2.

ECE 1883. Special Topics
2-3-3.

ECE 1884. Special Topics
3-3-4.

ECE 1891. Special Topics
0-3-1.

ECE 1892. Special Topics
1-3-2.

ECE 1893. Special Topics
2-3-3.

ECE 1894. Special Topics
3-3-4.

ECE 1900, -01, -02, -03. Special Problems
Credit hours to be arranged.

ECE 2001, -2, -3. ECE Seminar
1-0-1 each.
Speakers with diverse backgrounds and representing many different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 2025. Introduction to Signal Processing
3-3-4.
Prerequisite(s): (MATH 1502 or MATH 1512 or MATH 15X2) and MATH 1522 and CS 1322
Introduction to signal processing for discrete-time and continuous-time signals. Filtering. Frequency response. Fourier
ECE 2030. Introduction to Computer Engineering
3-0-3.
Prerequisite(s): CS 1321
Computer system and digital design principles. Architectural concepts, software, Boolean algebra, number systems, combinational datapath elements, sequential logic, and storage elements. Design of DRAM control and I/O bus.

ECE 2031. Digital Design Laboratory
1-3-2.
Prerequisite(s): CS 1322 and ECE 2030 and LCC 3401*
Design and implementation of digital systems, including a team design project. CAD tools, project design methodologies, logic synthesis, and assembly language programming.

ECE 2040. Circuit Analysis
3-0-3.
Prerequisite(s): ECE 2025 and PHYS 2212 and (MATH 2403* or MATH 2413* or MATH 24X3)
Basic concepts of DC and AC circuit theory and analysis.

ECE 2801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.

ECE 2811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in course number.

ECE 2881. Special Topics
0-3-1.

ECE 2882. Special Topics
1-3-2.

ECE 2883. Special Topics
2-3-3.

ECE 2884. Special Topics
3-3-4.

ECE 2891. Special Topics
0-3-1.

ECE 2892. Special Topics
1-3-2.

ECE 2893. Special Topics
2-3-3.

ECE 2894. Special Topics
3-3-4.

ECE 2900, -01, -02, -03. Special Problems
Credit hours to be arranged.

ECE 3025. Electromagnetics
3-0-3.
Prerequisite(s): ECE 2040 and (MATH 2403 or MATH 2413 or MATH 24X3)
To present the laws and applications of electromagnetics.

ECE 3040. Microelectronic Circuits
4-0-4.
Prerequisite(s): ECE 2030 and ECE 2040 and CHEM 1310 and (MATH 2403 or MATH 2413 or MATH 24X3)
Basic concepts of microelectronic materials, devices, and circuits.

ECE 3041. Instrumentation and Circuits Laboratory
1-3-2.
Prerequisite(s): ECE 2031 and ECE 3040*
Elementary circuits. Basic concepts of laboratory practice and instruments. The course serves as a basis for subsequent laboratory instruction.

ECE 3042. Microelectronic Circuits Laboratory
1-3-2.
Prerequisite(s): ECE 3040 and ECE 3041
Design, analysis, simulation, implementation, and evaluation of electronic circuits. Employs discrete diodes, bipolar junction, metal oxide semiconductor, and field effect transistors; and some integrated circuits.

ECE 3050. Analog Electronics
3-0-3.
Prerequisite(s): ECE 2031
To present concepts of analysis and design of electronic circuits and systems. Biasing, small-signal analysis, frequency response, feedback amplifiers, active filters, non-linear op-amp applications, and oscillators.

ECE 3055. Computer Architecture and Operating Systems
3-3-4.
Prerequisite(s): ECE 2031
Core concepts of computer architecture and operating systems. Instruction set architectures (ISA), compiler/ISA relationships, pipelined datapaths. Memory hierarchy, memory management, and protection. Processes, threads, CPU scheduling, and associated techniques.

ECE 3060. VLSI and Advanced Digital Design
3-3-4.
Prerequisite(s): ECE 2031 and ECE 3040
Advanced digital design issues in the context of VLSI systems. Introduction to a design methodology that encompasses the range from behavioral models to circuit simulation.

ECE 3065. Electromagnetic Applications
3-0-3.
Prerequisite(s): ECE 3025
To present concepts in waveguiding and radiation, with application to microwaves, antennas, and optics.

ECE 3070. Electromechanical and Electromagnetic Energy Conversion
3-0-3.
Prerequisite(s): ECE 3040 and ECE 3025
This course serves as an introduction to three-phase power systems, electromechanical energy conversion, and operating principles of electric machines.
ECE 3075. Random Signals
3-0-3.
Prerequisite(s): ECE 2025 and (CEE 3770 or ISYE 3770 or MATH 3770)
Study of random variables and random processes for applications in electrical and computer engineering. Includes an introduction to statistical filtering, parameter estimation, and Markov processes.

ECE 3080. Semiconductor Devices for Computer Engineering and Telecommunication Systems
3-0-3.
Prerequisite(s): ECE 3040
To gain an understanding of the device needs for current and future computers, and fiber optic and wireless communication systems addressing the future needs of high-frequency, GHz-range, and device operation.

ECE 3085. Introduction to Systems and Controls
3-0-3.
Prerequisite(s): ECE 2040
Theory of linear time-invariant systems for continuous and discrete time. Laplace and Z-Transforms. Transfer function and state space representations. Introduction to feedback control theory.

ECE 3301. Energy Conversion and Mechatronics
1-2-2.
Prerequisite(s): ECE 3040 or ECE 3710
Basic methods of measuring electrical and mechanical parameters, electrical machinery, sensors and control, and power electronics.

ECE 3431. Analog Electronics Laboratory
1-3-2.
Prerequisite(s): ECE 3050 and ECE 3042
Design, analysis, simulation, implementation, and evaluation of advanced electronic circuits. Employs bipolar junction, metal oxide semiconductor, and field effect transistors; and some integrated circuits.

ECE 3710. Circuits and Electronics
2-0-2.
Prerequisite(s): PHYS 2212
An introduction to electric circuit elements and electronic devices and a study of circuits containing such devices. Both analog and digital systems are considered.

ECE 3741. Instrumentation and Electronics Lab
0-3-1.
Prerequisite(s): ECE 3710
Basic analog and digital electronic circuits and principles. Techniques of electrical and electronic measurements with laboratory instruments.

ECE 3801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.

ECE 3811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in course number.

ECE 3881. Special Topics
0-3-1.
ECE 4010. Computer Engineering Design
2-9-5.
Prerequisite(s): ECE 3055 and ECE 3060 and ECE 4000 and CS 2130
Team-oriented major computer engineering design project, including hardware/software integration and trade-offs, engineering standards, and realistic design constraints. Formal reports and oral presentations.

ECE 4020. Bioengineering Design
1-6-3.
Prerequisite(s): ECE 4000 and (CHE 4781 or ECE 4781 or ME 4781)
Students will work in teams in bioengineering design projects. Course lectures will address topics related to the art of the design process and the practical design issues facing the bioengineer.

ECE 4025. Real-Time DSP Implementations Using DSP Microprocessors
2-6-4.
Prerequisite(s): ECE 4000 and ECE 4270
A team-oriented design course in which students will address all aspects of the total implementation of real-time DSP systems from DSP algorithms to real-time I/O.

ECE 4030. Energy System Design
1-9-4.
Prerequisite(s): ECE 3070 and ECE 4000
Design practices related to power system generation, transmission, and distribution systems. Study of related standards and guides. Major design experience.

ECE 4035. Electromagnetics Design
1-6-3.
Prerequisite(s): ECE 3065 and ECE 4000
Design and evaluation of electromagnetic systems working at radio or microwave frequencies. Typical projects involve antennas, passive and active microwave devices, radio wave propagation, etc.

ECE 4040. Electronics Design Project
1-6-3.
Prerequisite(s): ECE 4000 and (ECE 4415 or ECE 4420 or ECE 4430)
The design, analysis, and testing of electronic circuits and systems in a realistic environment. Engineering teams will be formed to design and test various systems.

ECE 4050. Fiber Optic System Design
1-6-3.
Prerequisite(s): ECE 4000 and ECE 4501
A multidisciplinary senior design course. Design, evaluation, construction, and testing of components to be assembled into an evolving student-built fiber communication system.

ECE 4055. Systems and Controls II - State Space Design
2-6-4.
Prerequisite(s): ECE 4000 and ECE 4551
Major design course in control. Projects will include transducer design and modeling, control effort limitations, and performance versus cost. Collaboration with manufacturing and bioengineering encouraged.

ECE 4100. Advanced Computer Architecture
3-0-3.
Prerequisite(s): ECE 3055
Comprehensive coverage of the architecture and system issues that confront the design of high-performance workstation/PC computer architectures with emphasis on quantitative evaluation. Credit is not allowed for both ECE 4100 and any of the following courses: ECE 6100, CS 4290, CS 6290.

ECE 4110. Internetwork Programming
3-3-4.
Prerequisite(s): ECE 4603
Exploration of Internet implementation as a network of embedded computing systems. Internetworking skills for design and implementation of hardware and embedded software Internet products.

ECE 4130. Advanced VLSI Systems
3-3-4.
Prerequisite(s): ECE 3060
An advanced treatment of VLSI systems analysis, design, and testing with emphasis on complex systems and how they are incorporated into a silicon environment. Credit is not allowed for both ECE 4130 and ECE 6130.

ECE 4170. Introduction to HDLs with Applications to Digital System Design
2-3-3.
Prerequisite(s): ECE 2031
Introduction to hardware description languages and associated methodologies for digital system design. In-depth coverage includes applications to the simulation and synthesis of digital systems.

ECE 4175. Embedded Microcontroller Design
3-3-4.
Prerequisite(s): ECE 2031

ECE 4270. Fundamentals of Digital Signal Processing
3-0-3.
Prerequisite(s): ECE 3075

ECE 4271. Applications of Digital Signal Processing
3-3-4.
Prerequisite(s): ECE 4270
Applications of DSP in speech, image processing, radar, pattern recognition, and adaptive filtering requiring working software implementations applied to the analysis of real signals.

ECE 4273. Design Synthesis of Application-Specific Signal Processors
2-3-3.
Prerequisite(s): ECE 4270
Fundamentals of theory and practice of DSP chip design in VHDL. Exposure to tools and environments for chip design, simulation, and verification.
ECE 4320. Power System Analysis and Control
3-0-3.
Prerequisite(s): ECE 3070
Introduces basic concepts in electric power generation, distribution, system control, and economic operation.

ECE 4321. Power System Engineering
3-0-3.
Prerequisite(s): ECE 4320
To introduce basic concepts of electric power system design, encompassing protection, stability, and control.

ECE 4330. Power Electronics
2-2-3.
Prerequisite(s): ECE 3040 and ECE 3042*
Introduces power semiconductor devices and power electronic converters, including single-phase and three-phase AC/DC rectifiers, ac voltage controllers, dc/dc converters, and dc/ac inverters.

ECE 4340. Building Electrical Systems and Illumination
3-0-3.
Prerequisite(s): ECE 3070
Introduction to the elements of electrical systems in building and manufacturing facilities. Introduction to illumination engineering and its application in various types of facilities.

ECE 4360. RF-Microwave Measurement Laboratory
1-3-2.
Prerequisite(s): ECE 3065 and ECE 4415*
RF/microwave measurement theory and techniques. Use of state-of-the-art equipment operating into the GHz range.

ECE 4370. Antenna Engineering
3-0-3.
Prerequisite(s): ECE 3065
Basic theory, application, and design of a broad range of antennas.

ECE 4390. Introduction to Radar and Electromagnetic Sensing
3-0-3.
Prerequisite(s): ECE 3065
Introduces students to radar systems, including pulsed, CW, CWFM, and MTI radars. Other techniques for electromagnetic sensing such as radiometry and EM tagging are discussed.

ECE 4391. Electromagnetic Compatibility
3-0-3.
Prerequisite(s): ECE 3025 and ECE 3040
To study electromagnetic interference and susceptibility of electrical systems, with application to analog and digital circuits.

ECE 4410. Analog Filters
3-0-3.
Prerequisite(s): ECE 3040
An introduction to the theory, design techniques, and applications of analog passive, active, and switched-capacitor filters.

ECE 4415. RF Engineering I
3-0-3.
Prerequisite(s): ECE 3025 and ECE 3050
Fundamentals of RF engineering. Components at high frequencies, device modeling, amplifiers, lumped-element and microstrip impedance transformation networks, S-parameter based design of RF and microwave amplifiers.

ECE 4418. RF Engineering II
3-0-3.
Prerequisite(s): ECE 4415
Fundamentals learned in RF-I are employed to design the elements of radio receivers, transmitters, and similar systems. Systems analysis, mixers, detectors, power amplifiers, low-noise amplifiers, and oscillators are covered.

ECE 4420. Digital Integrated Circuits
3-0-3.
Prerequisite(s): ECE 3040
Analysis and design of bipolar and MOS digital integrated circuit families and their applications in modern electronic systems.

ECE 4430. Analog Integrated Circuits
3-0-3.
Prerequisite(s): ECE 3050
Analysis and design of analog ICs using analytic techniques and CAD tools. Topics include amplifiers, current sources, output circuits, and other analog building blocks.

ECE 4435. Operational Amplifier Design
2-3-3.
Prerequisite(s): ECE 3042
Analysis and design techniques for utilization of integrated circuit operational amplifiers for applications in electronic systems.

ECE 4445. Audio Engineering
3-0-3.
Prerequisite(s): ECE 3040
Concepts of acoustics and electroacoustic modeling for the analysis and design of microphones, loudspeakers, and crossover networks. Methods of analysis and design of audio power amplifiers.

ECE 4451. Semiconductor Devices for Wireless and Fiber Communication
3-0-3.
Prerequisite(s): ECE 3080
Advanced development of semiconductor device theory focusing on optoelectronic emitters, detectors, and high-frequency transistors to provide an understanding of devices used in communications systems.

ECE 4460. Introduction to Electronic Systems Packaging
3-0-3.
Prerequisite(s): ECE 3040 or ECE 3710
Introduction to packaging technologies, technology drivers, electrical performance, thermal management, materials, optoelectronics, RF integration, reliability, system issues, assembly, and testing.
ECE 4500. Optical Engineering
3-0-3.
Prerequisite(s): ECE 3025
Introduction to applications of geometric and physical optics to engineering, including optical measurements, matrix methods, instruments, interference, holography, beam optics, Fourier optics, and diffraction.

ECE 4501. Fiber Optics
3-4-5.
Prerequisite(s): ECE 3025
Combined lecture-laboratory exploration of the technology of fiber optics, with special emphasis on optical fiber communication systems.

ECE 4551. Systems and Controls I
3-3-4.
Prerequisite(s): ECE 3085
Introduction to feedback control. Root locus and bode design for SISO systems, continuous and discrete. Introduction to state space formulation, continuous and discrete.

ECE 4560. Introduction to Automation and Robotics
3-3-4.
Prerequisite(s): ECE 3085
Concurrent engineering principles; robotic manipulator kinematics, dynamics and control; applications of robots in industry, medicine, and other areas; team projects and hands-on laboratory experience.

ECE 4562. Neural Networks and Fuzzy Logic in Control
2-3-3.
Prerequisite(s): ECE 3085
Principles of neural networks and fuzzy systems; the MATLAB Neural Network and Fuzzy Logic Toolboxes; examples from system identification, classification, and control; laboratory experience.

ECE 4570. System Theory for Communication and Control
3-3-4.
Prerequisite(s): ECE 3085
Study of the basic concepts in linear system theory and numerical linear algebra with applications to communication, computation, control, and signal processing. A unified treatment.

ECE 4601. Communication Systems
3-0-3.
Prerequisite(s): ECE 3075
To present the fundamentals of modern digital communication systems and evaluate their performance with realistic channel models.

ECE 4602. Communication Systems Laboratory
0-3-1.
Prerequisite(s): ECE 4601
To examine the performance of analog and digital telecommunications systems and components.

ECE 4603. Communication Networks
3-0-3.
Prerequisite(s): ECE 3075
To present the basic concepts of communication network protocols and their performance analysis.

ECE 4604. Network Design and Simulation
3-3-4.
Prerequisite(s): ECE 4603
Introduces the principles of Monte Carlo techniques and network simulation, and applies them to design issues in ATM systems.

ECE 4751. Laser Theory and Applications
3-0-3.
Prerequisite(s): PHYS 2212
Provides an introduction to the theory and applications of laser principles and related instrumentation. Emphasis is on the fundamental principles underlying laser action. Crosslisted with PHYS 4751.

ECE 4752. Integrated Circuit Fabrication
2-3-3.
Prerequisite(s): ECE 3040 or ECE 3710
The objective of this course is to give students exposure to the various steps involved in the fabrication of integrated circuits and devices. The course will include a laboratory segment in which students fabricate MOS transistors, diffused resistors, and MOS capacitors from a bare silicon substrate. Crosslisted with CHE 4752.

ECE 4761. Industrial Controls and Manufacturing
2-3-3.
Prerequisite(s): ECE 3085
Students are introduced to industrial controls and the fundamentals of manufacturing with hands-on experience based on lab projects using industry software and hardware for communications and control. Crosslisted with TFE 4761.

ECE 4781. Biomedical Instrumentation
3-0-3.
Prerequisite(s): ECE 3040 or ECE 3710
A study of medical instrumentation from a systems viewpoint. Pertinent physiological and electro-physiological concepts will be covered. Crosslisted with CHE and ME 4781.

ECE 4782. Biosystems Analysis
3-0-3.
Prerequisite(s): MATH 1502
Analytical methods for modeling biological systems, including white-noise protocols for characterizing nonlinear systems. Crosslisted with CHE and ME 4782.

ECE 4801. Special Topics
3-0-3.
Credit and class hours equal last digit in course number.

ECE 4811. Special Topics
3-0-3.
Credit and class hours equal last digit in course number.

ECE 4823. Special Topics
3-0-3.

ECE 4881. Special Topics
0-3-1.

ECE 4882. Special Topics
1-3-2.

ECE 4883. Special Topics
2-3-3.
ECE 4884. Special Topics
4-0-4.

ECE 4891. Special Topics
0-3-1.

ECE 4892. Special Topics
1-3-2.

ECE 4893. Special Topics
2-3-3.

ECE 4894. Special Topics
3-3-4.

ECE 4900, -01, -02, -03. Special Problems
Credit hours to be arranged.

ECE 4951. Undergraduate Research I
Credit hours to be arranged.
Participation in an individual or group research project under the direction of a faculty member.

ECE 4952. Undergraduate Research II
Credit hours to be arranged.
Prerequisite(s): ECE 4951
Participation in an individual or group research project under the direction of a faculty member.

ECE 6100. Advanced Computer Architecture
3-0-3.
Prerequisite(s): ECE 3055
Comprehensive coverage of the architecture and system issues that confront the design of a high-performance workstation/PC computer architectures with emphasis on quantitative evaluation.

ECE 6101. Parallel and Distributed Computer Architecture
3-0-3.
Prerequisite(s): ECE 6100
An advanced study of the critical issues and limiting factors in the design of asynchronous and synchronous parallel and distributed architectures.

ECE 6110. CAD for Computer Communication Networks
2-3-3.
Prerequisite(s): ECE 6607
Investigation of the methodologies and algorithms used for designing and optimizing computer/communications networks with a focus on the algorithmic aspects of network design.

ECE 6120. Automata Theory
3-0-3.
The course presents a broad base of topics in modern automata and switching theory. These elements form the essentials upon which modern digital systems are constructed.

ECE 6121. Combinatorial Strategies for Engineers
3-0-3.
Modern counting theory and algorithmic approaches necessary for discrete computation.

ECE 6130. Advanced VLSI Systems
3-0-3.
Prerequisite(s): ECE 3060
An advanced treatment of VLSI systems analysis, design, and testing with emphasis on complex systems and how they are incorporated into a silicon environment.

ECE 6140. Digital Systems Test
3-0-3.
Prerequisite(s): ECE 3060
Introduction to the basic concepts in digital systems testing. Advanced topics in fault modeling and simulation, test pattern generation, and design for testability.

ECE 6250. Advanced Digital Signal Processing
3-0-3.
Prerequisite(s): ECE 4270
An introduction to advanced signal processing methods that are used in a variety of applications areas.

ECE 6254. Statistical Digital Signal Processing and Modeling
3-0-3.
Prerequisite(s): ECE 4270
Introductory course in digital signal processing, including the following topics: signal modeling, optimum filters, and power spectrum estimations.

ECE 6255. Digital Processing of Speech Signals
3-0-3.
Prerequisite(s): ECE 4270 or ECE 6250
The application of digital signal processing to problems in speech communication. Part of this goal requires a laboratory project.

ECE 6258. Digital Image Processing
3-0-3.
Prerequisite(s): ECE 4270
An introduction to the theory of multidimensional signal processing and digital image processing, including key applications in multimedia products and services, and telecommunications.

ECE 6271. Adaptive Filtering
3-0-3.
Prerequisite(s): ECE 4270

ECE 6272. Fundamentals of Radar Signal Processing
3-0-3.
Prerequisite(s): ECE 4270
Signal modeling including radar cross section, multipath, and clutter. Properties of the ambiguity function and coded waveforms. Algorithms for Doppler processing, detection, and radar imaging.
ECE 6273. Methods of Pattern Recognition with Application to Voice
3-0-3.
Prerequisite(s): ECE 4270
Theory and application of pattern recognition with a special application section for automatic speech recognition and related signal processing.

ECE 6276. DSP Hardware Systems Design
2-3-3.
Prerequisite(s): ECE 4270
A study of theory and practice in the design and implementation of DSP algorithms on programmable processors, multiprocessors, and ASICs.

ECE 6277. DSP Software Systems Design
2-3-3.
Prerequisite(s): ECE 4270
Specification, evaluation, and implementation of real-time DSP applications on embedded DSP-based environments.

ECE 6279. Spatial Array Processing
3-0-3.
Prerequisite(s): ECE 4270
Introduce application areas where signals are sampled over space and time. Transfer knowledge of time-based techniques to spatial processing. Develop algorithms unique to spatial processing.

ECE 6320. Power Systems Control and Operation
3-0-3.
Prerequisite(s): ECE 4320
Introduction to methods used in the real-time operation and control of power systems as well as to the hardware and software technology of energy management systems (EMS).

ECE 6321. Power System Stability
3-0-3.
Prerequisite(s): ECE 4320
Techniques for stability analysis of electric power systems and applications of these methods.

ECE 6322. Power System Planning and Reliability
3-0-3.
Prerequisite(s): ECE 4320
To introduce basic concepts as well as analysis and optimization techniques underlying reliability assessment of electric power systems and planning techniques.

ECE 6323. Power System Protection
2-2-3.
Prerequisite(s): ECE 4320
Theory and practice of modern power system protection techniques.

ECE 6330. Power Electronic Devices and Subsystems
3-0-3.
Prerequisite(s): ECE 3040
Physical considerations involved in the fabrication and use of power semiconductor devices and high-frequency magnetic transformers and inductors.

ECE 6331. Power Electronic Circuits
3-0-3.
Prerequisite(s): ECE 4330
The analysis, control, and design of switching power converters: rectifiers, cycloconverters, voltage-sourced and current-source inverters, dc-dc converters, pfc and resonant converters.

ECE 6332. Power Electronic CAD Laboratory
0-3-1.
Prerequisite(s): ECE 6331
To introduce the use of CAD tools in the simulation, analysis, and design of power electronic circuits and systems.

ECE 6335. Electric Machinery Analysis
3-0-3.
Prerequisite(s): ECE 3070
An introduction to the analysis and basic construction principles of rotating electric machines and transformers, including asynchronous and induction machines and dc machines.

ECE 6336. Dynamics and Control of Electric Machine Drives
3-0-3.
Prerequisite(s): ECE 3070
A study of the dynamics and control of electric machinery and variable speed machine drive systems.

ECE 6340. Electric Power Quality
2-2-3.
Prerequisite(s): ECE 4320
Study transients and harmonics in power systems, along with analysis methods and mitigation practices. Understand the causes of power quality problems and relate them to equipment susceptibility.

ECE 6350. Applied Electromagnetics
3-0-3.
The methodology and application of advanced electromagnetic theory.

ECE 6360. Microwave Design
3-0-3.
Applications of electromagnetic theory to microwave components and systems. Introduction to the latest characterization and design techniques including monolithic microwave integrated circuit (MMIC) technology.

ECE 6361. Microwave Design Laboratory
2-3-3.
Prerequisite(s): ECE 6360
This laboratory course will teach microwave measurement/design fundamentals for both passive and active components. Students will use both CAD tools and network analyzers.

ECE 6370. Electromagnetic Radiation and Antennas
3-0-3.
Prerequisite(s): ECE 6550
The fundamentals of electromagnetic radiation and antennas.
ECE 6380. Introduction to Computational Electromagnetics
3-0-3.
The practical application of the finite-difference time-domain and finite element techniques to electromagnetic problems. Computer projects are required.

ECE 6390. Satellite Communications and Navigation Systems
3-0-3.
To introduce satellite communications and navigation system design including microwave transmission, satellite transponders, earth station hardware, and satellite networks. A design project is required.

ECE 6412. Analog Integrated Circuit Design
3-0-3.
Prerequisite(s): ECE 4430
Design of analog circuits using CMOS and bipolar technologies.

ECE 6414. Analog Integrated System Design
3-0-3.
Prerequisite(s): ECE 4435
Design of analog systems using CMOS and bipolar technologies. A higher level of design for analog and digital systems is presented.

ECE 6416. Low Noise Electronic System Design
2-3-3.
Prerequisite(s): ECE 4430
A study of the sources of noise found in electronic instrumentation. Teaches the recognition of sources of noise and the design techniques to achieve noise reduction.

ECE 6420. Wireless IC Design
3-0-3.
Prerequisite(s): ECE 4430
Wireless system specifications are translated to architectures and building blocks compatible with silicon technology. The course focuses on the analysis and design of these blocks.

ECE 6430. Digital MOS Integrated Circuits
3-0-3.
Detailed analysis of the operation and design of high-performance MOS digital integrated circuits. Emphasis is on circuit design techniques with examples from the literature.

ECE 6435. Neuromorphic Analog VLSI Circuits
3-0-3.
Prerequisite(s): ECE 3050
Large-scale analog computation for sensory and motor processing. Analog building blocks are presented, leading to VLSI systems inspired by neurobiological architectures and computational paradigms.

ECE 6440. Frequency Synthesizers
3-0-3.
Frequency synthesizers generate many discrete RF frequencies from one reference frequency. General synthesizers, digital PLL, direct digital, and hybrid synthesizers are covered.

ECE 6442. Electronic Oscillators
3-0-3.
Starting from nonlinear differential equations, this course presents a systematic approach to the design of electronic oscillators. Design of negative resistance and feedback oscillators is discussed. CAD techniques are employed.

ECE 6450. Introduction to Microelectronics Technology
3-0-3.
Presents the fundamentals of microelectronics material, device, and circuit fabrication.

ECE 6451. Introduction to the Theory of Microelectronics
3-0-3.
Basis of quantum mechanics, statistical mechanics, and the behavior of solids to serve as an introduction to the modern study of semiconductors and semiconductor devices.

ECE 6453. Theory of Electronic Devices
3-0-3.
Prerequisite(s): ECE 6451
Presents the fundamentals of electronic device operation.

ECE 6455. Semiconductor Process Control
3-0-3.
Prerequisite(s): CEE 3770 or ISYE 3770 or MATH 3770
This course is designed to explore methods of applying statistical process control and statistical quality control to semiconductor manufacturing processes. Students will be required to complete a design project.

ECE 6456. Solar Cells
3-0-3.
To provide a practical understanding of semiconductor materials and technology as it relates to design and development of efficient solar cells and photovoltaic systems.

ECE 6458. Gigascale Integration
3-0-3.
Prerequisite(s): ECE 3080
Hierarchy of physical principles that enable understanding and estimation of future opportunities to achieve multibillion-transistor silicon chips using sub-0.25 micron technology.

ECE 6500. Fourier Techniques and Signal Analysis
3-0-3.
Introduction to the use of Fourier Methods for analysis of signals.

ECE 6501. Fourier Optics and Holography
3-0-3.
Prerequisite(s): ECE 6500
Applications of the Fourier transform and linear systems theory to the analysis of optical propagation, diffraction imaging, holography, wavefront modulation, and signal processing.

ECE 6510. Electro-Optics
3-0-3.
Study of the fundamental principles and primary applications of lasers and of detectors of optical radiation.
ECE 6520. Integrated Optics
3-0-3.
Theory and design of optical waveguides and optical waveguide devices.

ECE 6521. Optical Fibers
3-0-3.
Provides an in-depth understanding of the light guiding properties of optical fibers as used in communication systems.

ECE 6522. Nonlinear Optics
3-0-3.
Provides an introduction to the field of nonlinear optics, exploring the physical mechanisms, applications, and experimental techniques.

ECE 6530. Modulation, Diffractive, and Crystal Optics
3-0-3.
Provides a working knowledge of temporal and spatial optical modulation, diffractive optical devices, and crystal optics.

ECE 6542. Optoelectronics: Devices, Integration, Packaging, and Systems
3-0-3.
Optoelectronic devices (detectors, emitters, modulators) from the practical realized and theoretical performance perspective. Explores monolithic and hybrid integration of devices, packaging, and system implementation.

ECE 6543. Fiber Optic Networks
3-0-3.
Architectural, performance, and design aspects of fiber-optic communications networks, components, and technologies. Relationship between the physical network implementation and the higher-level network architecture.

ECE 6550. Linear Systems and Controls
3-0-3.
Introduction to linear system theory and feedback control. Topics include state space representations, controllability and observability, and linear feedback control.

ECE 6551. Digital Control
3-0-3.
Prerequisite(s): ECE 6550
Techniques for analysis and synthesis of computer-based control systems. Design projects provide an understanding of the application of digital control to physical systems.

ECE 6552. Nonlinear Systems and Control
3-0-3.
Prerequisite(s): ECE 6550
Classical analysis techniques and stability theory for nonlinear systems. Control design for nonlinear systems, including robotic systems. Design projects.

ECE 6553. Optimal Control and Optimization
3-0-3.
Prerequisite(s): ECE 6550
Optimal control of dynamic systems, numerical optimization techniques, and their applications in solving optical-trajectory problems.

ECE 6554. Adaptive Control
3-0-3.
Prerequisite(s): ECE 6550
Methods of parameter estimation and adaptive control for systems with constant or slowly varying unknown parameters. MATLAB design projects emphasizing applications to physical systems.

ECE 6555. Optimal Estimation
3-0-3.
Prerequisite(s): ECE 6550
Techniques for signal and state estimation in the presence of measurement and process noise with the emphasis on Wiener and Kalman filtering.

ECE 6556. Intelligent Control
3-0-3.
Prerequisite(s): ECE 6550
Principles of intelligent systems and their utility in modeling, identification, and control of complex systems; neuro-fuzzy tools applied to supervisory control; hands-on laboratory experience.

ECE 6557. Manufacturing Systems Design
3-0-3.
Analytic and simulation tools for design, control, and optimization of manufacturing systems. Discrete event, dynamic systems, and optimization.

ECE 6558. Stochastic Systems
3-0-3.
Prerequisite(s): CEE 3770 or ISYE 3770 or MATH 3770
Advanced techniques in stochastic analysis with emphasis on stochastic dynamics, nonlinear filtering and detection, stochastic control, and stochastic optimization and simulation methods.

ECE 6559. Advanced Linear Systems
3-0-3.
Prerequisite(s): ECE 6550
Study of multivariable linear system theory and robust control design methodologies.

ECE 6601. Random Processes
3-0-3.
Prerequisite(s): ECE 3075
To develop the theoretical framework for the processing of random signals and data.

ECE 6602. Digital Communications
3-0-3.
Prerequisite(s): ECE 6601
Basic M-ary digital communications systems, with emphasis on system design and performance analysis in the presence of additive noise.

ECE 6603. Advanced Digital Communications
3-0-3.
Prerequisite(s): ECE 6602
The theory and practice of efficient digital communications over linear dispersive channels, including adaptive equalization and synchronization.
ECE 6604. Personal and Mobile Communications
3-0-3.
Prerequisite(s): ECE 6602
To introduce various topics that are fundamental to cellular mobile telephone systems.

ECE 6605. Information Theory
3-0-3.
Prerequisite(s): ECE 3075
To introduce the mathematical theory of communications. Emphasis will be placed on Shannon’s theorems and their use in the analysis and design of communication systems.

ECE 6606. Coding Theory and Applications
3-0-3.
Prerequisite(s): ECE 3075
To introduce the theory and practice of error control coding, with emphasis on linear, cyclic, convolutional, and parallel concatenated codes.

ECE 6607. Computer Communication Networks
3-0-3.
Fundamental concepts of computer network architecture and protocols.

ECE 6608. Performance Analysis of Communications Networks
3-0-3.
Prerequisite(s): ECE 6601 and ECE 6607
Fundamental concepts of queuing systems and applications of queuing theory to the performance evaluation of computer networks.

ECE 6609. ATM Networks
3-0-3.
Prerequisite(s): ECE 6607
Fundamental concepts of high-speed networking and switching.

ECE 6610. Wireless Networks
3-0-3.
Prerequisite(s): ECE 6607
Fundamental concepts of wireless networks.

ECE 6759. Plasma Processing of Electronic Materials and Devices
3-0-3.
Fundamental physics, chemistry, chemical engineering, and electrical engineering principles inherent in plasma processes. Includes etching, deposition, diagnostic methods, and control schemes. Crosslisted with CHE 6759.

ECE 6771. Optoelectronics: Materials, Processes, and Devices
3-0-3.
Optoelectronic materials, physical processes, and devices. Includes compound semiconductor materials, excitation, recombination, gain, and modulation processes and devices such as emitters, detectors, and modulators. Crosslisted with PHYS 6771.

ECE 6780. Medical Image Processing
3-0-3.
Prerequisite(s): BMED 6786 or ECE 6786
A study of methods for enhancing, analyzing, interpreting, and visualizing information from two- and three-dimensional data obtained from a variety of medical imaging modalities. Crosslisted with GS and BMED 6780.

ECE 6786. Medical Imaging Systems
3-0-3.
A study of the principles and design of medical imaging systems such as X-ray, ultrasound, nuclear medicine, and nuclear magnetic resonance. Crosslisted with BMED 6786.

ECE 6787. Quantitative Electrophysiology
3-0-3.
A quantitative presentation of electrophysiological systems in biological organisms, emphasizing the electrical properties and modeling of neural and cardiac cells and systems. Crosslisted with BMED and PHYS 6787.

ECE 6788. Legal Issues in Biomedical Engineering
3-0-3.
Study and analysis of U.S. government laws applicable to the development and clinical use of biomedical engineering technology. Crosslisted with BMED, CHE, ME, and MGT 6788.

ECE 6789. Technology Ventures
3-0-3.
Team discussion and case studies in biomedical engineering technology transfer, including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with BMED, CHE, ME, and MGT 6789.

ECE 6792. Manufacturing Seminar
1-0-1.
Guest speakers on a broad range of manufacturing-related topics: research, applications, and technology. Required for Certificate in Manufacturing. Crosslisted with ISYE and ME 6792.

ECE 6793. Systems Pathophysiology
3-0-3.
Overview of human pathophysiology from a quantitative perspective. A brief introduction to the application of quantitative models to the understanding of biological systems. Crosslisted with BMED, CHE, and ME 6793.

ECE 7000. Master’s Thesis
Credit hours to be arranged.

ECE 7102. RISC Architectures
3-0-3.
Prerequisite(s): ECE 6100
An advanced design-oriented class studying the design techniques and operational principles of modern Superscalar RISC datapaths.

ECE 7131. Asynchronous and Self-Timed Systems
3-0-3.
Prerequisite(s): ECE 6130
Specification and design of asynchronous digital systems.
ECE 7141. Advanced Digital Systems Test
2-3-3.
Prerequisite(s): ECE 6140
Design and test techniques for high-speed digital systems operating at rates above 100 MHz with a practical emphasis via substantial projects.

ECE 7142. Fault Tolerant Computing
3-0-3.
Prerequisite(s): ECE 6140
Key concepts in fault-tolerant computing. Understanding and use of modern fault-tolerant hardware and software design practices. Case studies.

ECE 7251. Signal Detection and Estimation
3-0-3.
Prerequisite(s): ECE 6250
Detection theory and estimation theory and their application to communications and statistical signal processing problems.

ECE 7252. Advanced Signal Processing Theory
3-0-3.
Prerequisite(s): ECE 6250
A lecture and seminar treatment of the latest developments in signal processing. Emphasis is placed on current literature and emerging research areas.

ECE 7370. Antennas and Wave Propagation in Matter
3-0-3.
Prerequisite(s): ECE 6350
Basic methods for characterizing the electromagnetic properties of common materials (geophysical, biological, etc.) and techniques for analyzing antennas and wave propagation in these materials.

ECE 7380. Topics in Computational Electromagnetics
3-0-3.
Prerequisite(s): ECE 6350
Computational approaches for applications such as radar signature prediction, microwave antenna and device design, and modeling techniques for electronic packaging.

ECE 7611. Advanced Communication Theory
3-0-3.
Latest developments in communications and networking are treated in lecture and seminar. Emphasis on current literature and open research areas.

ECE 8001, -2, -3. ECE Seminar
1-0-1, each.
Speakers with diverse backgrounds and representing many different industries, professions, and institutions describe their experiences, entrepreneurial ventures, and research challenges.

ECE 8010. Research Seminar
1-0-1.
Seminar presentations describing ECE-related research projects, centers, and other activities at Georgia Tech.

ECE 8020. Professional Communication Skills
2-3-3.
Written, oral, and graphical communication skills needed by electrical and computer engineering professionals. Credit for this course may not be used toward the ECE master's degree.

ECE 8801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.

ECE 8811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in course number.

ECE 8823, -33, -43, -53, -63, -73. Special Topics
3-0-3, each.

ECE 8881. Special Topics-Laboratory
0-3-1.

ECE 8882. Special Topics-Laboratory
1-3-2.

ECE 8883. Special Topics-Laboratory
2-3-3.

ECE 8884. Special Topics-Laboratory
3-3-4.

ECE 8891. Special Topics-Laboratory
0-3-1.

ECE 8892. Special Topics-Laboratory
1-3-2.

ECE 8893. Special Topics-Laboratory
2-3-3.

ECE 8894. Special Topics-Laboratory
3-3-4.

ECE 8900, -01, -02, -03. Special Problems
Credit hours to be arranged.

ECE 8997. Teaching Assistantship
Credit hours to be arranged.
For students holding graduate teaching assistantships.

ECE 8998. Research Assistantship
Credit hours to be arranged.
For students holding graduate research assistantships.

ECE 9000. Doctoral Thesis
Credit hours to be arranged.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.
General Information
Industrial and systems engineering is a branch of engineering that deals with the description, evaluation, design, modification, control, and improvement of the performance of complex systems. The field is unique in its identification of human beings as central contributors to the inherent complexity of such systems, but also as the primary targets and beneficiaries of their analysis and anticipated improvement. Students in the program are typically interested in obtaining a fundamental engineering background as a basis for the subsequent professional specialization in the various activities associated with the field. Among these are operations research, systems analysis, distribution and logistics, production, manufacturing, planning, quality control, economic and financial modeling, and others. Graduates can be found in a host of settings including transportation, telecommunications, hospitals, banking and finance, environmental systems, retailing, and consulting.

Undergraduate Program
Bachelor of Science in Industrial Engineering
The principal strength of the academic program leading to the Bachelor of Science in Industrial Engineering (BSIE) is its blend of fundamental topics in mathematics and the physical and engineering sciences that are common to all engineering disciplines, coupled with specialized study in subject areas such as optimization, probability and statistics, computing, economics, and psychology.
It is precisely this blend that produces the flexibility that is inherent in the field of industrial and systems engineering and that affords BSIE graduates a wide array of career options.

Options for Exceptional Students
Program activities and options are available to encourage and reward students with superior records and abilities. Participation in these programs requires demonstrated scholastic excellence and prior arrangement with the student's advisor and/or the director of academic programs.

Graduate-level Courses
Students with a cumulative grade point average of 3.3 or above may schedule up to nine credit hours of approved graduate-level courses. These credits, when approved by the director of academic programs, may apply subsequently toward a graduate degree. Specific details regarding the latter are available in the Office of Academic Programs.

Honors Courses
When faculty resources permit, the School offers honors versions of some of the required courses for the BSIE. Students with a cumulative grade point average of at least 3.2 are allowed to enroll in these courses and use them as replacements for the analogous course requirements in the curriculum.

Visiting Scholar/Practitioner Offerings
Occasionally, the School brings to campus selected individuals of unique accomplishment for course offerings built around their special areas of activity, thus making available a broader range of course materials than regularly provided. Prominent in this regard is the James C. Edenfield Executive-in-Residence Program, which brings highly successful executives to the School. Participating much like visiting faculty, these executives bring to a classroom setting, both graduate and undergraduate, the benefit of their work experiences as they support the ISyE curriculum.

Bachelor of Science in Industrial Engineering (Suggested Schedule)

<table>
<thead>
<tr>
<th>First Year - First Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501</td>
<td>CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>PSTC 1101</td>
<td>GEN. PSYCHOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>LAB SCIENCE ELECTIVE (CHEM, BIOL, EAS, PHYS)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year - Second Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502</td>
<td>CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211</td>
<td>INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321</td>
<td>INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year - First Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401</td>
<td>CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212</td>
<td>INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>CS 1322</td>
<td>OBJECT-ORIENTED PROG.</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 2027</td>
<td>PROBABILITY</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year - Second Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2602</td>
<td>LINEAR & DISCRETE MATH.</td>
<td>4</td>
</tr>
<tr>
<td>ECON 2100</td>
<td>ECON. ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 2030</td>
<td>MODELS IN IE</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 2028</td>
<td>STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>LAB SCIENCE ELECTIVE (CHEM, BIOL, EAS, PHYS)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year - First Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 3025</td>
<td>ENGR. ECONOMY</td>
<td>1</td>
</tr>
<tr>
<td>ISYE 3039</td>
<td>QUALITY METHODS</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3103</td>
<td>LOGISTICS</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3232</td>
<td>STOCHASTIC MFG. & SERVICE SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>CS 4400</td>
<td>DATABASE SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3101 OR MGT 3150 OR ACCT 2101</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 3044 SIMULATION</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3104 MFG. & WAREHOUSING</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3150 or MGT 3078</td>
<td>3</td>
</tr>
<tr>
<td>LOC 3401 TECH. COMMUNICATIONS</td>
<td>2</td>
</tr>
<tr>
<td>ENGINEERING ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 4009 HUMAN INTEGRATED SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4104 SENIOR DESIGN I</td>
<td>2</td>
</tr>
<tr>
<td>ISYE 4231 ENGR. OPTIMIZATION</td>
<td>3</td>
</tr>
<tr>
<td>ENGINEERING ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISYE 4105 SENIOR DESIGN II</td>
<td>2</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ENGINEERING ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 126 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Electives

1. Science electives I and II are selected from courses in physics, chemistry, biology, and/or earth and atmospheric sciences.
2. Engineering science electives are taken from {thermo, statics/dynamics, circuits, DSP}.
3. Among all science and free electives, at least one course must be on the environment.

To satisfy the state requirements regarding course work on the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200.

Graduate Programs

Master's Programs

The School of Industrial and Systems Engineering offers seven master's degrees: the Master of Science in Industrial Engineering (MSIE); the Master of Science in Operations Research (MSOR); the Master of Science in Statistics (MSS); the Master of Science in Health Systems (MSHS); the Master of Science in Quantitative and Computational Finance (MSQCF); the Executive Master of Science in International Logistics (MSIL); and the undesignated Master of Science (MS). It also offers the Doctor of Philosophy.

The MSIE program is available to students with an industrial engineering background and to other engineers who satisfy requirements covering the principal subject matter of the current BSIE curriculum. The other master's programs are available for students holding the B.S. in engineering, mathematics, or science. Requisites include work in probability, statistics, linear algebra, calculus, and optimization, as well as selected application area work. The student may satisfy these requirements after enrollment; however, such course work may not apply toward fulfillment of the degree requirements. The undesignated M.S. program is typically for those students who wish to work in the area of human-integrated systems.

All proposed master's degree programs require 30 semester hours with the exception of MSIL, which requires 36 hours; one option, the undesignated M.S. in Human-Integrated Systems, requires a thesis. In addition, the MSIE allows a choice of two tracks. One of these accommodates advanced study in modern manufacturing, warehousing, and logistics while the second allows for a concentration in human-integrated systems analysis.

Video-Based Master's Program

The School of Industrial and Systems Engineering offers off-campus working professionals the opportunity to enroll in many of its graduate courses through video technologies. Qualified individuals can complete the requirements for the MSIE or MSOR utilizing the video-based delivery system. Admission as a degree-seeking student in the video program is based upon the same criteria.
Program in Statistics
The Master of Science in Statistics is offered through joint cooperation between the School of Industrial and Systems Engineering and the School of Mathematics. The nature of this relationship emphasizes statistics as a science necessary in a technological environment. Within this program, students may concentrate their studies on a specific area of application such as engineering, quality control, or management. Although this program can lead to further work toward a doctorate in statistics, it will primarily provide the background requisite for a professional career in statistics.

Program in Quantitative and Computational Finance
The MSQCF is offered through joint cooperation between the School of Industrial and Systems Engineering, the School of Mathematics, and the DuPree College of Management. The aim of the MSQCF is to provide students with the practical skills and theoretical understanding they need to be leaders in the formulation, implementation, and evaluation of the models used by the financial sector to structure transactions, manage risk, and construct investment strategies.

Doctoral Programs
The Ph.D. program is intended for highly qualified individuals for whom past accomplishments and evaluation indicate a high potential for successful completion of the program requirements and a subsequent creative intellectual contribution to the field. Admission is, therefore, dependent upon student qualification rather than educational background in any specified discipline. Consideration for admission is based largely upon performance in prior academic work, the Graduate Record Examination (GRE), and credible letters of reference. Admitted students may pursue their work in any of six tracks: optimization, stochastic systems, manufacturing/logistics, economic decision analysis, applied statistics, and human-integrated systems.

Program in Algorithms, Combinatorics, and Optimization
The Ph.D. program in Algorithms, Combinatorics, and Optimization (ACO) is a multidisciplinary graduate program sponsored jointly by the School of Industrial and Systems Engineering, the College of Computing, and the School of Mathematics. The program is arranged to bring together the study of discrete structures and the design and analysis of algorithms in areas such as graph theory, integer programming, combinatorial optimization, network flows, and polyhedral theory. It is intended for students possessing a strong mathematical perspective and background in one or more of the fields represented by the sponsoring units.

Each student in the ACO program will have a single home department chosen from among the participating units, all of which contribute courses for the program. Students may apply to the ACO program at Georgia Tech through any one of these three units.

Financial aid for Ph.D. study is available via traineeships, fellowships, sponsored externships, and research and teaching assistantships.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

INDUSTRIAL AND SYSTEMS ENGINEERING
ISYE 2027. Probability with Applications
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Topics include conditional probability, density and distribution functions from engineering, expectation, conditional expectation, laws of large numbers, central limit theorem, and introduction to Poisson Processes.

ISYE 2028. Basic Statistical Methods
3-0-3.
Prerequisite(s): ISYE 2027 and CS 1322; Co-requisite: ISYE 2030
Point and interval estimation of systems parameters, statistical decision making about differences in system parameters, and analysis and modeling of relationships between variables.
ISYE 2030. Modeling in Industrial Engineering 2-3-3.
Prerequisite(s): CS 1322 and ISYE 2027 and (MATH 2401 or MATH 2411 or MATH 24X1); Co-requisite: ISYE 2028
Coverage includes projects involving information collection, data acquisition, analysis, and presentation as well as the motivation and use of analytical algorithmic, conceptual, and computational models.

ISYE 2127. Honors Probability 3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Topics parallel those in ISYE 2027 with an intended treatment that is more innovative and challenging. Credit not allowed for both ISYE 2127 and 2027.

ISYE 2128. Honors Statistics 3-0-3.
Prerequisite(s): CS 1322 and ISYE 2027
Topics parallel to those in ISYE 2028 with an intended treatment that is more innovative and challenging. Credit not given for both ISYE 2028 and 2128.

Prerequisite(s): ECON 2100
Introduction to engineering economic decision making, economic decision criteria, discounted cash flow, replacement and timing decisions, risk, depreciation, and income tax.

ISYE 3039. Methods of Quality Improvement 3-0-3.
Prerequisite(s): ISYE 2028
Topics include quality system requirements, designed experiments, process capability analysis, measurement capability, statistical process control, and acceptance sampling plans.

ISYE 3044. Simulation Analysis and Design 3-0-3.
Prerequisite(s): ISYE 2028 and ISYE 3232
Discrete event simulation methodology emphasizing the statistical basis for simulation modeling and analysis. Overview of computer languages and simulation design applied to various industrial situations.

ISYE 3103. Introduction to Supply Chain Modeling: Logistics 3-0-3.
Prerequisite(s): ISYE 2028 and ISYE 2030
Course focuses on engineering design concepts and optimization models for logistics decision making in three modules: supply chain design, planning and execution, and transportation.

ISYE 3104. Introduction to Supply Chain Modeling: Manufacturing and Warehousing 3-0-3.
Prerequisite(s): ISYE 2028 and ISYE 3232
Design and operation of manufacturing and warehousing facilities.

ISYE 3232. Stochastic Manufacturing and Service Systems 3-0-3.
Prerequisite(s): ISYE 2027
Methods for describing stochastic movements of material in manufacturing facilities, supply chain, and equipment maintenance networks. Includes analysis of congestion, delays, and inventory ordering policies.

ISYE 3332. Honors Random Systems 3-0-3.
Prerequisite(s): ISYE 2027
Topics parallel those in ISYE 3232 with an intended treatment that is more innovative and challenging. Credit not allowed for both ISYE 3332 and 3232.

Prerequisite(s): MATH 2401 or MATH 2411 or MATH 24X1
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, linear regression and analysis of variance. Crosslisted with MATH 3770 and CEE 3770.

Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and PSYC 3790.

ISYE 4009. Design of Human-Integrated Systems 3-0-3.
Prerequisite(s): ISYE 2028 and CS 1322
Topics include general cognitive systems engineering concepts and principles, and specific concepts and principles of interface design, task analysis, prototyping, and empirical usability of evaluation methods.

ISYE 4104. Senior Design I 0-6-2.
Prerequisite(s): ISYE 3044 and ISYE 3103 and ISYE 3104
Senior ISYE design project requiring students to formulate project plan with off-campus enterprise. Includes specific milestones, targets, and evaluation criteria.

ISYE 4105. Senior Design II 0-6-2.
Prerequisite(s): ISYE 4104
Part two of senior design project requiring students to formulate project plan with off-campus enterprise. Includes specific milestones, targets, and evaluation criteria.

ISYE 4231. Engineering Optimization 3-0-3.
Prerequisite(s): CS 1322 and MATH 2602
Topics include modeling with networks and graphs, linear, nonlinear programming, and integer programming; construction of models employing modern modeling languages; and general solution strategies.
ISYE 4257. Applications of Robotics and Automated Data Collection
3-0-3.
Prerequisite(s): ISYE 2028 and MATH 2602
Topics include robot configurations, accuracy and analysis, programming, sensors, and integration. The latter will focus on automated identification, automated materials tracking in manufacturing, and logistics systems.

ISYE 4331. Honors Optimization
3-0-3.
Prerequisite(s): CS 1322 and MATH 2602
Topics parallel those in ISYE 4231 with an intended treatment that is more innovative and challenging. Credit not given for both ISYE 4331 and 4231.

ISYE 4756. Technology Forecasting and Assessment
3-0-3.
Develops skills in methods for technology monitoring, forecasting, and assessment; draws on examples in various emerging technologies. Collection and analysis of quantitative and qualitative data on emerging technologies and their implications. Crosslisted with PUBP 4756

ISYE 4790. Seminar in Cognitive Science
3-0-3.
A seminar-type course in cognitive science focusing on integrating and deepening students' cognitive science knowledge and skills. Topics include memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and PSYC 4790.

ISYE 4791. Integrative Project in Cognitive Science
3-0-3.
An integrative course in cognitive science focusing on the integration and use of concepts and skills from cognitive science. A different integrative project or set of projects will be taken on each semester; students will contribute on the basis of their background and skills. Crosslisted with CS, PST, and PSYC 4791.

ISYE 4792. Design Project in Cognitive Science
3-0-3.
Individual project with a cognitive science faculty member, designed as a supplement to the student's senior design project or thesis in the major area. Crosslisted with CS, PST, and PSYC 4792.

ISYE 4803. -13, -23. Special Topics
3-0-3, each.
Courses in special topics of timely interest to the profession, conducted by resident or visiting faculty.

ISYE 4833. Honors Topics
3-0-3.
Topics of current interest in the field of ISYE that are covered with an appropriately high level of innovation and rigor.

ISYE 4991, -92, -93. Special Problems
Credit hours to be arranged.
A variable-hour credit opportunity to develop initiative and apply fundamental principles by performing semi-original laboratory or research work in ISYE.

ISYE 6101. Organizational Behavior for Engineers
3-0-3.
Studies the scientific generation, formalization, and application of the knowledge of individual and group behaviors that engineers need to function effectively within contexts.

ISYE 6201. Manufacturing Systems
3-0-3.
Prerequisite(s): ISYE 6650 and ISYE 6669
Topics include analysis of flows, bottlenecks and queuing, types of operations, manufacturing inventories, aggregate production planning, lot sizes and lead times, and pull production systems.

ISYE 6202. Warehousing Systems
3-0-3.
Prerequisite(s): ISYE 6669
Topics include design and analysis of materials handling systems, warehouse layout, order picking strategies, warehousing inventories, warehouse management systems, and integration of production and distribution systems.

ISYE 6203. Transportation and Supply Chain Systems
3-0-3.
Prerequisite(s): ISYE 6669
Topics include supply chain characterization, site location, mode selection, distribution planning, vehicle routing, demand management, replenishment management, geographic information systems, and real-time control issues.

ISYE 6205. Cognitive Engineering
3-0-3.
Application of cognitive science concepts to system design, and the development of concepts appropriate for understanding and aiding cognition in naturally or technologically complex environments.

ISYE 6215. Models in Human-Machine Systems
3-0-3.
Prerequisite(s): ISYE 4009
The development and use of mathematical models of human behavior are considered. Approaches from estimation theory, control theory, queuing theory, fuzzy set theory are considered.

ISYE 6223. Understanding and Supporting Human Decision Making
3-0-3.
Prerequisite(s): ISYE 4009
Prescriptive and descriptive theories of human decision making are discussed/contrasted. Approaches to aiding human decision making are considered in context of these theoretical frameworks.

ISYE 6224. Topics in Human-Integrated Systems
3-0-3.
Prerequisite(s): ISYE 4009 or ISYE 6215
State-of-the-art research directions including supervisory control models of human command control tasks; human-computer interface in scheduling and supervision of flexible manufacturing systems.
ISYE 6225. Engineering Economy
3-0-3.
Prerequisite(s): ISYE 5025 and ISYE 4231
Advanced engineering economy topics, including economic worth, economic optimization under constraints, risk and uncertainty, and foundations of utility theory.

ISYE 6229. Productivity Measurement and Analysis
3-0-3.
Prerequisite(s): ISYE 6401 and ISYE 6669
Modern measurement of productivity measurement and analysis including principles, issues, and latest techniques associated with benchmarking, efficiency measurement, and productivity tracking. Empirical studies and group projects.

ISYE 6230. Economic Decision Analysis
3-0-3.
Prerequisite(s): ISYE 6669
Topics include preferences and utilities, social choice, equilibrium concepts, non-cooperative and cooperative game theory, price mechanisms, auction mechanisms, voting theory, and incentive compatibility.

ISYE 6231. Design of Human-Integrated Systems
3-0-3.
Prerequisite(s): ISYE 4009
Analysis and design of complex work domains in technological environments.

ISYE 6232. Safety-Critical Real-Time Systems
3-0-3.
Prerequisite(s): ISYE 4009
Study of system safety, human error, and software reliability.

ISYE 6234. Measurement and Evaluation of Human-Integrated Systems
3-0-3.
Prerequisite(s): ISYE 6739
Measurements of complex systems including workload, operator strategy, and performance.

ISYE 6307. Scheduling Theory
3-0-3.
Prerequisite(s): ISYE 6669
Includes topics in sequencing and scheduling with emphasis on deterministic machine scheduling problems with some stochastic results examined. Complexity of various problems will be analyzed.

ISYE 6401. Statistical Modeling and Design of Experiments
3-0-3.
Prerequisite(s): ISYE 6739
Fundamental coverage of topics in multiple regression and factorial experiments.

ISYE 6402. Time Series Analysis
3-0-3.
Prerequisite(s): ISYE 6739
Basic forecasting methods, ARIMA models, transfer functions.

ISYE 6404. Nonparametric Data Analysis
3-0-3.
Prerequisite(s): ISYE 6739
Nonparametric statistics and basic categorical data analysis.

ISYE 6405. Statistical Methods for Manufacturing Design and Improvement
3-0-3.
Prerequisite(s): ISYE 6401
Fractional factorial designs, response surface methods.

ISYE 6411. Fundamentals of Statistics with Applications
3-0-3.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 24X1
Relationships of statistical estimation and linear models with regression, planning and analysis of experiments, and the analysis of correlated data. More mathematical than ISYE 6401.

ISYE 6644. Simulation
3-0-3.
Prerequisite(s): ISYE 2028 and ISYE 3232
Covers modeling of discrete-event dynamic systems and introduces methods for using these models to solve engineering design and analysis problems.

ISYE 6650. Probabilistic Models and Their Applications
3-0-3.
Prerequisite(s): ISYE 2027
An introduction to basic stochastic processes such as Poisson and Markov processes and their applications in areas such as inventory, reliability, and queuing.

ISYE 6656. Queuing Theory
3-0-3.
Prerequisite(s): ISYE 6650

ISYE 6661. Optimization I
3-0-3.
Prerequisite(s): MATH 2406
Linear programming, network flows, issues in combinatorial optimization such as enumerative procedures and complexity, and nonlinear optimization including optimality conditions and relaxations. Intended for Ph.D. students.

ISYE 6662. Optimization II
3-0-3.
Prerequisite(s): ISYE 6661
Fundamentals of integer and combinatorial optimization. Topics include polyhedral, cuts, Lagrangian duality, complexity, and others. Intended for Ph.D. students.

ISYE 6663. Optimization III
3-0-3.
Prerequisite(s): ISYE 6661
Fundamentals of nonlinear optimization. Topics include optimality conditions; convex programming and duality; and unconstrained and constrained methods. Polynomial algorithms and interior point methods. Dual methods. Intended for Ph.D. students.
ISYE 6664. Stochastic Optimization
3-0-3.
Prerequisite(s): ISYE 6762 or MATH 6762
An introduction to sequential decision making under uncertainty. Much of the course is devoted to the theoretical, modeling, and computational aspects of Markov decision processes.

ISYE 6669. Deterministic Optimization
3-0-3.
Prerequisite(s): ISYE 4231
An introduction to deterministic optimization methodologies including approaches from linear, discrete, and nonlinear optimization including algorithms and computations. Applications will be introduced as appropriate.

ISYE 6673. Financial Optimization Models
3-0-3.
Prerequisite(s): ISYE 6225 or MGT 6078
An introduction to optimization techniques with special emphasis on applications to finance, including portfolio optimization, immunization, and risk management.

ISYE 6679. Computational Methods
3-0-3.
Prerequisite(s): ISYE 6669
Strategies and techniques for converting optimization theory into effective computational procedures. Emphasis is on applications in linear, integer, and nonlinear programming; networks and graphs.

ISYE 6739. Basic Statistical Methods
3-0-3.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 24X1
Overview of basic tools used in statistical analysis and modeling. Credit not allowed to students seeking a degree in ISYE.

ISYE 6759. Stochastic Processes in Finance
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from probability and mathematics are introduced as needed.

ISYE 6761. Stochastic Processes I
3-0-3.
Prerequisite(s): ISYE 2027
Discrete time Markov chains, Poisson and renewal processes; transient and limiting behavior; average cost and utility measures of systems. Intended for Ph.D. students. Crosslisted with MATH 6761.

ISYE 6762. Stochastic Processes II
3-0-3.
Prerequisite(s): ISYE 6761 or MATH 6761
Continuous time Markov chains; uniformization, transient and limiting behavior; Brownian motion and martingales; optional sampling and convergence. Intended for Ph.D. students. Crosslisted with MATH 6762.

ISYE 6767. Design and Implementation of Systems to Support Computational Finance
3-0-3.
Introduction to large-scale system design to support computational finance for options, stocks, or other financial instruments.

ISYE 6769. Fixed-Income Securities
3-0-3.
Prerequisite(s): MATH 3215 and (MGT 6060 or MGT 6078)
Description, institutional features, and mathematical modeling of fixed-income securities. Use of both deterministic and stochastic models.

ISYE 6772. Managing Resources of the Technological Firm
3-0-3.
This course explores the competitive advantage manufacturing and service firms derive from the effective management of their technology, workforce, materials, and information resources. Crosslisted with MGT 6772.

ISYE 6773. Strategic Management of Technology-Based Ventures
3-0-3.
This course provides a forum for the in-depth examination of issues involving the strategic management of high-tech corporate start-ups and small technology-based businesses. Crosslisted with MGT 6773.

ISYE 6774. Management of Technology Project
3-0-3.
This course organizes students into multidisciplinary teams devoted to solving a real problem for a technology-based firm. Crosslisted with MGT 6774.

ISYE 6775. Management of Technology Seminar
1-0-1.
This course introduces the frontiers of key technologies, provides a forum for visiting speakers from the corporate world, and supplements topics from other MOT courses. Crosslisted with MGT 6775.

ISYE 6777. Analysis of Emerging Technologies
3-0-3.
Methods for technology monitoring, forecasting, and assessment. Crosslisted with PUBP 6777.

ISYE 6779. Dynamic System Simulation and Modeling
3-0-3.
Prerequisite(s): AE 2220
Models of dynamic systems, such as aircraft, ground vehicles and machinery, and manual control. Numerical simulation techniques and applications. Interactive simulators. Student programming project. Crosslisted with AE 6779.

ISYE 6781. Reliability Theory
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Structural properties and reliability of coherent systems.
ISYE 6783. Statistical Techniques of Financial Data Analysis
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Fundamentals of statistical inference for models used in the modern analysis of financial data.

ISYE 6785. The Practice of Quantitative and Computational Finance
3-0-3.
Case studies, visiting lecturers from financial institutions, student group projects of an advanced nature, and student reports, all centered around quantitative and computational finance.

ISYE 6792. Manufacturing Seminar
1-0-1.
Guest speakers on a broad range of manufacturing-related topics: research, applications, and technology. Required for Certificate in Manufacturing. Crosslisted with ECE and ME 6792.

ISYE 6793. Advanced Topics in Quantitative and Computational Finance
3-0-3.
Advanced foundational material and analysis techniques in quantitative and computational finance.

ISYE 6795. Introduction to Cognitive Science
3-0-3.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS and PSYC 6795.

ISYE 6805. Reliability Engineering
3-0-3.
Prerequisite(s): ISYE 2027
Topics include hazard functions, life distributions, censoring, life tables, nonparametric and parametric estimation and inference, accelerated life testing, structure functions, reliability and maintenance systems, and replacement theory.

ISYE 6831. Advanced Simulation
3-0-3.
Prerequisite(s): ISYE 2028 and (ISYE 6761 or MATH 6761)
Topics include generalized semi-Markov processes; input and output analysis; random number, variate, and sample path generation; rare event simulation; and optimization via simulation.

ISYE 7000. Master's Thesis
Credit hours to be arranged.
Required of degree candidates in the master's thesis option.

ISYE 7210. Real-Time Interactive Simulation
3-0-3.
Prerequisite(s): ISYE 6215 and ISYE 6831
Principles and laboratory experience in design and implementation of interactive simulations of complex dynamic systems.

ISYE 7400. Advanced Design of Experiments
3-0-3.
Prerequisite(s): ISYE 6401
Random and mixed models, nested and blocked designs.

ISYE 7401. Advanced Statistical Modeling
3-0-3.
Prerequisite(s): ISYE 6401
Nonlinear models, logistic regression, loglinear models.
Intended for Ph.D. students and those seeking the Master of Science in Statistics.

ISYE 7405. Multivariate Data Analysis
3-0-3.
Prerequisite(s): ISYE 6401
Multivariate ANOVA, principal components, factor analysis, etc.
Intended for Ph.D. students and those seeking the Master of Science in Statistics.

ISYE 7441. Theory of Linear Models
3-0-3.
Prerequisite(s): MATH 4261 and ISYE 6401
Intended for Ph.D. students and those seeking the Master of Science in Statistics.

ISYE 7653. Case Studies in Logistics/Manufacturing
3-0-3.
Prerequisite(s): ISYE 6201 and ISYE 6203 and ISYE 6661 and (ISYE 6761 or MATH 6761)
Advanced topics in logistics and manufacturing through the use of industrial case studies. Difficult modeling issues such as data representation and consistency will be introduced.

ISYE 7790. Cognitive Modeling
2-6-4.
Prerequisite(s): CS 6795 or ISYE 6795 or PSYC 6795
A hands-on course covering a range of cognitive methodologies. It explores the analysis, development, construction, and evaluation of models of cognitive processing. Crosslisted with CS and PSYC 7790.

ISYE 8011, -12, -13. Graduate Seminar
1-0-1.
Audit basis only.

ISYE 8795. Colloquium in Cognitive Sciences
1-0-1.
Reading of research papers by leading cognitive scientists, attendance at their colloquia, and meeting with them to discuss research. Crosslisted with CS and PSYC 8795.

ISYE 8800. Special Topics in Industrial and Systems Engineering
3-0-3.

ISYE 8801. Special Topics in Operations Research
3-0-3.

ISYE 8841. Advanced Topics in Statistics
3-0-3.
Prerequisite(s): MATH 4261 and ISYE 7441
For Ph.D. students.
ISYE 8851. Topics in Manufacturing
3-0-3.
Prerequisite(s): ISYE 6661 and (ISYE 6761 or MATH 6761)
Current topics in manufacturing including: manufacturing automation and controls, advanced planning systems, heuristic scheduling techniques, stochastic models of manufacturing systems, advanced warehousing, and materials handling.

ISYE 8852. Topics in Logistics
3-0-3.
Prerequisite(s): ISYE 6661
Current topics in logistics including: inventory control in supply chain design, stochastic vehicle routing, computational methods in logistics systems, location theory, and geographic information systems.

ISYE 8861. Advanced Topics in Stochastics
3-0-3.
Prerequisite(s): ISYE 6761 or MATH 6761
Coverage of advanced topics of interest that support research interests of students in the field.

ISYE 8862. Advanced Topics in Simulation
3-0-3.
Prerequisite(s): (ISYE 6761 or MATH 6761) and ISYE 6831
Coverage of advanced topics of interest that support research interests of students in the field.

ISYE 8871. Advanced Topics in Linear and Discrete Optimization
3-0-3.
Prerequisite(s): ISYE 6662
Topics may vary with each offering and include subjects such as integer programming, combinatorics, graphs and networks, matching, matroids, polyhedral combinatorics, and others.

ISYE 8872. Advanced Topics in Nonlinear Optimization
3-0-3.
Prerequisite(s): ISYE 6663
Similar to ISYE 8871, but deals with subjects in nonlinear programming, interior-point methods, convexity, global optimization, etc. Topics may vary each term.

ISYE 8890. Special Topics in Cognitive Science
3-0-3.

ISYE 8900. Special Problems in Industrial Engineering
Credit hours to be arranged.

ISYE 8901. Special Problems in Operations Research
Credit hours to be arranged.

ISYE 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

ISYE 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

ISYE 9000. Doctoral Thesis
Credit hours to be arranged.

HEALTH SYSTEMS

HS 4001. Introduction to Health Systems
3-0-3.
Background of U.S. healthcare; the workforce; mechanisms and costs of delivery; facilities; ambulatory care; regulation and quality; managed care, finance, and role of government.

HS 6000. Introduction to Healthcare Delivery
3-0-3.
Historical background; the healthcare workforce; nature, problems, and costs of delivery sites; health planning, finance, role of government, alternative delivery models, and health policy.

HS 6100. Healthcare Delivery Systems Models
3-0-3.
Prerequisite(s): HS 6000
Progression in service delivery from individual providers to complex financing and delivery organizations. Alternative models are explored with an emphasis on access, efficiency, and effectiveness.

HS 6200. Healthcare Financial Management
3-0-3.
Prerequisite(s): HS 6000
Applications of accounting and finance in the healthcare delivery system; methods of reimbursement, product costing, strategic financial planning, and capital formation.

HS 6300. Healthcare Information Systems
3-0-3.
Prerequisite(s): HS 6000
Application of information systems to assist in medical practice including communication within the healthcare enterprise, reimbursement for care, clinical decision making, and assessment of outcomes.

HS 6400. Health Systems Practice
3-0-3.
Prerequisite(s): HS 6000 and HS 6100
An actual project conducted by individual graduate students within a healthcare institution or a health service organization. Project has both a faculty and site sponsor.

HS 8800, -01. Special Topics
3-0-3.

HS 8900, -01. Special Problems
Credit hours to be arranged.

HS 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

HS 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.
INTERNATIONAL LOGISTICS

II. 6450. Analytical Methods
1-0-1.
This course provides an overview of optimization, statistical, and stochastic models and methods with special emphasis on application to logistics.

II. 6451. Demand and Yield Management
1-0-1.
This course focuses on demand estimation and modeling and revenue management.

II. 6452. Reverse Green Logistics
1-0-1.
This course addresses issues, driving forces, and analytical approaches to aid in designing operating reverse logistics systems.

II. 6453. Labor Relations
1-0-1.
This course compares labor practices in Europe, North America, and Asia with special attention on the influences on logistics.

II. 6454. European Trade and Transport
1-0-1.
This course provides an overview of legal, cultural, political, and infrastructure issues influencing logistics in Europe.

II. 6455. Finance for the Logistics Practitioner
1-0-1.
This course provides an in-depth understanding of concepts of finance that relate to logistics, such as valuing logistics activities and measuring logistics performance.

II. 6456. Financial Decision Making for Logistics
1-0-1.
This course provides a thorough understanding of the key elements of building a better logistics business case.

II. 6457. Trade and Transportation in the Americas
1-0-1.
This course provides an overview of legal, cultural, political, and infrastructure issues influencing logistics practices in the Americas.

II. 6458. Warehousing and Cross-Docking
1-0-1.
This course surveys the different types of warehouses and their functions, principles of operation, and strategic relationship to the supply chain.

II. 6459. International Trade and Transportation
1-0-1.
This course discusses how international trade is financed, what instruments are used and how they work, how transactions are settled, and the role of documentation.

II. 6460. International Freight Management
1-0-1.
This course focuses on international freight management including consolidation, export packaging, customs, tracking, terminal operations, mode selection, and carrier selection.

II. 6461. Asian Trade and Transportation
1-0-1.
This course provides an overview of legal, cultural, political, and infrastructure issues influencing logistics practices in Asia.

II. 6462. New Ventures
1-0-1.
This course focuses on concepts and theories relevant to starting and managing new corporate ventures as well as building alliances and partnerships.

II. 6463. Supply Chain Management I: E-Commerce
1-0-1.
This course provides an overview of electronic commerce on the Internet and focuses on opportunities for applying this technology to supply chain management.

II. 6464. Supply Chain Management II: ERP Systems
1-0-1.
This course provides a strategic view of enterprise resource planning and its relationship to logistics functions.

II. 6465. Marketing Channels and Partnering
1-0-1.
This course focuses on logistics and supply chain issues as they impact the global marketing strategies of companies.

II. 6466. Global Supply Chain Design and Measurement
1-0-1.
This course focuses on concepts and models for designing and measuring a global supply chain, with special focus on the impact of e-commerce.

II. 6467. Transportation
1-0-1.
This course focuses on logistics planning, execution, and performance measurement in the transportation industry.

II. 6468. Manufacturing
1-0-1.
This course focuses on logistics issues within the manufacturing facility including inventory, throughput, lead-time batching, and managing variability.

II. 6470, -71. Supply Chain Integration Lab I & II
0-6-2.
This course integrates supply chain management techniques in the Americas, Asia, and Europe through case studies.

II. 6472. Supply Chain Integration Lab III
0-3-1.
This course integrates supply chain management techniques in the Americas, Asia, and Europe through case studies.

II. 6473, -74. Supply Chain Integration Lab IV & V
0-6-2.
This course integrates supply chain management techniques in the Americas, Asia, and Europe through case studies.

II. 6475, -76, -77, -78. Cases in International Logistics I, II, III, IV
2-0-2.
Cases are used to integrate strategic, management, and operating issues in international logistics and supply chain design.
Established in 1985, School of Ceramic Engineering established in 1924
Location: J. Erskine Love Jr. Manufacturing Building
Telephone: 404.894.2888
Fax: 404.894.9140
E-mail: academic@mse.gatech.edu

Chair and Professor—Ashok Saxena; Associate Chair and B. Mifflin Hood Professor—Joe K. Cochran; Regents’ Professors—Thomas Sanders, C.P. Wong; Regents’ Professor and Director of Mechanical Properties Research Laboratory—David L. McDowell; Professor and Director of the Composites Education and Research Center—W. Steven Johnson; Professor and Director of the Molecular Design Institute—William S. Rees; Professor and Director of the Nanoscience and Nanotechnology Center—Zhong L. Wang; Professor and Director of the NSF Packaging and Research Center—Rao Tummala; Professor and Director of the Phosphor Technology Center of Excellence—Christopher J. Summers.

Professors—Arun M. Gokhale, Mellin Liu, Miroslav Marek, Michael D. Sacks, Robert E Speyer, Stuart R. Stock, Naresh N. Thadhani.

Professors Emeriti—James F. Benzel, Helen Grenga, Robert F. Hochman.

Associate Professors—W. Brent Carter, Rosario Gerhardt, Janet M. Hampikian, Rina Tannenbaum.

Senior Research Scientist—D. Norman Hill.

Adjunct Professors—Agaram S. Abhiraman, John Bradley, R.A. Young.

Principal Research Engineer Emeritus—Kathryn V. Logan.

General Information
The demand for engineering graduates shows that the field of materials science and engineering has experienced vast growth and advancement with the age of technology. These technologies, developed through engineering and science, touch the world with advancements in the properties and performance of everything from computers and communications systems, to automobiles and aircraft.

Traditional disciplines such as metallurgy, polymers, and ceramics have developed into more broadly based materials programs in which students are provided with an education emphasizing the fundamentals and principles of structure-property-processing-performance relationships independent of the class of material.

Research in the School of Materials Science and Engineering at Georgia Tech spans all classes of materials, including metals, ceramics, polymers, composites, biomaterials, electronic, superconducting, and photonic and magnetic materials, highlighting the following areas:

- synthesis and processing focusing on development of advanced materials with novel compositions and tailored microstructures
- characterization and evaluation of structure and properties using advanced techniques and state-of-the-art instrumentation
- modeling of structure-property-performance relationships emphasizing correlation of properties with the structure across nano-, micro-, meso-, and macro-length scales

MSE faculty participate in collaborative research projects with faculty from other schools in the colleges of Engineering and Sciences, and the Georgia Tech Research Institute. Several of these centers are led by MSE faculty. The external funding brought in by the faculty in the School of Materials Science and Engineering exceeds $7 million per year and comes from a wide variety of sources including industry, private foundations, and federal funding agencies. A significant number of materials specialists are required to meet the present and future opportunities and challenges of this field.
The School offers a Bachelor of Science in Materials Science and Engineering degree. An undergraduate minor in materials science and engineering is offered for non-MSE majors. Graduate degrees (M.S. and Ph.D.) are offered in materials science and engineering and in polymers. The various degree programs are described in the following sections.

Undergraduate Program

Bachelor of Science in Materials Science and Engineering

The objective of this program is to graduate engineers at the baccalaureate level who are educated in the fundamentals of the structure-property-processing-performance relationships of materials and who can design, test, select, manufacture, and optimize components of all types of materials. Students follow a rigorous curriculum in basic science as well as the fundamental engineering disciplines. The goal of the materials science and engineering program is to produce graduates who are prepared to meet new technological challenges in which problems are solved by considering the relative merits of all classes of materials, and who are prepared for graduate work at leading universities.

Grade Requirements

In order to encourage students to explore subjects of personal or professional interest without jeopardizing their GPA, the Institute has a limited pass/fail option. The policy of the School of Materials Science and Engineering regarding the use of pass/fail hours for credit is as follows: no course specifically required by number by the materials science and engineering curriculum may be taken on a pass/fail basis and used toward graduation, unless the course is offered only on that basis.

In addition to the Institute scholastic requirements, the School of Materials Science and Engineering requires that a grade of C or above be obtained in all MSE courses in order for them to be used as credit toward graduation. A P in a course taken pass/fail is equivalent to at least a C.

A student whose final grade in an MSE course is D must repeat that course and earn a C or better for it to be used as credit toward graduation. If the course is not offered again before the student's normal graduation date, the following applies:

A student who has a single D deficiency in an MSE course that has not been offered again prior to their graduation term will be permitted one re-examination after the School has received the student's graduation term grades, but not later than 96 hours before commencement exercises, if the following conditions are met:

a) the student did not receive any F grades in courses required for graduation for the graduation term

b) the D was not the result of poor lab performance

The re-examination will be graded S (satisfactory) or U (unsatisfactory) with a C or better performance required for an S. The previously assigned D will remain unchanged, but the director of undergraduate programs will approve its use toward graduation if the re-examination grade assigned is an S.

Bachelor of Science in Materials Science and Engineering (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>MSE 1001 INTRO. TO ENGINEERING</td>
<td>1</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1311 INORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>
Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401: CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212: INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311: ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>AE 2120 OR ME 2211</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403: DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 3411: PHYSICAL CHEM I</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2001: PRIN. & APPL. – ENGR. MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100: ECONOMICS & POLICY</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 3001: CHEM. THERMO. MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3005: MECH. BEHAVIOR OF MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3010: ANALYSIS OF MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710: CIRCUITS & ELECTRONICS</td>
<td>2</td>
</tr>
<tr>
<td>ISYE 3025: ENGR. ECONOMY</td>
<td>1</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 3002: STRUCT. TRANSFORMATIONS</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3015: ELEC., OPTICAL, & MAGNET. PROPERTIES</td>
<td>3</td>
</tr>
<tr>
<td>MSE 3020: MATERIALS LAB</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3741: INSTRUMENTATION & ELECTRONICS LAB</td>
<td>1</td>
</tr>
<tr>
<td>ISYE/MATH 3770 STATISTICS & APPS.</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 4002: CERAMIC MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4004: MATERIALS IN ELECTRONICS</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4020: DESIGN WITH MATERIALS I</td>
<td>1</td>
</tr>
<tr>
<td>MSE 4777: INTRO. TO POLYMERS</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>MSE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE 4010: ENVIRONMENTAL DEGRADATION</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4012: THERMAL PROPERTIES</td>
<td>3</td>
</tr>
<tr>
<td>MSE 4021: DESIGN WITH MATERIALS II</td>
<td>2</td>
</tr>
<tr>
<td>MSE 4006: ENGR. ALLOYS</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 126 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Electives

Health and Performance Science Electives

This elective is satisfied by either HPS 1040, 1062, 1063, or 1064.

Humanities/Fine Arts Electives

This elective is satisfied by completing six hours from the list on pages 31-32.

Social Sciences Electives

To satisfy the state requirements regarding course work on the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200. This course, along with ECON 2100, satisfies half of the 12-hour social science obligation. Six additional hours of social science electives should be selected from the list on pages 31-32.

Technical Elective

This elective may be satisfied by any MSE course above the 2000 level that is not required by number or by any course on the following list. Other courses may be used to satisfy this requirement with the approval of the Materials Science and Engineering Undergraduate Curriculum Committee. Students should contact the director of undergraduate programs in the School if they want to make a substitution.
AE/ME/CE 1770 (2-3-3) Introduction to Engineering Graphics & Visualization
AE 4131 (3-0-3) Introduction to Finite Element Methods
AE 4375 (3-0-3) Fundamentals of Computer-Aided Engineering & Design
BIOL 3420 (3-4-4) Introductory Microbiology
CE 3020 (2-3-3) Civil Engineering Materials
CHEM 2312 (3-0-3) Organic Chemistry II
CHEM 3111 (3-0-3) Inorganic Chemistry
CHEM 4452 (3-0-3) Chemistry of the Solid State
MATH 3770 (3-0-3) Statistics and Applications
MATH 4347 (3-0-3) Partial Differential Equations I
MATH 4640 (3-0-3) Numerical Analysis I
MATH/CS 4777 (3-0-3) Parallel Scientific Computing
ME 3340 (3-0-3) Fluid Mechanics
ME 4210 (3-0-3) Manufacturing Processes and Engineering
PHYS 3141 (3-0-3) Thermodynamics
PHYS 3143 (3-0-3) Quantum Mechanics I
TFE 3003 (2-3-3) Fundamentals of Transport in Textile Engineering

MSE Elective
This elective is satisfied by any MSE course(s) at the 3000 level or above that is not specifically required by number in the curriculum.

Free Elective
Any course(s), with the exception of remedial courses such as MATH 1113, may be used to satisfy the free elective. Students can strengthen their program of study with an appropriate selection of this elective. A student's academic advisor may be consulted in choosing the free elective.

Minor in Materials Science and Engineering
The School of Materials Science and Engineering offers an undergraduate minor in Materials Science and Engineering for non-MSE majors. The purpose of the minor is to broaden the materials background of non-materials science and engineering students and to introduce them to a materials approach to problem solving that is different from that provided by their major.

A requirement for earning a minor in Materials Science and Engineering is to complete 18 semester hours of MSE course work, of which 12 semester hours must be at the 3000 level or higher and all of which must be at the 2000 level or higher. Courses required for the major (excluding electives) may not be applied toward the minor. Many students will be able to complete a considerable portion of the minor requirements by scheduling MSE courses as electives required by their major.

Non-MSE undergraduate majors are encouraged to participate in this program provided they have the appropriate prerequisites and approval of their home school academic advisor. To participate or for additional information, contact the director of undergraduate programs in the School of Materials Science and Engineering.

Graduate Programs
Materials graduates are essential to the economic growth of the country. They contribute to the development, selection, and use of materials in all engineering and scientific applications. Master's and doctoral degrees in materials science and engineering are offered. An excellent selection of undergraduate courses is also offered in preparation and support of graduate studies. Course offerings and research activities cover a diversity of subjects in the broad field of materials. Subjects include physical metallurgy, mechanical properties, fracture mechanics, corrosion phenomena, processing, thermodynamics and phase equilibria, nondestructive testing, X-ray analysis, phase transformations, glass science, electronic/technical ceramics, thin film semiconductors, electronic and optical microscopy, dispersions and rheology, refractories, surface analysis, fiber science, polymerization reaction engineering, polymer process simulation, mechanical properties of polymers, and process-structure-property characterization of polymers. For a listing of approved polymer courses, also see the listings in the schools of Chemical Engineering and Textile and Fiber Engineering. State-of-the-art research facilities in the School of Materials Science and Engineering contribute to the strength of the program.
MSE graduates find employment with manufacturing firms in light and heavy industry, in research laboratories of private firms and federal agencies, and in academic institutions. Several recent graduates have filled positions of high responsibility in these areas and have been instrumental in advancing the level of materials engineering practice in the United States. The materials engineering faculty participate in numerous multidisciplinary programs including manufacturing engineering, surface science technology, microelectronics, electronic packaging, polymers, and composites.

The Master's Degree
The programs in MSE offer graduate work leading to the degrees of Master of Science in Materials Science and Engineering and Master of Science with a major in materials engineering. The student admitted for graduate work will normally have completed an undergraduate program in materials, ceramics, metallurgy, or polymers. However, students with undergraduate degrees or backgrounds in other fields (e.g., physics, chemistry, geology, and chemical, mechanical, nuclear, or geological engineering) may qualify by taking certain minimum prerequisites during the early part of their graduate studies. To assure a smooth transition into the graduate program, the student should select appropriate electives during his or her undergraduate studies.

Students in all M.S. programs must complete a core of graduate materials courses and prepare an individualized program of study for this degree in consultation with their graduate advisors. The proposed program must receive the approval of the graduate coordinator and the School chair. Thesis, non-thesis, and industrial internship options are available. The minimum credit hour requirements for the M.S. degree include 18 credit hours of courses and 12 credit hours of thesis research, or 30 credit hours of courses, or 24 hours of courses and 6 hours of project work conducted as part of an industrial internship. A total of 12 course hours must be in the major, and 12 course hours must be at the 6000 level or higher. A minimum GPA of 3.0 is required for graduation.

The Doctoral Degree
The Doctor of Philosophy degree is directed to attain proficiency in the pursuit of independent scholarly work. The degree comprises course work in the general principles of materials generally, with emphasis on metallurgy, polymers, ceramics, or electronic materials. Additional requirements include specialized courses both in the area of the doctoral thesis and in one or two other areas, passing comprehensive examinations, and an independent research investigation.

Candidates for the doctoral degree are required to complete at least 18 credit hours of graduate-level course work beyond the M.S. degree, with a minimum GPA of 3.0, and pass the written and oral parts of the Ph.D. qualification examination. Each student must also earn nine credit hours in a coherent minor field, chosen in consultation with the advisor, to satisfy the School's core course requirements. Students should commence participation in the School's research programs early in their graduate careers.

Financial Aid
A number of fellowships and research assistantships from outside sources and industry are available to provide financial assistance for qualified graduate students. In addition, a limited number of presidential fellowships, as well as teaching and research assistantships, are available from the Institute. Waiver of out-of-state tuition is possible for qualified students. Further information can be obtained by writing the director of graduate programs in the School of Materials Science and Engineering.

Multidisciplinary Programs
Materials Science and Engineering students may pursue a certificate within a designated multidisciplinary field in the College of Engineering. This can be facilitated with an appropriate choice of electives. For a complete description of available programs, see page 127.

Mechanical Properties Research Laboratory
The Mechanical Properties Research Laboratory (MPRL) is an interdisciplinary laboratory that supports education and research programs in...
structural materials. Its principal activities are directed toward the measurement and modeling of the mechanical properties of engineering materials, primarily related to deformation, fatigue, and fracture. Graduate students participating in the MPRL benefit from the association with students and faculty from other departments in the interdisciplinary setting. In its role as an interdisciplinary umbrella organization for experimental research in mechanical properties of materials, MPRL provides a degree of coordination of equipment usage, training, and maintenance with the College of Engineering.

Composites Education and Research Center
The Composites Education and Research Center (CERC) is another interdisciplinary center similar to MPRL, providing students with the opportunity to participate in interdisciplinary course work and research projects in the area of composites. A graduate-level certificate program is available to students of materials science and engineering in composites, and several graduate courses are available.

Master of Science and Ph.D. in Polymers
The Master of Science in Polymers is offered through the schools of Materials, Chemical, and Textile and Fiber Engineering. The core course requirements for polymer degrees are the same in each school. This core is designed to provide a balanced treatment of the chemistry, physics, and engineering of polymeric materials. At the same time, the wide range of elective courses and research projects permits students to develop an in-depth knowledge of a particular area of polymer science and engineering. This combination of breadth and depth of study is vital for the successful performance of polymer scientists and engineering graduates.

Master of Science and Ph.D. in Bioengineering
The School of Materials Science and Engineering participates in the interdisciplinary program leading to a Master of Science and Ph.D. in Bioengineering and Biomedical Engineering. The program curriculum was developed by a broadly based faculty group with research activities in bioengineering and the life sciences. Students in the program, are enrolled in a participating school, such as the School of Materials Science and Engineering, as their home department. The program is directed toward engineering graduates who wish to pursue a graduate degree in bioengineering or biomedical engineering rather than in a traditional field of engineering. For more details on the degree requirements for the M.S. and Ph.D. in BME, see page 142.

Minor in Materials Science and Engineering
For qualified Ph.D. students in other programs, a sequence of cross-listed courses in MSE (MSE 6795, 6796, and 6797) is available to introduce non-MSE students to advanced topics covering the broad field of materials. One or more of these courses along with other MSE courses can be used to satisfy the nine-credit-hour Institute minor requirement in other programs. Students wishing to participate in the MSE minor program must check with their advisor in their home school as to the appropriateness of the selected courses.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

MATERIALS SCIENCE AND ENGINEERING

MSE 1001. Introduction to Engineering
1-0-1.
A general introduction to engineering. Topics include social, professional, and ethical issues, Georgia Tech's engineering curricula, contemporary issues, engineering design, teamwork, and a description of engineering skills.

MSE 1750. Introduction to Bioengineering
3-0-3.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, CHE, ECE, and ME 1750.
Prerequisite(s): PHYS 2212 and CHEM 1310
The structure-property-processing-performance relationships of engineering materials are described. Materials selection is treated as a part of engineering design.

MSE 3001. Chemical Thermodynamics of Materials 3-0-3.
Prerequisite(s): MSE 2001 and (MATH 2403 or MATH 2413 or MATH 24X3 or MATH 2602) and CHEM 3411
Principles and applications of thermodynamics to materials science and engineering. Phase equilibria and the concepts necessary to interpret phase diagrams.

MSE 3002. Structural Transformations in Metallic, Ceramic and Polymeric Systems 3-0-3.
Prerequisite(s): MSE 3001
Principles that govern the important structural transformations that occur in engineering materials.

MSE 3005. Mechanical Behavior of Materials 3-0-3.
Prerequisite(s): MSE 2001 and (ME 2211 or AE 2120)
The correlation of monotonic and time-dependent mechanical properties with fundamental concepts of atomic bonding, crystalline state, microstructure, and micromechanics of materials.

Prerequisite(s): CHEM 1310 and PHYS 2212
Principles and theory of crystallography and diffraction and diffraction analysis of materials emphasizing x-ray diffraction, including electron diffraction and diffraction-based imaging.

MSE 3015. Electrical, Optical, and Magnetic Properties 3-0-3.
Prerequisite(s): MSE 3010
Band theory of solids, semiconductor physics, dielectric, optical, and magnetic phenomena. Superconductivity in various classes of materials.

MSE 3020. Materials Laboratory 1-6-3.
Prerequisite(s): MSE 2001 and MSE 3010
Fundamental principles of materials demonstrated in hands-on and demonstration experiments. Instruction on basic laboratory skills, safety, and proper technical report writing.

Prerequisite(s): MSE 3002
Properties, processing, and applications of the industrially and technically important ceramic materials. Traditional and oxide ceramics in addition to glass and non-oxide ceramics.

Prerequisite(s): MSE 3015
Introduction to the fabrication requirements, property control, and structure-property-processing relationships in materials used in electronic, photonic, and magnetic applications.

MSE 4006. Processing and Applications of Engineering Alloys 3-0-3.
Prerequisite(s): MSE 3002 and MSE 3010
Influence of composition and processing variables on the microstructure and properties of nonferrous and ferrous alloys.

MSE 4010. Environmental Degradation 3-0-3.
Prerequisite(s): MSE 2001 and CHEM 3411
Theory of environmental degradation of metals, ceramics, and polymers. Emphasis on the scientific principles of degradation.

Prerequisite(s): CHEM 1310 and PHYS 2212 and MSE 2001
Experimental methods of thermal property measurement, e.g. differential thermal analysis, thermogravimetric analysis, dilatometry/interferometry, thermal conductivity/diffusivity, and pyrometry.

MSE 4020. Designing with Materials I 1-0-1.
Introduction to principles of engineering design with emphasis on materials. Topics covered also include professional ethics and contemporary socio-political issues.

MSE 4021. Designing with Materials II 0-6-2.
Prerequisite(s): MSE 4020
A team-oriented, interdisciplinary course that emphasizes creativity in solving industrial-based problems. The design solutions developed must be demonstrated by feasibility testing, which highlights this capstone design experience.

Prerequisite(s): MSE 3010
Theory and operating knowledge of scanning electron microscopy, transmission electron microscopy, and stereology.

Prerequisite(s): CHEM 1310 and PHYS 2212
Principles and theory of industrial nondestructive evaluation methods are covered. Emphasis is on testing the soundness and reliability of primary and secondary engineering structures.

MSE 4320. Electronic Packaging and Design 3-0-3.
Prerequisite(s): MSE 2001
Electronic packaging design, covering properties of materials, fabrication and assembly processes, thermal-mechanical considerations, practical concerns regarding interconnection and processing issues, and reliability assessment.
MSE 4325. Thin Film Materials Science
3-0-3.
Prerequisite(s): MSE 2001
Introduction to principal vapor deposition processes and vacuum technology. The fundamentals of the formation, characterization, and properties of a variety of thin films.

MSE 4775. Polymer Science and Engineering I: Formation and Properties
3-0-3.
Prerequisite(s): CHEM 2312 and CHEM 3411
An introduction to the chemistry, structure, and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids. Crosslisted with CHE, CHEM, ME, and TFE 4775.

MSE 4776. Polymer Science and Engineering II: Analysis, Processing, and Laboratory
2-3-3.
Prerequisite(s): CHE 4775 or CHEM 4775 or ME 4775 or TFE 4775
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted with CHE, CHEM, ME, and TFE 4776.

MSE 4777. Introduction to Polymer Science and Engineering
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3
An introduction to the structure and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids, and processing of polymers. Crosslisted with CHE, CHEM, ME, and TEE 4777.

MSE 4791. Mechanical Behavior of Composites
3-0-3.
Prerequisite(s): AE 2120 or ME 2211
Introduction to properties and structures of common matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CEE, CHE, ME, and TFE 4791.

MSE 4793. Composite Materials and Processing
3-0-3.
Prerequisite(s): CHEM 1310 and PHYS 2212
Basic principles of selecting component materials and manufacturing composites are presented. Polymeric, metallic, and ceramic systems are considered. Crosslisted with AE, CEE, CHE, ME, and TFE 4793.

MSE 4794. Composite Materials and Manufacturing
3-3-4.
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. Laboratory exercises on manufacturing and tests. Crosslisted with AE, CEE, CHE, ME, and TFE 4794.

MSE 4801, -2, -3. Special Topics
Credit and class hours equal last digit in course number.

MSE 4901, -2. Special Problems
Credit hours to be arranged.

MSE 4951. Independent Research I
0-3-1.
The student selects an advisor and defines an area of research. MSE 4952 must be completed for this course to be used for elective credit.

MSE 4952. Independent Research II
0-6-2.
Prerequisite(s): MSE 4951
The student completes an experimental plan coordinating with the research advisor. The laboratory research will be completed and a final report submitted.

MSE 6001. Written and Visual Communications
2-0-2.
Writing and editing engineering documents; designing and explaining visuals; creating electronic presentations. May not be used for duplicate credit with MSE 6754.

MSE 6010. Fundamentals of Functional Materials
3-0-3.
This course focuses on the effects of defects on physical properties; charge/mass transport; semiconductors, heterojunctions, electrical and magnetic polarization, interaction processes between various physical properties; electrical characterization techniques.

MSE 6105. Diffraction Studies
2-3-3.
Prerequisite(s): MSE 3010
Introduction to the kinematical electron scattering theory, optics in TEM, diffraction contrast imaging of defects, dynamical electron diffraction effects; and chemical microanalysis using EDS.

MSE 6110. Transmission Electron Microscopy
3-0-3.
Prerequisite(s): MSE 3010
Introduction to the kinematical electron scattering theory, optics in TEM, diffraction contrast imaging of defects, dynamical electron diffraction effects; and chemical microanalysis using EDS.

MSE 6120. Quantitative Characterization of Microstructures
2-3-3.
Application of statistically unbiased methods for estimating geometrical attributes of microstructures and non-planar fracture surfaces from plane sections and projections, digital image analysis, and computer simulations of microstructures.

MSE 6130. Surface Analysis
3-0-3.
Introduction to vacuum science and technology; structure of solid surfaces; electron and ion energy analyzers, electron spectroscopies (e.g., AES and XPS); ion-based techniques (e.g., SIMS and RBS); depth profiling; ion channeling.
MSE 6210. Defects
3-0-3.
Emphasis on the origin and character of point, line, and surface defects in crystalline materials and their influence on mechanical, chemical, magnetic, optical, and electronic properties.

MSE 6310. Thermodynamics and Kinetics of Transformations
3-0-3.
Prerequisite(s): MSE 3002
Classical thermodynamics and phase equilibria with applications to chemical reactions, control of phase transformations via reduction of chemical free energy, strain energy, and interfacial energy.

MSE 6410. Fine Particle Technology
3-0-3.
Prerequisite(s): MSE 3002
Theory of solid/liquid surface chemistry, particle/particle interactions in liquids, rheology of suspensions, and gas adsorption as related to surface area and pore size distributions.

MSE 6510. Polymers for Electronic and Photonic Applications I
3-0-3.
Review of fundamentals and principles of polymers used in electronics and photonics; relationships between the advances of semiconductor technology and the importance of polymers and their applications.

MSE 6610. Biomaterials
2-0-2.
The course will emphasize the interaction between the human body environment and synthetic materials. Materials for both medical implants and dental restoration and appliances will be covered.

MSE 6620. Advanced Corrosion
2-3-3.
Prerequisite(s): MSE 4010
The emphasis will be on electrochemical corrosion and dry oxidation of metals and alloys. In the laboratory the student will be introduced to the methodology of corrosion testing.

MSE 6751. Physical Chemistry of Polymer Solutions
3-0-3.
Prerequisite(s): (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777 or TFE 4777)
Study of polymer solutions, polymer miscibility, adsorption, sorptions, plasticization, molecular weights, molecular weight distribution, and interfacial phenomena using thermodynamics and statistical mechanics. Crosslisted with CHEM, CHE, and TFE 6751.

MSE 6752. Polymer Characterization
3-3-4.
Prerequisite(s): (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777 or TFE 4777)
This course introduces the student to surface, near-surface, and structural methods of polymer characterization.

Specialized techniques critical to physical structure are emphasized. Crosslisted with CHEM, CHE, and TFE 6752.

MSE 6754. Engineering Communication
3-0-3.
Writing and editing engineering documents; designing and explaining visuals; creating and delivering electronic presentations. Crosslisted with CEE 6754.

MSE 6755. Theoretical Chemistry of Polymers
3-0-3.
Prerequisite(s): CHEM 6471 and (CHEM 6751 or CHEM 6751 or MSE 6751 or TFE 6751)
Thermodynamics and microscopic dynamics of polymers. Fundamental concepts, including scaling concepts, governing anisotropy of polarizability, phase transitions, morphology, time-dependent correlations, etc., are discussed. Crosslisted with CHEM and TFE 6755.

MSE 6759. Materials in Environmentally Conscious Design and Manufacturing
3-0-3.
Covers the environmental impact of materials choices and quantitative measure of life-cycle assessment and environmental burden. The Natural Step philosophy will be used as a model for the overall approach. Crosslisted with ME and TFE 6759.

MSE 6768. Polymer Structure, Physical Properties, and Characterization
3-0-3.
Prerequisite(s): CHE 4776 or CHEM 4776 or ME 4776 or MSE 4776 or TFE 4776
Formulations and analysis of molecular and phenomenological models of elastic and viscoelastic behavior, development and description of structure, and fundamental aspects of structure-property relations. Crosslisted with TFE, CHE, and ME 6768.

MSE 6795. Mathematical, Statistical, and Computational Techniques in Materials Science
3-0-3.
Fundamental physical, analytical, and mathematical techniques encountered in materials engineering including stress and strain, crystallographic and orientation transformations, X-ray, TEM, and solid-state concepts are emphasized.

MSE 6796. Structure-Property Relationships in Materials
3-0-3.
Introduction to the multi-scale structure effects on material properties. Course will prepare students for future in-depth courses. Crosslisted with TFE and ME 6796.

MSE 6797. Thermodynamics and Kinetics of Microstructural Evolution
3-0-3.
The reduction of chemical free, strain, and interfacial energies control of the kinetics of diffusional transformations. These factors are explored from the viewpoint of processing and stability of microstructure during service. Crosslisted with TFE and ME 6797.
MSE 7000. Master’s Thesis
Credit hours to be arranged.

MSE 7010. Electroceramics
3-0-3.
Prerequisite(s): MSE 6010
Defects chemistry; electrochemical and electrophysical behavior of metallic/semiconducting ceramics, dielectrics, and ferrites; device applications of various electronic ceramics.

MSE 7110. Advanced Transmission Electron Microscopy
3-0-3.
Prerequisite(s): MSE 6110
Introduction to theory, techniques, and applications of high-resolution transmission electron microscopy (HRTEM) in materials research.

MSE 7140. Impedance and Dielectric Spectroscopy
3-0-3.
Prerequisite(s): MSE 6010
The basic theory of how current, voltage, and phase angle measurements over a wide frequency range (typically mHz-MHz) can provide information about microstructural features at all length scales.

MSE 7210. Dislocation and Deformation Mechanics
3-0-3.
Prerequisite(s): MSE 6210
Emphasis on interactions of dislocations with other defects, dislocation dynamics, and their correlation with mechanical properties under different rates of loading.

MSE 7420. Solidification Processing
3-0-3.
Prerequisite(s): MSE 6310
Fundamentals of thermodynamics, kinetics, mass transport, and physical materials are applied to the development of microstructure during solidification.

MSE 7510. Polymers for Electronic and Photonic Applications II
3-0-3.
Prerequisite(s): MSE 6510
Review of fundamentals and principles of polymers used in electronics and photonics. The relationship between the recent advances of semiconductor technology and the importance of polymers will be discussed.

MSE 7771. Mechanics of Polymer Solids and Fluids
3-0-3.
Prerequisite(s): MSE 4772 and MSE 6768
Continuum mechanics of solids and fluids; mechanics of deformation of anisotropic polymers; yield, breaking, and fatigue; non-Newtonian viscous and viscoelastic behavior of polymer fluids. Crosslisted with CHE, ME, and TFE 7771.

MSE 7772. Fundamentals of Fracture Mechanics
3-0-3.
Prerequisite(s): ME 3201 or MSE 3005
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with AE, CEE, CHE, and ME 7772.

MSE 7773. Advanced Fracture Mechanics
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CEE, CHE, and ME 7773.

MSE 7774. Fatigue of Materials and Structures
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multi-axial loading, and fatigue crack propagation. Crosslisted with AE, CEE, CHE, and ME 7774.

MSE 7775. Topics in Fracture and Fatigue of Metallic and Composite Structures
3-0-3.

MSE 7791. Damage, Failure, and Durability of Composite Material
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791 or TFE 4791

MSE 7792. Advanced Mechanics of Composites
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791 or TFE 4791
Anisotropic elasticity, hygrothermal behavior, stress analysis of laminated composites including three-dimensional effects, stress concentrations, free-edge effects, thick laminates, adhesive and mechanical connections, fracture of composites. Crosslisted with AE, CHE, CEE, ME, and TFE 7792.

MSE 7793. Manufacturing of Composites
3-0-3.
Prerequisite(s): AE 4793 or CEE 4793 or CHE 4793 or ME 4793 or MSE 4793 or TFE 4793
Major manufacturing techniques for metal, ceramic, and polymer composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CHE, CEE, ME, and TFE 7793.

MSE 8001. Seminar
1-0-1.
The latest advances in research and development will be presented by the enrolled students from articles in recent issues of recognized periodicals.
MSE 8801, -2, -3. Special Topics
Credit and class hours equal last digit in course number.
Special topic offerings of current interest not included in regular courses.

MSE 8901, -2, -3. Special Problems
Credit hours to be arranged.
Lectures, laboratory, and library work on special topics of current interest in materials suitable for a master's degree candidate.

MSE 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding teaching assistantships.

MSE 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding a research assistantship.

MSE 9000. Doctoral Thesis
Credit hours to be arranged.

Woodruff School of Mechanical Engineering

www.me.gatech.edu

Established in 1885
Location: Manufacturing Related Disciplines Complex (MRDC)
Telephone: 404.894.3200
 (Administrative Office)
404.894.3203 (Undergraduate Office)
404.894.3204 (Graduate Office)
Fax: 404.894.8336
E-mail: menehp.info@me.gatech.edu

Chair, Eugene C. Gwaltney Jr. Chair and Regents' Professor—Ward O. Winer; Associate Chair for Administration and Professor—Alan V. Larson; Associate Chair for Graduate Studies and Professor—Raymond P. Vito; Associate Chair for Graduate Studies and Professor—William J. Wepfer; Southern Nuclear Distinguished Professor—Said Abdel-Khalik; HUSCO/Ramirez Chair in Fluid Power and Motion Control—Wayne J. Book; Morris M. Bryan Jr. Chair in Mechanical Engineering for Advanced Manufacturing Systems—Steven Danyluk; George W. Woodruff Chair in Mechanical Systems—Jerry H. Ginsberg; Lawrence P. Huang Endowed Chair in Engineering and Entrepreneurship—David N. Ku; Carter N. Paden Distinguished Chair in Metals Processing—David L. McDowell; Parker H. Petit Distinguished Chair for Engineering in Medicine—Robert M. Nerem; Rae and Frank H. Neely Distinguished Chair in Mechanical Engineering—Peter H. Rogers; Fuller E. Callaway Professor—Weston M. Stacey Jr.; David S. Lewis Chair in Aerospace Engineering—Ben T. Zinn.

Regents' Professors—Amyn S. Teja, Ajit P. Yoganathan.

General Information
Mechanical engineering (ME) was the first academic program established at Georgia Tech. On September 20, 1985, the School of Mechanical Engineering celebrated its centennial by assuming the name of one of its most distinguished alumni, Atlanta businessman and philanthropist George W. Woodruff (Class of 1917). Today, the Woodruff School offers studies in mechanical engineering,
bioengineering, nuclear and radiological engineering, and health physics.

Mechanical engineering traditionally deals with diverse engineering problems. Because of its general nature, mechanical engineering encourages a number of multidisciplinary activities to be conveniently organized within it. Mechanical engineering embraces the generation, conversion, transmission, and utilization of thermal and mechanical energy; the design and production of tools and machines and their products; the consideration of fundamental characteristics of materials as applied to design; and the synthesis and analysis of mechanical, thermal, and fluid systems, including the automation of such systems. Design, production, manufacture, operation, administration, economics, and research are functional aspects of mechanical engineering.

The Bachelor of Science in Nuclear and Radiological Engineering (B.S.N.R.E.) degree provides students with the fundamentals of nuclear and radiological engineering. The student may use technical electives to obtain an emphasis in one area. This degree program should provide graduates with the professional flexibility to work in either nuclear power generation, radiation protection, or in nonpower professions that use nuclear and radiation technology. In addition, the B.S.N.R.E. is excellent preparation for pursuing graduate degrees in nuclear or radiological engineering and in health or medical physics.

Nuclear engineering is the branch of engineering directly concerned with the release, control, utilization, and environmental impact of energy from nuclear fission and fusion sources. Today, the diversity of nuclear energy allows a variety of applications, from powering space exploration to the large-scale generation of electricity. With a growing concern about the environmental effect of burning fossil fuels and the potential of advanced nuclear reactor designs, nuclear power should continue to be one of the major ways to generate electricity.

Radiological engineering is a discipline that combines a knowledge of radiation physics and engineering fundamentals to design and analyze radiation sources and detection instruments, to measure dosage, to design protective shielding, and to handle radioactive materials. Increasing uses of radiation are found in agriculture, medicine and health care, manufacturing, environmental protection, mineral exploration, airport security, regulatory agencies, and scientific research.

Health physics is an applied science concerned with the protection of people and the environment from the hazards of radiation and chemical pollutants. Health physicists develop a sound philosophy of radiation protection, apply these principles on the job in an industrial or medical setting or with a regulatory agency, and devise new methods and instrumentation for the protection of both individual workers and the general public.

School Facilities
The Woodruff School of Mechanical Engineering has many types of specialized instruments and other equipment associated with its laboratories for the study of acoustics, bioengineering, tribology and rheology, material processing, combustion, energetics, heat transfer, vibration and thermal stress, computer-aided design, automatic control, machinery, mechatronics, manufacturing automation, noise, microelectromechanical systems, robotics, and other areas. The School is housed in a five-building classroom/research complex. Included in this complex are modern classroom/seminar conference buildings that serve the entire Institute. All facilities are connected to the campus fiber optics network and the Internet. The machine and instrumentation shops, supported by a full-time staff of technicians, enhance the School's research and teaching activities. The facilities available for the nuclear engineering program include the Neely Research Center, which houses both light-water and graphite subcritical assemblies, more than 120,000 curies of cobalt-60, a californium-252 source for use in neutron dosimetry studies, hot cells for handling radioactive materials, a complete nuclear instrumentation laboratory, nuclear radiography equipment, radiochemical laboratories, and facilities for analyzing environmental samples by nuclear techniques.
Undergraduate Programs
The undergraduate curriculum in mechanical engineering covers the fundamental aspects of the field, emphasizes basic principles, and educates the student in the use of these principles to reach optimal design solutions for engineering problems. Specific design subject matter and materials are also drawn from engineering activities such as biomechanical systems, as well as from the more traditional areas. Emphasis in the freshman and sophomore years is on mathematics, chemistry, physics, introductory mechanics, and engineering graphics with an introduction to design. Students must pass all required mathematics courses with a grade of C or better. The junior and senior years are devoted to the mechanics of materials, applied mechanics, heat transfer, fluid mechanics, systems and controls, design, manufacturing, and the application of fundamentals to the diverse problems of mechanical engineering. The curriculum stresses laboratory work and design projects. Computer skills, as demonstrated by the successful completion of ME 2016, are a prerequisite for all junior- and senior-level courses. Satisfactory completion of the curriculum leads to the degree Bachelor of Science in Mechanical Engineering (B.S.M.E.).

The undergraduate curriculum in nuclear and radiological engineering is structured to meet the needs of both the student who contemplates employment immediately after graduation and the student planning to pursue graduate study. It provides maximum flexibility in the form of options for each student to develop his or her unique interests and capabilities. The core curriculum covers the basic principles of nuclear engineering, nuclear reactor core design, reactor systems engineering, nuclear power economics, reactor operations, radiation sources and detection instruments, radiation transport, radiation protection, criticality safety, regulatory requirements, radioactive materials management, and health physics. In addition to the Institute's academic requirements for graduation with a bachelor's degree, the average aggregate grade point ratio in nuclear engineering and health physics courses taken toward the B.S.N.R.E. degree must be 2.0 or higher. Furthermore, the average aggregate grade point average for courses taken in engineering thermodynamics and transport phenomena must be 2.0 or higher. Students must pass all required mathematics courses with a grade of C or higher. Only the highest grade received in any repeated course will be used in calculating quality points for these supplemental criteria.

Mechanical Engineering Electives

Humanities, Social Sciences, and Modern Languages
A total of 12 credit hours of humanities and 12 credit hours of social sciences are required. See pages 31-32 for a list of acceptable courses. Students should consult with their academic advisor for course sequences that satisfy the depth requirement.

The humanities and social sciences courses taken must include six credit hours at the 3000 or 4000 level. This requirement can be satisfied with two humanities courses, two social sciences courses, or one course in each area. Included in the 12 hours of humanities electives is a 3-hour course in ethics selected from: PST 3105 (Theories of Ethics), PST 3109 (Ethics for the Technical Professions), and PST 4176 (Environmental Ethics). INTA 2030 (Ethics and International Affairs) may count toward the ethics requirement; also, this course will satisfy 3 of the required 12 hours in the social sciences. The PST courses count toward the humanities requirement. ENG 1101 and 1102 (English Composition 1 and 2) satisfy 6 hours of the humanities electives. Another social science elective may be satisfied by ECON 2100 (Economic Analysis and Policy Problems). To satisfy the state requirements regarding course work on the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200. Any of these courses go toward satisfying the social science elective requirement.
Health and Performance Science Electives
Students must choose from HPS 1040, 1062, 1063, or 1064.

Free Electives
No free electives are required for graduation.

Technical Electives
Technical electives may be any 3000- or 4000-level course in the Colleges of Engineering, Sciences, or Computing. ME courses at the 6000 level may also be scheduled, provided the student has a grade point average of 3.0 or higher and prior consent is obtained from both the instructor and the associate chair for graduate studies.

A student completing his or her sophomore year with a grade point average of 2.5 or higher may elect one technical elective for a maximum of four credit hours from the Special Problems course, ME 4901.

Science Electives
The science elective may be satisfied by one three-hour course from the following list: CHEM 1311 (Inorganic Chemistry) and CHEM 1312 (Inorganic Chemistry Lab) taken together, or one of the following: BIOL 1501 (Biological Principles), BIOL 1520 (Introduction to Organismal Biology), EAS 1600 (Introduction to Environmental Science), EAS 1601 (Habitable Planet), and PHYS 2213 (Modern Physics).

Nuclear Engineering Electives

Humanities, Social Sciences, and Modern Languages
A total of 12 credit hours of humanities and 12 credit hours of social sciences are required. See pages 31-32 for a list of acceptable courses. Students should consult with their academic advisor for course sequences that satisfy the depth requirement.

The humanities and social sciences courses taken must include six credit hours at the 3000 or 4000 level. This requirement can be satisfied with two humanities courses, two social sciences courses, or one course in each area. Included in the 12 hours of humanities electives is a 3-hour course in ethics selected from: PST 3105 (Theories of Ethics), PST 3109 (Ethics for the Technical Professions), and PST 4176 (Environmental Ethics). INTA 2030 (Ethics and International Affairs) may count toward the ethics requirement; also, this course will satisfy 3 of the required 12 hours in the social sciences. ENG 1101 and 1102 (English Composition 1 and 2) satisfy 6 hours of the humanities electives.

The social science elective may be satisfied by ECON 2100 (Economic Analysis and Policy Problems). To satisfy the state requirements regarding course work on the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200 (Ethics and International Affairs). Any of these courses go toward satisfying the social science elective requirement.

Health and Performance Science Electives
Students must choose from HPS 1040, 1062, 1063, or 1064.

Science Elective
No science electives are required.

Free Electives
No free electives are required for graduation. If ROTC is chosen, it will count as a free elective.

Technical Electives
Technical electives may be any 3000- or 4000-level course in the Colleges of Engineering, Sciences, or Computing. NRE courses at the 6000 level may also be scheduled, provided the student has a grade point average of 3.0 or higher and prior consent is obtained from both the instructor and the associate chair for graduate studies.

A student completing his or her sophomore year with a grade point average of 2.5 or higher may elect one technical elective for a maximum of four credit hours from the Special Problems course, NRE 4901.
Bachelor of Science in Mechanical Engineering (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1521 INTRO. TO COMPUTING I</td>
<td>3</td>
</tr>
<tr>
<td>ME/CE/AE 1770 ENGR. GRAPHICS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>ME 2211 INTRO. TO MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>ME 2016 COMPUTER TECHNIQUES</td>
<td>3</td>
</tr>
<tr>
<td>ME 2110 CREATIVE DECISIONS & DES.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>ME 2202 DYNAMICS OF RIGID BODIES</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2001 PRIN. & APPL. ENGR. MATLS.</td>
<td>3</td>
</tr>
<tr>
<td>SCI. ELEC. (CHEM, PHYS, BIOL, EAS)</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710 CIRCUITS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3015 SYS. DYNAMICS & CONTROL</td>
<td>4</td>
</tr>
<tr>
<td>ME 3322 THERMODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340 FLUID MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>ME 3201 MECHANICS OF MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100 ECONOMICS & POLICY</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3741 INSTRU. & ELECTRONICS LAB</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3056 EXP. METHODS LAB</td>
<td>2</td>
</tr>
<tr>
<td>ME 3345 HEAT TRANSFER</td>
<td>3</td>
</tr>
<tr>
<td>ME 3180 MACHINE DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3301 ENERGY CONVERSION</td>
<td>2</td>
</tr>
<tr>
<td>ESYE 3025 ENGR. ECONOMY</td>
<td>1</td>
</tr>
<tr>
<td>ESYE/MATH 3770 STATISTICS & APPS.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4053 ME SYSTEMS LAB</td>
<td>2</td>
</tr>
<tr>
<td>ME 4315 ENERGY SYS. ANALY. & DES.</td>
<td>3</td>
</tr>
<tr>
<td>ME 4210 MFG. PROCESS & ENGR.</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4055 EXPER. ENGR. LAB</td>
<td>1</td>
</tr>
<tr>
<td>ME 4182 CAPSTONE DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>ETHICS ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TECH. ELECTIVES (SOC. SCI. OR HUM.)</td>
<td>6</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 124 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Bachelor of Science in Nuclear and Radiological Engineering (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>ME 2202 DYNAMICS OF RIGID BODIES</td>
<td>3</td>
</tr>
<tr>
<td>MSE 2001 PRIN. & APPL. ENGR. MATLS.</td>
<td>3</td>
</tr>
<tr>
<td>SCI. ELEC. (CHEM, PHYS, BIOL, EAS)</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3710 CIRCUITS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3015 SYS. DYNAMICS & CONTROL</td>
<td>4</td>
</tr>
<tr>
<td>ME 3322 THERMODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340 FLUID MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>ME 3201 MECHANICS OF MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100 ECONOMICS & POLICY</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3741 INSTRU. & ELECTRONICS LAB</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 3056 EXP. METHODS LAB</td>
<td>2</td>
</tr>
<tr>
<td>ME 3345 HEAT TRANSFER</td>
<td>3</td>
</tr>
<tr>
<td>ME 3180 MACHINE DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3301 ENERGY CONVERSION</td>
<td>2</td>
</tr>
<tr>
<td>ESYE 3025 ENGR. ECONOMY</td>
<td>1</td>
</tr>
<tr>
<td>ESYE/MATH 3770 STATISTICS & APPS.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4053 ME SYSTEMS LAB</td>
<td>2</td>
</tr>
<tr>
<td>ME 4315 ENERGY SYS. ANALY. & DES.</td>
<td>3</td>
</tr>
<tr>
<td>ME 4210 MFG. PROCESS & ENGR.</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 4055 EXPER. ENGR. LAB</td>
<td>1</td>
</tr>
<tr>
<td>ME 4182 CAPSTONE DESIGN</td>
<td>3</td>
</tr>
<tr>
<td>ETHICS ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TECH. ELECTIVES (SOC. SCI. OR HUM.)</td>
<td>6</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 124 SEMESTER HOURS PLUS WELLNESS (2 HOURS)
Graduate Programs
The graduate program in mechanical engineering offers advanced study and research in the areas of acoustics and noise control, applied mechanics, automatic controls, bioengineering, combustion, computer-integrated and controlled manufacturing systems, dynamics and vibration, energy engineering, engineering and systems design, environmental quality control, fluid mechanics, heat transfer, lubrication, computer-aided design, computer-aided manufacturing, manufacturing engineering, materials processing, materials science, mechanisms (synthesis and analysis), microelectromechanical systems (MEMS), mechatronics, robotics, vehicle propulsion, thermal systems, thermodynamics, transport processes, and tribology.

These graduate programs lead to the degrees of Master of Science in Mechanical Engineering, Master of Science, and Doctor of Philosophy for qualified graduates having backgrounds in engineering, mechanics, mathematics, the physical sciences, or the biological sciences. The master's degree requires a minimum of 30 approved credit hours. Students may elect to earn 9 of these hours by writing a thesis, or they may earn all credit toward the degree through course work. Six hours of credit for graduate courses taken as an undergraduate at Georgia Tech and used for credit...
toward the B.S.M.E. may be included in the M.S. program of study if the student graduated with an undergraduate grade point average of at least 3.5. Students must earn a graduate grade point average of at least 3.0 and satisfy all remaining requirements to be certified for the master's degree.

Candidates for the Doctor of Philosophy degree must earn a graduate grade point average of at least 3.3. Students may obtain additional information about the programs by viewing the Woodruff School Graduate Handbook on the Web at www.me.gatech.edu/academics/GraduateInfo.htm. Every student enrolled must consult this source of information with respect to special rules and degree requirements.

The graduate program in nuclear engineering leads to the degrees of Master of Science in Nuclear Engineering, Master of Science, and Doctor of Philosophy. In nuclear engineering, students with a bachelor's degree in engineering pursue the Master of Science in Nuclear Engineering degree, while students with a Bachelor of Science degree in other fields enroll for the Master of Science degree. Depending on the career objectives of the student, the Woodruff School may encourage a thesis as part of the Master of Science program. Nuclear and radiological engineering students must earn a graduate grade point average of at least 3.0 and satisfy all remaining requirements to be certified for the master's degree or the Doctor of Philosophy degree. The doctoral program is designed with great latitude to capitalize on variations in experience and interests of individual students. Candidates for the Doctor of Philosophy degree must earn a graduate grade point average of at least 3.3. The School encourages students to enroll in nuclear and radiological engineering courses and in courses related to their subject areas offered by other schools.

The graduate program in health physics leads to the degree of Master of Science in Health Physics (M.S.H.P). The program focuses on radiological and environmental protection. In addition to the traditional on-campus M.S. program, a video-based program leading to the M.S.H.P. degree is also offered to accommodate the needs of professionals in the field. A large number of health physics practitioners in government and industry participate in the video-based program.

Three hours of credit for graduate courses taken as an undergraduate at Georgia Tech and used for credit toward an undergraduate degree in science or engineering may also be included in the M.S. health physics program of study if the student graduated with an undergraduate grade point average of at least 3.5. Health physics students must earn a graduate grade point average of at least 3.0 and satisfy all remaining requirements to be certified for the master's degree.

Distance-Learning Programs
The Woodruff School offers working professionals the opportunity to enroll in many of its graduate courses through video, CD-ROM, or Internet technologies. Qualified individuals may complete the requirements for the master's degrees in mechanical engineering and health physics by utilizing the video-based delivery system. See page 18, "Video-Based Instruction."

Dual Degree in Management
The DuPree College of Management allows a specified number of electives taken in another school at Georgia Tech to be applied toward the requirements for the Master of Science in Management (M.S.M.) degree. Persons interested in graduate degrees in management and in mechanical engineering should consult with advisors in the College of Management as well as the Woodruff School, because admissions requirements for both programs must be met.

Georgia Tech Lorraine (GTL)
The Woodruff School participates in Georgia Tech Lorraine (see page 19). The mechanical engineering program offered at GTL, which focuses on the M.S. and Ph.D. degrees, has the same curricula, admission, and degree requirements as those for graduate students in mechanical engineering attending classes on the Atlanta campus. Primarily, students at GTL are enrolled in a master of science program in mechanical engineering. Students can complete the degree by combining courses taken at GTL, on campus in Atlanta, or through video and online course offerings. Georgia Tech has a
Mechanical Engineering cooperative agreement with ENSAM, a leading institution for the study of mechanical and industrial engineering with eight campuses across France, including one in Metz.

The Five-Year B.S./M.S. Program
Beginning in fall 2001, the Woodruff School will offer a five-year B.S./M.S. program for those students who demonstrate an interest in and ability for additional education beyond the B.S. degree. The program will foster intense interaction among students and faculty and will include mentoring and undergraduate research. Careful advising and course planning will enable students to begin graduate course work in their fourth year of study. ME students with a GPA of 3.5 or higher will be eligible to apply for the program in mechanical engineering after completion of 30 semester credit hours at Georgia Tech. For additional information, contact the associate chair for Graduate Studies.

Multidisciplinary Programs
Mechanical engineering students may plan electives that satisfy simultaneously the requirements of the degree program and a designated multidisciplinary field within the College of Engineering, thus earning both a graduate degree and a certificate indicating expertise in a related specialty. For a complete description of these and other multidisciplinary programs, see page 127.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

MECHANICAL ENGINEERING

ME 1750. Introduction to Bioengineering
3-0-3.
An introduction to the field of bioengineering, including the application of engineering principles and methods to problems in biology and medicine, the integration of engineering with biology, and the emerging industrial opportunities. Crosslisted with AE, BMED, CHE, ECE, and MSE 1750.

ME 1770. Introduction to Engineering Graphics and Visualization
2-3-3.
Prerequisite(s): MATH 1501* or MATH 1511* or MATH 15X1
Introduction to engineering graphics and visualization including sketching, line drawing, simple wire-frame, and solid modeling. Development and interpretation of drawings and specifications for product realization. Crosslisted with AE and CEE 1770.

ME 2016. Computing Techniques
3-0-3.
Prerequisite(s): CS 1321 and (MATH 1502 or MATH 1512) or (MATH 15X2 and MATH 1522)
An introduction to the use of computers and MATLAB programming for the solution of mechanical engineering problems. Topics include: sources of error in computing, the use of modular software design, basic numerical methods, and signal processing.

ME 2110. Creative Decisions and Design
2-3-3.
Prerequisite(s): (AE 1770 or CEE 1770 or ME 1770) and ME 2016* and (ME 2211 or AE 2120)
To learn fundamental techniques for creating, analyzing, synthesizing and implementing design solutions to open-ended problems with flexibility, adaptability, and creativity through team and individual efforts.

ME 2202. Dynamics of Rigid Bodies
3-0-3.
Prerequisite(s): ME 2016 and ME 2211
Kinematics and dynamics of particles and rigid bodies in one, two, and three dimensions. Work-energy and impulse-momentum concepts.

ME 2211. Introduction to Mechanics
3-0-3.
Prerequisite(s): (MATH 2401* or MATH 2411* or MATH 24X1) and PHYS 2211
Forces and moments; equilibrium in two and three dimensions; multi-force members; friction; stress and strain; axially loading, torsion, and bending of beams.

ME 3015. System Dynamics and Control
4-0-4.
Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3) and ME 2202 and ECE 3741*
Dynamic modeling and response of systems with mechanical, hydraulic, thermal, and/or electrical elements. Linear feedback control systems design and analysis in time and frequency domains.

ME 3056. Experimental Methodology Laboratory
1-3-2.
Prerequisite(s): ME 3015 and ME 3201 and ME 3345* and (CEE 3770* or ISYE 3770* or MATH 3770*)
Introduction to basic instrumentation used in mechanical engineering, including calibration, use, precision, and accuracy. Consideration of error, precision, and accuracy in experimental measurements.
ME 3180. Machine Design
3-0-3.
Prerequisite(s): (AE 1770 or CEE 1770 or ME 1770) and ME 3201
The selection, analysis, and synthesis of springs, joining and fastening methods, bearings, shafts, gears, and other elements. Design of assemblies. Computer-based methods.

ME 3201. Mechanics of Materials
3-0-3.
Prerequisite(s): ME 2016 and ME 2211 and (MATH 2403* or MATH 2413* or MATH 24X3) and MSE 2001*
Analysis of stress and strain applied to beams, pressure vessels, and combined loading; problems involving resistance of materials to plastic deformation, fracture, fatigue, and creep.

ME 3322. Thermodynamics
3-0-3.
Prerequisite(s): PHYS 2211 and (MATH 2403 or MATH 2413 or MATH 24X3 or MATH 2602) and ME 2016
Introduction to thermodynamics. Thermodynamic properties, energy and mass conservation, entropy and the second law. Second-law analysis of thermodynamic systems, gas cycles, vapor cycles.

ME 3340. Fluid Mechanics
3-0-3.
Prerequisite(s): ME 2202 and ME 3322*
The fundamentals of fluid mechanics. Topics include fluid statics, control-volume analysis, the Navier-Stokes equations, similarity, viscous, inviscid and turbulent flows, and boundary layers.

ME 3345. Heat Transfer
3-0-3.
Prerequisite(s): (MATH 2403 or MATH 24X3) and ME 3340
Introduction to the study of heat transfer, transport coefficients, steady state conduction, transient conduction, radiative heat transfer, and forced and natural convection.

ME 3720. Introduction to Fluid and Thermal Engineering
3-0-3.
Prerequisite(s): CHEM 1310 and PHYS 2211 and (MATH 2403 or MATH 24X3 or MATH 2413)
Theory and application, but no exhaustive treatment of fluid mechanics, thermodynamics, and heat transfer in analysis and design of fluid and thermal energy systems.

3-0-3.
Prerequisite(s): ME 3180 and ME 3345
Principles of geometric modeling, finite-element method, and interactive computer graphics hardware and software. CAD and CAE applications in thermal and mechanical design problems. Design projects.

ME 4053. Mechanical Engineering Systems Laboratory
1-3-2.
Prerequisite(s): ME 3056 and ME 3345 and (MATH 3770 or ISYE 3770)
Measurement and analysis of mechanical, acoustic, manufacturing, thermodynamic, fluid, and heat transfer phenomena. Emphasis on data acquisition, reduction, and analysis, and report preparation.

ME 4055. Experimental Engineering
0-3-1.
Prerequisite(s): ME 4053
Application of experimental techniques to engineering problems involving various mechanical engineering processes and systems. Open-ended investigations are accomplished by teams.

ME 4113. Kinematics and Dynamics of Linkages
3-0-3.
Prerequisite(s): ME 2202
Analysis and synthesis of n-bar, cam-follower, and gear-train systems. Balancing of rotating and reciprocating systems.

ME 4171. Environmentally Conscious Design and Manufacturing
3-0-3.
Including environmental considerations in engineering design; reducing environmental impact by design; recycling; material selection; de- and remanufacturing; life-cycle considerations, analyses, and tradeoffs; ISO 14000.

ME 4172. Designing Sustainable Engineering Systems
3-0-3.
Understanding sustainability in context of market forces, availability of resources, technology, and society. Methods for identifying, modeling, and selecting sustainable designs.

ME 4182. Capstone Design
1-6-3.
Prerequisite(s): ME 3180 and ME 4210 and ME 4315
Teams apply a systematic design process to real multidisciplinary problems. Problems selected from a broad spectrum of interest areas including biomedical, ecological, environmental, mechanical, and thermal.

ME 4189. Structural Vibrations
3-0-3.
Prerequisite(s): ME 3015
Single- and multi-degree-of-freedom systems as well as continuous systems are analyzed for their vibrational response characteristics using both exact and approximate methods.

ME 4193. Tribological Design
3-0-3.
Prerequisite(s): ME 3201 and ME 3340
Analysis of tribological aspects of machine components including friction, lubrication, and wear. Group design project to optimize system tribological performance.

ME 4210. Manufacturing Processes and Engineering
3-0-3.
Prerequisite(s): (MATH 3770 or ISYE 3770) and ME 3345
Major manufacturing processes, their capabilities, analysis and economics. Manufacturing process selection.
ME 4211. Manufacturing Engineering and Process Applications
3-3-4.
Prerequisite(s): (MATH 3770 or ISYE 3770) and ME 3201
Advanced treatment of manufacturing process. Machining, casting, metal forming, polymer processing, manufacturing systems, and process planning are major topics. Laboratory practice supplements classroom.

ME 4213. Materials Selection and Failure Analysis
3-0-3.
Prerequisite(s): ME 3201
Principles of selecting both materials and processes required for mechanical design as well as failure analysis. Mechanics and materials knowledge used in solving practical problems.

ME 4315. Energy Systems Analysis and Design
3-0-3.
Prerequisite(s): (AE 1770 or CEE 1770 or ME 1770) and ISYE 3025 and ME 3345
Integrated concepts, laws, and methodologies from thermal sciences are used to analyze, model, and design energy systems and to predict system performance for fixed designs.

ME 4321. Refrigeration and Air Conditioning
3-0-3.
Prerequisite(s): ME 3322 and ME 3345
Application of thermodynamics principles to analysis and design of refrigeration and air-conditioning systems, absorption and heat-driven systems, gas-vapor mixture psychrometrics, load estimates, delivery and control.

ME 4324. Power Generation Technology
3-0-3.
Prerequisite(s): ISYE 3025 and ME 3345
Technology review and application of engineering sciences and economics to the analysis and design of power generation systems. Fossil, nuclear, and renewable energy systems are considered.

ME 4330. Heat and Mass Exchangers
3-0-3.
Prerequisite(s): ME 3345
Heat transfer, fluid flow, and thermodynamics principles applied to the analysis and design of heat and mass exchangers, periodic regulators, and cooling towers.

ME 4340. Applied Fluid Mechanics
3-0-3.
Prerequisite(s): ME 3345
Advanced study in three areas of fluid mechanics. Topics may be chosen from turbomachinery, flow measurement, compressible flow, applied aerodynamics, and others.

ME 4342. Computational Fluid Dynamics
2-3-3.
Prerequisite(s): ME 3345
An introduction to computational fluid dynamics (CFD) in mechanical engineering. The theory and numerical techniques of CFD. Modern CFD software including grid generation and flow visualization tools will be used. Projects with complex fluid-flow systems.

ME 4447. Microprocessor Control of Manufacturing Systems
2-3-3.
Prerequisite(s): ME 3056
Lectures address the fundamental aspects of manufacturing elements and microprocessors and their applications. Hands-on application of machine and machine tool control will be stressed.

ME 4451. Robotics
2-2-3.
Prerequisite(s): ME 3015
Mathematical modeling, simulation, and control of robotic systems with mechanical and sensory elements.

ME 4757. Biofluid Mechanics
3-0-3.
Prerequisite(s): AE 2020 or ME 3340

ME 4758. Biosolid Mechanics
3-0-3.
Prerequisite(s): ME 3201

ME 4760. Engineering Acoustics and Noise Control
3-0-3.
Prerequisite(s): MATH 2403 or MATH 24X3 or MATH 2413
Study of acoustics related to noise and its control; acoustic terminology, wave propagation, wave equation solutions, instrumentation, data processing, room acoustics, noise control, hearing, noise legislation. Crosslisted with AE 4760.

ME 4763. Pulping and Chemical Recovery
3-0-3.
Pulping and chemical recovery processes are studied on the reaction, delignification, energy and liquor reuse. The process optimization, air and water pollution minimization are taught. Crosslisted with CHE 4763.

ME 4764. Bleaching and Papermaking
3-0-3.
Pulp bleaching and formation of paper/board products are studied along with testing, end uses, chemical and mechanical treatment of pulp, non-wood and recycled fiber utilization. Crosslisted with CHE 4764.

ME 4775. Polymer Science and Engineering I: Formation and Properties
3-0-3.
Prerequisite(s): CHEM 2312 and CHEM 3411
An introduction to the chemistry, structure and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids. Crosslisted with CHEM, CHE, MSE and TIE 4775.
ME 4776. Polymer Science and Engineering II: Analysis, Processing, and Laboratory 2-3-3.
Prerequisite(s): CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted with CHE, CHEM, MSE, and TFE 4776.

ME 4777. Introduction to Polymer Science and Engineering 3-0-3.
Prerequisite(s): MATH 2403 or MATH 24X3 or MATH 2413
An introduction to the structure and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids, and processing of polymers. Crosslisted with CHE, CHEM, MSE, and TFE 4777.

ME 4781. Biomedical Instrumentation 3-0-3.
Prerequisite(s): ECE 3040 or ECE 3710
A study of medical instrumentation from a systems viewpoint. Pertinent physiological and electro-physiological concepts will be covered. Crosslisted with CHE and ECE 4781.

ME 4782. Biosystems Analysis 3-0-3.
Prerequisite(s): MATH 1502 or (MATH 15X2 and MATH 1522) or MATH 1512
Analytical methods for modeling biological systems, including white-noise protocols for characterizing nonlinear systems. Crosslisted with CHE and ECE 4782.

ME 4791. Mechanical Behavior of Composites 3-0-3.
Prerequisite(s): ME 3201
Stress-strain behavior of composites, properties of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CEE, CHE, MSE, and TFE 4791.

ME 4793. Composite Materials and Processes 3-0-3.
Prerequisite(s): PHYS 2212 and CHEM 1310
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. (Laboratory exercises on manufacturing and tests.) Crosslisted with AE, CEE, MSE, TFE, and CHE 4793.

ME 4794. Composite Materials and Manufacturing 3-3-4.
Prerequisite(s): CHEM 1310 and PHYS 2212
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. (Laboratory exercises on manufacturing and tests.) Crosslisted with AE, CEE, CHE, MSE, and TFE 4794.

ME 4801, -2, -3, -4, -5. Special Topics, Mechanical Engineering
Credit and class hours equal last digit in the course number. Special topic offerings of current interest not included in regular courses.

ME 4811, -12, -13, -14, -15. Special Topics
Credit and class hours equal last digit in the course number.

ME 4821, -22, -23, -24, -25. Special Topics
Credit and class hours equal last digit in the course number.

ME 4831, -32, -33, -34, -35. Special Topics
Credit and class hours equal last digit in the course number.

ME 4901, -2, -3. Special Problems
Credit hours to be arranged. Individual studies in certain specialized areas, and mathematical analyses and/or experimental investigations of problems of current interest in mechanical engineering.

ME 6101. Engineering Design 3-0-3.
Design concepts, processes and methodologies, including quality and robustness. Group project.

ME 6102. Designing Open Engineering Systems 3-0-3.
Decision-based integrated product and process development, meta-design and decision support problems; mathematical modeling of decisions involving ambiguity and uncertainty; critical thinking and analysis.

Use of single and multi-objective optimization in modeling and solving mechanical engineering design problems. Formulations, solution algorithms, validation and verification, computer implementation. Project.

Fundamentals of CAD, including geometric and solid modeling, parametric representations, features, and human-machine interactions. Applications to design, analysis, and manufacturing.

Line, plane, solid, plate, and shell elements-theory: practical aspects of modeling; applications in mechanical engineering; final project.

Prerequisite(s): MATH 4581
Introductory treatment of the fundamental, unifying concepts of the mechanics of continua.

Applications of energy and variational methods in engineering mechanics to elastic, plastic and dynamical behavior of deformable media.
ME 6203. Inelastic Deformation of Solids
3-0-3.
Prerequisite(s): ME 6201
Phenomenological aspects of nonlinear material behavior and deformation with emphasis on model development.

ME 6204. Micromechanics of Materials
3-0-3.
Prerequisite(s): ME 6201
Fundamental concepts of micromechanics of solids with emphasis on application to composite materials.

ME 6205. Linear Elasticity
3-0-3.
Governing equations of linear elasticity, plane elasticity boundary value problems, airy stress function and complex variable methods, simple three-dimensional solutions.

ME 6206. Viscoelasticity
3-0-3.
Viscoelastic constitutive relations, model representations, Boltzman superposition principle, viscoelastic boundary value problems.

ME 6222. Manufacturing Processes and Systems
3-0-3.
Prerequisite(s): ME 4210

ME 6223. Automated Manufacturing Process Planning
3-0-3.
Prerequisite(s): ME 6222

ME 6224. Machine Tool Analysis and Control
3-0-3.
Prerequisite(s): ME 6222
Mechanics and dynamics of machining, machine tool components and structures, sensors and control of machine tools, machine process planning and optimization.

ME 6225. Metrology and Measurement Systems
3-0-3.
Prerequisite(s): ME 3015 and ME 6222
Metrology techniques and procedures. Precision manufacturing system design and analysis.

ME 6226. Fundamentals of Semiconductor Manufacture and Assembly
3-0-3.
Prerequisite(s): ME 6222
Basic mechanical and materials processes in production including silicon boule growth, plastic encapsulation, interconnect metal migration, solder joining, printing, manufacturing process cost analysis.

ME 6241. Tribological Design
3-0-3.
Prerequisite(s): ME 3201 and ME 3340
Introduction to the study of friction, lubrication and wear. Design of tribological components such as journal bearings, slider bearings, rolling element bearings, and brake systems.

ME 6242. Mechanics of Contact
3-0-3.
Prerequisite(s): ME 6201
Mechanics of surface contact, with emphasis on tribological interactions as in rolling element bearings, slider bearings, mechanical seals, and materials processing.

ME 6243. Fluid Film Lubrication
3-0-3.
Analytical and numerical investigation of full film compressible and incompressible hydrodynamic lubrication problems for steady and unsteady conditions.

ME 6244. Rotordynamics
3-0-3.
Analysis and design of shafts for rotating machinery. Torsional vibration, synchronous and nonsynchronous whirl, stability, gyroscopic effects, hydrodynamic bearings, hysteresis, squeeze film dampers, and balancing.

ME 6301. Conduction Heat Transfer
3-0-3.
Prerequisite(s): ME 3345
Steady and transient one- and multi-dimensional conduction. Emphasis on analytical methods, numerical techniques, and approximate solutions.

ME 6302. Convection Heat Transfer
3-0-3.
Prerequisite(s): ME 3345
Convection (forced and free) in laminar and turbulent, internal and external flows. Analogy between momentum and heat transfer. Scaling laws and modeling.

ME 6303. Thermal Radiation Heat Transfer
3-0-3.
Prerequisite(s): ME 3345
Fundamentals of thermal radiation, blackbody radiation, surface characteristics, exchange in enclosures, radiation through continua, and combined mode heat transfer.

ME 6304. Principles of Thermodynamics
3-0-3.
Prerequisite(s): ME 3322
Fundamentals of thermodynamics including energy, entropy, and energy analysis, property relations, equilibrium conditions, and evaluation of properties.

ME 6305. Applications of Thermodynamics
3-0-3.
Prerequisite(s): ME 6304
Applications of the first and second laws of thermodynamics to analysis and design optimization of power and refrigeration systems incorporating heat exchangers and combustion processes.
ME 6306. Advanced HVAC and Refrigeration 3-0-3.
Prerequisite(s): ME 3322
Scientific principles associated with environmental systems and supporting analyses leading to the design of heating, ventilating, air conditioning, and refrigeration systems.

ME 6401. Linear Control Systems 3-0-3.
Prerequisite(s): ME 3015
Theory and applications of linear systems, state space, stability, feedback controls, observers, LQR, LQG, Kalman filters.

ME 6402. Nonlinear Control Systems 3-0-3.
Prerequisite(s): ME 6401
Analysis of nonlinear systems, geometric control, variable structure control, adaptive control, optimal control, and applications.

ME 6403. Digital Control Systems 3-0-3.
Prerequisite(s): ME 3015
Comprehensive treatment of the representation, analysis, and design of discrete-time systems. Techniques include z- and w-transforms, direct method, control design, and digital tracking.

ME 6404. Advanced Control System Design and Implementation 2-3-3.
Prerequisite(s): ME 6403
Analysis, synthesis, and implementation techniques of continuous-time and real-time control systems using classical and state-space methods.

ME 6405. Introduction to Mechatronics 2-3-3.
Prerequisite(s): ME 3015
Modeling and control of actuators and electro-mechanical systems. Performance and application of microprocessors and analog electronics to modern mechatronic systems.

Design of algorithms for vision systems for manufacturing, farming, construction, and the service industries. Image processing, optics, illumination, feature representation.

ME 6407. Robotics 3-0-3.
Prerequisite(s): ME 3015 and ECE 3085
Analysis and design of robotic systems including arms and vehicles. Kinematics and dynamics. Algorithms for describing, planning, commanding, and controlling motion force.

ME 6441. Dynamics of Mechanical Systems 3-0-3.
Prerequisite(s): ME 3015
Motion analysis and dynamics modeling of systems of particles and rigid bodies in three-dimensional motion.

ME 6442. Vibration of Mechanical Systems 3-0-3.
Prerequisite(s): ME 3015 and ME 3201
Introduction to modeling and oscillatory response analysis for discrete continuous mechanical and structural systems.

Calculus of variations, Hamilton's principle and Lagrange's equations, Sturm-Liouville problems, approximation techniques.

ME 6444. Nonlinear Systems 3-0-3.
Investigation of nonlinear systems using analytical and numerical techniques.

ME 6449. Acoustic Transducers and Signal Analysis 2-3-3.
Prerequisite(s): AE 6760 or ME 6760
Acoustic instrumentation and methods of signal analysis.

Prerequisite(s): AE 6760 or ME 6760
Wave motion in solids, wave equations, analytical and numerical solutions, ultrasonic NDE.

ME 6601. Introduction to Fluid Mechanics 3-0-3.
The fundamentals of fluid mechanics. Derivation of the governing equations of motion. An introduction to viscous, inviscid, turbulent, and boundary-layer flows.

ME 6602. Viscous Flow 3-0-3.
Prerequisite(s): ME 6601
The mechanics of Newtonian viscous fluids. The use of modern analytical techniques to obtain solutions for flows with small and large Reynolds numbers.

ME 6603. Inviscid Flow 3-0-3.
Prerequisite(s): MATH 4320 and ME 6601
The mechanics of inviscid fluid flow. Two- and three-dimensional potential flow, superposition, conformal transformations, Schwartz-Christoffel transformations, ideal-flow aerodynamics, and free-surface waves.

ME 6604. Turbulence 3-0-3.
Prerequisite(s): ME 6601
The mechanics of turbulent flows. Governing equations, correlation tensors, spectra, isotropic turbulence, boundary-free shear flows, wall-bound shear flows, and measurement techniques.

Prerequisite(s): MATH 4581
Asymptotic techniques for the solution of regular and singular problems in mechanics.
ME 6622. Experimental Methods
3-0-3.
Experimental methods in mechanics. Includes measurement techniques, instrumentation, data acquisition, signal processing, and linear and digital electronics.

ME 6753. Principles of Management for Engineers
3-0-3.
The course will provide an introduction to selected topics needed to be successful in the technology industries. Cannot count toward major area requirements on M.S. or Ph.D. programs of study. Crosslisted with MGT 6753.

ME 6754. Engineering Data Base Management Systems
3-0-3.
Modeling and managing engineering information systems, integration of design and manufacturing functions in engineering product development, logical models of engineering product and processes. Crosslisted with CS 6754.

ME 6758. Numerical Methods in Mechanical Engineering
3-0-3.
Numerical methods for solution of engineering problems; initial, eigenvalue and boundary value problems; computational stability for ordinary and linear partial differential equations. Crosslisted with NRE and HP 6758.

ME 6759. Materials in Environmentally Conscious Design and Manufacturing
3-0-3.
Covers the environmental impact of materials choices and quantitative measure of life-cycle assessment and environmental burden. The Natural Step philosophy will be used as a model for the overall approach. Crosslisted with MSE and TFE 6759.

ME 6760. Acoustics I
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3
Fundamental principles governing the generation, propagation, reflection and transmission of sound waves in fluids. Crosslisted with AE 6760.

ME 6761. Acoustics II
3-0-3.
Prerequisite(s): ME 6760 or AE 6760
Radiation and scattering of sound waves in fluids, duct acoustics, dissipation phenomena. Crosslisted with AE 6761.

ME 6762. Applied Acoustics
3-0-3.
Prerequisite(s): ME 6760 or AE 6760
Mufflers, resonators, acoustic materials, barriers, industrial noise, room acoustics, active noise control. Crosslisted with AE 6762.

ME 6765. Kinetics and Thermodynamics of Gases
4-0-4.
Thermodynamics of nonreacting and reacting gas mixtures. Introductory quantum theory, statistical thermodynamics and gas kinetic theory. Crosslisted with AE 6765.

ME 6766. Combustion
3-0-3.
Prerequisite(s): ME 6304 or ME 6765 or AE 6765
Introductory chemical kinetics, deformations and deflagrations, laminar flame propagation in premixed gases, ignition and quenching, laminar diffusion flames, and droplet burning, turbulent reacting flows. Crosslisted with AE 6766.

ME 6767. Advanced Topics in Combustion
3-0-3.
Prerequisite(s): ME 6766 or AE 6766
Turbulent combustion, combustion instability and control, solid propellants and explosives, chemical kinetics, pollutant formation and destruction, computational methods for reacting flow. Crosslisted with AE 6767.

ME 6768. Polymer Structure, Physical Properties and Characterization
3-0-3.
Prerequisite(s): CHE 4776 or CHEM 4776 or ME 4776 or MSE 4776 or TFE 4776
Formulations and analysis of molecular and phenomenological models of elastic and viscoelastic behavior, development and description of structure, and fundamental aspects of structure-property relations. Crosslisted with CHE, MSE, and TFE 6768.

ME 6778. Introduction to Biomaterials
3-0-3.
Introduction to a variety of biomaterials and their biomedical applications. Crosslisted with CHE, BMED, and TFE 6778.

ME 6782. Cellular Engineering
3-0-3.
Engineering analysis of cellular systems. Crosslisted with BMED and CHE 6782.

ME 6783. Orthopedic and Injury Biomechanics
3-0-3.
Prerequisite(s): ME 2201 and ME 3340
Mechanical analysis of the cardiovascular system emphasizing the normal and pathologic function in relation to clinical cardiovascular medicine. Crosslisted with BMED and CHE 6783.

ME 6784. Cardiovascular Biomechanics
3-0-3.
Prerequisite(s): ME 2201 and ME 3340
Mechanical analysis of the cardiovascular system emphasizing the normal and pathologic function in relation to clinical cardiovascular medicine. Crosslisted with BMED and CHE 6784.

ME 6788. Legal Issues in Biomedical Engineering
3-0-3.
Study and analysis of U.S. government laws applicable to the development and clinical use of biomedical engineering technology. Crosslisted with BMED, CHE, ECE, and MGT 6788.

ME 6789. Technology Ventures
3-0-3.
Team discussion and case studies of issues in biomedical engineering technology transfer including licensing, financial capital, safety and efficacy studies, clinical trials, and strategic planning. Crosslisted with BMED, ECE, CHE, and MGT 6789.
ME 6792. Manufacturing Seminar
1-0-1.
Guest speakers on a broad range of manufacturing-related topics: research, applications, and technology. Required for Certificate in Manufacturing. Crosslisted with ECE and ISYE 6792.

ME 6793. Systems Pathophysiology
3-0-3.
Overview of human pathophysiology from a quantitative perspective. Emphasis on systems of interest to bioengineering faculty. Introduction to quantitative models for biological systems. Crosslisted with BMED, CHE, and ECE 6793.

ME 6794. Tissue Engineering
3-0-3.
Biological, engineering, and medical issues in developing tissue engineered constructs. Emphasis in the integration of these disciplines at a basic molecular and cell biology level. Crosslisted with BMED and CHE 6794.

ME 6795. Mathematical, Statistical, and Computational Techniques in Materials Science
3-0-3.
Emphasizes the fundamental physical, analytical, and mathematical techniques commonly encountered in materials engineering including stress and strain, crystallographic and orientation transformations, X-ray, TEM, and solid-state concepts. Crosslisted with MSE and TFE 6795.

ME 6796. Structure-Property Relationships in Materials
3-0-3.
Introduction to the multi-scale structure effects on material properties. For MSE students this course will prepare students for future in-depth courses. For non-MSE students, the course will provide a background in materials and may serve as part of the program of study for a minor in materials. Crosslisted with MSE and TFE 6796.

ME 6797. Thermodynamics and Kinetics of Microstructural Evolution
3-0-3.
The reduction of chemical free energy, strain energy, and interfacial energy controls the kinetics of diffusional transformations. These factors are explored from the point of view of processing and stability of the microstructure during service. Crosslisted with MSE and TFE 6797.

ME 7000. Master's Thesis
Credit hours to be arranged.

ME 7101. Seminar in Engineering Design
3-0-3.
Prerequisite(s): ME 6101
Reading from the literature, presentations, and discussions on current theories and methods in engineering design.

ME 7201. Computational Mechanics of Materials
2-3-3.
Prerequisite(s): ME 6201 and ME 6122*
Computational treatments of material and geometric nonlinearity, with emphasis on rate-dependent elasto-plasticity and fracture.

ME 7203. Advanced Constitutive Relations for Solids
3-0-3.
Prerequisite(s): ME 6201

ME 7204. Advanced Topics in Micromechanics
3-0-3.
Prerequisite(s): ME 6201
Advanced topics in micromechanics of materials, with emphasis on fracture and damage of materials with random microstructures.

ME 7226. Interface and Surface Properties
3-0-3.
Prerequisite(s): PHYS 4222 and ME 6242

ME 7227. Rapid Prototyping in Engineering
3-0-3.
Prerequisite(s): ME 6104 and ME 6222
Rapid prototyping technologies in engineering design. Physical principles, materials, materials processing. Laboratory demonstrations and project.

ME 7228. Thermomechanical Reliability in Electronic Packaging
3-0-3.
Prerequisite(s): ME 6122 and ME 6222
Modeling and validation of thermomechanical behavior of printed wiring board and PWB assembly; micro-electronic packaging, packaging materials, manufacturing process modeling, reliability, failure modes.

ME 7301. Transport Phenomena in Multiphase Flow
3-0-3.
Prerequisite(s): ME 6301 and ME 6302 and ME 6602
Gas-liquid, two-phase flow patterns, basic and empirical models; conservation equations and closure relations; pool and convective boiling; aerosol transport; condensation.

ME 7302. Advanced Topics in Heat Transfer
3-0-3.
Prerequisite(s): ME 6301 and ME 6302 and ME 6303 and ME 6602
Latest advances in heat transfer; microscale convection; boiling and two-phase flow; liquid metal heat transfer; thermal management of microelectronics; high temperature fuel cells.

ME 7442. Vibration of Continuous Systems
3-0-3.
Prerequisite(s): ME 6442
Equations of motion and oscillatory response of dynamic systems modeled as continuous media.

ME 7602. Hydrodynamic Stability
3-0-3.
Prerequisite(s): ME 6601
Hydrodynamic stability of fluid flows using linear, energy, and
ME 7751. Computational Fluid Mechanics
3-0-3.
Prerequisite(s): CEE 6251 and ME 6601
Numerical methods for solving the time-dependent Navier-Stokes equations in complex geometries, including theory, implementation, and applications. Crosslisted with CEE 7751.

ME 7757. Teaching Practicum
1-6-3.
Supervised teaching for doctoral students. Teaching techniques, course and curriculum design, student evaluation methods and criteria. Students may, in some instances, prepare and present lectures. Crosslisted with NRE and HP 7757.

ME 7764. Acoustic Propagation
3-0-3.
Prerequisite(s): AE 6760 or ME 6760
Propagation of sound in inhomogeneous fluids; ray acoustics, ocean and atmospheric acoustics, nonlinear acoustics. Crosslisted with AE 7764.

ME 7771. Mechanics of Polymer Solids and Fluids
3-0-3.
Continuum mechanics of solids and fluids; mechanics of deformation of anisotropic polymers; yield, breaking and fatigue; non-Newtonian viscous and viscoelastic behavior of polymer fluids. Crosslisted with CHE, MSE, and TEE 7771.

ME 7772. Fundamentals of Fracture Mechanics
3-0-3.
Prerequisite(s): ME 3201 or MSE 3005
Advanced study of failure of structural materials under load, mechanics of fracture, and microscopic and macroscopic aspects of the fracture of engineering materials. Crosslisted with AE, CEE, CHE, and MSE 7772.

ME 7773. Advanced Fracture Mechanics
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Nonlinear fracture mechanics including elastic-plastic and time-dependent fracture, advanced test methods, J-integral theory, and extensions. Crosslisted with AE, CEE, CHE, and MSE 7773.

ME 7774. Fatigue of Materials and Structures
3-0-3.
Prerequisite(s): AE 7772 or CEE 7772 or CHE 7772 or ME 7772 or MSE 7772
Mechanical and microstructural aspects of nucleation and growth of cracks under cyclic loading conditions, notch effects, cumulative damage, multi-axial loading and fatigue crack propagation. Crosslisted with AE, CEE, CHE, and MSE 7774.

ME 7775. Topics in Fracture and Fatigue of Metallic and Composite Structures
3-0-3.
Prerequisite(s): ME 2211 or AE 2120
Brittle and ductile failure criteria. Failure prediction in composite structures. Free-edge and internal delamination.

ME 7791. Damage, Failure, and Durability of Composite Materials
3-0-3.
Prerequisite(s): AE 4791 or CHE 4791 or CEE 4791 or ME 4791 or MSE 4791

ME 7792. Advanced Mechanics of Composites
3-0-3.
Prerequisite(s): AE 4791 or CHE 4791 or CEE 4791 or ME 4791 or MSE 4791 or TEE 4791
Anisotropic elasticity, hygrothermal behavior, stress analysis of laminated composites including 3D effects, stress concentrations, free-edge effects, thick laminates, adhesive and mechanical connections, fracture of composites. Crosslisted with AE, CEE, CHE, MSE, and TEE 7792.

ME 8010, -11, -12. Seminars in Mechanical Engineering
1-0-1.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

ME 8801, -2, -3, -4, -5, -6. Special Topics in Manufacturing
Credit and class hours equal last digit in course number. Special topic offerings of current interest in manufacturing not included in regular courses.

ME 8811, -12, -13, -14, -15, -16. Special Topics in Computer-Aided Engineering and Design
Credit and class hours equal last digit in course number. Special topic offerings of current interest in computer-aided engineering not included in regular courses.

ME 8821, -22, -23, -24, -25, -26. Special Topics in Tribology
Credit and class hours equal last digit in course number. Special topic offerings of current interest in tribology not included in regular courses.

ME 8851, -32, -33, -34, -35, -36. Special Topics in Thermal Sciences
Credit and class hours equal last digit in course number. Special topic offerings of current interest in thermal sciences not included in regular courses.
ME 8841, 42, 43, 44, 45, 46. Special Topics in Automation and Mechatronics
Credit and class hours equal last digit in course number. Special topic offerings of current interest in automation and mechatronics not included in regular courses.

ME 8851, 52, 53, 54, 55, 56. Special Topics in Acoustics and Dynamics
Credit and class hours equal last digit in course number. Special topic offerings of current interest in acoustics and dynamics not included in regular courses.

ME 8861, 62, 63, 64, 65, 66. Special Topics in Fluid Mechanics
Credit and class hours equal last digit in course number. Special topic offerings of current interest in fluid mechanics not included in regular courses.

ME 8871, 72, 73, 74, 75, 76. Special Topics in Bioengineering
Credit and class hours equal last digit in course number. Special topic offerings of current interest in bioengineering not included in regular courses.

ME 8881, 82, 83, 84, 85, 86. Special Topics in Mechanics of Materials
Credit and class hours equal last digit in course number. Special topic offerings of current interest in mechanics of materials not included in regular courses.

ME 8901, 2, 3, 4, 5, 6. Special Problems in Manufacturing
Credit hours to be arranged. Individual studies and/or experimental investigation of problems of current interest in manufacturing.

ME 8911, 12, 13, 14, 15, 16. Special Problems in Computer-Aided Engineering and Design
Credit hours to be arranged. Individual studies and/or experimental investigation of problems of current interest in computer-aided engineering and design.

ME 8921, 22, 23, 24, 25, 26. Special Problems in Tribology
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in tribology.

ME 8931, 32, 33, 34, 35, 36. Special Problems in Thermal Sciences
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in thermal sciences.

ME 8941, 42, 43, 44, 45, 46. Special Problems in Automation and Mechatronics
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in automation and mechatronics.

ME 8951, 52, 53, 54, 55, 56. Special Problems in Acoustics and Dynamics
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in acoustics and dynamics.

ME 8961, 62, 63, 64, 65, 66. Special Problems in Fluid Mechanics
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in fluid mechanics.

ME 8971, 72, 73, 74, 75, 76. Special Problems in Bioengineering
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in bioengineering.

ME 8981, 82, 83, 84, 85, 86. Special Problems in Mechanics of Materials
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in the mechanics of materials.

ME 8997. Teaching Assistantship
Credit hours to be arranged. For graduate students holding graduate teaching assistantships.

ME 8998. Research Assistantship
Credit hours to be arranged. For graduate students holding graduate research assistantships.

ME 9000. Doctoral Thesis
Credit hours to be arranged.

NUCLEAR AND RADIOLOGICAL ENGINEERING

NRE 2110. Introduction to Nuclear and Radiological Engineering
2-0-2. Introduction to nuclear and radiological engineering; nuclear energy production, and radiation technologies and their role of importance to society, their environmental impact.

NRE 3111. Nuclear Radiation Detection
1-3-2. Prerequisite(s): NRE 3301
A laboratory introduction to the principles and characteristics of basic detectors for nuclear radiation and the electronic systems associated with them.

NRE 3301. Radiation Physics
3-0-3. Prerequisite(s): PHYS 2213
Characteristics of atomic and nuclear radiation, transition probabilities, radioactivity, classical and quantum-mechanical derivations of cross sections, and interactions of photon, neutron, and charged particles with matter.

NRE 3316. Radiation Protection Engineering
3-0-3. Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3) and NRE 3301
Covers radiation dosimetry, biological effects of radiation,
radiation-protection criteria and exposure limits, external radiation protection, internal radiation protection, and sources of human exposure.

NRE 4204. Nuclear Reactor Physics
4-0-4.
Prerequisite(s): NRE 3301 and MATH 4581
Covers physical principles of nuclear reactors. Topics include neutron diffusion theory, criticality and multi-group theory, slowing down theory, heterogeneity effects, and reactor kinetics.

NRE 4206. Radiation Physics Laboratory
1-3-2.
Prerequisite(s): NRE 3111 and NRE 4204
Measurements of reactor parameters, such as approach to criticality, flux mapping, buckling, and diffusion length using subcritical assemblies. Neutron spectral measurements, shield transmission measurements, and other radiation field measurements.

NRE 4214. Reactor Engineering
3-0-3.
Prerequisite(s): ME 3340 and ME 3345
Nuclear heat generation; fuel elements' thermal analysis; single and two-phase flow and heat transfer in reactor systems; core thermal design and treatment of uncertainties.

NRE 4232. Nuclear and Radiological Engineering Design
1-9-4.
Prerequisite(s): NRE 4316
Introduction to the methodologies of nuclear and radiological design. An open-ended design project that integrates all relevant engineering aspects is to be completed in this course.

NRE 4234. Nuclear Criticality Safety Engineering
2-3-3.
Prerequisite(s): NRE 4204
This course covers the theoretical concepts, the computational techniques, and the principal methods of criticality safety.

NRE 4266. Light Water Reactor Technology
3-0-3.
Prerequisite(s): NRE 4204 and NRE 4214
A systematic survey of the technology of both pressurized and boiling water reactors with emphasis on the nuclear steam supply system and its associated safety and control systems.

NRE 4316. Radiation Sources and Radioactive Materials Management
3-0-3.
Prerequisite(s): NRE 3301; Co-requisite: NRE 4204
Radiation sources; isotope production, depletion, and enrichment; nuclear reactor fuel cycle; nuclear and radioactive materials management; and high-level radioactive waste.

NRE 4326. Methods for Radiation Applications
2-3-3.
Prerequisite(s): NRE 4316
Numerical and experimental methods for the application of radiation in industry and medicine.

NRE 4335. Radiation Imaging
3-0-3.
Prerequisite(s): NRE 3111 and NRE 4204
Introduction to camera and signal processing systems for medical and industrial imaging and dosimetry applications; associated instrumentation and film; and deconvolution/reconstruction algorithms.

NRE 4404. Radiological Assessment and Waste Management
3-0-3.
Prerequisite(s): NRE 3316

NRE 4430. Nuclear Regulatory Requirements
2-0-2.
Prerequisite(s): NRE 3316
This course introduces regulatory organizations and delineates their jurisdictions. It covers the fundamentals of regulations, the impacts on occupational workers, the public, and the environment.

NRE 4610. Introduction to Plasma Physics and Fusion Engineering
3-0-3.
A first course in plasma physics and magnetic confinement fusion: basic plasma physics, magnetic confinement concepts, fusion engineering, and a review of the current status of fusion research.

NRE 4801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.
Special topic offerings of current interest not included in regular courses.

NRE 4901, -2, -3. Special Problems
Credit hours to be arranged.

NRE 6101. Transport Fundamentals
3-0-3.
Neutral and charged particle transport. Fluid mass, energy, and momentum transport. Models used in nuclear radiation transport; fluid hydrodynamics, radiative and plasma transport.

NRE 6102. Plasma Physics
3-0-3.
Prerequisite(s): NRE 6101 and (NRE 6756 or HP 6756)

NRE 6103. Computational Methods of Radiation Transport
3-0-3.
Prerequisite(s): NRE 6101
Deterministic and stochastic computational methods for solving transport equations of neutral particles.
NRE 6201. Reactor Physics 3-0-3.
Prerequisite(s): NRE 6101
Fundamentals of reactor physics for nuclear analysis of neutron chain reactors and for developing tools required for design of those reactors.

NRE 6301. Reactor Engineering 3-0-3.

NRE 6401. Advanced Nuclear Engineering Design 1-6-3.
Prerequisite(s): NRE 6102 and NRE 6201 and NRE 6301
Synthesis of principles of nuclear engineering in the design of nuclear reactors and other facilities.

NRE 6434. Nuclear Criticality Safety Engineering 2-3-3.
Prerequisite(s): NRE 4204
Concepts, computational techniques, and the principal methods of criticality safety such as accident experience, standards, experiments, computer and hand calculations, limits, and regulations. Application to overall facility operation.

Prerequisite(s): NRE 6201

NRE 6502. Nuclear Materials 3-0-3.
Materials science and engineering of metallic and ceramic fuels, cladding, structural, and control materials including radiation effects.

NRE 6755. Radiological Assessment and Waste Management 3-0-3.
Prerequisite(s): HP 6401
Critical analyses of sources and human exposures, mathematical models for movement through the biosphere, environmental transport, and exposure for nuclear facilities and waste disposal processing. Crosslisted with HP 6755.

NRE 6756. Radiation Physics 3-0-3.
Characteristics of atomic and nuclear radiation, transition probabilities, radioactivity and isotopes, cross sections, electromagnetic radiation, neutrons, and charged particle interaction with matter. Crosslisted with HP 6756.

NRE 6757. Radiation Detection 2-3-3.
Prerequisite(s): NRE 6756 or HP 6756
Introduction to the theory and application of radiation detectors, measurement methods, signal processing, and data analysis. Crosslisted with HP 6757.

Numerical methods for solution of engineering problems; initial, eigenvalue and boundary value problems; computational stability for ordinary and linear partial differential equations. Crosslisted with ME and HP 6758.

NRE 7000. Master's Thesis
Credit hours to be arranged.

Prerequisite(s): NRE 6102
Classical and collective transport phenomena, plasma instabilities, plasma-materials interactions and plasma edge physics. Emphasis on magnetic fusion, plasma processing, and other plasma applications research.

NRE 7203. Advanced Reactor Physics 3-0-3.
Prerequisite(s): NRE 6102
Advanced topics in reactor physics and transport theory.

NRE 7757. Teaching Practicum 1-6-3.
Supervised teaching for doctoral students. Teaching techniques, course and curriculum design, and student evaluation methods and criteria. Students may, in some instances, prepare and present lectures. Crosslisted with HP and ME 7757.

NRE 8011, -12. Seminars in Nuclear Engineering 1-0-1.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

NRE 8801, -2, -3, -4, -5, -6. Special Topics in Nuclear Engineering
Credit and class hours equal last digit in course number. Special topic offerings of current interest in nuclear engineering not included in regular courses.

NRE 8901, -2, -3, -4, -5, -6. Special Problems in Nuclear Engineering
Credit hours to be arranged. Individual studies and/or experimental investigations of problems of current interest in nuclear engineering.

NRE 8997. Teaching Assistantship
Credit hours to be arranged. For graduate students holding graduate teaching assistantships.

NRE 8998. Research Assistantship
Credit hours to be arranged. For graduate students holding graduate research assistantships.

NRE 9000. Doctoral Thesis
Credit hours to be arranged.
HEALTH PHYSICS

HP 6403. Radiological Health I
3-0-3.
Prerequisite(s): MATH 2403
Applied nuclear and atomic physics, radioactive decay, radiation interactions, radiation dosimetry and safety guidelines, instrumentation, radiation protection and basics of criticality safety.

HP 6404. Radiological Health II
3-0-3.
Prerequisite(s): HP 6403
Internal dosimetry, internal radiation protection, ALARA, evolution of protective measures, radiological emergency response.

HP 6416. Applied Radiological Health Laboratory
2-3-3.
Prerequisite(s): HP 6404 and (HP 6757 or NRE 6757)
Advanced laboratory course in radiochemical and instrumental analysis. Practical radiation/radioactivity monitoring problems in nuclear facilities and environmental surveillance.

HP 6506. Operational Health Physics
3-0-3.
Prerequisite(s): HP 6404
Radiation sources, radiological safety practices and procedures for nuclear facilities and the impact of radiological safety in the design of such facilities.

HP 6601. Industrial Hygiene
3-0-3.
Prerequisite(s): MATH 2403
Chemical, physical, biological, and ergonomic exposures. Occupational environment regulations. Application of scientific and engineering principles to hazard evaluation and general occupational health control measures.

HP 6755. Radiological Assessment and Waste Management
3-0-3.
Prerequisite(s): HP 6403
Critical analyses of sources and human exposures, mathematical models for movement through the biosphere, environmental transport, and exposure for nuclear facilities and waste disposal processing. Crosslisted with NRE 6755.

HP 6756. Radiation Physics
3-0-3.
Characteristics of atomic and nuclear radiation, transition probabilities, radioactivity and isotopes, cross sections, electromagnetic radiation, neutrons, and charged particle interaction with matter. Crosslisted with NRE 6756.

HP 6757. Radiation Detection
2-3-3.
Prerequisite(s): NRE 6756 or HP 6756
Introduction to the theory and application of radiation detectors, measurement methods, signal processing, and data analysis. Crosslisted with NRE 6757.

HP 6758. Numerical Methods in Mechanical Engineering
3-0-3.
Numerical methods for solution of engineering problems; initial, eigenvalue and boundary value problems; computational stability for ordinary and linear partial differential equations. Crosslisted with ME and NRE 6758.

HP 7000. Master's Thesis
Credit hours to be arranged.

HP 7757. Teaching Practicum
1-6-3.
Supervised teaching for doctoral students. Teaching techniques, course and curriculum design student evaluation methods and criteria. Students may, in some instances, prepare and present lectures. Crosslisted with NRE and ME 7757.

HP 8011. Seminars in Health Physics
1-0-1.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

HP 8012. Seminars in Health Physics
1-0-1.
Seminars involving current research projects presented by graduate students, faculty, and invited speakers.

HP 8801, -2, -3, -4, -5, -6. Special Topics in Health Physics
Credit and class hours equal last digit in course number.
Special topic offerings of current interest in health physics not included in regular courses.

HP 8901, -2, -3, -4, -5, -6. Special Problems in Physics
Credit hours to be arranged.
Individual studies and/or experimental investigations of problems of current interest in health physics.

HP 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding a graduate teaching assistantship.

HP 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding a graduate research assistantship.

HP 9000. Doctoral Thesis
Credit hours to be arranged.
An asterisk (*) denotes prerequisite courses that may be taken concurrently.
General Information

Engineered Fibrous Structures (EFSs), one of humankind's oldest commercial ventures, continue to find new applications in the modern world. They have many uses in our everyday lives and are playing critical, complex roles in novel systems comprising such nontraditional fields as space, aeronautics, automobiles, medicine, safety, environmental control, sports, transportation and construction.

Multidisciplinary by nature, the EFS field encompasses, among other areas: the syntheses of polymers by nature and humankind; fiber fabrication processes; design, engineering, and assembly of fibers into one-, two- and three-dimensional structures; modification of structural properties through dyeing, finishing, and coating; and measurement of complex aesthetic and mechanical properties of fiber-based systems. New polymers and fibers, design of novel EFSs, new methods of assembling fibers into useful products, and expanded engineering applications of fibers are continually developing.

The School of Textile and Fiber Engineering prepares students for rewarding careers in the polymer-fiber-textile-fabricated products (PFTFP) industrial complex. Graduates obtain positions in design, process and plant engineering, manufacturing, technical service, sales, product and process development, research, quality control, and corporate management. They participate in the design, development, manufacturing, and marketing of broad range of EFSs and associated products. Many hold key decision-making positions at a young age.

The PFTFP industry is by far the largest manufacturer and employer in the Southeast. When all the associated segments are included, the fiber conversion industry is the largest in the United States (~25,000 companies), representing one out of every eight manufacturing jobs (more than 1.8 million total). Not surprisingly, the industry's needs for university graduates each year far exceed the number available.

Undergraduate Programs

Three study programs are available, leading to the degrees Bachelor of Science in Textile and Fiber Engineering, Bachelor of Science in Polymer and Textile Chemistry, and Bachelor of Science in Textile Enterprise Management. Students may pursue each degree in a regular four-year program or under the five-year cooperative plan. Because of the multidisciplinary nature of polymers, fibers, and EFSs, the curricula stress broad, diverse academic backgrounds. Emphasis in the freshman and sophomore years is on mathematics, chemistry, and physics, and in the junior and senior years on materials science, polymer/textile chemistry and engineering, process dynamics, applied mechanics, business administration, and application of each field to the broad range of problems encountered in the PFTFP industrial complex. All three programs allow the student to select courses from a range of general and technical electives.
In place of many conventional laboratory sessions, students participate in novel manufacturing laboratories. Every participant is exposed to all facets of the technical and business environments, with the emphasis on interdisciplinary team problem solving, investigation and development of industry case studies, total quality processes, continuous quality improvement, and industrial partnerships.

Since most of the polymer/fiber/EFS course work is concentrated in the last two years of the programs, students from junior and community colleges can readily transfer into the School of Textile and Fiber Engineering. The Regents' Engineering Transfer Program (RETP) greatly facilitates such transfers.

Minor Programs for Non-Majors
A substantial number of students graduating in other majors at Georgia Tech enter the PFTFP industry. A minor and a certificate program have been implemented in textile manufacturing. The certificate program is designed to impart basic understanding of EFS materials, as well as an understanding of their manufacturing processes. The Minor in Textile Manufacturing is designed to provide more in-depth understanding of EFS materials and their manufacturing processes through a combination of required and elective courses.

Attainment of the certificate requires 12 credit hours of specified courses. Attainment of a minor requires 12 credit hours of specified courses and 6 hours of electives from a specified list of courses. Both the certificate and minor programs draw on the courses taught for the School's three undergraduate degree programs. Requirements for the minor and the certificate programs are available in the School's main office. The director of undergraduate affairs acts as the advisor for these certificate and minor programs.

Bachelor of Science in Textile and Fiber Engineering (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>TFE 1001 INTRO. TO TFE</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>AE/CEE/ME 1770 INTRO. TO ENGINEERING GRAPHICS</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>CEE 2020 STATICS & DYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>TFE 2001 FIBER SCIENCE</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000</td>
<td>3</td>
</tr>
<tr>
<td>or INTA 1200</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>MSE 2001 PRIN. & APPL., ENGR. MTLRS.</td>
<td>3</td>
</tr>
<tr>
<td>CEE 3030 STRENGTH OF MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100 ECONOMICS & POLICY</td>
<td>3</td>
</tr>
<tr>
<td>LCC 3401 TECH. COMM. PRACTICE</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 3001 DYNAMICS OF YARN & FIBER</td>
<td>4</td>
</tr>
<tr>
<td>ECE 3710 CIRCUITS</td>
<td>2</td>
</tr>
<tr>
<td>MATH/ISYE 3770 STATISTICS & APPS.</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 3025 ENGR. ECONOMY</td>
<td>1</td>
</tr>
<tr>
<td>ME 3322 THERMODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>ME 3340 FLUID MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>
Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 3025 CHEM. PROCESSING</td>
<td>3</td>
</tr>
<tr>
<td>TFE 3026 TEXTILE CHEM. LAB</td>
<td>1</td>
</tr>
<tr>
<td>TFE 3090 TEXTILE MFG. LAB</td>
<td>1</td>
</tr>
<tr>
<td>TFE 3003 TEXTILE PROCESSING</td>
<td>3</td>
</tr>
<tr>
<td>TFE 3005 OPER. & MGT. METHODS</td>
<td>3</td>
</tr>
<tr>
<td>ECE 3741 ECE LAB</td>
<td>1</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 4041 TFE DESIGN I</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4777 INTRO. TO POLYMERS</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4002 PROP. OF FIBROUS MATERIALS</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4093 TEXTILES TESTING LAB</td>
<td>1</td>
</tr>
<tr>
<td>TFE 4043 ETHICS & SAFETY</td>
<td>1</td>
</tr>
<tr>
<td>ECE 3301 ENERGY CONVERSION</td>
<td>2</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 4042 TFE DESIGN II</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4761 INDUST. CONTROLS & MFG.</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4776 POLYMER SCI & ENGR. II</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4004 FIBER FORMATION</td>
<td>3</td>
</tr>
<tr>
<td>TFE ELECTIVE</td>
<td>2</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 128 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Electives

Humanities/Social Sciences/Modern Languages Electives

A total of 12 credit hours of humanities and 12 credit hours of social sciences are required. See pages 31-32 for a list of acceptable courses. To satisfy the state requirement regarding course work on the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200.

TFE Electives

The TFE elective must be approved by the School.

Health and Performance Sciences

All students must complete either HPS 1040, 1062, 1063, or 1064.

Bachelor of Science in Polymer and Textile Chemistry (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1310 CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING I</td>
<td>3</td>
</tr>
<tr>
<td>TFE 1001 INTRO. TO TFE</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1311 INORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1312 INORGANIC LAB</td>
<td>1</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2212 INTRO. PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>TFE 2002 FIBER STRUCT. & PROP.</td>
<td>2</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or %POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 2312 ORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2380 SYNTHESIS LAB I</td>
<td>2</td>
</tr>
<tr>
<td>TFE 2100 YARN & FIBER MFG.</td>
<td>3</td>
</tr>
<tr>
<td>LCC 3401 TECH. COMM. PRACTICES</td>
<td>2</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
<tr>
<td>Third Year - First Semester</td>
<td>Hours</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TFE 3011 TEXTILE CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3411 PHYSICAL CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481 PHYSICAL CHEMISTRY LAB I</td>
<td>2</td>
</tr>
<tr>
<td>MATH/ISE 3770 STATISTICS & APPS.</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2100 ECONOMICS & POLICY</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year - Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 3012 TEXTILE CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>TFE 3026 TEXTILE CHEMISTRY LAB</td>
<td>1</td>
</tr>
<tr>
<td>TFE 3090 TEXTILE MFG. LAB I</td>
<td>1</td>
</tr>
<tr>
<td>TFE 3003 TEXTILE PROCESSING</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3281 ANALYSIS FOR ENGINEERS</td>
<td>4</td>
</tr>
<tr>
<td>TFE 3005 OPER. & MGT. METHODS</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3412 PHYSICAL CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year - First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 4775 POLYMER SCI. & ENGR. I</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4031 TEXTILE MATERIALS</td>
<td>2</td>
</tr>
<tr>
<td>TFE 4093 TESTING LAB</td>
<td>1</td>
</tr>
<tr>
<td>TFE 4043 ETHICS & SAFETY</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 4341 APP. SPECTROSCOPY</td>
<td>3</td>
</tr>
<tr>
<td>ENVIRONMENTAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year - Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 4013 CHEM. OF POLY. SORPTION</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4014 SCIENCE OF COLOR</td>
<td>2</td>
</tr>
<tr>
<td>TFE 4004 FIBER FORMATION</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4776 POLYMER SCI. & ENGR. II</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TFE 4091 TEXTILE MFG. LAB II</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL PROGRAM HOURS = 129 SEMESTER HOURS PLUS WELLNESS (2 HOURS)</td>
<td></td>
</tr>
</tbody>
</table>

Electives

Humanities/Social Sciences/Modern Languages Electives
A total of 12 credit hours of humanities and 12 credit hours of social sciences are required. See pages 31-32 for a list of acceptable courses. To satisfy the state requirement regarding course work on the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200.

Environmental Elective
One course is designated as an environmental elective and must be approved by the School.

Health and Performance Sciences
All students must complete either HPS 1040, 1062, 1063, or 1064.

Bachelor of Science in Textile Enterprise Management (Suggested Schedule)

<table>
<thead>
<tr>
<th>First Year - First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1501 OR MATH 1711</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>TFE 1001 INTRO. TO TFE</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year - Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1502 OR MATH 1712</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 2211 INTRO. PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>ECON 2106 MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year - First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 2001 INTRO. TO FIBER SCIENCE</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2101 ACCOUNTING I</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2105 MACROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td></td>
</tr>
<tr>
<td>LCC 3401 TECH. COMM. PRACTICES</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>
College of Engineering

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 2100</td>
<td>3</td>
</tr>
<tr>
<td>ACCT 2102</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3150</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3150</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE ELECTIVE</td>
<td>2</td>
</tr>
<tr>
<td>MGT 3062</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300</td>
<td>3</td>
</tr>
<tr>
<td>MATH/ISYE 3770</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 3005</td>
<td>3</td>
</tr>
<tr>
<td>TFE 3025</td>
<td>3</td>
</tr>
<tr>
<td>TFE 3026</td>
<td>1</td>
</tr>
<tr>
<td>TFE 3090</td>
<td>1</td>
</tr>
<tr>
<td>MGT 3101</td>
<td>3</td>
</tr>
<tr>
<td>MGT ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TFE ELECTIVE</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 4051</td>
<td>2</td>
</tr>
<tr>
<td>TFE 4043</td>
<td>1</td>
</tr>
<tr>
<td>TFE 4093</td>
<td>1</td>
</tr>
<tr>
<td>TFE ELECTIVE</td>
<td>2</td>
</tr>
<tr>
<td>MGT 3610</td>
<td>3</td>
</tr>
<tr>
<td>MGT ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFE 4091</td>
<td>1</td>
</tr>
<tr>
<td>TFE 4092</td>
<td>1</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>2</td>
</tr>
<tr>
<td>ISYE 3025</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL PROGRAM HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Electives

Humanities/Social Sciences/Modern Languages Electives

A total of 12 credit hours of humanities and 12 credit hours of social sciences are required. See pages 31-32 for a list of acceptable courses. To satisfy the state requirement regarding course work on the history and constitutions of the United States and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200.

Management Elective

The management electives may be any management course not required in the TEM curriculum.

TFE Electives

The six hours of TFE electives must be approved by the School.

Environmental Elective

Three hours are designated as an environmental elective. This course must be approved by the School.

Health and Performance Sciences

All students must complete either HPS 1040, 1062, 1063, or 1064.

Graduate Programs

The School of Textile and Fiber Engineering offers graduate programs leading to the degrees Master of Science in Textile and Fiber Engineering, Master of Science in Textile and Fiber Chemistry, Master of Science in Polymers-Polymer Materials Science or Polymer Chemistry Track, Master of Science Undesignated, and Doctor of Philosophy in one of the following tracks: Textile and Fiber.
Engineering; Textile and Fiber Chemistry; and Polymer Materials Science or Polymer Chemistry. Students holding an undergraduate degree in any one of several fields of science or engineering may qualify for admission. A textile-specific undergraduate degree is not a requirement for admission. Each student pursues an individually structured program. The School participates in the Graduate Course Option Program (see page 28).

The graduate course offerings encompass advanced study and research in polymer synthesis, mechanics of structured fibrous materials, process dynamics, dye/chemical transport, heat transfer, fiber formation-structure-property relationships, properties of fibrous materials, polymer flow, environmental issues, sports materials, computer process control, composites, and nonwovens. The School has a variety of active research programs in which students participate.

Facilities
The School of Textile and Fiber Engineering is centered in the Manufacturing Related Disciplines Complex I Building, an ultramodern classroom and laboratory facility. Equipment representing most major types of fiber and textile processing is also available. Well equipped laboratories are also available for the synthesis, chemical, and physical characterization of polymers, fibers, and EFSs. Specialized equipment is available for, among others, fabric flammability studies, polymer environmental stability experiments, polymer synthesis, fiber-reinforced composite formation and testing, imaging, carbon and other high-performance fiber development, electrostatic chemical deposition, sports physiology, energy conservation, and water pollution studies. Machine shop and instrumentation facilities with supporting technicians are also available.

Courses of Instruction
Figures entered below the course number and title of the course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

TEXTILE AND FIBER ENGINEERING

TFE 1001. Introduction to the Fiber/Textile/Fabricated Products Enterprises
0-3-1.
Introduction to and overview of the breadth/depth of the fiber/textile/fabricated products manufacturing complex, its infrastructure, resources, opportunities, and career paths.

TFE 1100. Fundamentals of Textile Science
2-0-2.
Prerequisite(s): CHEM 1310
Introduction to the materials, structure, properties, and formation processes of fibers and textile products.

TFE 2001. Introduction to Fiber Science
3-0-3.
Prerequisite(s): CHEM 1310*
The micro and macro structure of fibers will be examined. Structure-property relationships will be covered and various properties of both natural and synthetic fibers will be discussed.

TFE 2002. Fiber Structures and Properties
2-0-2.
Prerequisite(s): CHEM 1310; Co-requisite: CHEM 2311
The micro and macro structures of fibers are examined. Structure-property relationships will be covered and various properties of both natural and synthetic fibers will be discussed.

TFE 2100. Yarn and Fabric Manufacturing
3-0-3.
Prerequisite(s): TFE 2001 or TFE 2002

TFE 3001. Dynamics of Yarn and Fabric Formation
4-0-4.
Prerequisite(s): TFE 2001
Features of modern weaving, weaving preparatory, and spinning equipment and their interaction with fibrous materials are discussed at length.

TFE 3003. Fundamentals of Transport in Textile Processes and Structures
2-3-3.
Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3 or MATH 2602) and (ME 3322 or CHEM 3411)
An introduction to unit operations of chemical engineering emphasizing applications to fibers and textiles.
TFE 3005. Textile Operations/Management Methods
3-0-3.
Prerequisite(s): TFE 3001 or TFE 2100
Principles and applications of production/operations management to the textile enterprise, including process flow analysis, production planning and scheduling, optimization, quality management, and facilities planning.

TFE 3011. Textile Chemistry I: Preparation and Finishing
3-0-3.
Prerequisite(s): TFE 2002 and CHEM 2312
Structure, purification, and mechanical and chemical finishing of natural and synthetic fibers with emphasis on the relationship of fiber structure and response of textiles to these processes.

TFE 3012. Textile Chemistry II: Dyeing and Printing
3-0-3.
Prerequisite(s): TFE 2002 and CHEM 2312
The dyeing and printing of textile materials with emphasis on the relationship of fiber structures and response of textiles to these processes.

TFE 3025. Chemical Processing of Textile Materials
3-0-3.
Prerequisite(s): TFE 2001
The chemical, thermal, and mechanical processes used in the preparation, coloration, and finishing of textile structures.

TFE 3026. Textile Chemistry Laboratory
0-3-1.
Prerequisite(s): (TFE 2001 or TFE 2002) and (TFE 3012* or TFE 3025*)
Laboratory course in preparation, coloration, and finishing of textiles.

TFE 3090. Textile Manufacturing Laboratory I
0-3-1.
Prerequisite(s): TFE 2001 or TFE 2002

TFE 4002. Mechanics and Physical Properties of Fibrous Materials
3-0-3.
Prerequisite(s): TFE 3001 and (MATH 3770 or ISYE 3770)
Mechanics of yarns, fabrics, and other flexible structures, including yarn and fabric geometry, response to tensile and bending deformations, and fabric shear and drape.

TFE 4004. Fiber Formation Principles
3-0-3.
Prerequisite(s): TFE 3003 and (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777)
Discussion of the principles of fiber formation from polymers including, rheology, mechanics, energetics, phase transitions, and polymer structure. High-performance fibers are also discussed.

TFE 4013. Physical Chemistry of Polymer Sorption
3-0-3.
Prerequisite(s): CHEM 3411 and TFE 3003 and TFE 3012 and (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775)
Detailed description of sorption by polymers, emphasizing physio-chemical laws of transport of chromophores through solution, interfaces, and solid-state.

TFE 4014. Science of Color
1-3-2.
Prerequisite(s): CHEM 1312 and PHYS 2212
The physical, chemical, and biological principles involved in the perception, measurement, and specification of color and applications in industry.

TFE 4031. Properties of Textile Materials
2-0-2.
Prerequisite(s): TFE 2100 and (MATH 3770 or ISYE 3770)
Mechanics of yarns, fabrics, and other flexible structures, including yarn and fabric geometry, response to tensile and bending deformations, and fabric shear and drape.

TFE 4041. Textile and Fiber Engineering Design I
2-3-3.
Prerequisite(s): TFE 4093*
A design course covering the principles of concurrent product/process design and development. Team-based projects will explore product/process design and development in textiles.

TFE 4042. Textile and Fiber Engineering Design II
0-9-3.
Prerequisite(s): TFE 4041
A team problem-solving approach is used to work on a project developed in cooperation with a textile company. Weekly communications, both oral and written, are required.

TFE 4043. Safety and Ethics
1-0-1.
Principles of ethics and safety are presented. The legal requirements for chemical usage and worker safety are discussed.

TFE 4091. Textile Manufacturing Laboratory II
0-3-1.
Prerequisite(s): TFE 2100 and TFE 3090 and TEE 4031

TFE 4092. Textile Management Internship
0-3-1.
Students will participate in an internship at an industrial site where they will receive management training and be involved with corporate activities such as sales, marketing, management, and human resources.

TFE 4093. Textile Testing Laboratory
0-3-1.
Prerequisite(s): TFE 4002* or TFE 4031*
Testing and data analysis of textiles including testing of fibers, yarns, fabrics, and carpets.
TFE 4101. Carpet Technology
2-0-2.
Prerequisite(s): (TFE 2100 or TFE 3001) and TFE 3090
A study of materials and production systems used in carpet manufacturing. Carpet structures and performance characteristics and industry structure and markets are examined.

TFE 4102. Nonwovens Technology
2-0-2.
Prerequisite(s): TFE 3090 and (TFE 2100 or TFE 3001)
A review of the principles of nonwoven processes. Review of the machinery requirements for the most commonly produced structures is followed by analysis of the structure-property relationships of nonwoven fabrics.

TFE 4103. Knitting Technology
2-0-2.
Prerequisite(s): TFE 3090 and (TFE 2100 or TFE 3001)
An overview of warp and weft knitting processes. Review of the machinery requirements and analysis of structure-property relationships of knit fabrics.

TFE 4104. Advanced Woven Fabrics
2-0-2.
Prerequisite(s): TFE 2100 or TFE 3001
Pattern design, manufacturing and applications of different woven structures including jacquard, leno, terry, three-dimensional, and rug weaves.

TFE 4105. Apparel Technology
2-0-2.
Prerequisite(s): TFE 2001 or TFE 2002
Apparel engineering and manufacturing, from planning and receipt of raw materials to the distribution of finished garments.

TFE 4775. Polymer Science and Engineering I:
Formation and Properties
3-0-3.
Prerequisite(s): CHEM 2312 and CHEM 3411
An introduction to the chemistry, structure, and formation of polymers, physical states and transitions, physical and mechanical properties of polymer fluids and solids. Crosslisted with CHE, CHEM, ME, and MSE 4775.

TFE 4776. Polymer Science and Engineering II:
Analysis, Processing, and Laboratory
2-3-3.
Prerequisite(s): (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777 or TFE 4777)
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted CHE, CHEM, ME, and MSE 4776.

TFE 4107. Introduction to Polymer Science and Engineering
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3
An introduction to the structure and formation of polymers; physical states and transitions, physical and mechanical properties of polymer fluids and solids, and processing of polymers. Crosslisted with CHE, ME, and MSE 4777.

TFE 4791. Mechanical Behavior of Composites
3-0-3.
Prerequisite(s): ME 3201
Stress-strain behavior of composites, property of matrix and reinforcing materials, mechanics of fiber-reinforced composites, lamina and laminate analysis, and mechanical performance. Crosslisted with AE, CEE, CHE, ME, and MSE 4791.

TFE 4793. Composite Materials and Processes
3-0-3.
Prerequisite(s): CHEM 1310 and PHYS 2212
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. (Laboratory exercises on manufacturing and tests.) Crosslisted with AE, CEE, CHE, ME, and MSE 4793.

TFE 4794. Composite Materials and Manufacturing
3-3-4.
Prerequisite(s): CHEM 1310 and PHYS 2212
Basic principles of selection and design of composite materials and their manufacturing and testing. Cost factors. (Laboratory exercises on manufacturing and tests.) Crosslisted with AE, CEE, CHE, ME, and MSE 4794.

TFE 4801, -2, -3, -4. Special Topics
Credit and class hours equal last digit in course number.

TFE 4901, -2. Special Problems
Credit hours to be arranged.

TFE 6100. Mechanics of Fibrous Materials
3-0-3.
Discussion of deformation of anisotropic fibrous materials; anisotropy and critical phenomena in the mechanical behavior of fibrous materials; models for viscoelastic behavior of fibrous materials.

TFE 6101. Dynamics of Textile Processing I:
Dry Processing
3-0-3.
Prerequisite(s): MATH 2403
Features of modern weaving, weaving preparatory, and spinning equipment, and their interaction with fibrous materials are discussed at length.

TFE 6200. Industrial Chemical Processes
3-0-3.
Prerequisite(s): CHEM 2312
The industrial chemical processes for the production of chemicals, monomers, and textile auxiliaries are covered. Chemical textile auxiliaries are discussed in relation to theory and applications.
TEE 6201. Dye Synthesis
3-0-3.
Prerequisite(s): CHEM 2312
The chemistry of the synthesis and structures of dyes is covered. Color of dyes is discussed in relation to structure and molecular orbital theory.

TEE 6202. Physical Chemistry of Polymer Sorption
3-0-3.
Prerequisite(s): CHEM 3411 and TFE 3003 and (TFE 4775 or CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775) Detailed description of sorption by polymers, emphasizing physio-chemical laws of transport of chromophores through solution, interfaces, and solid-state.

TEE 6301. Natural Polymers
3-0-3.
The structures and properties of natural products are presented. Production of cellulose and proteins is discussed.

TEE 6750. Preparation and Reactions of Polymers
3-0-3.
Prerequisite(s): CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775
A detailed treatment of the reactions involved in the synthesis of both man-made and natural polymers, including preparation and degradative reactions of polymer systems. Crosslisted with CHE and CHEM 6750.

TEE 6751. Physical Chemistry of Polymer Solutions
3-0-3.
Prerequisite(s): CHEM 3411 and (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777)
Study of polymer solutions, polymer miscibility, adsorptions, sorptions, plasticization, molecular weights, molecular weight distributions, and interfacial phenomena using thermodynamics and statistical mechanics. Crosslisted with CHE, CHEM, and MSE 6751.

TEE 6752. Polymer Characterization
3-3-4.
Prerequisite(s): CHEM 3411 and (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777)
This course introduces the student to surface, near-surface, and structural methods of polymer characterization. Specialized techniques critical to physical structure are emphasized. Crosslisted with CHE, CHEM, and MSE 6752.

TEE 6755. Theoretical Chemistry of Polymers
3-0-3.
Prerequisite(s): CHEM 6471 or (CHE 6751 or CHEM 6751 or MSE 6751 or TFE 6751)
Thermodynamics and microscopic dynamics of polymers. Fundamental concepts, including scaling concepts, governing anisotropy of polarizability, phase transitions, morphology, time-dependent correlations, etc., are discussed. Crosslisted with CHEM and MSE 6755.

TEE 6759. Materials in Environmentally Conscious Design and Manufacturing
3-0-3.
Covers the environmental impact of materials choices and quantitative measure of life-cycle assessment and environmental burden. The Natural Step philosophy will be used as a model for the overall approach. Crosslisted with ME and MSE 6759.

TEE 6768. Polymer Structure, Physical Properties, and Characterization
3-0-3.
Prerequisite(s): CHE 4776 or CHEM 4776 or ME 4776 or MSE 4776 or TFE 4776
Formulations and analysis of molecular and phenomenological models of elastic and viscoelastic behavior, development and description of structure, and fundamental aspects of structure-property relations. Crosslisted with MSE, CHE, and ME 6768.

TEE 6778. Introduction to Biomaterials
3-0-3.
Introduction to a variety of biomaterials and their biomedical applications. Crosslisted with CHE, ME, and BMED 6778.

TEE 6795. Mathematical, Statistical, and Computational Techniques in Materials Science
3-0-3.
Emphasizes the fundamental physical, analytical, and mathematical techniques commonly encountered in materials engineering including stress and strain, crystallographic and orientation transformations, X-ray, TEM, and solid-state concepts. Crosslisted with MSE and ME 6795.

TEE 6796. Structure-Property Relationships in Materials
3-0-3.
Introduction to the multi-scale structure effects on material properties. For MSE students the course will prepare students for future in-depth courses. For non-MSE students the course will provide a background in materials and may serve as part of the program of study for a minor in materials. Crosslisted with ME and MSE 6796.

TEE 6797. Thermodynamics and Kinetics of Microstructural Evolution
3-0-3.
The reduction of chemical-free energy, strain energy, and interfacial energy control the kinetics of diffusional transformations. These factors are explored from the point of view of processing and stability of the microstructure during service. Crosslisted with MSE and ME 6797.

TEE 6998. Safety and Ethics
1-0-1.
Principles of ethics and safety are presented. The legal requirements for chemical usage and worker safety are discussed.

TEE 6999. Textile and Fiber Engineering Graduate Research Colloquium
1-0-1.
Graduate students discuss their research work and special topics in a structured setting with their research groups and research advisors.
TFE 7000. Master's Thesis
Credit hours to be arranged.

TFE 7100. Advanced Principles of Fiber Formation, Structure, and Properties
3-0-3.
Prerequisite(s): MATH 2403 and (CHE 4776 or CHEM 4776 or ME 4776 or MSE 4776 or TFE 4776)
Principles and theories of structure, properties and formation of fibers; structural models, physical properties, rheology, mechanics, energetics, and phase transitions in fiber formation processes.

TFE 7771. Mechanics of Polymer Solids and Fluids
3-0-3.
Prerequisite(s): (CHE 4776 or CHEM 4776 or ME 4776 or MSE 4776 or TFE 4776) and (CHE 6768 or ME 6768 or MSE 6768)
Continuum of solids and fluids; mechanics of deformation of anisotropic polymers; yield, breaking and fatigue; non-Newtonian viscous and viscoelastic behavior of polymer fluids. Crosslisted with CHE, ME, and MSE 7771.

TFE 7791. Damage, Failure, and Durability of Composite Materials
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791 or TFE 4791
Provides knowledge of the fundamental concepts and methods related to analysis and assessment of damage, failure, and durability of composite material. Crosslisted with AE, CHE, CEE, ME, and MSE 7791.

TFE 7792. Advanced Mechanics of Composites
3-0-3.
Prerequisite(s): AE 4791 or CEE 4791 or CHE 4791 or ME 4791 or MSE 4791 or TFE 4791
Anisotropic elasticity, failure theories, hygrothermal behavior, three-dimensional analysis of laminates, thick laminates, free-edge effects, stress concentrations, joints, creep and fracture of composites, and advanced topics. Crosslisted with AE, CEE, CHE, ME, and MSE 7792.

TFE 7793. Manufacturing of Composites
3-0-3.
Prerequisite(s): AE 4793 or CEE 4793 or CHE 4793 or ME 4793 or MSE 4793 or TFE 4793
Major manufacturing techniques of metal-, ceramic-, and polymer-matrix composites. Modeling of processes with emphasis on fundamental mechanisms and effects. Crosslisted with AE, CEE, CHE, ME, and MSE 7793.

TFE 7999. Preparation for Doctoral Qualifying Examinations
1-0-1.

TFE 8001, -02. Textile and Fiber Engineering Seminar
1-0-1.
Graduate students discuss their research work. Invited speakers with diverse backgrounds describe their experiences, entrepreneurial ventures, and research challenges.

TFE 8801, -2, -3, -4. Special Topics
Credit and class hours equal last digit of course number.
Graduate-level special topic offerings of current interest in polymers, fibers, and textiles not included in regular courses.

TFE 8813. Special Topics
2-3-3.
Graduate-level special topic offerings of current interest in polymers, fibers, and textiles not included in regular courses.

TFE 8814. Special Topics
3-3-4.
Graduate-level special topic offerings of current interest in polymers, fibers, and textiles not included in regular courses.

TFE 8900, -01, -02. Special Problems
Credit hours to be arranged.
Graduate-level special problems involving research investigations in the fields of polymers, fibers, and/or textiles.

TFE 8997. Teaching Assistantship
Credit hours to be arranged.
For students holding a teaching assistantship.

TFE 8998. Research Assistantship
Credit hours to be arranged.
For students holding graduate research assistantships.

TFE 9000. Doctoral Thesis
Credit hours to be arranged.
An asterisk (*) denotes prerequisite courses that may be taken concurrently.
General Information
The Ivan Allen College, named after a visionary leader who served as mayor of Atlanta during a time associated with the creation of the "New South," is a unique configuration of six schools and departments as well as Georgia Tech's three ROTC departments. The College was established in 1990 in order to broaden the range of majors available to Tech students. The degree programs, which link the study of the social and human sciences to the world of technology and science, have received broad recognition for preparing students for a wide range of professional careers including leadership in government, business, and technology. Study in these fields also prepares students for advanced study in professional programs ranging from medicine, law, international affairs, and new media to graduate study in the humanities and social sciences. The success of these new programs, which are available to Georgia Tech students, has resulted in a proud, ongoing realization of the close connections between service and progress expressed in Georgia Tech's motto.

The Ivan Allen College offers six undergraduate degrees, five master's degrees, and two doctoral degrees. Detailed descriptions of these programs can be found under the appropriate school headings. In addition to its degree programs, the Ivan Allen College provides all Tech students with instruction in the humanities and social sciences. The College's course offerings and its certificate and minor programs enable students, regardless of major, to broaden their educational experience and to better understand the cultural underpinnings of their professional and personal lives and the international context in which they live and work.

Getting Started
Freshmen may enter directly into any of the undergraduate programs of the College, or they may enter as Undecided Ivan Allen College (UIAC) students and receive advisement from the Office of the Dean. In any case, the course requirements for the first year of study are virtually identical among all the majors in the College, so it is easy to postpone or change a decision about the major within the first year.

Certificate Programs and Minor Programs
The schools and departments of the Ivan Allen College offer certificates and minor programs in a variety of areas for students who wish to concentrate on course work in areas of particular interest. All certificates require a minimum of 12 semester hours of concentration. Minor programs require at least 18 hours of concentration (at least 12 hours taken at the 3000 level or above). Faculty advisors in the relevant schools should be consulted for details.

School of Economics
Economics

School of History, Technology, and Society
History
Sociology
Asian Affairs (with International Affairs)
European Affairs (with International Affairs)
African-American Studies (with Literature, Communication, and Culture)

The Sam Nunn School of International Affairs
International Affairs
Asian Affairs (with History, Technology, and Society)
European Affairs (with History, Technology, and Society)
General Information
The Air Force Reserve Officer Training Corps (AFROTC) program provides professional military and academic training for students seeking a commission in the United States Air Force. Though academic classes are open to all students without obligation, the AFROTC program for those pursuing a commission includes two phases. The first two years constitute the General Military Course (G.M.C.) and the last two years, the Professional Officer Course (P.O.C.).

AFROTC Scholarship Program
AFROTC college scholarships are available on a competitive basis to qualified cadets in the two- and four-year programs. Scholarships cover tuition, matriculation, health services, student activities fees, and provide a $480 book allowance. All scholarship cadets receive a tax-free subsistence allowance of $250-$400 per month during the academic year depending on the cadet course level. Additional scholarships are immediately available to sophomores and above meeting minimum eligibility requirements.
Leadership Laboratory
Leadership Laboratory is a separate course requiring two hours per week throughout the cadet’s enrollment in AFROTC. It involves a study of Air Force customs and courtesies, drill and ceremony, professional development opportunities in the Air Force, and the life and work of an Air Force junior officer. Students develop their leadership potential in a practical, supervised laboratory, which may include field trips to Air Force installations and presentations by Air Force personnel.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

AIR FORCE AEROSPACE STUDIES

AS 1110. Foundations of the Air Force I
1-0-1.
A survey course designed to introduce students to the United States Air Force and Air Force Reserve Officer Training Corps (AFROTC). Featured topics include: military customs and courtesies, Air Force officer opportunities, and an introduction to communication skills. Leadership Laboratory is mandatory for AFROTC cadets and complements this course by providing cadets with followership experiences.

AS 1111. Leadership Laboratory
0-2-1.
Introduction to the customs, traditions, and courtesies of the Air Force through drill and ceremonies, guest speakers, physical fitness activities, sports, and base visits.

AS 1120. Foundations of the Air Force II
1-0-1.
A survey course designed to introduce students to the United States Air Force and Air Force Reserve Officer Training Corps. Featured topics include: mission and organization of the Air Force, officer Ethics, and professionalism. Leadership Laboratory is mandatory for AFROTC cadets and complements this course.

AS 1121. Leadership Laboratory
0-2-1.
Continuation of AS 1111. Emphasis on role and responsibilities of an Air Force junior officer. Air Force customs and courtesies, drill and ceremonies, and introduction to the military environment.

AS 2210. U.S. Air and Space Power I
1-0-1.
This course provides students with a knowledge-level understanding for the general element and employment of air and space power and is designed to examine general aspects of it through a historical perspective covering a time period from the first balloons and dirigibles to the beginning of the Vietnam War. Leadership Laboratory is mandatory for AFROTC cadets and complements this course by providing cadets with followership experiences.

AS 2211. Leadership Laboratory
0-2-1.
Emphasizes development of techniques used to direct and inform. Students are assigned leadership and management positions in the AS 2211 program.

AS 2220. U.S. Air and Space Power II
1-0-1.
This course is a continuation of AS 2210 and examines the use of air and space power from Southeast Asia to the space-age global positioning systems of the Persian Gulf War. In addition, students will continue to discuss the importance of the Air Force core values with the use of operational examples and historical Air Force leaders and will continue to develop their communication skills. Leadership Laboratory is mandatory for AFROTC cadets and complements this course.

AS 2221. Leadership Laboratory
0-2-1.
Continuation of AS 2211. Emphasis on preparation for Field Training.

AS 3310. Leadership Studies I
3-0-3.
A study of leadership, management fundamentals, professional knowledge, and communication skills required of an Air Force junior officer. Case studies are used to examine Air Force leadership and management situations as a means of demonstrating and exercising practical applications of the concepts being studied. A mandatory Leadership Laboratory for AFROTC cadets complements this course.

AS 3311. Leadership Laboratory
0-2-1.
Supervisory practice and exercise of leadership functions in controlling and directing activities of the cadet corps. Practical development of leadership potential.

AS 3320. Leadership Studies II
3-0-3.
Examines the Air Force personnel and evaluation systems, leadership ethics, as well as Air Force supervision and counseling techniques. A mandatory Leadership Laboratory for AFROTC cadets complements this course by providing advanced leadership experiences in officer-type activities, giving students the opportunity to apply the leadership and management principles of this course.

AS 3321. Leadership Laboratory
0-2-1.
Continues AS 3311 with emphasis on supervisory and leadership skills, and advantages of an Air Force career.

AS 4410. National Security Affairs
3-0-3.
Examines the national security process, Air Force structure, and doctrine. Special topics of interest focus on civilian control of the military and joint operations with the Army, Navy, and Marines. Within this structure, continued emphasis is given to refining communication skills. A mandatory Leadership Laboratory for AFROTC cadets complements this course.
AS 4411. Leadership Laboratory
0-2-1.
Exercise of management functions in planning, supervising, and directing cadet corps activities. Emphasis on acquiring proficiency in military leadership skills.

AS 4420. Preparation for Active Duty
3-0-3.
Topics include the military as a profession, regional studies, officership, military justice, advanced leadership ethics, preparation for active duty, and current issues affecting military professionalism. A mandatory Leadership Laboratory for AFROTC cadets complements this course.

AS 4421. Leadership Laboratory
0-2-1.
Continues AS 4411. Emphasis on developing top-level management skills. Includes the planning, organizing, and implementation of cadet military training.

School of Economics

www.econ.gatech.edu/

Established in 1990
Location: The Habersham Building
781 Marietta Street
Telephone: (404) 894-4919/4917
Fax: (404) 894-1890
E-mail: admin@econ.gatech.edu

Chair and Professor—Patrick S. McCarthy.
Professors—W. Carl Biven (emeritus), Thomas D. Boston, Kong Chu (emeritus), Marilu H. McCarty (emeritus), Mack A. Moore (emeritus), Christine P. Ries, William A. Schaffer (emeritus).
Associate Professors—Willie J. Belton Jr., Usha Nair-Reichert, Radwan A. Shaban.
Assistant Professors—Roderick G. Duncan, Haizheng Li, Mark J. McCabe.

General Information
The School of Economics provides high-quality programs of study leading to a Bachelor of Science degree in Economics and to a Minor or Certificate in Economics for students in other disciplines. The program focuses on skills and knowledge critical for a life of learning and leading to careers in management, the public sector, academics, and the professions. A degree in economics is especially appropriate for students intending to pursue advanced degrees in the social sciences and in professional schools of management, law, and public administration.

Modern economics is analytically rigorous, requiring a background in mathematics and statistics. At the same time, it is critically linked with the other social sciences and humanities, as well as to the more practical management and policy studies. The undergraduate curriculum provides a strong and broadening overview of economic thought and policy and is intended to prepare students for productive careers, for useful roles in society, and for satisfying personal lives in a technologically complex, culturally diverse world.

The School of Economics also offers graduate courses leading to a Master of Science degree and in support of Ph.D. programs in management, public policy, industrial and systems engineering, and city planning.

Certificate in Economics
The School of Economics offers a Certificate in Economics for students in all disciplines at Georgia Tech. The certificate program provides an introduction to economic reasoning and is especially appropriate for students considering graduate work in law or business administration. The certificate program should also be attractive to students who want to apply the tools of economics toward a fuller understanding of the forces that shape the modern world.

The certificate requires a minimum of 12 semester hours of economics courses in which a grade of C or better is earned. At least 9 hours of credit must be at the 3000 level or above. Courses required by name and number in the student’s major degree program may not be used toward the certificate.

Minor in Economics
The School of Economics offers a Minor in Economics for students in all disciplines at Georgia Tech. The minor program provides a general introduction to economic reasoning and is especially valuable for students considering graduate work in law or management. It should also be attractive to students who wish to broaden their education and to understand the forces that shape the modern world. The minor requires a minimum of 18 semester hours in economics, of which 12 semester hours are upper-level courses (numbered 3000 or above). All courses counting toward the minor must be taken on a letter-grade
basis and must be completed with an overall grade point average of at least 2.0. Courses required by name and number in a student's major degree program may not be used toward the minor.

Undergraduate Program

Bachelor of Science
The program of study provides a thorough grounding in science, the humanities, and mathematics; a broad grasp of the tools of economic analysis and decision-making; and an understanding of the institutional milieu in which tomorrow's leaders must operate. In addition, the curriculum provides ample opportunities for career-oriented studies in fields such as accounting, finance, management science, public policy, and international affairs; life-enriching studies in history and literature are also available.

Bachelor of Science in Economics *(Suggested Schedule)*

<table>
<thead>
<tr>
<th>First Year - First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 or MATH 1712</td>
<td>4</td>
</tr>
<tr>
<td>LAB SCIENCE ELECTIVE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year - Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 or MATH 1711</td>
<td>4</td>
</tr>
<tr>
<td>Lab Science (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year - First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2106 MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 2250 MANAGEMENT STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>ENGINEERING, SCIENCE, or MATH ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second Year - Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2105 MACROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>INTA ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year - First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3110 ADV. MICRO. ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3160 INTRO. TO EMPIRICAL ECON.</td>
<td>3</td>
</tr>
<tr>
<td>NON MAJOR CLUSTER ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ECON ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year - Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 3161 ECONOMETRIC ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>NON MAJOR CLUSTER ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3120 ADV. MACRO. ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>ECON 3150 ECON & FINANCIAL MODEL</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year - First Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 4620 HIST. OF ECON. THOUGHT</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4350 INTERNATIONAL ECON</td>
<td>3</td>
</tr>
<tr>
<td>ECON ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>NON MAJOR CLUSTER ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year - Second Semester</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 4610 SEMINAR ON ECON POLICY</td>
<td>3</td>
</tr>
<tr>
<td>ECON 4910 INDIVIDUAL RESEARCH IN ECON.</td>
<td>3</td>
</tr>
<tr>
<td>ECON ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Electives and Requirements

Mathematics
The mathematics requirement may be satisfied by one of the following sequences: MATH 1711-2; MATH 1501-2. Students will not receive credit for
MATH 1712 and either MATH 1501 or MATH 1502.

Science and Engineering Electives
Students must complete a laboratory sequence in biology, chemistry, physics, or earth and atmospheric science, along with 3 hours of electives chosen from engineering, science, or mathematics, for a total of 11 hours.

Social Sciences Electives
All students must complete 12 hours of electives in the social sciences, including 3 semester hours from HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200 to satisfy state requirements regarding course work on the history and constitutions of the United States and Georgia. Also required are 9 hours from the following list:

Architecture and City Planning
ARCH 4331, 4335, CP 4010, 4020, 4030

History, Sociology, and History, Technology and Society
All HIST, SOC, & HTS courses except 2927, 2928, 2929, 4925, 4926, 4927, 4928, 4929

International Affairs
INTA 1100, 2030, 2100, 2200, 2220, 2230, 3240, 3801, 3802, 3803, 4801, 4802, 4803

Political Science and Public Policy
All POL & PUBP courses except 3113, 3600, 4530, 4532, 4901, 4902, 4903, 4951, 4952

Economics
All ECON courses except 3160, 3200, 4170, 4910, 4990

Psychology
PSYC 1101, 2010, 2020, 2103, 2210, 2220, 2230, 2240, 2260, 2300, 2400, 3060, 4070, 4770

Health and Performance Sciences Electives
Students must take two hours of physical education in the freshman year and may receive the Institute-allowed maximum credits in physical education as free electives.

Humanities Electives
Students are required to complete six hours of humanities from the following list:

Architecture, Industrial Design, and City Planning
COA 2115, 2116, 2241, 2242; ARCH 2111, 2112; ID 2202; MUSI 3610, 3620; CP 4040

Literature, Communication, and Culture
All ENGL and LCC courses except LCC 2661, 2662, 3400, 3402, 3404, 3406, 3408, 3410, 3412, 3661, 3662, 4100, 4102, 4200, 4400, 4402, 4404, 4406, 4600, 4602, 4904, 4906

Modern Languages
All CHIN courses beginning with CHIN 1002 except CHIN 4901, 4902
All FREN courses beginning with FREN 1002 except FREN 4901, 4902
All GRMN courses beginning with GRMN 1002 except GRMN 4901, 4902
All JAPN courses beginning with JAPN 1002
All LING courses except LING 4901, 4902
All RUSS courses beginning with RUSS 1002 except RUSS 4901, 4902
All SPAN courses beginning with SPAN 1002 except SPAN 4901, 4902

Philosophy, Sciences, and Technology
All PST courses except PST 4901, 4902, 4903

International Elective
Any course offered by the School of International Affairs satisfies this requirement.

Cluster Electives
Students must complete at least nine hours of credit in a planned cluster in a discipline other than economics. This requirement is most easily satisfied through a certificate program. Any other concentration must be approved by the faculty of the School of Economics. The student must earn a grade of C or better in these courses.

Individual Research Project
Each student is required to take ECON 4910, producing a formal research paper in the senior year.

Free Electives
Students must complete free electives (normally bearing 14 hours' credit), bringing the number of credit hours received up to 122. Only free electives may be taken on a pass/fail basis, subject to Institute limitations.
Graduate Program

Master of Science
The School of Economics offers a Master of Science degree for those desiring to pursue economics at an advanced level. Grounded in applied economic theory and econometrics, this is a three-semester program that prepares students for professional careers in the private and public sectors as well as for more advanced training in economics doctoral programs. Although the master's curriculum is flexible in allowing students to tailor areas of specialization to their specific interests, the program is particularly well suited to those interested in industrial organization, technology, innovation, international trade, and economic development.

Core courses in the program require that students take microeconomic and macroeconomic theory, research methods, probability and statistics, and econometrics. In addition to the core, students must also complete a total of four courses that reflect two areas of concentration consistent with students' interests. An advantage of the master's program is that it allows students to complete their areas of concentration by taking some courses in units outside the School of Economics, including the DuPree College of Management, the Sam Nunn School of International Affairs, the School of Public Policy, the School of Industrial and Systems Engineering, and the College of Architecture.

Students admitted into the master's program are also encouraged to pursue a summer internship. This allows students to apply their economic knowledge and statistical tools to problems that are encountered in professional private and public sector environments.

The Master of Science degree requires a minimum of 33 semester credit hours of course work with: 1) at least 12 hours of economic theory and applied economics; 2) at least one additional quantitative methods course beyond econometrics; and 3) a master's thesis or, for a non-thesis option, one additional course offered in the School of Economics.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number lab hours per week, and the semester hour credit earned for the completed course.

ECONOMICS

Practice in analysis of decision problems of relevance to students in public policy and personal decision areas. Issues relating to individual decisions to produce, consume, invest, and trade will be explored. Analytical approaches will enable students to use and incorporate basic elements of micro and macro economic analysis and to appreciate issues regarding testing and measurement. Credit not allowed for both ECON 2100 and either ECON 2105 or 2106.

ECON 2105. Principles of Macroeconomics 3-0-3.
This principles of economics course is intended to introduce students to concepts that will enable them to understand and analyze economic aggregates and evaluate economic policies. Credit not allowed for both ECON 2105 and ECON 2100.

ECON 2106. Principles of Microeconomics 3-0-3.
This principles of economics course is intended to introduce students to concepts that will enable them to understand and analyze structure and performance of the market economy. Credit not allowed for both ECON 2106 and ECON 2100.

ECON 3110. Advanced Microeconomic Analysis 3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Review of important mathematical tools and techniques used in advanced microeconomics. Advanced topics include the estimation of demand and cost functions; the role of government in the economy (externalities, property rights, and public goods); public choice theory; factor markets (especially labor and capital markets); models of monopoly; pricing techniques used by firms with market power (monopolies and oligopolies); and game theory.

ECON 3120. Advanced Macroeconomic Analysis 3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Integrates issues arising from international economic relationships with the macroeconomic dynamics of domestic economies. Income determination in the open economy and the effect of stabilization policies on the international monetary system.

ECON 3150. Economic and Financial Modeling 3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
The course develops student ability to model the essential elements of the investment decision through use of a valuation model and spreadsheet analysis. Expands upon basic knowledge of present value analysis to recognize risk, growth, capital markets, and market valuation of ongoing operations.
ECON 3160. Introduction to Empirical Economics: Data Visualization, Analysis, and Presentation
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106) and MGT 2250
Develops student abilities to logically formulate economic issues; identify and collect data from traditional and Internet sources; analyze data using spreadsheet and presentation software; generate sound and defensible conclusions and recommendations; and make effective presentations of analysis and conclusions.

ECON 3161. Econometric Analysis
3-0-3.
Prerequisite(s): ECON 3160
Econometric techniques and applications in economic and business analysis. Practical issues involving modeling, estimation, hypothesis testing, and emphasizing computer implementation through econometric software.

ECON 4060. Money and Capital Markets
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
An examination of the role of money in the exchange process, the Federal Reserve's monetary policy strategy, and the impact of monetary policy on financial markets and aggregate economic activity.

ECON 4160. Economic Forecasting
3-0-3.
Prerequisite(s): ECON 3161
An introduction to widely used economic and business forecasting methods, emphasizing quantitative approaches and computer implementation through time-series econometric software.

ECON 4170. Mathematics for Economic Modeling
3-0-3.
Prerequisite(s): ECON 3110 and ECON 3120
The application of mathematical tools to economic analysis. Topics include static analysis, comparative-static analysis, optimization, and dynamic analysis.

ECON 4301. Economics of Information, Transactions Costs, and Contracts
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Builds from analysis of the individual in a trading or transaction situation to study organizations as groups of affiliated individuals. Assesses the situations when organizations are preferable to markets as forms of organizing economic and social activity. Institutional economics and transaction cost economics are studied. Analysis of corporate restructuring and privatization.

ECON 4311. Strategic Economics for Global Enterprise
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This introductory course on the multinational enterprise (MNE) will examine from an economic and interdisciplinary perspective the challenges facing MNEs in a fast changing international business environment. The emphasis will be on the use of economic tools to analyze these issues and understand their managerial implications.

ECON 4321. Economics of Technology, Innovation, and Entrepreneurship
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Analysis of level and type of entrepreneurial activity. Study of business and economic history, legal, and institutional arrangements.

ECON 4340. Industrial Organization
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This course examines the theory of the firm; the relationship between market structure, practices, and performance; and the determinants of technological change. The role (and ability) of government policy to solve various market failures via antitrust enforcement, regulation, etc., is also discussed.

ECON 4345. Economic Regulation
3-0-3.
Prerequisite(s): ECON 4340
This course examines how government economically regulates private industry, how it might regulate more efficiently, and when it should not regulate at all. General theories of antitrust enforcement and economic regulation are developed and applied to a variety of industry cases.

ECON 4350. International Economics
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This is an introductory course in international economics and will cover important topics in trade theory, trade policy, and international finance. The emphasis will be on using economic tools to analyze a variety of current events in the world economy.

ECON 4360. Network Economics
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This course will examine alternative network architectures (e.g., simple ring networks, two star networks connected by a trunk line), explore how differences in a network's economic characteristics have different market structure implications and according, lead to alternative public policy stances.

ECON 4411. Economic Development
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Concepts and studies of developing economies. Selected topics include development experience and theories, growth, agriculture, urbanization, industrialization, and links between trade policy and development.

ECON 4412. Cost-Benefit Analysis
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This course will acquaint the student with the principles, tools, issues, strengths, and limitations of Cost-Benefit Analysis (CBA); to prepare the student to competently review, criticize, and use CBA studies; and to enable the student to carry out limited CBA studies.
ECON 4421. Urban and Regional Economics
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Economics of regions, cities, and space. Theories of growth and location, effects of urbanization, agglomeration, and congestion. Public policy relating to urban and regional problems.

ECON 4430. Economics of Transportation and Communication Systems
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Economic analysis for the design, operation and management of transportation and communication systems. Study of systems analysis and modeling. Application to industry and study of industrial change and dynamics. Special attention to corporate restructuring and industrial consolidation and merger.

ECON 4440. Economics of Natural Resources and the Environment
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This course covers three aspects of environmental economics. First, it considers policy interventions appropriate to problems involving environmental externalities. Second, it explains methods used to estimate economic values for environmental goods. Finally, it explains the economics of depletable and renewable resources.

ECON 4450. Topics in African-American Entrepreneurship
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)

ECON 4460. Public Economics
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This course focuses on public goods, how public decisions regarding public goods are made, the "free-rider" problem, voting and taxation principles, welfare, the Tiebout Hypothesis, and budgeting and fiscal policies.

ECON 4510. Economics of Health and Health Care
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This course surveys the theoretical and empirical evidence regarding current issues in health and health care. Individual-level models of health behaviors and the demand for health and medical insurance are presented. The economic behaviors of physicians, hospitals, and insurance companies are also characterized. The possible role of government in encouraging the equitable and efficient performance of health markets is discussed with a particular emphasis on current debates involving individual health decisions, health care reform, and the diffusion of new medical technologies.

ECON 4510. Seminar in Economic Policy
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
The objective of the course is to enable students to interpret current economic problems and policies using the economic models learned in their theory courses. Students study the current "Economic Report of the President" and apply analytical tools to the data included in the text. Each student selects a current issue for detailed examination and report.

ECON 4620. History of Economic Thought
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
This course is concerned with the economists who interpreted and influenced the development of capitalism and socialism over the last two centuries.

ECON 4801. Special Topics in Economics
3-0-3.
Topics determined by instructor and school chair.

ECON 4901. Special Problems
Credit hours to be arranged.
Designed to permit independent study with a faculty member.

ECON 4910. Individual Research in Economics
3-0-3.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Course related to independent student research. Topics determined by instructor and student.

ECON 4990. Internship in Professional Economics
Credit hours to be arranged.
Prerequisite(s): ECON 2100 or (ECON 2105 and ECON 2106)
Course projects related to professional internships. Topics and requirements to be arranged by student, instructor, and sponsor.

ECON 6100. Economic Analysis for Managers
3-0-3.
A survey of microeconomic and macroeconomic concepts essential to the academic preparation of prospective managers. Economic theory used as a framework for contemporary managerial decision making.

ECON 6105. Macroeconomics
3-0-3.
Macroeconomic theory, including determination of national income, employment, the general price level, and potential for economic growth. Sources of macroeconomic instability and stabilization policies.

ECON 6106. Microeconomic Analysis
3-0-3.
Microeconomics, resource allocation decisions of households, businesses, and government agencies. Enables the student to understand and apply economic principles to consumer, business, and government decisions.

ECON 6110. Economics of Corporate Strategy
3-0-3.
Prerequisite(s): ECON 3110 or ECON 6100
Applies microeconomic and macroeconomic theory to the development of modern corporate strategy, including organizational boundaries, market structure and competition, industry analysis, and competitive advantage.
ECON 6121. Research Methods
3-0-3.
Introduces students to issues related to conducting research in economics. Topics include the derivation of empirical models from theoretical constructs, causality, experimental and non-experimental data, hypothesis testing, and policy analysis. Students also become familiar with electronic data sources and retrieval and are introduced to several professional software packages.

ECON 6130. Quantitative Methods in Economics
3-0-3.
This course covers fundamental quantitative tools used in economic and econometric analysis, which includes topics in differential calculus, optimization, and linear algebra.

ECON 6140. Probability and Statistics
3-0-3.
This course gives students the necessary background for taking courses in the econometrics sequence. Topics include descriptive statistics, continuous and discrete probability distributions, parameter estimation, one- and two-sample hypothesis testing, and bivariate regression models.

ECON 6150. Cost Benefit Analysis
3-0-3.
Prerequisite(s): ECON 6130
The application of economic, financial, and quantitative reasoning and tools to issues of resource allocation and policy, primarily in the public sector.

ECON 6160. Econometric Analysis
3-0-3.
Prerequisite(s): ECON 6130
This course introduces advanced econometric methods on estimation and testing, including instrumental variable estimation, panel data analysis, limited dependent variable models, and simultaneous equation systems. The course emphasizes applications of these techniques to real-world problems using professional software packages.

ECON 6161. Econometric Modeling and Forecasting
3-0-3.
Prerequisite(s): ECON 6160
This course introduces techniques on economic and business forecasting, focusing on regression analysis and ARIMA models. Testing for unit roots and co-integration are also discussed. Professional software packages for forecasting are used in applications.

ECON 6162. Discrete Choice Econometrics
3-0-3.
Prerequisite(s): ECON 6140
Focuses on econometric methods for which the dependent variable represents an "either-or" choice. Included in the set of topics are binary and multinomial logit, ordered choice, heteroskedastic extreme value, bivariate and multivariate probit, nested logit structures, discrete/continuous, and Poisson models. The course includes numerous applications using professional software programs.

ECON 6200. Money and Capital Markets
3-0-3.
Prerequisite(s): ECON 3120 or ECON 6105
The role of money in the exchange process, Federal Reserve strategy, and the impact of monetary policy on financial markets and aggregate economic activity.

ECON 6310. Public Economics
3-0-3.
Prerequisite(s): ECON 6100 or (ECON 6105 and ECON 6106)
An examination of public goods, public decision making, voting, free riders, taxation principles, welfare, the Tiebout hypothesis, budgeting, and fiscal policy.

ECON 6330. Urban and Regional Economics
3-0-3.
Prerequisite(s): ECON 6100 or (ECON 6105 and ECON 6106)
Economics of regions, cities, and space. Theories of growth and location, effects of urbanization, agglomeration, and congestion. Public policy relating to urban and regional problems.

ECON 6341. Transportation Economics
3-0-3.
Prerequisite(s): ECON 6106
Examines the economics of transportation markets, including resource allocation, economic welfare, government regulation, and public policy. Using an econometric case study approach, the course develops the necessary steps for testing hypotheses, analyzing the findings of recent studies, and exploring implications for the development and implementation of transportation policy.

ECON 6360. Development Economics
3-0-3.
Prerequisite(s): ECON 6100 or ECON 6106
Concepts and models of development and growth in Third World countries, emphasizing modeling and testing of recent changes in the Third World. Topics include economic growth, trade and globalization, poverty and inequity, migration, population growth, unemployment, agricultural development, the environment, and the role of the market versus the state.

ECON 6380. Economics of Natural Resources and the Environment
3-0-3.
Prerequisite(s): ECON 6100 or (ECON 6105 and ECON 6106)
Examines the management of natural resources and the environment from an economic perspective. Topics include resource valuation methods, optimal resource management, regulation of pollution, and sustainable development. Issues are studied through economic models and empirical testing.

ECON 6431. Strategic Economics for Global Enterprise
3-0-3.
Prerequisite(s): ECON 6100 or (ECON 6105 and ECON 6106)
This course uses economic tools to examine strategic aspects of competition and collaboration in an integrated global market. Topics include the determinants and changes in the boundaries of global firms, competitive advantage and value creation, the nature of global markets, and strategic positioning in the global marketplace.
ECON 6440. The Economics of Technology, Innovation, and Entrepreneurship 3-0-3.
Prerequisite(s): ECON 6100 or ECON 6106
This course explores the impact that innovation, technology progress, and R&D activities have upon a firm's pricing and output behavior. Based upon computer case studies, biotechnology, and telecommunications sectors, the course further analyzes the economic role that firm size and entrepreneurial opportunities play in technological development and innovation.

Explores African-American entrepreneurship from the ante-bellum period to the present. Implications of economic and socio-political developments are given particular attention, including the urbanization of blacks, the rise of benevolent societies following slavery, institutionalization of Jim Crow segregation, desegregation, and affirmative action's role in an emerging class of black entrepreneurs.

ECON 6460. Industrial Organization 3-0-3.
Prerequisite(s): ECON 6100 or ECON 6106
This course examines modern theories of the firm, market power, and competitive strategy. Game theory is employed throughout the course.

ECON 6510. Economics of Health and Health Care 3-0-3.
Prerequisite(s): ECON 6106 and ECON 6160
A critical survey of the current theoretical and empirical issues involving the economics of health and health care.

Prerequisite(s): ECON 6100 or (ECON 6105 and ECON 6106)
Interprets current economic problems and policies using fundamental economic principles.

ECON 6620. History of Economic Thought 3-0-3.
Prerequisite(s): ECON 6100 or (ECON 6105 and ECON 6106)
Economists who interpreted and influenced the development of capitalism and socialism over the last two centuries.

Prerequisite(s): ECON 6100 or (ECON 6105 and ECON 6106)
Explores international economic issues. The first part examines aspects of international trade, including specialization and exchange, strategy, labor and capital movements, preferential trading arrangements, and economic development. The second part analyzes international finance, including exchange rates, open economy macro policies, Eurocurrency markets, and the international monetary system.

ECON 7000. Master's Thesis Credit hours to be arranged.

ECON 8801, -2, -3. Special Topics Credit and class hours equal last digit in course number.

ECON 8910, -90. Special Problems Credit hours to be arranged.

ECON 8997. Teaching Assistantship Credit hours to be arranged. For graduate students holding teaching assistantships.

ECON 8998. Research Assistantship Credit hours to be arranged. For graduate students holding research assistantships.

School of History, Technology, and Society

Established in 1990
Location: D.M. Smith Building
Telephone: 404.894.2182
Fax: 404.894.0535

Chair and Professor—Gregory H. Nobles; Melvin Kranzberg Professor of the History of Technology—John Krige.

Professors—Ronald H. Bayor, Lawrence Foster, Mary Frank Fox, August W. Giebelhaus, Kenneth J. Knoespel (Joint Appointment, Associate Dean, Ivan Allen College), Hanchao Lu, Robert C. McMath Jr. (Vice Provost for Undergraduate Studies and Academic Affairs), Carole E. Moore (Director of Academic Services/Athletic Association), Sue V. Rosser (Dean of Ivan Allen College), Jonathan Schneer.

Associate Professors—Alice Bullard, Douglas Flaming, Andrea Tone, John L. Tone, Stephen W. Usselman, Steven P. Vallas.

Assistant Professors—Eleanor Alexander, Michael Allen, Chiquita Collins.

General Information
The School of History, Technology, and Society (HTS), dedicated to the ideal of a well rounded education at a technological university, provides instruction in the social sciences to every student at the Georgia Institute of Technology. The School offers courses in history and sociology leading to the degrees of Bachelor of Science in History, Technology, and Society; Master in History of
Undergraduate Program

Bachelor of Science
The HTS degree is comparable to traditional degrees in history and sociology, but the program has several attributes that make it unique. The degree requires broad-based training in humanities, mathematics, science, and social sciences, giving HTS graduates the advantage of a truly broad, humanistic education. The program’s focus on the social origins and impact of industry, science, and technology is also distinctive, providing students with the critical tools needed to understand the complex issues related to the development of the modern world.

Students who wish to pursue careers or graduate study in business, education, government, journalism, law, publishing, and many other fields will benefit from this degree program. Through an arrangement with Georgia State University, HTS majors interested in teaching careers may register for education credits to gain public school certification.

Minor and Certificate Programs
For students in other majors interested in broadening their educational experience at Georgia Tech, HTS offers minors in history and in sociology, and jointly administers a minor in Women, Science, and Technology (WST).

Alone or in conjunction with other units of the Ivan Allen College, HTS offers certificates in five fields:
- African-American Studies
- Asian Affairs
- European Affairs
- History
- Sociology

The School of History, Technology, and Society also offers courses that are included in the Pre-Law certificate awarded by the School of Public Policy.

Minors are awarded upon completion of six approved courses. Certificates require four approved courses. All courses must be taken on a letter-grade basis with a grade of C or better.
Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS 3102 SOCIAL THEORY & STRUCTURE</td>
<td>3</td>
</tr>
<tr>
<td>HTS ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HTS ELECTIVE (TECHNOLOGY & SOCIETY)</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS SEMINAR</td>
<td>4</td>
</tr>
<tr>
<td>HTS ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTS SEMINAR</td>
<td>4</td>
</tr>
<tr>
<td>HTS ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HRS)

Requirements and Electives

History and Government Requirement

The state of Georgia requires all students to take a course on the government and history of the United States and Georgia. Any one of the following courses will fulfill this requirement: HIST 2111, HIST 2112, INTA 1200, POL 1101, or PUBP 3000.

Writing and Communication

Intensive Courses

A number of majors require students to complete writing intensive and communication intensive courses. Several HTS classes may be counted toward this requirement, including many 3000-level courses and all 4000-level seminars. Consult course offerings each semester to determine which courses may be counted toward this requirement.

Humanities and Fine Arts

Students must complete two approved humanities courses from the following departments: Architecture, ILC, Industrial Design, Modern Languages, Music, and Philosophy. See the list of approved courses on pages 31-32 of this catalog.

Mathematics

Students must complete one of the following mathematics sequences: Math 1711 and 1712, or Math 1501 and 1502.

Science

Students must take two of the following eight courses. BIOL 1510 and 1520, CHEM 1312 and 1313, EAS 1600 and 1601, or PHYS 2211 and 2212.

Social Science

Students are required to take four approved social sciences courses from any of the following departments: Architecture, Economics, HTS, International Affairs, Psychology, and Public Policy. See pages 31-32 of this catalog for a list of approved social science courses. To satisfy state requirements regarding course work on the history and constitutions of the U.S. and Georgia, students must complete one of the following courses: HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200.

Health and Performance Sciences

All Georgia Tech students must complete HPS 1040, 1062, 1063, or 1064, a two-hour health and "wellness" course.

Courses Related to Major

- **Foreign Language**
 Students must complete a two-course sequence in a foreign language.

- **Economics**
 Students must take one of the following: ECON 2100, 2105, or 2106

- **Sociology**
 SOG 1101

- **European History**
 HTS 1031

- **United States History**
 HIST 2111 or 2112
Courses in Major

- **Technology and Society**
 Students must complete two courses from an approved list that includes: HTS 2081, 2082, 2084, 3001, 3007, 3020, 3021, 3082, 3083, 3084, and 3085.

- **Historiography and Methods**
 HTS 3101

- **Social Theory**
 HTS 3102

- **Seminar**
 Students must complete two HTS 4000-level seminars, preferably in their junior and senior years.

- **Additional HTS Electives**
 Students must take 21 credit hours of additional HTS courses.

- **Free Electives**
 Students must take 18-33 credit hours of courses in any discipline to reach a total of 120 hours for graduation.

Graduate Programs

The School offers a program of graduate study in the history of technology at both the master’s and doctoral level. The two-year master’s program consists of foundation courses in history, social theory, and research methods, as well as more specialized reading and research seminars. The program emphasizes the understanding of technology within a broad social and historical context. Students develop a strong general background in American and European history and acquire skills in historical research, social analysis, and writing.

The basic curriculum of 36 hours (required of both M.S. and Ph.D. candidates) consists of 12 hours of required fundamental courses, including 6 hours’ credit for a major research paper, 15 hours of core electives within HTS, an advanced interdisciplinary seminar, and 6 hours of free electives. Students pursuing the Ph.D. must complete an additional 18 hours of course work in preparation for the comprehensive examinations, which are normally taken at the end of the third academic year. The examinations will cover material from four fields of study, including one in the history of technology and one in an area of sociology.

In addition to satisfactory performance in the comprehensive examinations, students must also pass a foreign language examination (normally in French or German) before being admitted to candidacy for the Ph.D. Having met these requirements, the candidate will submit a dissertation proposal, which must meet the approval of his or her dissertation committee. The candidate will then proceed to the final requirement for the degree: the completion of the Ph.D. dissertation and its successful defense by oral examination.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

HISTORY, TECHNOLOGY, AND SOCIETY

HTS 1031. Europe Since the Renaissance
3-0-3.
Social, political, economic, and cultural history of Europe since the Renaissance. Topics include Renaissance; Reformation; political, scientific, and industrial revolutions; nationalism, fascism, and communism; and decolonization.

HTS 1081. Engineering in History
3-0-3.
Uses historical case studies to examine the relationship between engineers and the larger society in which they function. Often taught jointly with engineering faculty.

HTS 2001. Early American History
3-0-3.
North America to 1763, including native cultures, contacts with European colonizers, settlement strategies and patterns, and foundation of American political and economic institutions.

HTS 2002. The American Revolution and Constitution
3-0-3.
The American Revolution as political debate, war, and social upheaval, with attention to the framing and ratification of the Constitution.

HTS 2006. History of the Old South to 1865
3-0-3.
A study of social, political, and economic developments in the South from the Colonial period through the Civil War.

HTS 2007. History of the New South since 1865
3-0-3.
An examination of social, political, and economic developments from the Reconstruction period to the present.
HTS 2009. The American Civil War
3-0-3.
Social, economic, political, and military aspects of the Civil War, including causes of the war, military campaigns, and long-term consequences.

HTS 2011. The Gilded Age and the Progressive Era
3-0-3.
Populism, the currency question, immigration, the rise of big business, war, and reform in one of the most turbulent periods of American history.

HTS 2013. Modern America: World War II and After
3-0-3.
Dawning of the atomic age, anti-communism, the Civil Rights Movement, New Frontier and Great Society, Vietnam and the tumultuous 1960s, and the end of the Cold War.

HTS 2016. Social Issues and Public Policy
3-0-3.
Draws on sociological theory and research to understand the major economic, social, and cultural issues facing American society today.

HTS 2031. Ancient Greece: Gods, Heroes, and Ruins
3-0-3.
Minoan and Mycenaean civilizations, Homer's Greece, Classical Athens and Sparta, myths and legends in historical context. Course ends with Alexander the Great and the rise of Rome.

HTS 2032. Ancient Rome: From Greatness to Ruins
3-0-3.

HTS 2033. Medieval Europe: 350 to 1400
3-0-3.
The rise of barbarian kingdoms from Rome's ashes, the explosion of Islam, the monastic movement, Charlemagne's empire, the blossoming of medieval culture, and developing European monarchies.

HTS 2036. Revolutionary Europe: 1789-1914
3-0-3.
Industrialization and political revolution, the development of political ideologies and labor activism, modern nation-state building, and imperialism from the French Revolution to World War I.

HTS 2037. Twentieth Century Europe: 1914 to Present
3-0-3.
Global war and the Bolshevik Revolution, rise and fall of Mussolini and Hitler, Stalinism, the Holocaust, Cold War, decolonization, and the movement toward European integration.

HTS 2061. Traditional Asia and Its Legacy
3-0-3.
Civilizations of East Asia up to 1850, emphasizing traditional cultures in China and Japan, including religion, science, formation of empires, social life, and commerce.

HTS 2062. Asia in the Modern World
3-0-3.
Civilizations of India, China, and Japan since 1600, emphasizing Western impact and adaptation of these countries' political, economic, and social systems.

HTS 2081. The Scientific Revolution
3-0-3.
A critical approach to the Scientific Revolution, introducing students to primary documents and images from the period and emphasizing interpretive strategies and methods.

HTS 2082. Technology and Science in the Industrial Age
3-0-3.
Surveys major developments in technology and science since 1600 and places them in the broader social context of their times.

HTS 2084. Technology and Society
3-0-3.
Analyzes social conditions that promote or retard technological activity, emphasizing role of business, the state, and scientific and engineering professions, and the emergence of consumerism.

HTS 2875, -76, -77. Special Topics in History, Technology, and Society
3-0-3.
Allows a group of students and a professor to study topics not covered in other courses in the School.

HTS 2927, -28, -29. Special Problems
Credit hours to be arranged.

HTS 3001. American Economic History
3-0-3.
U.S. economic history since 1607, including regional specialization, agriculture, industrialization, technology, government and economy, money and banking, labor, international trade, and contemporary economic problems.

HTS 3002. History of American Business
3-0-3.
Evolution of business institutions from Colonial period to present, including entrepreneurship, business-government relations, institutional innovation, and twentieth century managerial capitalism.

HTS 3003. Sociology of Economic Institutions
3-0-3.
Examines links between economic structures-markets, regulatory bodies, and labor relations systems—and the wider structural and cultural context.

HTS 3005. American Environmental History
3-0-3.
Transformation of the North American environment since 1500, including different notions of nature, romantic responses to wilderness during industrialization, rise of conservation movements, and environmental policy.
HTS 3006. United States Labor History
3-0-3.
The changing nature of work and labor relations, with focus on unionization and government regulation, and equity issues in the workplace.

HTS 3007. Sociology of Work, Industry, and Occupations
3-0-3.
Analyzes paid employment as a decisive social attachment, emphasizing work organizations, technological change and authority relations, and social inequality among diverse groups of employees.

HTS 3011. The City in American History
3-0-3.
Examines the historical background of the American city since colonial times, including city planning, urban technology and services, neighborhoods, and race relations.

HTS 3012. Urban Sociology
3-0-3.
Sociological perspectives on the city, urbanization, and problems of community, evolution of cities, and problems of urban life in the United States and Third World.

HTS 3015. History of the Vietnam War
3-0-3.
Diplomatic, military, and social aspects of America's war in Vietnam, including antwar protests, the defense industry boom, and the war's enduring impact on American life.

HTS 3016. Women and Gender in the United States
3-0-3.
Course examines themes and theories of women's and gender history since the colonial period, including work, family, race, sexuality, and politics.

HTS 3017. Sociology of Gender
3-0-3.
Gender as a dimension of social life that shapes and is shaped by the economy, schooling, family, politics, medicine and health, race, and social class.

HTS 3018. New Religions and Cults in America
3-0-3.
Explores controversial and influential new religious movements and cults in America, focusing on their origin, appeal, and impact.

HTS 3020. Gender and Technology
3-0-3.
Course examines the ways in which the design, development, and application of technologies, as well as cultural responses to them, have been gendered historically.

HTS 3021. Women in Science and Engineering
3-0-3.
Women in science and engineering and gender differences in participation, location, and status. Examines education, access, and apprenticeship, and the culture of science and engineering.

HTS 3023. Slaves without Masters: Free People of Color before 1865
3-0-3.
Free people of color during the era of slavery, including everyday life, political and social philosophies, literature, community development, and movements for social change.

HTS 3024. African-American History to 1865
3-0-3.
The experience of African and African-American people in North America from the beginnings of slavery until the era of emancipation in the Civil War.

HTS 3025. African-American History since 1865
3-0-3.
The African-American experience since 1865, including Reconstruction, segregation, the African-American family, the Harlem Renaissance, the Civil Rights Movement, and Black Power.

HTS 3026. Sociology of Race and Ethnicity
3-0-3.
Nature and significance of dominant/minority relations, including legacies of colonialism and slavery, roots of residential segregation, and effects of race on American politics.

HTS 3031. European Labor History
3-0-3.
The labor movement from 1700s to the present, including an examination of Marx and socialism, unionization, and work conditions, especially in Britain, Germany, and France.

HTS 3032. Modern European Intellectual History
3-0-3.
Introduction to intellectual problems and trends in modern Europe, including loss of faith in progress, evil and ethics, post-colonialism, feminism, linguistics, and psycho-analytic thought.

HTS 3033. Medieval England
3-0-3.
Political, economic, and cultural development of England during the Middle Ages (c. 350-1400). Myths and legends of Stonehenge, the Druids, and King Arthur's Camelot explored.

HTS 3035. Britain from 1815-1914
3-0-3.
Developments in nineteenth-century Britain, including the industrial revolution, the growth of political democracy, imperialism, and movements for Irish Home rule and democratic socialism.

HTS 3036. Britain Since 1914
3-0-3.
Britain's experience of two world wars, the growth of Labour and decline of the Liberals, the Welfare State, Thatcherism, and Tony Blair's "New Labour."

HTS 3038. The French Revolution
3-0-3.
Economic, intellectual, and cultural causes of the French Revolution, Jacobinism and the Terror, careers of Robespierre and Danton, and rise and fall of Napoleon's empire.
HTS 3039. Modern France
3-0-3.
France from 1815 to 1968, emphasizing the continuing project of creating France as a powerful nation within the context of global culture and politics.

HTS 3041. Modern Spain
3-0-3.
Resistance to Napoleon, deformed industrialization, Anarchist and fascist experiments form the background for Spain's transition from dictatorship to democracy after Franco's death.

HTS 3043. Modern Germany
3-0-3.
Consolidation of Germany since Napoleonic wars, Germany's contributions, both hideous and glorious, to Europe and the West, and recent unification of East and West Germany.

HTS 3045. Nazi Germany and the Holocaust
3-0-3.
Genocide in the twentieth century, emphasizing the extermination of European Jews. Course investigates roots of racism, eugenics, and ideologies of genocide in comparative perspective.

HTS 3061. Modern China
3-0-3.
The decline of Confucian order, the impact of the West, changes and continuities of Chinese culture, the Communist revolution, nationalism, and economic reforms since 1978.

HTS 3062. Modern Japan
3-0-3.
Japan's transformation in one century from a feudal state into an economic superpower and the impact of these changes on the Japanese people.

HTS 3063. Outposts of Empire: Comparative History of British Colonization
3-0-3.
Analysis of four British settlement colonies - Australia, New Zealand, Canada, and South Africa - emphasizing settlement, race relations, and national identity.

HTS 3064. Sociology of Development
3-0-3.
Course examines competing perspectives on international development and surveys some of the crucial issues, including political instability, facing the Third World today.

HTS 3066. Sociology of Politics and Society
3-0-3.
Political sociology studies the way power is distributed in society. This course takes a comparative and historical approach, focusing on the development of the nation-state.

HTS 3067. Revolutionary Movements in the Modern World
3-0-3.
Comparative analysis of the origin, development, and impact of major twentieth-century revolutionary movements.

HTS 3082. Sociology of Science
3-0-3.
The growth of science, its social structure: deviance and norms, the social context of scientific knowledge and practice, and science policy.

HTS 3083. Technology and the Shaping of American Society
3-0-3.
The complex interplay between technical innovation and cultural change in the United States since 1850, with emphasis on the emergence of modern consumer-oriented society.

HTS 3084. Culture and Technology
3-0-3.
Modernism and post-modernism: this course investigates culturally creative responses to modern manufacturing, transportation (trains, cars, airplanes), evolving gender ideals, and new communications.

HTS 3085. Law, Technology, and Politics
3-0-3.
Examines the ways in which courts, legislatures, and regulatory agencies have responded to challenges posed by new technology and shaped the course of technical change.

HTS 3086. Sociology of Medicine and Health
3-0-3.
Relationship between health and society, including health care problems in the United States and culture's role in defining health and sickness and in determining appropriate therapies.

HTS 3101. Logic of Historical and Social Research
3-0-3.
Interdisciplinary survey based on critical readings of the methods historians and social scientists use to generate knowledge about social life. Students engage in "hands-on" research.

HTS 3102. Social Theory and Social Structure
3-0-3.
Introduction to social theory, providing students with skills for reading theory and examining works of major social theorists including Marx, Weber, Durkheim, Gilman, and Bourdieu.

HTS 4001, -02, -03, -04, -05. Seminar in United States History
4-0-4.
Advanced undergraduate topics in U.S. history. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4011, -12, -13, -14, -15. Seminar in Sociology
4-0-4.
Advanced undergraduate topics in sociology. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4031, -32, -33, -34, -35. Seminar in European History
4-0-4.
Advanced undergraduate topics in European history. Designed for HTS majors, but open to other students with junior or senior standing.
HTS 4061, -62, -63, -64, -65. Seminar in Asian History 4-0-4.
Advanced undergraduate topics in Asian history. Designed for HTS majors, but open to other students with junior or senior standing.

HTS 4081, -82, -83, -84, -85. Seminar in History of Technology 4-0-4.
Advanced undergraduate topics in the history of technology. Designed for HTS majors, but open to other students with junior or senior standing.

Allows a group of students and a professor to study topics not covered in other courses in the department.

HTS 4925, -26, -27, -28, -29. Special Problems in History, Technology, and Society Credit hours to be arranged.
Individual studies of topics of current interest in history, technology, and society.

HTS 6001. Proseminar in Social Theory 3-0-3.
An introduction to key theoretical traditions in modern social theory, including both classical and contemporary works.

HTS 6002. Proseminar in the History of Technology 3-0-3.
Identifies major areas of interest in the history of technology and introduces a variety of approaches to the discipline.

Examines the social experiences of Americans and the political contexts in which they lived.

HTS 6102. Social and Political History of Europe 3-0-3.
Classic works and debates in European social history, including transition from feudalism to capitalism, French Revolution, rural history and industrialization, and origins of nationalism.

HTS 6103. Social and Political History of the Nonwestern World 3-0-3.
Covers basic empirical and relevant theoretical literature in English on the social and political history of Africa, Asia, and/or Latin America.

HTS 6105. Urbanization and Comparative Development 3-0-3.
An intensive introduction to the political, social, economic, and technological forces involved in the processes of urbanization and global development.

Examines the historical evolution and contemporary operations of business institutions within the larger context of political economy; emphasis on business, government, and technology.

Examines subjects such as the meaning of work, working-class movements, and workers’ accommodation and resistance to managerial and technological changes in the workplace organization.

HTS 6108. Race, Ethnicity, and Industrialization 3-0-3.
Examines racial and ethnic dimensions of industrializing societies and industrial settings; links industrial change with shifts in race relations, ethnic identities, and minority behavior.

HTS 6109. Gender, Sexuality, and Society 3-0-3.
Explores constructions of gender roles and sexuality in history and in contemporary society.

HTS 6110. Gender, Science, and Technology 3-0-3.
Examines the ways in which gendered relations shape scientific and technological institutions, careers, artifacts, knowledge, and culture.

HTS 6111. Technology and Modern Culture 3-0-3.
Introduces the complex interplay between technological systems and diffuse systems of consumption, social organization, and culture beyond the act of production.

Empirical investigation of scientific and engineering practice in historical and contemporary settings.

HTS 7001. Foundations of Socio-Historical Analysis 3-0-3.
Introduces key concepts and methods used in the historical analysis of social phenomena.

HTS 7002. Research and Writing Seminar 3-0-3.
Introduces methods of socio-historical research and writing; requires preparation of an original research paper based on primary sources.

An intensive, team-taught reading seminar covering major themes and classic works in these fields.
NFS 8002. Social and Cultural Perspectives on Technology and Science 3-0-3.
An intensive, team-taught seminar examining technology and science through techniques and perspectives drawn from social and cultural studies.

HFS 8801, -2, -3, -4, -5, -6. Special Topics Credit and class hours equal last digit in course number.

HFS 8901, -2, -3, -4, -5, -6. Special Problems Credit hours to be arranged.

HFS 8997. Teaching Assistantship Credit hours to be arranged.
For graduate students holding a teaching assistantship.

HFS 8998. Research Assistantship Credit hours to be arranged.
For graduate students holding a research assistantship.

HFS 9000. Doctoral Thesis Credit hours to be arranged.

HISTORY
HIST 2111. The United States to 1877 3-0-3.
Colonial settlement, the American Revolution and the Constitution, antebellum expansion, slavery and plantation economy, sectional conflict and Civil War, Reconstruction.

HIST 2112. The United States since 1877 3-0-3.
The social, political, and economic history of the United States since Reconstruction. Topics include American industrialization, two world wars, New Deal, and the Civil Rights movement.

SOCIOLOGY
SOC 1101. Introduction to Sociology 3-0-3.
A study of basic social relations, including social structure and functions, analysis of social processes, the foundations of personality, and analysis of social organization.

The Sam Nunn School of International Affairs

www.inta.gatech.edu

Established in 1990
Location: Habersham Building, 781 Marietta Street
Telephone: 404.894.3195
Fax: 404.894.1900

Chair and Professor—Linda P. Brady; Director of Graduate Programs and Professor—William J. Long; Director of Undergraduate Programs and Associate Professor—Brian Woodall.
Professors—John E. Endicott, John W. Garver, Robert Kennedy, Sam Nunn, Daniel S. Papp, Michael D. Salomone.
Associate Professors—Peter Brecke, Patrick Ireland, Fei-Ling Wang.
Assistant Professors—Vicki Birchfield, Kirk Bowman, Molly Cochran, Mark R. Hallerberg, Jesus Felipe, Adam Stulberg, Katja Weber.
Jointly Appointed Associate Professor—Richard P. Barke.

General Information
The Sam Nunn School of International Affairs offers educational programs that provide an enhanced understanding of the factors that shape the world in which we will live and work in the twenty-first century. The programs of study equip students with the quantitative and qualitative skills needed to engage in strategic planning and analysis in an international context. A unique interdisciplinary curriculum provides students with an understanding of the increasing importance of technology in a borderless world. Many graduates assume professional positions with business, government, and international organizations. Other graduates pursue postgraduate or professional education in a range of disciplines that includes law, business, international affairs, public administration, and economics.

The Sam Nunn School of International Affairs is the only one of its kind at a leading technological institute. The educational programs administered by the Sam Nunn School at Georgia Tech are designed to equip students with the skills, values, and experience to build bridges between the world of science and the world of international relations.
Undergraduate Programs
The Sam Nunn School offers two outstanding undergraduate degree programs: the Bachelor of Science in International Affairs and the Bachelor of Science in International Affairs and Modern Language. These programs are designed to prepare graduates for careers in what is rapidly becoming a borderless world.

Bachelor of Science in International Affairs
The Bachelor of Science in International Affairs (B.S.I.A.) program includes instruction in international affairs, foreign languages, ethics and philosophy, social and natural sciences, and computer science. Upper-division course work provides training in four substantive areas:
- technology, ethics, and scientific analysis;
- international security and diplomacy;
- comparative politics, cultures, and societies; and
- international political economy.

Graduates of the B.S.I.A. program are prepared for advanced graduate and professional study and are ready for employment in internationally oriented firms, government agencies, and nonprofit organizations.

International Affairs majors are strongly encouraged to enhance their education through participation in study abroad programs, internships, and a host of on- and off-campus programs. In addition to the numerous opportunities afforded through Georgia Tech’s Office of International Education, the Sam Nunn School sponsors rigorous summer study abroad programs in the European Union (Brussels), China (Shanghai), Costa Rica, and Argentina (Buenos Aires).

Recognizing the importance of professional experience in enhancing a student's education, the Sam Nunn School encourages majors to pursue an internship or participate in the Cooperative Plan in their field of interest. In addition, students are strongly encouraged to get involved in a range of extracurricular activities, including Model United Nations; the European Union Center; AIESEC; Sigma Iota Rho (the International Affairs honor society); the Center for International Strategy, Technology, and Policy; the International Affairs Student Organization; and student conferences. Students are encouraged to take advantage of guest lecturers and to participate in the annual Sam Nunn/Bank of America Policy Forum.

Bachelor of Science in International Affairs (Suggested Schedule)

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 or MATH 1712</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>ML ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>INTA 1001 ORIENTATION TO INTA</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 or MATH 1711</td>
<td>4</td>
</tr>
<tr>
<td>CS 1322, ECE 2030, MGT 4058, MGT 4661, or CP 4510</td>
<td>3</td>
</tr>
<tr>
<td>ML ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>INTA 1110 INTRO. TO INTL. RELATIONS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2010 EMPIRICAL METHODS</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2030 ETHICS IN INTL. AFFAIRS</td>
<td>3</td>
</tr>
<tr>
<td>ML ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>LAB SCIENCE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>HTS 1031 or 2036 or 2037 or 2062</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2100 GREAT POWER RELATIONS</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2210 COMP. POLITICAL PHIL.</td>
<td>3</td>
</tr>
<tr>
<td>ML ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>LAB SCIENCE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>
Requirements and Electives

The International Affairs Core
Student majors acquire an understanding of the core issues in international affairs by completing the following required courses: INTA 1001, 1110, 2010, 2030, 2100, 2210, 3110, 3203, 3301, and 4010. Students are encouraged to complete INTA 2010 early to make the most of their upper-division studies. In addition, student majors are required to round out their studies with INTA 4400, a capstone senior seminar.

Health and Performance Sciences
All Georgia Tech students must complete HPS 1040, 1062, 1063, or 1064, a two-hour health and “wellness” course.

Humanities and Fine Arts
The ability to communicate effectively is essential to success in almost any meaningful endeavor. To this end, students are required to complete six hours of humanities/fine arts course work, including ENGL 1101 and 1102. In addition to 12 hours of modern foreign language study (see the following section, “Courses Related to the Major”), student majors are encouraged to satisfy the Humanities/Fine Arts requirement with additional foreign language course work.

Social Science Electives
In order to satisfy the U.S./Georgia history and Constitution requirements, students must complete one of the following courses: INTA 1200, HIST 2111, HIST 2112, POL 1101, or PUBP 3000. International Affairs majors are encouraged to take INTA 1200, which examines American government in relation to political and economic systems in countries around the world. In addition, students are required to complete nine hours of social science course work from a list of designated courses.

Mathematics and Sciences
An understanding of scientific methodology and quantitative analytic skills is essential for practitioners and policymakers in today’s international arena. The mathematics requirement may be satisfied by one of the following sequences: MATH 1501-2 or MATH 1711-2. In addition, students are required to complete six hours in one of the following sequential laboratory science courses: BIOL I-II, CHEM I-II, EAS I-II, or PHYS I-II.

Computer and Information Literacy
The information revolution is transforming international affairs. More than ever before, the solution of real-world problems demands an understanding of and the ability to use computers and information technology. In order to gain these essential skills, students are required to complete CS 1321 and one of the following: CS 1322, CP 4510, ECE 2030, MGT 4058, or MGT 4061.

Courses Related to the Major
The B.S.I.A. curriculum is multidisciplinary, and student majors are required to complete a total of 18 hours of courses in fields related to the major. This requirement is satisfied by completing the following courses: 12 hours of foreign language
study; ECON 2100, 2105, or 2106; and one of the following courses that survey European or Asian history: HIST 1031, 2036, 2037, or 2062.

Free and Cluster Electives
International Affairs majors are encouraged to use electives to tailor-fit the core education they receive with their own specific career and postgraduate objectives. Students are required to complete at least 12 hours of elective offerings in courses taught in the Sam Nunn School as well as a 15-hour nonmajor cluster taught outside the School.

Bachelor of Science in International Affairs and Modern Language
In partnership with the School of Modern Languages, the Sam Nunn School offers the Bachelor of Science in International Affairs and Modern Language, with separate concentrations in French, German, Japanese, and Spanish. Students in this program receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies. A detailed description of the degree program is found in the School of Modern Languages section of this catalog.

Certificate Programs
The Sam Nunn School, often in conjunction with other units of the Ivan Allen College, administers three certificate programs. These programs enable students to pursue a focused program of study in a specific area of regional/international specialization or as preparation for a career in the legal world. The School awards the following certificates:
- Asian Affairs Certificate (available to majors and nonmajors)
- European Affairs Certificate (available to majors and nonmajors)
- International Affairs Certificate (available only to nonmajors)
A certificate is awarded upon successful completion of a predetermined 12-hour cluster of courses approved by the academic advisor or a specific faculty member. All courses must be taken on a letter-grade basis, and a grade of C or better must be received in each course. Certificates will be granted only to students who, in addition to the Certificate program requirements, have satisfied requirements for an undergraduate degree. Detailed information concerning these programs and their requirements is available through the School.

Minor Program
The School offers a Minor in International Affairs. This program is designed for students who want a concentration outside their major that provides a greater depth of study than a certificate program. The Minor in International Affairs requires a minimum of 18 hours of course work, including "Introduction to International Relations," one 2000-level course (not to include INTA 2010), and at least nine hours of upper-division (3000-level or higher) course work. No more than four hours of Special Topics course work may be included in the minor program. Special Problems courses may not be included. All courses must be taken on a letter-grade basis, and a grade of C or better must be received in each course. Courses required by name and number in a student's major degree program may not be included. Detailed information concerning this program and its requirements is available through the School.

Graduate Course Option
Under the Graduate Course Option, undergraduate students with a final grade point average of 3.5 or higher may count six hours of their undergraduate credits toward a master's degree at Georgia Tech in the same field. This means that qualified students could complete the Master of Science in International Affairs with 30 additional hours rather than 36 hours.

Graduate Program
The Master of Science in International Affairs degree program is an 18-month program that is adaptable to the interests and needs of a student who intends to immediately enter a professional career requiring advanced training in international affairs or who intends to continue studying at the doctoral level. The program emphasizes both traditional theoretical knowledge of international relations and strategic planning and analysis. The program includes core courses in:
- international relations theory and strategy;
- comparative politics;
- international political economy;
- international security;
- empirical research methods; and
- modeling, forecasting, and decision making.

Students also have the opportunity to design the program to meet their individual interests through elective offerings in the School and interdisciplinary work in the Schools of Economics and Public Policy; and the Colleges of Computing, Engineering, Management, and others. Overseas programs and internships are encouraged and facilitated by the School.

In addition to 36 semester hours of course work, students must demonstrate foreign language familiarity and economics and computer literacy. These abilities are essential tools for professional or scholarly work in international affairs. Students must satisfy these requirements upon admission or during the program.

Foreign language familiarity is defined as a minimum of one year of college-level work in a single language. This requirement can be fulfilled while in residence or can be demonstrated through an examination taken in the School of Modern Languages.

Economics literacy is satisfied by successful completion of a course or courses in micro and macroeconomic principles and a course in international economics undertaken while at Georgia Tech, or by successful completion of equivalent courses at another institution. Students who complete graduate-level courses in price theory (microeconomics) and national income analysis (macroeconomics) will both satisfy that portion of the literacy requirement and receive elective credit toward their degree.

Computer literacy is satisfied by either:
1) successfully completing (B or higher) at least one semester of classes with content including at least one of the following:
 - programming computers;
 - database design and operation;
 - development and operation;
 - data analysis (if part of statistics courses, at least two quarters or two semesters);
 - simulation model design and use;
 - development and use of geographic information or cartography systems; or
 - operation of large computer systems/computer networks.
2) Having held a job for at least six months in which a significant component of the work entailed one of the activities listed above.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

INTERNATIONAL AFFAIRS

INTA 1001. Orientation to International Affairs
1-0-1.
Speakers from industry, government, the non-profit sector, and academia discuss employment opportunities available to international affairs majors and the skills required to take advantage of those opportunities.

INTA 1002. Effective Study Abroad
1-0-1.
Introduces essential background information concerning countries, concepts, and what to do in order to gain maximum benefit from participation in school-sponsored study abroad programs.

INTA 1110. Introduction to International Relations
3-0-3.
An introduction to the major principles, concepts, actors, and theories of the international system and their application to current issues in world affairs.

INTA 1200. American Government in Comparative Perspective
3-0-3.
Examines American government in relation to other political and economic systems in countries around the world.

INTA 2010. Empirical Methods
3-0-3.
Develops skills in research design, model building, and hypothesis construction. Provides experience in using computer software programs to perform statistical tests including t-tests, chi-square, and regression.

INTA 2030. Ethics in International Affairs
3-0-3.
Surveys the main traditions and theories of international ethics with a focus on intervention and the use of force, human rights, self-determination, and global distributive justice.

INTA 2100. Theoretical Approaches to Great Power Relations
3-0-3.
Prerequisite(s): INTA 1110
Juxtaposes competing explanations for the patterns of conflict and cooperation among nations, illustrated by relations among the great powers of Europe and Asia during the past two centuries.

INTA 2210. Comparative Political Philosophies and Ideologies
3-0-3.
Explores political ideologies and philosophies, including theories of democracy, capitalism, and socialism, as well as rival views of the "good society" in comparative and historical perspective.
INTA 2220. Government and Politics of Western Europe 3-0-3.
A comparative analysis of the politics and major institutions of the countries of contemporary Western Europe.

An introduction to the major issues and aspects of the politics, societies, and cultures of East Asia, and the changing role of the region in international affairs.

INTA 3010. International Technology Transfer 3-0-3.
Prerequisite(s): INTA 1110
Explores the impact of technology transfer on key contexts such as economic development and the international diffusion of defense production and technology.

INTA 3031. Human Rights in a Technological World 3-0-3.
Explores how processes of globalization and advances in communication and technology have heightened and shaped human rights as a concern in international politics.

INTA 3101. International Institutions 3-0-3.
Scrutinizes the evolution of international institutions, and juxtaposes competing theoretical approaches for understanding the changing roles and functions of institutions in world affairs.

INTA 3102. The Problem of Proliferation 3-0-3.
Prerequisite(s): INTA 1110
Explores the political and economic issues, both international as well as domestic, involved in the spread of the weapons of mass destruction since the end of the Second World War.

INTA 3103. The Challenge of Terrorism 3-0-3.
Examines the contexts that nurture domestic and international terrorism, the variety of terrorist organizations, and alternative approaches to combating the problem.

Prerequisite(s): INTA 1110
Examines the theories of bargaining and negotiation, with an emphasis on explaining success and failure in U.S. foreign policy and national security negotiations.

Prerequisite(s): INTA 1200
Analyzes the formulation and implementation of America's foreign policy from 1914 to the present, stressing economic, political, and strategic factors.

Examines contemporary American defense policy, including the formulation of strategy, the defense budget, force structure, and nontraditional uses of military force.

Prerequisite(s): INTA 1110
Explores the contemporary European security environment, including threats, challenges, and various security architectures (e.g., NATO, the WEU, and the OSCE).

INTA 3121. Foreign Policies of Russia and Eurasia 3-0-3.
Examines the many dimensions of the foreign and security policies of Russia and the other new post-Soviet states of Russia and Eurasia.

INTA 3130. Foreign Policy of China 3-0-3.
Analyzes the major dimensions of the foreign policies of the People's Republic of China and the domestic and international influences shaping those policies.

Prerequisite(s): INTA 1110
Examines past, present, and future security concerns in the Pacific, including the Korean peninsula, Japanese defense, the emergence of China as a military power, and the forward basing of American troops and materiel.

INTA 3201. Political Geography 3-0-3.
Prerequisite(s): INTA 1110
Explores geopolitics, the rise and fall of great powers, imperialism, nationalism, nation-states, and elections through the use of geographic scales, regions, and place-specific contexts.

INTA 3203. Comparative Politics 3-0-3.
Prerequisite(s): INTA 1200 and INTA 2010
Contrasts competing theoretical perspectives in the comparative analysis of political systems.

Examines the government and politics of Germany with an in-depth focus on the post-1945 period. NOTE: When taught jointly with the School of Modern Languages, all lectures, assignments, and readings are in German.

Focuses on the challenge of building new social, political, and economic systems in Russia, but also considers some of the special problems confronting the other 14 post-Soviet states.

Investigates the structure and institutions of political power as well as the patterns and features of political change in the contemporary People's Republic of China.

Examines the main institutions, policies, and politics of contemporary Japan. Investigates the impact of social, cultural, and economic forces on Japan's government and politics.
A survey of the history, cultures, social systems, governments, economies, and international roles of Africa. Selected case studies of individual countries are presented.

INTA 3241. Latin American Politics 3-0-3.
Surveys the government and politics of Latin America. The course begins with an overview of the region's geography and history, and then explains why demographic government has had a tenuous existence in this area.

INTA 3301. International Political Economy 3-0-3.
Prerequisite(s): INTA 1110
Analyzes the relationship between political and economic issues in international affairs. Examines the interaction of states and markets in the context of trade, investment, and production.

Surveys theories of economic development and political change, and examines a range of cases that include the European-American experience, the East Asian episode, and the transition from socialism.

Prerequisite(s): INTA 3301
Examines the political economy of international trade and the global production process with particular emphasis on conflict and cooperation in national competition for high-technology industries.

INTA 3321. Political Economy of European Integration 3-0-3.
Explores the processes and problems of political and economic integration in the European Union, the world's largest trading bloc.

INTA 3330. Political Economy of China 3-0-3.
Examines the centuries of stagnation and the recent rapid growth of the Chinese economy, and seeks to understand the current interaction between politics and economic development in the People's Republic of China.

INTA 3331. Political Economy of Japan 3-0-3.
Surveys the political foundations and economic achievements of modern Japan. Explores the interaction of domestic and international forces, and analyzes Japan's changing world role.

INTA 3750. International Language Policies 3-0-3.
Prerequisite(s): INTA 1110
An introduction to the politics, problems, and alternative solutions in national language choices, including a comparative analysis of industrialized and developing nations. Crosslisted with LING 3750.

Selected topics will vary from term to term.

INTA 4010. Science, Technology, and International Affairs 3-0-3.
Prerequisite(s): INTA 1110 and INTA 2010
Explores the impact of science and technology on the international system as well as the role of politics and economics in the development and use of technology.

INTA 4011. Technology and Military Organization 3-0-3.
Addresses the impact of technological developments on the evolution of military organization and on international conflict from the Battle of Agincourt (1415) to the Gulf War (1991).

INTA 4040. Environmental Politics 3-0-3.
Examines the interface between politics and the environment in developing countries. Foci include sustainable development, the politics of the rain forest, eco-tourism, and export agriculture and the environment.

INTA 4121. Seminar in Europe: European Security 3-0-3.
Examines the history, institutional structure, and functions, as well as current policy challenges facing NATO and other European security arrangements.

INTA 4230. Seminar in Europe: European Union 3-0-3.
Explores the history and processes of economic and political integration within the framework of the European Union.

Survey of the politics, history and culture of Argentina. Topics include Argentine economic and political failure, the politics of immigration, and the relationship between culture and development.

INTA 4241. Third World Democratization 3-0-3.
Surveys Third World democratization. Assesses various theories of democratization. Examines various measures of democracy and explores the depth and consolidation of the current democratization boom.

Addresses the profound and consequential process of the Chinese economic reform that started at the end of the 1970s and has led to China's rapid economic growth.
Investigates the organizational apparatus through which the Chinese Communist Party exercises leadership over politics and society, and the way in which reforms have changed those relationships.

Supervised field research on the Chinese institutions and policy-making process especially in the areas of economic and social issues.

INTA 4340. Latin American Regional Economic and Political Integration 3-0-3.
Examines institutional, interest group, international, and economic inputs and outputs of regional integration.

Capstone experience in which students formulate strategies and policies to cope with international problems. Themes vary from seminar to seminar.

INTA 4801, -2, -3. Special Topics 3-0-3.
Selected topics will vary from term to term.

Credit hours to be arranged.
Independent study with a faculty member.

INTA 6002. Strategic Decision Making 3-0-3.
Examines the dynamics of individual, group, organizational, cross-cultural, and international interaction.

This course introduces research methods in international affairs. It emphasizes writing research proposals, empirical techniques, gathering and assembling data, and methods for analyzing and reporting results.

INTA 6004. Modeling, Forecasting, and Decision Making 3-0-3.
This course introduces modeling and forecasting in strategic decision making, analysis of long-term developments, path gaming, formal analysis of games, and simulation.

INTA 6011. International Trade and Technology Transfer 3-0-3.
This course examines the relationship between international trade and technology transfer and their effect on national competitiveness, national security, and international cooperation and coercion.

INTA 6013. Technology Forecasting 3-0-3.
Increasingly rapid technological changes impact international relations in various aspects. This course utilizes qualitative and quantitative methods in assessing the direction and magnitude of such changes.

INTA 6022. Ethics and International Affairs 3-0-3.
An overview of the main tradition and theories of international ethics applied to four major issues: intervention and the use of force; human rights; self-determination; and global distributive justice.

INTA 6102. International Relations Theory 3-0-3.
This course provides an introduction to theoretical approaches to understanding international relations. The focus of the course is on system-level theories and sub-systematic-level theories.

Examines traditional and nontraditional issues in international security, including the uses of military force, military strategy and policy, arms control, peacekeeping, the environment, and migration.

As a seminar for graduate students, this course explores the issues of world order conceptually and empirically. Various political organizations and the major proposals for the world order are critically examined.

This course examines international institutions and their effect on foreign policy decision makers. Specific topics include the theoretical study of cooperation, supranatural organizations, and informal institutions.

INTA 6106. The State in International Affairs 3-0-3.
Explores various concepts of the state in international affairs as well as the concepts of sovereignty and revolution.

INTA 6107. Development and Demography 3-0-3.
This course examines the role population plays in the development of countries and the international system.

This course focuses on the design and implementation of U.S. foreign policy and national strategy in the areas of arms control, the Third World, and economic policy.

INTA 6121. Seminar In Europe: European Security 3-0-3.
This course examines the history, institutional structure and functions, and current policy challenges facing the North Atlantic Treaty Organization (NATO) and other European security institutions.
INTA 6202. Comparative Politics
3-0-3.
This course surveys the major political types of the late twentieth-century world and explores their various development characteristics.

INTA 6203. Comparative Institutional Design
3-0-3.
This course examines the creation, maintenance, and evolution of political institutions and the ways in which institutions affect policy choice.

INTA 6204. Comparative Politics and Strategies of Advanced Industrial States
3-0-3.
This course provides an in-depth assessment of the political and economic behavior of the five largest OECD powers.

INTA 6205. Literacy and Development
3-0-3.
This course analyzes the politics, problems, and alternative solutions in national language choices, including a comparative analysis of industrialized and developing nations.

INTA 6302. International Political Economy
3-0-3.
This course is an introduction to the politics of international economic relations. Major theoretical approaches are applied to international trade, international monetary relations, and global production in the modern era.

INTA 6303. Economic Crisis and Democratization
3-0-3.
This course examines the complex relationship between economic transitions and political reform in authoritarian and newly democratic countries.

INTA 6304. Modernization and Development
3-0-3.
This course empirically examines processes in which a country's organizational structure is altered through economic development, political democratization, and/or social liberalization.

INTA 6305. Political Economy of Foreign Direct Investment
3-0-3.
This course examines the impact of foreign direct investment on the world economy and international trade, as well as the political effects of multi-national corporations.

INTA 6320. Seminar in Europe: European Union
3-0-3.
This course explores the history and processes of economic and political integration within the framework of the European Union.

INTA 6330. Political Economy of East Asia
3-0-3.
This course explores the politics of economic development in China, Japan, and Korea. Focal issues include trade patterns, financial institutions, trade-bloc formation, industrial competitiveness, and the status of U.S.-East Asian economic relations.

INTA 6331. Chinese Political Economy
3-0-3.
This course examines the Chinese social and economic development from the seventh century to current day. Specific emphasis is placed on the political economic reforms of Deng Xiaoping and assessing the implications of continued Chinese modernization.

INTA 6753. Comparative Science and Technology Policy
3-0-3.
Examination of the social, political, and cultural contexts of science and technology, and how they affect the research, development, and regulatory policies of nations. Crosslisted with PUBP 6753.

INTA 7000. Master's Thesis
Credit hours to be arranged.
Under the direct supervision of one or more faculty members, graduate students will complete an original research design and execute that study.

INTA 8801, -2, -3, -4, -5. Special Topics
Credit and class hours equal last digit in course number.

INTA 8901, -2, -3. Special Problems
Credit hours to be arranged.

INTA 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students with a teaching assistantship.

INTA 8998. Research Assistantship
Credit hours to be arranged.
For graduate students with a research assistantship.

School of Literature, Communication, and Culture

www.lcc.gatech.edu

Established in 1990
Location: 335 Skiles Building
Telephone: 404.894.2730 or 404.894.2731
Fax: 404.894.1287

Chair and Professor—Robert Kolker; Associate Chair and Professor—Peter McGuire; Director of Graduate Studies and Professor—Janet Murray; Associate Director of Graduate Studies and Wesley Professor of New Media—Jay David Bolter; Director of Undergraduate Studies and Professor—Jay Telotte; Professors Emeriti—Maxine Turner, Irving E. Foote. Professors—Philip Auslander, Richard A. Grusin, Kenneth Knöespel.
Associate Professors Emeriti—Edith H. Blicksilver, Sarah E. Jackson.

Associate Professors—James J. Bynum, Carol A. Colatrella, Sandra Corse, T. Hugh Crawford, Blake T. Leland, Matthew O’Brien, Sara M. Putzell, Alan Rauch, Carol Senf, Robert E. Wood.

Assistant Professors—Matthew D. Causey, Deborah R. Grayson, Diane Gromala, TyAnna K. Herrington, Daryl S. Ogden, Kavita Philip, Ellen Strain, Greg VanHoosier-Carey, Sha Xin-Wei, Lisa Yaszek, Paul Young.

Academic Professionals—Lissa Holloway-Attaway, Kimberly VanHoosier-Carey.

Director of LCC Continuing Education—Thomas Winn.

Director of DramaTech—Gregory Abbott.

General Information

The School of Literature, Communication, and Culture (LCC) is engaged in rethinking the role of humanities education in an increasingly technological and multicultural environment. The faculty is committed to interdisciplinary research in cultural studies and new media studies at the theoretical and applied levels. In providing humanities and communication courses for all Georgia Tech undergraduates, LCC's curriculum focuses on the scientific and technologically oriented aspects of the humanities, as well as on the incorporation of new electronic media (visual, aural, and textual) into humanities and communication education.

LCC offers a B.S. in Science, Technology, and Culture (STAC) and an M.S. in Information Design and Technology (IDT). Graduates from LCC's undergraduate and graduate programs are positioned to assume important roles as leaders in the exciting new fields developing in the interface between technology and culture. STAC majors receive a rigorous, well rounded education that equips them not only for careers in government, education, and the private sector, but also for postgraduate study in medicine, law, communication, or cultural studies. In addition they find themselves well prepared for the continual learning necessary for their future lives and careers. Most IDT graduates accept positions of responsibility in new media-related careers as Web designers, project managers, new media developers, and educational technologists. Some IDT graduates go on to Ph.D. programs in computing, media studies, communication, and related fields.

Undergraduate Program

Bachelor of Science in Science, Technology, and Culture (Suggested Schedule)

<table>
<thead>
<tr>
<th>First Year - First Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 or MATH 1712</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>LAB SCIENCE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First Year - Second Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST 3115 or 3127</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ML ELECTIVE</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SCIENCE OR COMPUTER SCIENCE ELECTIVE</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Requirements of the Bachelor of Science in Science, Technology, and Culture:

Basic Distribution 59 hours
Major Hours 45 hours
Nonmajor Cluster 9 hours
Free Electives 9 hours
TOTAL 122 hours
Health and Performance Sciences
Students are required to take a two-hour wellness course, HPS 1040, 1062, 1063, or 1064. No student may receive credit for more than three hours of physical education toward the degree.

Nonmajor Cluster
All students must take a nine-hour concentration from a unit other than Literature, Communication, and Culture. This requirement may be met through an existing certificate program or by a nine-hour concentration approved by LCC and meeting the following requirements: (1) all courses must be above the required courses and distribution requirements in the course curriculum; (2) all courses must be either in one discipline or part of an interdisciplinary cluster grouped around a particular topic; and (3) the cumulative average for the concentration must be at least 2.0.

Designated Courses in the Major
All students must take 42 hours of STAC courses including the following groups:

1) LCC 2100;
2) Six hours of STAC historical courses (LCC 2102, 2104, 2106, 2108, 2110, 2112, 2114, 2116, 2118);
3) Nine hours of STAC literary/cultural courses (LCC 2202, 2204, 2206, 2208, 2210, 2212, 2214, 2216, 2218, 3202, 3204, 3206, 3208, 3210, 3212, 3214, 3216, 3218, 3220, 3222, 3224, 3226, 3252, 3254, 3256, 3262, 4200); and
4) Nine hours of STAC issues courses (LCC 3302, 3304, 3306, 3308, 3310, 3314, 3316, 3318, 3352, 3362); and
5) Nine hours of STAC media/communications courses (LCC 3402, 3404, 3406, 3408, 3410, 3412, 4400, 4402, 4404, 4406); and
6) Two additional STAC (LCC) courses.

With the permission of the School, a student may substitute up to six hours of LCC special topics courses for any of these courses except LCC 2100.

Senior Seminars/Thesis
Each student must complete a senior seminar (LCC 4100) or senior thesis (LCC 4102). A student must have a signed contract with a thesis advisor in order to receive permission to register for thesis credit.

Free Electives
Each student must accumulate at least 122 hours of credit toward the Bachelor of Science in Science, Technology, and Culture. Therefore, in addition to the requirements listed here, a student must complete a sufficient number of elective courses either within or outside LCC to complete 122 hours. Typically, this will be nine hours.

Minors and Certificates
LCC provides a minor in Performance Studies and, together with the School of History, Technology, and Society (HTS), provides a minor in Women, Science, and Technology (WST). Students wishing to pursue either of these minors should consult LCC (or, in the case of the WST minor, either LCC or HTS) for detailed information concerning requirements. Courses for both minors are selected from those listed below and, in the case of the WST minor, in the list offered by HTS.

LCC also sponsors a series of certificate programs: in American Literature and Culture, in Film Studies, and in Literary and Cultural Studies. Students wishing to pursue either of these minors should consult LCC (or, in the case of the WST minor, either LCC or HTS) for detailed information concerning requirements. Courses for these certificates are among those listed below, and all fulfill humanities requirements.

LCC and HTS also cooperate in providing a certificate in African-American Studies. Students should consult LCC or HTS for detailed information concerning requirements. Courses for this certificate are selected from among those listed below and from the list offered by HTS.

Advanced Placement
Students with a score of 4 or 5 on the College Board Advanced Placement Exam (taken in conjunction with high school classes) in Composition and Literature or Language and Composition receive credit for English 1101. Students with a score of 750 or higher on the SAT II Subject Test in English receive credit for English 1101. Students with a score of 4 or higher on the International Baccalaureate Exam receive credit for English 1101. Advanced placement credit is not ordinarily given for English 1102.

Writing and Communication Intensive Courses
A number of majors require students to complete writing intensive and communication intensive
courses. Several LCC classes may be counted toward this requirement. Consult course offerings each semester to determine which courses may be counted toward this requirement.

Regents’ Examination
This exam measures proficiency in reading and English composition; a passing score is required by the Board of Regents for graduation. Students who have not passed the exam by the time they have completed 45 hours of degree credit must schedule ENGL 0012 or 0015 in their next semester in residence. In addition to ENGL 0012 and 0015, LCC offers short workshops in preparation for the exam, consultation with those who have failed, and an appeal system for those who fail.

Graduate Program

Master of Science in Information Design and Technology
Georgia Tech’s M.S. in Information Design and Technology (IDT) is a graduate program of humanities-based professional education for the digital age. IDT students follow a studio- and seminar-based curriculum that places digital design within technical, cultural, aesthetic, and historical contexts. The program rests on the assumption that digital media belong to an historical, aesthetic, and conceptual continuum whose legacy and future must be addressed in order to understand the digital artifact in its own right.

Georgia Tech’s IDT program is helping to establish the standard for professional education in information design and to raise the level of professional practice. It is aimed at providing a principled-based education that will guide its graduates over the course of their careers in a rapidly changing technical environment.

Because of its technical and disciplinary diversity, the IDT program can offer students both the practical skills and the theoretical foundation they need to assume leadership roles as designers, producers, and critical analysts of digital media. Graduates of the program pursue careers in commerce, entertainment, art, and education with a variety of national and international organizations. Some go on to Ph.D. work in computer science or the humanities.

The IDT program accepts 25 full-time students each fall term. IDT students come from a range of educational backgrounds and have diverse intellectual and creative objectives. Most have significant work experience in a professional field. Students come with academic backgrounds from such fields as acting, anthropology, architecture, communications, computer science, engineering, English studies, graphic design, history, journalism, law, library science, management, marketing, philosophy, social work, software development, technical writing, and television production. The program welcomes a socially diverse and international student body.

NOTE: For specific admissions requirements, contact the director of Graduate Studies.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

LITERATURE, COMMUNICATION, AND CULTURE

LCC 2100. Introduction to Science, Technology, and Culture
3-0-3.
Prerequisite(s): ENGL 1102
As the introductory course to the major in Science, Technology and Culture, this course explores the ways in which disciplines construct and represent the knowledge they generate.

LCC 2102. Science, Technology, and the Classical Tradition
3-0-3.
Prerequisite(s): ENGL 1102
Explores the definition and transmission of science and technology within Greek, Arabic, and Medieval Latin contexts.

LCC 2104. The Age of Scientific Discovery
3-0-3.
Prerequisite(s): ENGL 1102
Examines the relationships among texts representing the literary, artistic, and scientific thought of the fifteenth and sixteenth centuries.

LCC 2106. The Age of Scientific Revolution
3-0-3.
Prerequisite(s): ENGL 1102
Examines interrelation of technological, literary, artistic, and philosophical thought in the late sixteenth and seventeenth centuries.

LCC 2108. Science, Technology, and Enlightenment
3-0-3.
Prerequisite(s): ENGL 1102
Considers the conceptual reformulation of the internal and external world urged by the sciences, technology, and culture of the Enlightenment.
LCC 2110. Science, Technology, and Romanticism
3-0-3.
Prerequisite(s): ENGL 1102
Examines the relationships among romantic ideology, science, and literature, including Romanticism's imaginative responses to Enlightenment science and the Industrial Revolution.

LCC 2112. Evolution and the Industrial Age
3-0-3.
Prerequisite(s): ENGL 1102
Connects later nineteenth-century scientific and technological concepts and discoveries, particularly theories of evolution, to the literature and culture of the industrial age.

LCC 2114. Science, Technology, and Modernism
3-0-3.
Prerequisite(s): ENGL 1102
Explores a cross-section of technological, scientific, and cultural production characteristics of the first half of the twentieth century.

LCC 2116. Science, Technology, and Postmodernism
3-0-3.
Prerequisite(s): ENGL 1102
Focuses on the relation among information technology, nonlinear physics, and the art, literature, and culture of postmodernism. Explores postmodern critiques of the Enlightenment and modernity.

LCC 2118. Science, Technology, and American Empire
3-0-3.
Prerequisite(s): ENGL 1102
Considers nineteenth- and twentieth-century science and technology as they shaped American culture with particular attention to the relationship between science, technology, progress, and empire.

LCC 2202. Ancient and Medieval Literature and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Introduction to Greece, Rome, and Medieval Europe through an examination of one or a few major cultural conflicts expressed in the literary genres and periods.

LCC 2204. Renaissance Literature and Culture
3-0-3.
Prerequisite(s): ENGL 1102
An examination of literature and culture from 1450 to 1650 with an emphasis on both major achievements and divergent voices.

LCC 2206. Enlightenment Literature and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Examines the nature of the age from an initial boldness, optimism, and faith in reason to a recognition of its limits.

LCC 2208. Formations of American Culture
3-0-3.
Prerequisite(s): ENGL 1102
American literature from the Puritan period through the Civil War, including major movements, key authors and texts, and study of literary works within broader historical and cultural context.

LCC 2210. Rearticulations of American Culture
3-0-3.
Prerequisite(s): ENGL 1102
Examines representations of the USA from its geographical expansion in the late nineteenth century to the closing of the frontier and emergence as global power.

LCC 2212. British and Continental Romanticism
3-0-3.
Prerequisite(s): ENGL 1102
Examines British and Continental Romanticism as it appeared during the latter part of the eighteenth century and the first half of the nineteenth century.

LCC 2214. Victorian Literature and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Investigates the period 1830-1901 in English literature and culture, focusing on how that period defined key questions, especially ones about human nature, society, and the relation of religion to science.

LCC 2216. Literary and Cultural Modernism
3-0-3.
Prerequisite(s): ENGL 1102
A partial investigation of the aesthetic ferment that characterizes English-language cultural production from the turn of the century to the end of WWII.

LCC 2218. Literary and Cultural Postmodernism
3-0-3.
Prerequisite(s): ENGL 1102
A survey of major themes, representational techniques, and social and cultural concerns of postmodern art and literature.

LCC 2400. Introduction to Media Studies
3-0-3.
Prerequisite(s): ENGL 1102
This course offers an introduction to the historical development and cultural impact of various forms of media: print, radio, television, film, and interactive electronic applications.

LCC 2500. Introduction to Film
3-0-3.
Prerequisite(s): ENGL 1102
Introduces film techniques and vocabulary in an historical and cultural context. Written texts are supplemented by viewings of specific shots, scenes, and films.

LCC 2600. Introduction to Performance Studies
3-0-3.
Prerequisite(s): ENGL 1102
An examination of the origins of the field of Performance Studies in literary study of theater and drama, anthropological investigations of ritual, and sociological analyses of performance in everyday life.

LCC 2661. Theater Production: Set Design and Construction
0-3-1.
Prerequisite(s): ENGL 1102
In this "hands-on" course, students learn theatrical construction and painting techniques while building scenery for DramaTech productions.
LCC 2662. Theater Production II: Lights, Properties, and Costumes
0-3-1.
Prerequisite(s): ENGL 1102
In this "hands-on" course, students create the lighting, property, and costume effects for two DramaTech productions.

LCC 2813. Special Topics in Science, Technology, and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Study of one or more topics of current interest in the area of science, technology, and culture.

LCC 2823. Special Topics in Literary and Cultural Studies
3-0-3.
Prerequisite(s): ENGL 1102
Examination of one or more topics of current interest in literary and cultural studies.

LCC 3202. Studies in Fiction
3-0-3.
Prerequisite(s): ENGL 1102
Examines the elements of fiction and what has made fiction, especially the novel, distinctive, popular, and enduring. Readings may include formal, cultural, and historical theories.

LCC 3204. Poetry and Poetics
3-0-3.
Prerequisite(s): ENGL 1102
A study of traditions of poetic practice and poetic theory in English, in conjunction with a weekly workshop session centered on the student's own poetry.

LCC 3206. Studies in Communication and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Examines ways in which forms and media of communication create and are created by other cultural constructs.

LCC 3208. African-American Literature and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Explores the works of African-American writers from the Colonial period to the present and examines a variety of cultural constructs that have fundamentally shaped the African-American literary tradition.

LCC 3210. Ethnicity in American Culture
3-0-3.
Prerequisite(s): ENGL 1102
Explores literary and historical works considering ethnic issues in American culture, including immigration, social assimilation, "double consciousness," the development of ethnic identity/pride, and multiculturalism.

LCC 3212. Women, Literature, and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Students in this course will analyze writings by women and examine feminist and other relevant cultural critiques of literature.

LCC 3214. Science Fiction
3-0-3.
Prerequisite(s): ENGL 1102
Examines science fiction texts from the last 200 years to show how they reflect ambiguous reactions to change.

LCC 3216. Theater I: Classic and Medieval
3-0-3.
Prerequisite(s): ENGL 1102
The dramatic literature, theory, performance practices, and historical and cultural context of the theater from prehistory through the Medieval period.

LCC 3218. Theater II: Renaissance-Restoration
3-0-3.
Prerequisite(s): ENGL 1102
The dramatic literature, theory, performance practices, and historical and cultural context of theater from the Renaissance through Restoration.

LCC 3220. Theater III: Modern-Contemporary
3-0-3.
Prerequisite(s): ENGL 1102
The dramatic literature, theory, performance practices, and historical and cultural contexts of the theater from Modernism to our contemporary period.

LCC 3222. Regionalism in American Literature
3-0-3.
Prerequisite(s): ENGL 1102
Explores the literary and cultural representations of a particular American region or locale (the South, the West, California, New York City, etc.) and the role such representations have played in the formation of both regional and national identity.

LCC 3224. Gender Studies
3-0-3.
Prerequisite(s): ENGL 1102
Considers the cultural concept of gender and its usefulness as a theoretical category in a variety of disciplines. Includes cultural studies of literature, communication media, cultural anthropology, sociology, history, and science.

LCC 3226. Major Authors
3-0-3.
Prerequisite(s): ENGL 1102
An examination of the works and career of a major author in historical and cultural context.

LCC 3252. Studies in Film and Television
3-0-3.
Prerequisite(s): LCC 2400 or LCC 2500
Explores in depth a theoretical issue central to film and/or television. Among its concerns are authorship, genre theory, spectatorship, ideology, narrative theory, and the relationship between these media and social history.

LCC 3254. Film History
3-0-3.
Prerequisite(s): LCC 2500
Surveys the history of film from its machine origins to its present digital developments. It focuses on various movements, figures, and narrative developments in world cinema.
LCC 3256. Major Filmmakers
3-0-3.
Prerequisite(s): LCC 2500
Traces in depth an individual artist’s career and affords students the opportunity to immerse themselves in the works of an important figure in the world of film.

LCC 3262. Performance Studies
3-0-3.
Prerequisite(s): LCC 2600
An examination of cultural theories of performance and their application to the analysis of specific performative events.

LCC 3302. Science, Technology, and Ideology
3-0-3.
Prerequisite(s): ENGL 1102
Examines specific scientific, philosophical, and literary/cultural texts in order to determine the role ideology plays in the construction of culture, especially scientific and technological culture.

LCC 3304. Science, Technology, and Gender
3-0-3.
Prerequisite(s): ENGL 1102
Examines specific philosophical, scientific, and cultural texts to determine the role that gender has played in scientific and technological knowledge, currently and historically.

LCC 3306. Science, Technology, and Race
3-0-3.
Prerequisite(s): ENGL 1102
Examines specific historical and contemporary constructions of race, within the prevailing scientific theories and ideologies in order to determine the role played by “race” in scientific and technological culture.

LCC 3308. Environmentalism and Ecocriticism
3-0-3.
Prerequisite(s): ENGL 1102
Surveys the emergence of ecocriticism as an analytical framework for interpreting the verbal and visual rhetorics of environmentalism in both western and nonwestern cultures.

LCC 3310. The Rhetoric of Scientific Inquiry
3-0-3.
Prerequisite(s): ENGL 1102
This course takes as its subject the ways in which argumentative and persuasive discourse is used to create and disseminate scientific knowledge.

LCC 3314. Technologies of Representation
3-0-3.
Prerequisite(s): ENGL 1102
Explores historical, cultural, and theoretical issues raised by technologies of representation, including written, spoken, and gestural languages; print, painting, and illustration; still and moving photography; recorded sound; and computer-mediated communications and interactive digital media.

LCC 3316. Science, Technology, and Post-colonialism
3-0-3.
Prerequisite(s): ENGL 1102
Surveys the development of Post-colonial literary theory and historiography in order to analyze the interdependent discourses and practices of post-Enlightenment science/technology and European imperialism.

LCC 3318. Biomedicine and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Discusses the history of biology and medicine; popular representations of health, disease, and the medical establishment; and the cultural implications of medical imaging technologies.

LCC 3332. Film and/as Technology
3-0-3.
Prerequisite(s): LCC 2500
Examines the development of film technology and the implications of that technology for cinema’s treatment of technology.

LCC 3362. Science, Technology, and Performance
3-0-3.
Prerequisite(s): LCC 2600
Examines contemporary theories of performance in relation to the production of scientific knowledge and technologies of representation.

LCC 3400. Concepts and Principles in Technical Communication
1-0-1.
Prerequisite(s): ENGL 1102
Introduces students to the concepts and principles that drive technical communication. Students will learn about technical communication by studying principles that influence this genre of document production.

LCC 3401. Technical Communication Practices
2-0-2.
Prerequisite(s): ENGL 1102
Designed to introduce students to the types of documents and communication abilities required by their future professions, the course focuses on an understanding of both visual and verbal rhetoric in application to technical documents.

LCC 3402. Graphic and Visual Design
3-0-3.
Prerequisite(s): LCC 2100 or LCC 2400
Introduction to fundamentals of graphic and visual design of print and digital media. Familiarity with use of the World Wide Web, page layout, and computer graphic software is recommended.

LCC 3404. Designing for the Internet
3-0-3.
Prerequisite(s): LCC 2100 or LCC 2400
An introduction to the theory and practice of effective communication on the Internet through the design of documents for the World Wide Web.

LCC 3406. Video Production
3-0-3.
Prerequisite(s): LCC 2100 or LCC 2400
An introduction to video production including basic skills in storyboarding, scripting, filming, editing, and sound.
LCC 3408. The Rhetoric of Technical Narratives
3-0-3.
Prerequisite(s): LCC 2100
Focuses on the rhetorical problems posed by such narrative documents as technical proposals, recommendation reports, grant proposals, and marketing studies. Emphasis on document design, graphics, navigation systems, and editing.

LCC 3410. The Rhetoric of Nonlinear Documents
3-0-3.
Prerequisite(s): LCC 2100
Focuses on the rhetorical problems posed by hypertext documents. Emphasis in designing for multiple audiences, page and document design, and navigation in a nonlinear environment.

LCC 3412. Communicating Science and Technology to the Public
3-0-3.
Prerequisite(s): LCC 2100
Examines both the theoretical and practical issues involved in communicating scientific and/or technological material to a variety of lay audiences.

LCC 3661. Theater Production III: Management
0-3-1.
Prerequisite(s): ENGL 1102
In this "hands-on" course, students will create and execute a publicity campaign and operate the box office for DramaTech productions.

LCC 3662. Theater Production IV: Acting
0-3-1.
Prerequisite(s): ENGL 1102
This course provides students an opportunity to perform on stage in a production at DramaTech. Auditions are required.

LCC 3823. Special Topics in Literature and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Examination of one or more topics of current interest in literary and cultural studies.

LCC 3833. Special Topics in Issues of Science, Technology, and Culture
3-0-3.
Prerequisite(s): ENGL 1102
Study of one or more current issues in science, technology, and culture.

LCC 3843. Special Topics in Communication
3-0-3.
Prerequisite(s): ENGL 1102
Examination of one or more topics of current interest in communication studies.

LCC 3853. Special Topics in Film
3-0-3.
Prerequisite(s): LCC 2500
Examines one or more current topics in film studies.

LCC 3863. Special Topics in Performance
3-0-3.
Prerequisite(s): LCC 2600
Examination of one or more topics of current interest in performance studies.

LCC 4100. Seminar in Science, Technology, and Culture
3-0-3.
Prerequisite(s): LCC 2100
A capstone seminar to the major, this course will ask students to draw upon their training in order to engage topical issues in the cultural studies of science.

LCC 4102. Senior Thesis
3-0-3.
Prerequisite(s): LCC 2100
Preparation for and writing of a thesis through faculty-directed independent study.

LCC 4200. Seminar in Literary and Cultural Theory
3-0-3.
Prerequisite(s): ENGL 1102
Concentration on a single literary or cultural theorist and/or a major school of literary or cultural theory. Schools of theory that will be considered include, among others, Materialist, Feminist, Structuralist, Post-Structuralist, and Cultural Studies.

LCC 4400. Seminar in Media Studies
3-0-3.
Prerequisite(s): LCC 2400
Offers an in-depth investigation of the historical development and cultural impact of different forms of media including television, film, and interactive electronic applications.

LCC 4402. Basics of Multimedia Design
3-0-3.
Prerequisite(s): ENGL 1102
Introduces students to client and user needs and technology assessments, the interactive design process, and creation of proof-of-concept applications using Macromedia Director.

LCC 4404. Advanced Design and Production
3-0-3.
Prerequisite(s): LCC 4402
Intensive studio course dealing with advanced concepts and techniques of the design and production of interactive multimedia.

LCC 4406. Contemporary Issues in Professional Communication
3-0-3.
Prerequisite(s): ENGL 1102
Intended primarily for students planning careers in professional communication, this course will alternate among a number of issues including intellectual property law, integrating print and electronic media, and cultural studies of corporate environments.

LCC 4600. Seminar in Performance Studies
3-0-3.
Prerequisite(s): LCC 2600
An in-depth investigation of a specific issue or theme in performance studies.
LCC 4602. Performance Practicum
3-0-3.
Prerequisite(s): LCC 2600
Practical experience and theoretical investigations in theater and performance including acting, directing, designing, playwriting, performance art, performance, and new media.

LCC 4904. Internship
Credit hours to be arranged.
Offers students a workplace-based learning experience that stresses application of principles and skills gained in other STC classes.

LCC 4906. Special Problems
Credit hours to be arranged.
Study of specialized aspects of literature or cultural studies selected on the basis of current interest.

LCC 6111. Graphics and Internet Design
3-0-3.
Introduction to graphic, hypertextual, and multimedia design with particular emphasis on the Internet.

LCC 6112. Video Production
3-0-3.
A theory/production course which combines the critical analysis of film and video with intensive practice in filming, linear editing, and digital video.

LCC 6113. Multimedia Design and Production
3-0-3.
The course introduces students to concepts and techniques essential to multimedia design and authoring.

LCC 6114. Advanced Design and Production
3-0-3.
Prerequisite(s): LCC 6112 or LCC 6113
A studio course dealing with advanced concepts and techniques of the design and production of digital media.

LCC 6115. Practicum in New Media
3-0-3.
Prerequisite(s): LCC 6112 or LCC 6113
A practical course in the development of new media productions.

LCC 6210. Studies in Communication and Culture
3-0-3.
Introduction to the discipline of communication studies that includes basic methods of cultural analysis as applied to various media forms.

LCC 6211. Digital Aesthetics
3-0-3.
Seminar on the nature and production of art and performance developed with new media and emerging technologies.

LCC 6212. Historical Approaches to New Media
3-0-3.
This seminar introduces students to the historical study of new media forms.

LCC 6213. Educational Applications of New Media
3-0-3.
This seminar introduces students to a variety of perspectives on learning as they apply to work in educational technology.

LCC 6214. New Media Project Design and Assessment
3-0-3.
This course presents structured methods for designing content units, interactivity paths, and media selection. Course exercises teach the basic process of iterative design and testing.

LCC 6215. Issues in Media Studies
3-0-3.
This course focuses on the study of mass media from historical, theoretical, and cultural perspectives.

LCC 6216. Globalization and New Media
3-0-3.
This course explores international aspects of new media forms, including the global situation of the development and use of new communication technologies.

LCC 6217. Visual Genealogy of New Media
3-0-3.
This course explores the relationship between new forms of digital media and earlier forms of technologies of visualization and representation.

LCC 6800. Master's Project: Information Design and Technology
3-0-3.
Final project course in information design and technology.

LCC 7000. Master's Thesis: Information Design and Technology
Credit hours to be arranged.
Final thesis course in information design and technology.

LCC 8801, -2, -3, -4, -5, -6. Special Topics in Information Design and Technology
Credit and class hours equal last digit in course number.

LCC 8910, -20, -30, -40, -50. Special Problems in Information Design and Technology
Credit hours to be arranged.
An independent study course.

LCC 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding teaching assistantships.

LCC 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding research assistantships.

ENGLISH

ENGL 0012. Writing the Impromptu Essay
2-0-2.
Gives special attention to development of basic skills in writing for students who need additional preparation for the University System Regents' Exam. Cannot be counted for credit toward graduation.
ENGL 0015. Reading Comprehension
2-0-2.
Special attention given to developing reading skills for students who need additional preparation for the University System Regents' Exam. Cannot be counted for credit toward graduation.

ENGL 1101. English Composition I
3-0-3.
Develops analytical reading and writing skills through the investigation of methods used in cultural and literary studies and the application of those methods to specific texts.

ENGL 1102. English Composition II
3-0-3.
Prerequisite(s): ENGL 1101
Develops communication skills in networked electronic environments, emphasizes interpretation and evaluation of cultural texts, and incorporates research methods in print and on the Internet.

Department of Military Science

Established in 1917
Location: Building 23 A,
Bobby Dodd Way
Telephone: 404.894.4760

Professor and Head—Major Charles Lewis.

General Information
The purpose of the Army ROTC is to prepare students for commissioning as officers in the Active Army, Army Reserve, or National Guard Forces. Concurrently, the overall program is designed to aid students in developing the abilities and attitudes that will make them academically successful and to develop well educated junior officers.

The curriculum is divided into two courses: a Basic Course open to all freshmen and sophomores, and an Advanced Course for qualified juniors, seniors, and graduate students. The student who is undecided about pursuing a commission has the option of participating in the Basic Course without incurring a military obligation. Successful completion of the Basic Course (or commensurate training), a minimum 2.0 cumulative grade point average, and the appropriate medical and physical qualifications are prerequisites for enrollment in the Advanced Course. Successful completion of both courses and the award of a bachelor's degree constitute the normal progression to gaining a commission as a second lieutenant. Courses are available to both men and women.

The overall Army ROTC curriculum prepares students to become effective leaders and managers in a variety of responsible and challenging commissioned officer fields, thus facilitating early middle-management career development and progression. A description of the course requirements and associated programs appears in the following paragraphs.

The Basic Course Curriculum
The basic program consists of a four-semester block of instruction taken during the freshman and sophomore years. Successful completion of all four semesters satisfies the military science requirements for progression to the Advanced Course. These courses provide a foundation in basic military subjects such as customs and traditions, history, leadership, and map reading. They round out a student's academic life, provide a challenge, foster confidence, and facilitate personal growth and development. Courses are offered fall and spring semesters with two credit hours awarded for each freshman and sophomore course and three credit hours for each junior and senior course. Four hours of basic ROTC courses may be applied as elective credits toward degree requirements at the school. Courses normally meet two hours a week. A one-hour leadership laboratory and participation in physical conditioning training are also required. Students in the Basic Course do not incur any military obligation unless they are on an ROTC scholarship. Scholarship cadets are required to participate in a field training exercise twice per school year. They are issued uniforms and may participate in other ROTC-related events and training, such as Airborne School, Air Assault School, and Northern Warfare Training. The Basic Course consists of the following:

FIRST YEAR
Course No. & Title Credit Hours
MS 1021 Introduction to the Army 2
MS 1022 Introduction to Leadership 2
SECOND YEAR

Course No. & Title	Credit Hours
MS 2021 Self/Team Development	2
MS 2022 Individual/Team Military Tactics	2

Optional Basic Camp
Those academically qualified students who are unable to fulfill the requirements of the Basic Program during their freshman and sophomore years may qualify for admission to the Advanced Course by successfully completing basic camp preparatory training. This option is primarily designed to meet the needs of transfer students, those completing the sophomore year, and others, including graduate students, who have four semesters remaining at the Institute. This option provides a two-year program in lieu of the standard four-year curriculum.

The basic camp option consists of a five-week training period conducted at an active Army post during the summer months. During each summer, various cycles will be available to meet student needs. Students choosing this option are required to submit a formal application and pass a general physical.

Students electing the basic camp training program will receive approximately $700 in addition to travel expenses to and from the camp. Uniforms, housing, medical care, and meals are furnished by the government during the camp. Interested students should contact the Military Science Department.

The Advanced Course Curriculum
The Advanced Course is designed to fully develop a cadet's leadership and management potential, physical stamina, and self-confidence, as well as those personal characteristics desired in an Army officer. The objective is to produce the highest caliber junior officer fully capable of discharging a wide spectrum of command and management responsibilities in the modern Army and in the business world.

The Advanced Course consists of four semesters of instruction normally taken during the junior and senior years. Successful completion of the four courses fulfills the military science academic requirements for award of an officer's commission. Each student must also participate in a regular physical conditioning program and successfully pass the Army Physical Fitness Test. All Advanced Course students must participate in field training exercises twice a school year. Twelve credit hours are earned, six of which may be applied as elective credits toward any degree at the Institute. Advanced Course students receive a subsistence allowance of $200 a month, not to exceed $2,000 per academic year. Service veterans and service academy cadets may qualify for direct entry into the Advanced Course. Certain Advanced Course students are eligible to participate in the Simultaneous Membership Program with the Army Reserve and National Guard. Students in this program affiliate with an Army unit as officer trainees.

Students enrolled in the Advanced Course are also required to complete a five-week advanced camp to become eligible for commissioning. Attendance at advanced camp normally occurs during the summer between the junior and senior years. Students may also participate in additional voluntary training, such as Airborne School or Cadet Troop Leader Training. In addition to completing the military science academic requirements of both the Basic and Advanced Courses, the student must complete at least one undergraduate course from each of five designated fields of study:

Written Communications: select any course offered by the Institute in English composition or creative writing.

Human Behavior: select any course offered by the Institute in psychology, sociology, anthropology, or ethics.

Military History/National Security Studies: select INTA 3520, INTA 3510, or another similar course approved by the professor of military science.

Computer Literacy: select any course offered by the College of Computing except CS 1000 (Information and Society).

Mathematics Reasoning: select any course offered by the School of Mathematics.

Students who successfully complete the Army ROTC curriculum and earn a bachelor's degree can be commissioned as second lieutenants. Subsequent military service may be on active duty or with the Army Reserve or National Guard. The following courses constitute the Advanced Course:
Military Science

THIRD YEAR

<table>
<thead>
<tr>
<th>Course No. & Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 3011 Leading Small Organizations I</td>
<td>3</td>
</tr>
<tr>
<td>MS 3012 Leading Small Organizations II</td>
<td>3</td>
</tr>
</tbody>
</table>

FOURTH YEAR

<table>
<thead>
<tr>
<th>Course No. & Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS 4011 Leadership Challenges and Goal Setting</td>
<td>3</td>
</tr>
<tr>
<td>MS 4012 Transition to Lieutenant</td>
<td>3</td>
</tr>
<tr>
<td>MS 4901 Special Problems (restricted)</td>
<td>2</td>
</tr>
</tbody>
</table>

Scholarship Programs

Each year the Army offers a variety of full scholarship programs to those young men and women who have demonstrated outstanding academic scholarship and leadership potential. Four-, three-, and two-year scholarships are available to qualified students. Scholarships are competitive and awarded based on the student's merit. The professor of Military Science receives an allocation of scholarships each year. Scholarships provide tuition to both resident and out-of-state students, a stipend for textbooks and supplies, and laboratory fees in addition to a $200-a-month tax-free allowance. Scholarship students serve either on active duty or in the reserves.

Options

Students who wish to obtain a commission as an officer but do not want to serve on active duty may request guaranteed reserve forces duty. Reserve Forces Duty scholarships are available, but are limited in number. Affiliation with an Army Reserve or National Guard unit is required to participate in either the scholarship or non-scholarship program. In this program, students are guaranteed in writing that they will not be placed on active duty and can fulfill their entire commitment in the Army Reserve or National Guard.

Student Advisory Services

Faculty members are available throughout the academic year and during each summer orientation session in the Department of Military Science for academic counseling, schedule planning, and career guidance. Students and their parents are encouraged to seek advice on the overall Army ROTC program, scholarship opportunities, and officer career development. Appointments may be made in person, by calling 404.894.4760, or sending e-mail message at the ROTC homepage, www.gatech.edu/armyrotc.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

MILITARY SCIENCE

MS 1021. Military Science I: Introduction to Army
2-1-2.
General introduction to the total Army structure, scope of the military officer profession, and general introduction to the primary weapon (M16A2) of the U.S. Army. Instruction on implementing an individual physical training program, customs and traditions, assembly and disassembly, maintenance, and the use of the M16A2 rifle. Individual/squad drill and ceremony are required.

MS 1022. Military Science I: Introduction to Leadership
2-1-2.
Prerequisite(s): MS 1021
Learn/apply principles of effective leading. Reinforce self-confidence through participation in physically and mentally challenging exercises with upper-division ROTC students. Develop communication skills to improve individual performance and group interaction. Relate organizational ethical values to the effectiveness of a leader.

MS 2021. Military Science I: Self/Team Development
2-1-2.
Prerequisite(s): MS 1022
Learn/apply ethics-based leadership skills that develop individual abilities and contribute to the building of effective teams of people. Develop skills in oral presentations, writing concisely, planning of events, coordination of group efforts, advanced first aid, land navigation, and basic military tactics.

MS 2022. Military Science II: Individual/Team Military Tactics
2-1-2.
Prerequisite(s): MS 2021
Introduction to individual and team aspects of military tactics in small unit operations. Includes one of radio communications, making safety assessments, movement techniques, planning for team safety/security, and methods of pre-execution checks. Learn techniques for training others as an aspect of continued leadership development.

MS 3011. Military Science III: Leading Small Organizations I
3-1-3.
Prerequisite(s): MS 2022
Series of practical opportunities to lead small groups, receive personal assessments and encouragement, and lead in situations of increasing complexity. Fundamentals of leadership and land navigation, two performance-oriented class periods, and one laboratory period a week.
Ivan Allen College

MS 3012. Military Science III: Leading Small Organizations II
3-1-3.
Prerequisite(s): MS 3011
Small unit leadership and basic patrolling, two performance-oriented class periods, and one laboratory period per week. Students analyze task and prepare written or oral guidance for team members to accomplish task. Delegate tasks and supervise. Plan for and adapt to the unexpected in organizations under stress. Examine and apply lessons from leadership case studies, examine importance of ethical decision making in setting a positive climate that enhances team performance.

MS 4014. Military Science IV: Challenges and Goal Setting
3-1-3.
Prerequisite(s): MS 3012
Plan, conduct, and evaluate activities of the ROTC cadet organization. Articulate goals; put plans into action to attain them. Assess organizational cohesion and develop strategies to improve it. Develop confidence in skills to lead people and manage resources. Learn/apply various Army policies and programs in this effort.

MS 4015. Military Science V: Transition to Lieutenant
3-1-3.
Prerequisite(s): MS 4014
Identify and resolve ethical dilemmas. Refine counseling and motivation techniques. Examine aspects of traditional law as it relates to leading as an officer in the Army. Prepare for a future as a successful Army lieutenant.

MS 4901. Special Problems
Credit hours to be arranged.
Permits independent study with a faculty member. Topics and research will pursue areas of military science not extensively treated in any other military science course.

School of Modern Languages

www.iac.gatech.edu/modlangs/

Established in 1904
Location: Swann Building
Telephone: 404.894.7327
Fax: 404.894.0955

Professor and Chair—Heidi M. Rockwood.
Professors—Vicki B. Galloway, Angela Labarca, Edmund B. Richmond (emeritus).
Associate Professors—Barbara L. Blackbourn, Jerry Carroll Brooks (emeritus), Bettina Cotthran, William W. Johnson, Masato Kikuchi, Xiaoliang Li, Catherine C.F. Marin, Frank Pilipp, Rumiko Shinzato-Simonds, David J. Shook.
Assistant Professors—Nora Cottille-Foley, Larry Joseph, Britta Kallin, Lionel Lemarchand.
Instructors—Catherine Bass, Melissa Burns, Ilse Engler, Inna Germanovich, Robin Huff, Masako Kanno, Stephanie Langston.

General Information
The diverse course offerings of the School of Modern Languages provide students with opportunities for achieving reasonable fluency in understanding, speaking, reading, and writing several foreign languages. They also instruct students in the civilizations and literatures of the countries in which those languages are spoken.

Undergraduate Program

Certificates
Certificates are available in Chinese, French, German, Japanese, linguistics, and Spanish. To receive a certificate in one of these options, students must take 12 semester hours of courses on the 3000 level or above. In Chinese and Japanese only, one three-hour course can be on the 2000 level. Students should consult the department for additional details.

Bachelor of Science in International Affairs and Modern Languages
In partnership with the Sam Nunn School of International Affairs, the School of Modern Languages offers a Bachelor of Science in International Affairs and Modern Languages (I.A.M.L.), with separate concentrations in French, German, Japanese, and Spanish. Students in this program take the same required core courses as for the Bachelor of Science in International Affairs, but also receive intensive foreign language training and learn the fundamentals of dealing with foreign cultures and societies.

Graduates of the I.A.M.L. program are prepared for advanced graduate and professional study and are ready for employment in internationally oriented firms, government agencies, and nonprofit organizations.

I.A.M.L. majors are strongly encouraged to enroll in the intensive summer programs offered by the School of Modern Languages (FREN 3691-92-93, taught in Lyon, France; GRMN 3691-92-93, taught in Weimar and Düsseldorf, Germany;
JAPN 3691-92-93, taught at Georgia Tech and in Sendai, Japan; SPAN 3691-92-93, taught at Georgia Tech and in Madrid, Spain).

Bachelor of Science in International Affairs and Modern Languages (Suggested Schedule)
(The French option is used as a model; for others, see equivalent courses on page 279.)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 1321 COMPUTER SCIENCE I</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 or 1712 CALCULUS I/SURVEY OF CALCULUS</td>
<td>4</td>
</tr>
<tr>
<td>INTA 1001 ORIENTATION TO INTERN. AFFAIRS</td>
<td>1</td>
</tr>
<tr>
<td>FREN 2001 or 2021 FRENCH CULTURE/CONVERSATION</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 1110 INTRO. TO INTERNAT. RELATIONS</td>
<td>3</td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 or 1711 CALCULUS II/FINITE MATHEMATICS</td>
<td>4</td>
</tr>
<tr>
<td>FREN 2002 or 2022 FRENCH CULTURE/CONVERSATION</td>
<td>3</td>
</tr>
<tr>
<td>TECHNOLOGY SKILLS ELECTIVE*</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2010 EMPirical METHODS</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2030 ETHICS IN INTERNAT. AFFAIRS</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3061 BUSINESS FRENCH I</td>
<td>3</td>
</tr>
<tr>
<td>LABORATORY SCIENCE ELECTIVE**</td>
<td>4</td>
</tr>
<tr>
<td>EUROPEAN OR ASIAN HISTORY SURVEY ***</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 2100 GREAT POWER RELATIONS</td>
<td>3</td>
</tr>
<tr>
<td>INTA 2210 COMP. POLITICAL PHILOS.</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3062 BUSINESS FRENCH II</td>
<td>3</td>
</tr>
<tr>
<td>LABORATORY SCIENCE ELECTIVE**</td>
<td>4</td>
</tr>
<tr>
<td>INTA 1200, HTS 2111/12 or POL 1101 or PUBP 3000</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 3110 U.S. FOREIGN POLICY</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3011 FRANCE TODAY I</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3121 COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>ECONOMICS SURVEY****</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 3203 COMPARATIVE POLITICS</td>
<td>3</td>
</tr>
<tr>
<td>INTA 3501 INTERNAT. POLITICAL ECON.</td>
<td>3</td>
</tr>
<tr>
<td>FREN 3012 FRANCE TODAY II</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 4010 SCIENCE, TECHNOL. & INT. AFFAIRS</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4001 STYLITICS</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4061 SCIENT./TECHNOL. FRENCH I</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTA 4400 SENIOR SEMINAR</td>
<td>3</td>
</tr>
<tr>
<td>FREN 4062 SCIENT./TECHNOL. FRENCH II</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

- *CP 4510, CS 1322, ECE 2030, MGT 4058 or MGT 4661 fulfill the Technology Skills requirement.
- **Biology I-II, Chemistry I-II, EAS I-II or Physics I-II fulfill the Laboratory Science requirement.
- ***HTS 1031, HTS 2036, HTS 2037, or HTS 2062 European or Asian History survey requirement.
- **** ECON 2100, 2105 or 2106 fulfill the Economics Survey requirement.
For students enrolled in the German, Japanese, or Spanish degree options, the courses considered equivalent of the French ones given in the schedule on page 278 are as follows:

<table>
<thead>
<tr>
<th>FREN</th>
<th>GRMN</th>
<th>JAPN</th>
<th>SPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001-02</td>
<td>2001-02</td>
<td>1001-02 (8 hrs)</td>
<td>2001-02</td>
</tr>
<tr>
<td>3061-62</td>
<td>3071-72</td>
<td>2001-02</td>
<td>3011-02</td>
</tr>
<tr>
<td>3011</td>
<td>3011</td>
<td>3001-02</td>
<td>3236</td>
</tr>
<tr>
<td>3011-12</td>
<td>3024-25</td>
<td>3061-62</td>
<td>3111-12</td>
</tr>
<tr>
<td>4001</td>
<td>4061-62</td>
<td>4XXX</td>
<td>3235</td>
</tr>
<tr>
<td>4061-62</td>
<td>4XXX</td>
<td>4061-62</td>
<td></td>
</tr>
</tbody>
</table>

TOTALS:
- 30 hours
- 30 hours
- 29 hours
- 30 hours

In general, it can be assumed that German and Spanish courses are taken in the same sequence as the equivalent French courses. The following suggestions apply to the Japanese schedule: the 1001-02 sequence should be taken in the first year, the 2001-02 sequence in the second year, the 3001-02 sequence in the third year and the 3061-62 and 4000 courses in the fourth year.

Students are permitted to substitute some other courses for those recommended in the suggested schedules, provided they get the permission of the School of Modern Languages advisor responsible for their specific language concentration.

Students may take any Modern Language courses for which they have the prerequisites as specified in the catalog descriptions. Students who have had two years of a language in high school may not enroll for credit in the first 1000-level course in that language. Suggested entry level for students with two years of high school study is the second course of the 1000-level sequence. Those with three or more years are generally able to go into a 2000-level course in the more frequently taught languages. Usually, two years in high school equal one year at Tech. Counseling and placement examinations are available on request, especially in the less frequently taught languages. Each course is essentially a unit in itself, but beginning students are encouraged to pursue at least the elementary two-semester sequence in order to achieve a minimum level of proficiency and to receive humanities credit. Students may not enroll in or receive advanced standing for 1000-level courses after the successful completion of any 2000-, 3000-, or 4000-level course. Students who take courses in their native language must schedule courses no lower than 3001. Co-ops who are beginning a foreign language should limit themselves to French, German, Japanese, and Spanish courses.

Courses at the 2000, 3000, and 4000 level do not have to be taken in chronological order, provided prerequisites are fulfilled.

With minor exceptions, students can fulfill their humanities requirement for graduation by taking courses, including linguistics courses, in the School of Modern Languages. Students should consult the catalog course descriptions and the section of this catalog titled “Humanities and Social Sciences Requirements,” pages 31-32, in order to determine which courses are classified as humanities in their respective colleges. With the approval of their major schools, students may take any course offered by the School of Modern Languages on a pass/fail basis.

College Credit for High School Study

The department will grant six hours of elective credit in French, German, Spanish, Chinese, Japanese, or Russian for high school study in a foreign language, provided the student has two or more years of high school credit in the language in question and has completed six semester hours at the 2000, 3000, or 4000 level with an average grade of C or higher. Transfer students must complete at least three of the six hours at Georgia Tech.

Students submitting a score of 4 or 5 on the College Entrance Examination Board Advanced Placement Examination in French, German, or Spanish “Language Level III” or “Literature Level III” may receive free elective credit for courses numbered 1001-2 in the respective language. Students who submit language scores of 5 or above from a certified high school international baccalaureate program may also receive free elective credit for courses numbered 1001-2 in the respective language.

The School will not grant credit for high school study in a foreign language to students who have taken 1000-level courses or the equivalent at Georgia Tech or at other college-level institutions for which they have received transfer credit.

To have the free elective credit entered on their records, students must request that the appropriate form be submitted by the School of Modern Languages to the registrar. This elective credit is not applicable toward fulfillment of the humanities requirement for graduation. No grade is attached to this credit.
Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

CHINESE

CHIN 1001. Elementary Chinese I
4-0-4.
Training in pronunciation, tones and sentence structure to develop a baseline for listening, speaking, and reading Chinese, as well as fostering a sensitivity to Chinese culture.

CHIN 1002. Elementary Chinese II
4-0-4.
Prerequisite(s): CHIN 1001
Consolidating training in phonetics, grammar, sentence structure and characters; focusing on the similarities and differences between English and Chinese.

3-0-3.
Prerequisite(s): CHIN 1002
Reinforcing basic language skills and knowledge to enhance students' communication ability including oral dialogue and written correspondence in current Chinese society.

CHIN 2002. Intermediate Chinese II
3-0-3.
Prerequisite(s): CHIN 2001
Reinforcing basic language skills and knowledge to enhance students' communication ability including oral dialogue and written correspondence in current Chinese society.

CHIN 3001. Issues in Chinese Society and Culture I
3-0-3.
Prerequisite(s): CHIN 2002
Comprehension of and discussion about China's news, economic reports, political events, feature stories, and sports on television and in newspapers.

CHIN 3002. Issues in Chinese Society and Culture II
3-0-3.
Prerequisite(s): CHIN 3001
Comprehension of and discussion about China's news, economic reports, political events, feature stories, and sports on television and in newspapers.

CHIN 3801. Special Topics in Chinese
3-0-3.
Prerequisite(s): CHIN 3002
Permits a group of students and a professor to pursue areas of the Chinese language not extensively treated in other courses of the department.

CHIN 4901. Special Problems in Chinese
Credit hours to be arranged.
Provides special instruction according to special needs.

FRENCH

FREN 1001. Elementary French I
3-0-3.
An introduction to the French language and culture of the French-speaking world. Beginning of a survey of basic French grammar and the development of the four language skills of listening, speaking, reading, and writing French. Some aspects of everyday life in the French-speaking world will also be introduced.

FREN 1002. Elementary French II
3-0-3.
Prerequisite(s): FREN 1001
The second part of an introduction to the French language and the culture of the French-speaking world. Completion of the survey of basic French grammar and further development of the four language skills. Aspects of everyday life in the French-speaking world will be introduced.

FREN 2001. Patterns of French Culture I & II
3-0-3.
Prerequisite(s): FREN 1002*
Proficiency-based introduction to selected socio-cultural aspects of France: geography, demography, social institutions, history, art, socioeconomic problems, and current events; incorporates grammar review. Conducted in French.

FREN 2021. Intermediate Conversation and Composition I
3-0-3.
Prerequisite(s): FREN 1002
A conversational approach to topics of current interest in the humanities in France with directed writing activities enhanced by both traditional and computer-assisted aids.

FREN 2022. Intermediate Conversation and Composition II
3-0-3.
Prerequisite(s): FREN 1002
A continuation of FREN 2021: Conversational approach to topics of current interest in the humanities in France with directed writing activities enhanced by both traditional and computer-assisted aids.

FREN 3001. French Literature from 1800 to 1900
3-0-3.
Prerequisite(s): FREN 2002
Romanticism, the reappearance of lyric poetry, the importance of the individual as opposed to classical anonymity; Realism and naturalism with emphasis on the development of the novel. Conducted in French.

FREN 3002. French Literature from 1900 to Present
3-0-3.
Prerequisite(s): FREN 2002
Exploration of currents in modern prose, poetry, and drama. Conducted in French.

FREN 3004. Drama Workshop
3-0-3.
Prerequisite(s): FREN 2001 or FREN 2002 or FREN 2021 or FREN 2022
Literary and theatrical aspects of French drama are explored.
through class discussion and performance of selections from contemporary and classical plays.

FREN 3007. Survey of French Literature I
3-0-3.
Prerequisite(s): FREN 2002
Survey of French literature from the Middle Ages through the seventeenth century. Selected texts by representative authors. All readings and discussions are conducted in French.

FREN 3008. Survey of French Literature II
3-0-3.
Prerequisite(s): FREN 2002
Survey of French literature from the eighteenth century to present times. Selected texts by representative authors. All readings and discussions are conducted in French.

FREN 3011, -12. France Today I & II
3-0-3.
Prerequisite(s): FREN 2002
Culture, history, and geography of modern France through lectures, videos, downloads from the Internet, audio and videotapes, and class discussions. Short papers generated by use of a computer software package treating assigned topics to enhance writing skills. Conducted in French.

FREN 3030. French Phonetics
3-0-3.
Prerequisite(s): FREN 2002
A detailed analysis of the significant features of the French sound system, intonation curves, and graphic representation of individual sounds. Conducted in French.

FREN 3061, -62. France: Culture, Economy, Commerce I & II
3-0-3.
Prerequisite(s): FREN 2002
Advanced business French, overview of French commerce, communications, publicity, various social milieus, and the work place.

FREN 3121. Advanced Composition
3-0-3.
Prerequisite(s): FREN 3002
In-depth study of advanced grammar patterns as used in written expressions. Conducted in French.

FREN 3691. Business Communication and Correspondence in France
3-0-3.
Prerequisite(s): FREN 1002
Co-requisites: FREN 3692 and 3693.
Refinement of accuracy and flexibility in oral/written expression. Focus on appropriate use of strategies, business negotiation protocols, lexical precision. Incorporates grammar review. Part of the French intensive Summer Language Program (page 25). Admission by application only.

FREN 3692. French for Business and Technology I
3-0-3.
Prerequisite(s): FREN 1002
Co-requisites: FREN 3691 and 3693.
Study of business, technological, and cultural issues; tendencies and patterns of behavior among French-speaking people. Value systems and their manifestations. Part of the French intensive Summer Language Program (page 25). Admission by application only.

FREN 3693. French for Business and Technology II
3-0-3.
Prerequisite(s): FREN 1002
Co-requisites: FREN 3691 and 3692.
Business organizations and use of technology in France. Specialized vocabularies of economics, engineering, and computer science. Attention to geographical and anthropological aspects of selected social and political situations. Part of the French intensive Summer Language Program (page 25). Admission by application only.

FREN 3694. French for Business and Technology Abroad
3-0-3.
Two-week seminar in France highlighting business and technology. Field study of technology firms, economic trends, business institutions, and cultural protocols. Journals and papers assigned. Admission by application only.

FREN 3801, -2. Special Topics in French
3-0-3.
Permits a group of students and a professor to pursue areas of the French language not extensively treated in other courses in the School.

FREN 4001. French Stylistics
3-0-3.
Prerequisite(s): FREN 3121
Advanced study of syntax and semantics, aimed at development of stylistic sensitivity. Analysis of representative literary and current interest texts for practice in conversation and composition. Conducted in French.

FREN 4061, -2. French Science and Technology I & II
3-0-3.
Prerequisite(s): FREN 3062
Introduction to scientific and technical French. Analysis and discussion of scientific and technical material pertaining to current issues in the scientific and technical communities. Background in chemistry, physics, or biology required.

FREN 4101. Literature of the Francophone World I
3-0-3.
Prerequisite(s): FREN 3001
Exploration of the literature of the Francophone world. Currents in modern prose, poetry, and drama. Conducted in French.

FREN 4102. Literature of the Francophone World II
3-0-3.
Prerequisite(s): FREN 3001
Continuation of Literature of the Francophone World I. Currents in modern prose, poetry, and drama. Conducted in French.

FREN 4901, -2. Special Problems in French
Credit hours to be arranged.
Provides the special instruction required under special programs.
GERMAN

GRMN 1001. Elementary German I
3-0-3.
An introduction to German language and culture. Beginning of
a survey of basic German grammar and the development of the
four language skills of listening, speaking, reading, and writing.
Some aspects of everyday life in the German-speaking world
will also be introduced.

GRMN 1002. Elementary German II
3-0-3.
Prerequisite(s): GER 1001
The second part of an introduction to German language and
culture. Survey of more basic German grammar and the devel-
opment of the four language skills of listening, speaking, read-
ning, and writing. Some aspects of everyday life in the German-
speaking world will also be introduced.

GRMN 2001, -02. Intermediate German I & II
3-0-3.
Prerequisite(s): GRMN 1002*
Review of basic grammatical concepts and vocabulary build-
up. Selected readings, audio and video material on the cul-
tural, historical, and intellectual development of Germany.
Teaching and class discussion in German.

GRMN 3010. Introduction to German Literature
3-0-3.
Prerequisite(s): GRMN 2002
Introduction to the periods and genres of German literature
from the Middle Ages to modern times. Conducted in German.

GRMN 3011. Germany Today
3-0-3.
Prerequisite(s): GRMN 2002
Introduction to current issues in contemporary Germany.
Lectures, papers, and class discussions. Conducted in German.

GRMN 3024. Conversation and Composition
3-0-3.
Prerequisite(s): GRMN 2001 or GRMN 2002
A combination of conversation, composition, and stylistics, this
course is designed to promote listening, speaking, and writing
proficiency; expansion of vocabulary; and stylistic skills.

GRMN 3025. Advanced Stylistics
3-0-3.
Prerequisite(s): GRMN 2002
Advanced study of syntax and semantics aimed at the develop-
ment of stylistic sensitivity. Analysis of representative literary
and current interest texts.

GRMN 3034. The German Novella
3-0-3.
Prerequisite(s): GRMN 2002
German novellas and short prose from 1800 to the present.
Discussion of genre and social, political, and cultural back-
ground. All readings and discussions in German.

GRMN 3035. German Dramatic and Lyrical Literature
3-0-3.
Prerequisite(s): GRMN 2002
Introduction to dramatic and lyrical literature in interaction.
Conducted in German.

GRMN 3036. German Novel
3-0-3.
Prerequisite(s): GRMN 2002
Readings and discussions from longer works of fiction from
1880 to present. Discussion of the genre, as well as the social,
political, and cultural background. All readings and discus-
sions in German.

GRMN 3071, -72. Introductory Business German I & II
3-0-3.
Prerequisite(s): GRMN 2002
Analysis and discussion of texts and videos pertaining to issues
in the current business world.

GRMN 3691. Business Communication and
Correspondence in Germany
3-0-3.
Prerequisite(s): GRMN 1002
Co-requisites: GRMN 3692 and 3693
Refinement of accuracy and flexibility in oral/written expres-
sion. Focus on the appropriate language use in business situa-
tions, including telephone protocol, interviews, and negotia-
tions. Incorporates grammar review and emphasis on cross-
cultural comparison. Part of the German intensive Summer
Language Program (page 25). Admission by application.

GRMN 3692. German Business Culture
3-0-3.
Prerequisite(s): GRMN 1002
Co-requisite: GRMN 3691 and 3693.
Study of German business structure and current issues.
Business etiquette, comparative aspects of Germany and the
USA. Case studies on video. Part of the German intensive
Summer Language Program (page 25). Admission by applica-
tion only.

GRMN 3693. German Science and Technology
3-0-3.
Prerequisite(s): GRMN 1002
Co-requisite: GRMN 3691 and 3692
Studies of firms and organizations in the energy and high-tech
sector. Specialized vocabulary of engineering, computer sci-
ence, alternative energy sources. Part of the German intensive
Summer Language Program (page 25). Admission by applica-
tion only.

GRMN 3694. German Business and Technology
Seminar Abroad
3-0-3.
Prerequisite(s): GRMN 2001
Two-week tour of German industry, government, and techno-
logical institutions. Journals and papers assigned. Conducted in
German. Admission by application only.
GRMN 3801, -2. Special Topics
3-0-3.
Prerequisite(s): GRMN 2001 or GRMN 2002
Permits a group of students to pursue areas of the German language and culture not extensively treated in other courses. Also for use in the development of new courses.

GRMN 3901. Special Problems
Credit hours to be arranged.
Small group or individual instruction.

GRMN 4023. Selected Readings in German Literature
3-0-3.
Prerequisite(s): GRMN 2002
Study of selected authors, movements, genres, in German literature. Selection varies. Conducted in German.

GRMN 4024. German Film and Literature
3-0-3.
Prerequisite(s): GRMN 2002
A survey of German culture and recent past as presented through films and related literary works illuminating Germany's quest for identity since 1945.

GRMN 4061, -62. Advanced Business German I & II
3-0-3.
Prerequisite(s): GRMN 3072
Advanced principles of German business organization and language. Taught through the use of reading, audio, and video materials. Conducted in German.

GRMN 4901, -2. Special Problems in German
Credit hours to be arranged.
Special problems course for advanced students. Topics to be arranged with instructor.

JAPANESE

JAPN 1001. Elementary Japanese I
4-0-4.
Essential principles of Japanese grammar and phonetics, acquisition of vocabulary through conversational exercises, video, and tape material. Introduction to the kana writing system.

JAPN 1002. Elementary Japanese II
4-0-4.
Prerequisite(s): JAPN 1001
Continuation of JAPN 1001. Introduction to kanji symbols.

JAPN 1801, -2 Special Topics
3-0-3.
Permits a group of students to pursue areas of the Japanese language and culture not extensively treated in other courses.

3-0-3.
Prerequisite(s): JAPN 1002
Further principles of Japanese grammar and vocabulary. Introduction to different styles and levels of speech. More kanji.

JAPN 3001, -2. Advanced Japanese I & II
3-0-3.
Prerequisite(s): JAPN 2002
Learn advanced grammar structures and develop the ability to produce longer conversations involving complex styles and levels of speech. More kanji.

JAPN 3061, -62. Technical Japanese I & II
3-0-3.
Prerequisite(s): JAPN 2002
Introduction to technical and scientific Japanese. Specialized vocabulary and concepts of chemistry, electrical engineering, computer science, and biology. Analysis and discussion of scientific issues in society.

JAPN 3691. Technical and Scientific Japanese
3-0-3.
Prerequisite(s): JAPN 1002
Co-requisites: JAPN 3692 and 3693
Reading of intermediate/advanced technical and scientific Japanese texts. Analysis and discussion of scientific issues in society. Part of the Japanese intensive Summer Language Program (page 25). Admission by application only.

JAPN 3692. Business Japanese
3-0-3.
Prerequisite(s): JAPN 1002
Co-requisites: JAPN 3691 and 3693
Acquisition of business terminology, protocols, decorum strategies, and improvement of oral communication skills. Reading and writing of notes, correspondence, and reports. Part of the Japanese intensive Summer Language Program (page 25). Admission by application only.

JAPN 3693. Japan Today
3-0-3.
Prerequisite(s): JAPN 1002
Co-requisites: JAPN 3691 and 3692
Development of awareness toward cultural differences and potential communication problems through exploration of current socio-economic and corporate-cultural issues in Japan. Part of the Japanese intensive Summer Language Program (page 25). Admission by application only.

JAPN 4801, -2. Special Topics in Japanese
3-0-3.
Provides specific instruction in Japanese. Individual syllabus will be filed with the School.

LINGUISTICS

LING 2001. Introduction to Language I
3-0-3.
Introduction to basic concepts of language analysis: morphology and phonology. Linguistics in relation to other sciences.

LING 2002. Introduction to Language II
3-0-3.
Introduction to modern syntactic and semantic theories of language, as well as to the relationship between language, culture, and society.
LING 3010. Language Evolution
3-0-3.
Prerequisite(s): LING 2001 or LING 2002
Principles of historical evolution of language, illustrated primarily through examples from Indo-European languages.

LING 3750. International Language Policies
3-0-3.
Prerequisite(s): INTA 1110
An introduction to the politics, problems, and alternative solutions in national language choices, including a comparative analysis of industrialized and developing nations. Crosslisted with INTA 3750.

LING 3801, -2, -3. Special Topics in Modern Languages
3-0-3.
Permits students to work in languages not treated in other courses and/or to engage in special language research.

LING 4002. Current Trends in Linguistic Theory
3-0-3.
Prerequisite(s): LING 2001 or LING 2002
Introduction to developments in contemporary linguistic theory, especially in syntax and semantics.

LING 4901, -2. Special Problems in Linguistics
Credit hours to be arranged.
Special problems course for advanced students; topics to be arranged with instructor.

RUSSIAN

RUSS 1001. Elementary Russian I
3-0-3.
An introduction to Russian language and culture. First half of a survey of basic Russian grammar and the development of the four language skills of listening, speaking, reading, and writing. The course includes an orientation to aspects of everyday life in Russia.

RUSS 1002. Elementary Russian II
3-0-3.
Prerequisite(s): RUSS 1001
Second half of an introduction to Russian language and culture. Second half of a survey of basic Russian grammar and the development of the four basic language skills of listening, speaking, reading, and writing. The course includes an orientation to aspects of everyday life in Russia.

RUSS 2001, -02. Intermediate Russian I & II
3-0-3.
Prerequisite(s): RUSS 1002
A review and extension of basic grammar with intensive vocabulary-building and focus on development of idioms on the basis of conversation, reading, and writing activities. Includes reading and discussion of stories and magazine articles of general cultural interest with follow-up composition assignments.

RUSS 3801, -2. Special Topics in Russian
3-0-3.
Permits a group of students and a professor to pursue areas of the Russian language not extensively treated in other courses in the School.

RUSS 4901, -2. Special Problems in Russian
Credit hours to be arranged.
Provides the special instruction required under special programs.

SPANISH

SPAN 1001. Elementary Spanish I
3-0-3.
An introduction to the Spanish language and the cultures of the Spanish-speaking world. Beginning of a survey of basic Spanish grammar and the development of the four language skills of listening, speaking, reading, and writing. Some aspects of everyday life in the Spanish-speaking world will also be introduced. Conducted in Spanish.

SPAN 1002. Elementary Spanish II
3-0-3.
Prerequisite(s): SPAN 1001
The second part of an introduction to the Spanish language and cultures of the Spanish-speaking world. Completion of the survey of basic Spanish grammar and the development of the four language skills of listening, speaking, reading, and writing. Aspects of everyday life in the Spanish-speaking world will also be introduced. Conducted in Spanish.

SPAN 1801. Special Topics
3-0-3.
Topics of special interest in Spanish.

SPAN 2001, -02. Intermediate Spanish I & II
3-0-3.
Prerequisite(s): SPAN 1002 or SPAN 1801
Review of basic grammatical concepts: conversational, reading, and writing activities; cultural aspects of the Hispanic world. Conducted in Spanish.

SPAN 2801. Special Topics
3-0-3.
Prerequisite(s): SPAN 1002
Permits a group of students to pursue areas of the Spanish language and culture not extensively treated in other courses.

SPAN 3061. Spanish for Business I: Fundamentals
3-0-3.
Prerequisite(s): SPAN 2002
Introduction to business language in the Hispanic world. Development of linguistic abilities to this end, with emphasis on those cultural factors that lead to commercial success. Conducted in Spanish.

SPAN 3062. Spanish for Business II: Applications
3-0-3.
Prerequisite(s): SPAN 3061
Focus on the oral and written language and cultural context of Hispanic business protocols; themes and situations include banking and finance, and marketing and advertising structures and practices. Conducted in Spanish.
SPAN 3101. -2. Spanish Conversation: Issues and Strategies I & II
3-0-3.
Prerequisite(s): SPAN 2002
Development of communicative ability and cross-cultural awareness through discussion of contemporary issues in the Hispanic world.

SPAN 3111. -12. Composition: Analysis and Development I & II
3-0-3.
Prerequisite(s): SPAN 2002
Developments from the Hispanic world used as a springboard for analysis and enrichment of self-expression and development of precision in written communication. Incorporates grammar review.

SPAN 3121. The Cultural History of Spain I: Prehistory to Renaissance
3-0-3.
Prerequisite(s): SPAN 2002
History of Spanish culture from prehistoric times to 1700. Conducted in Spanish.

SPAN 3122. Cultural History of Spain II: Nineteenth and Twentieth Century Spain
3-0-3.
Prerequisite(s): SPAN 2002
History of Spanish culture from 1700 to the present. Conducted in Spanish.

SPAN 3170. Spanish Phonetics and Phonology
3-0-3.
Prerequisite(s): SPAN 2002
Study of the phonological system of the Spanish language, including dialectal variations in the Hispanic world.

SPAN 3235. Latin America Today
3-0-3.
Prerequisite(s): SPAN 2002
Selected journalistic and literary writings used as a springboard for discussion of social, economic, and political issues of contemporary Latin America. Conducted in Spanish.

SPAN 3236. Business Communication and Correspondence
3-0-3.
Prerequisite(s): SPAN 3062
Development of culturally appropriate written and oral interaction skills in Hispanic business contexts. Conducted in Spanish.

SPAN 3241. The Individual and the Family in Hispanic Literature
3-0-3.
Prerequisite(s): SPAN 2002
Analysis and discussion of the portrayal of the individual and the family in selected readings from Hispanic literature. Conducted in Spanish.

SPAN 3242. Society in Hispanic Literature
3-0-3.
Prerequisite(s): SPAN 2002
Study of Hispanic society and political thought in selected literary works. Conducted in Spanish.

SPAN 3691. Business Communication and Correspondence in the Hispanic World
3-0-3.
Prerequisite(s): SPAN 1002
Co-requisites: SPAN 3692 and 3693
Refinement of accuracy/flexibility in oral/written expression. Focus on appropriate use of strategies, business negotiation protocols, lexical precision in business transactions. Incorporates grammar review. Part of the Spanish intensive Summer Language Program (page 25). Admission by application only.

SPAN 3692. Business and Culture in the Hispanic World
3-0-3.
Prerequisite(s): SPAN 1002
Co-requisites: SPAN 3691 and 3693
Study of cultural issues, tendencies, and traditional patterns of behavior in Spanish-speaking people as they relate to business practices. Value systems and formal manifestations. Regional variations, including the U.S. Hispanic culture. Part of the Spanish intensive Summer Language Program (page 25). Admission by application only.

SPAN 3693. Science and Technology in the Hispanic World
3-0-3.
Prerequisite(s): SPAN 1002
Co-requisites: SPAN 3691 and 3692

SPAN 3694. Business and Culture in the Hispanic World: Seminar Abroad
3-0-3.
Field study of technology, economic trends, business firms, financial institutions, and cultural protocols in the Spanish-speaking area. Part of the Spanish intensive Summer Language Program (page 25). Admission by application only.

SPAN 3801. -2. Special Topics
3-0-3.
Prerequisite(s): SPAN 2002
Permits a group of students to pursue areas of the Spanish language and culture not extensively treated in other courses.

SPAN 4061. Spanish for Science and Technology I: Fundamentals
3-0-3.
Prerequisite(s): SPAN 3062
Modern Languages/Naval Science

SPAN 4062. Spanish for Science and Technology II: Applications
3-0-3.
Prerequisite(s): SPAN 3062
Advanced analysis of scientific and technological discourse in Spanish. Focus on reading strategies and oral discussion of topics such as use and transfer of technology and the acculturation issues that follow. Further development of comprehension, production, and translation strategies, with emphasis on professional communications and on writing feature descriptions, summaries, and abstracts. Conducted in Spanish.

SPAN 4141. Survey of Spanish Literature
3-0-3.
Prerequisite(s): SPAN 3102
Selected works by representative authors from all periods of Spanish literature. Conducted in Spanish.

SPAN 4142. Survey of Latin-American Literature
3-0-3.
Prerequisite(s): SPAN 3102
Selected works by representative authors from all periods of Latin American literature. Conducted in Spanish.

SPAN 4151. Hispanic Fiction: The Short Story in Spain
3-0-3.
Prerequisite(s): SPAN 3102
The short story in the literature of Spain from the Middle Ages to the present. Conducted in Spanish.

SPAN 4152. Hispanic Fiction: The Latin-American Short Story
3-0-3.
Prerequisite(s): SPAN 3102
The short story in the literatures of Latin America, from independence to the present. Conducted in Spanish.

SPAN 4154. Hispanic Fiction: The Modern Drama
3-0-3.
Prerequisite(s): SPAN 3102
Works by representative Hispanic dramatists of the twentieth century. Conducted in Spanish.

SPAN 4170. Spanish Applied Linguistics
3-0-3.
Prerequisite(s): SPAN 3111
Advanced linguistic analysis of the Spanish language, particularly as it contrasts with English.

SPAN 4255. Hispanic Drama Workshop
3-0-3.
Prerequisite(s): SPAN 3102
Literary and theatrical aspects of Hispanic drama are explored through class discussion and performance of a collection of contemporary one-act plays.

SPAN 4801, -2. Special Topics
3-0-3.
Permits a group of students to pursue areas of the Spanish language and culture not extensively treated in other courses.

SPAN 4901, -2. Special Problems in Spanish
Credit hours to be arranged.
Provides the special instruction required under special programs.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.

Department of Naval Science

www.cyberbuzz.gatech.edu/nrotc

Established in 1926
Location: Naval Armory, Bobby Dodd Way
Telephone: 404.894.4771 or 404.894.4772
Fax: 404.894.6029
E-mail: kevin.gray@iac.gatech.edu

Commanding Officer and Professor—Capt. Barry D. Einsidler; Assistant Professor—Lt. Col. Clarence Mariney; Marine Instructor—Capt. David A. Teis; Assistant Marine Instructor—Gy. Sgt. Stephen Francois; Junior/Senior Instructor—Lt. Thomas J. Dixon; Sophomore Instructor—Lt. Elizabeth J. Morga; Freshman Instructor—Lt. Kevin L. Gray.

General Information
The NROTC program offers students the opportunity to qualify for service as commissioned officers in the United States Navy or Marine Corps. The program's objectives are to provide students with an understanding of the basic concepts and principles of naval science, associated professional knowledge, and the requirements for national security. NROTC students receive an educational background that allows them to later undertake advanced education in the naval service. The NROTC program is an officer ascension program for the unrestricted line communities. Upon graduation, the student is commissioned as an officer in the Naval Reserve or Marine Corps Reserve. Naval officers are ordered to active duty in submarines, surface combatants, or the aviation community. Marines undergo training leading to a variety of specialties. NROTC students are enrolled in one of the three categories outlined on the following page.
Scholarship Students
Four-year and three-year scholarship students are selected through nationwide competition. Selection criteria include SAT or ACT scores, high school academic performance, and extracurricular activities. The selection process is administered by the Naval Recruiting Command; however, the NROTC unit will provide guidance and information to applicants. The NROTC scholarship pays for tuition, fees, and textbooks. The Navy also provides uniforms and a $200 per month subsistence allowance. The Naval Science Department conducts an orientation program (INFORM) for all new NROTC scholarship students during the week prior to the start of the fall semester. Scholarship students must complete the naval science curriculum and also participate in cruises from four-to-six weeks duration during the summers between academic years.

College Program Students
Nonscholarship students may seek a naval commission through the NROTC College Program. Interested students may apply at the Naval Armory on campus. The process includes a review of previous academic performance and interviews with staff personnel. Students accepted into the College Program must complete the naval science curriculum and take a cruise between junior and senior years. The Navy provides uniforms and naval science texts. Students who enter advanced standing in the junior year receive a subsistence allowance of $200 per month. College program students are eligible to compete for scholarships ranging from one to three years. Selection criteria are based on academic performance at Georgia Tech and military performance as a College Program student. For information, contact the Naval Science Department at 404.894.4771.

Two-Year Scholarship Program
Sophomores may apply and compete nationally for two-year NROTC scholarships. Those selected attend six weeks of training in Newport, Rhode Island, during the summer between the sophomore and junior years. Upon successful completion, the student joins the NROTC program on an equal footing with other students in the junior year naval science classes. Interested students should contact the Naval Science Department.

Curriculum
In addition to the required naval science courses, all Navy Option Scholarship Students must take calculus (MATH 1501-2 or MATH 1511-2), physics (PHYS 2111-2 or 2231-3 series), one term of INTA (contact NROTC unit for required class), and one term of computer science.

Marine Option students must also take the previously listed international affairs courses or their equivalent as approved by the professor of naval science. Any additional requirements are based on whether the student is in a technical or nontechnical major, a Navy Option or Marine Option student, and a scholarship or nonscholarship recipient. Each student must obtain from the NROTC Department a complete description of program requirements since the above statement is only a general outline. No more than six hours of credit in basic naval science courses and no more than nine hours of credit in advanced naval science courses will apply toward degree requirements.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

NAVAL SCIENCE

NS 1321. Introduction to Naval Sciences
3-0-3.
This course is an introduction and orientation class designed to give students a broad overview of the roles of the U.S. Navy and Marine Corps. This course also provides an introduction to the structure, terminology, customs, and uniforms of the Navy and Marine Corps.

NS 1323. Naval Maritime History
3-0-3.
Prerequisite(s): NS 1321
This course surveys U.S. Naval history from its European origin to the present with emphasis on major developments and the geopolitical forces shaping these developments. The course also covers present day concerns in sea power and maritime affairs, including the economic and political issues of maritime commerce, the law of the sea, and the rise and decline of the Soviet Navy.

NS 2321. Naval Leadership and Management
3-0-3.
Prerequisite(s): NS 1321
Survey of managerial functions, communication, and major theories of leadership and motivation applied to the Navy organization. Culminates with focus on Naval core values.
NS 2322. Naval Systems Engineering I
3-0-3.
Prerequisite(s): NS 1321
This course develops and broadens the student's understanding of basic engineering concepts and principles as applied to naval engineering plants.

NS 3321. Navigation I
3-0-3.
Prerequisite(s): NS 2321
This course develops and broadens the student's understanding of basic piloting and the laws of vessel operations by applying the fundamentals of navigation at sea.

NS 3322. Navigation
3-0-3.
Prerequisite(s): NS 3321
This course develops and broadens the student's understanding of relative motion, surface ship operations, and naval command, control, and communications.

NS 3323. Evolution of Warfare
3-0-3.
Prerequisite(s): NS 1321
A historical exploration of warfare practiced by great nations. Selected campaigns are studied with emphasis on leadership, evolution of tactics, weaponry, and principles of war.

NS 4321. Naval Systems Engineering II
3-0-3.
Prerequisite(s): NS 2322
This course develops and broadens the student's understanding of basic engineering concepts and principles as applied to naval weapon systems.

NS 4322. Naval Leadership and Ethics
3-0-3.
Prerequisite(s): NS 2321
Study of Naval values and ethics to include core values, Navy regulations, and military law. Duties and responsibilities of a junior naval officer.

NS 4323. Amphibious Warfare
3-0-3.
Prerequisite(s): NS 1321
A historical exploration of warfare practiced by great nations. Selected campaigns are studied with emphasis on leadership, evolution of tactics, and principles of war.

Philosophy, Science, and Technology

Established in 1990
Location: 110 D.M. Smith Building, 685 Cherry Street
Telephone: 404.894.6822
Fax: 404.385.0504
E-mail: deborah.johnson@pubpolicy.gatech.edu

Director and Professor—Deborah G. Johnson.
PST Philosophy Faculty:
Professors—Nancy J. Nersessian, Bryan G. Norton;
Associate Professors—Roberta Berry, Andrew Ward.
PST Ethics Program Faculty:
Professor—Susan Cozzens; Associate Professors—Carol Colatrella, Stephen Usselman; Assistant Professors—Alice Bullard, Molly Cochran, Hans Klein, Jon J. Johnston, Juan Rogers.

General Information
Georgia Tech offers undergraduate courses in philosophy, with a particular focus on science and technology. The courses are intended to enable Georgia Tech students to reflect on the nature of their disciplines and to focus their understanding on the context of their lives as professionals and citizens. PST courses can be used to satisfy the distribution requirement in humanities.

Certificate and minor programs in philosophy are available for students who wish to concentrate course work in this field. The certificate program consists of 12 hours of course work, chosen in consultation with the director. The minor consists of 18 hours of course work, chosen in consultation with the director.

Ethics Courses for Engineers
The PST program is responsible for offering a menu of courses that meet an ethics course requirement in several programs in the College of Engineering. PST courses recommended to fulfill the ethics requirement include the following:
PST 3105 Ethical Theories
PST 3109 Ethics for Technical Professions
PST 3127 Science, Technology, and Human Values
PST 4176 Environmental Ethics

Courses offered in other Ivan Allen College schools recommended to fulfill the ethics requirement include the following:
INTA 2030 Ethics and International Affairs
LCC 3318 Biomedicine and Culture
HTS 3057 Twentieth Century European Intellectual History
HTS 1028/EE 1823 Electrical Engineering in American Life
SOC 3355 Technology and Society

Students should consult the director or others
in the philosophy faculty concerning the schedule of course offerings.

The Program in Philosophy, Science, and Technology participates in the Program in Cognitive Science, which offers a Graduate Certificate in Cognitive Science, an Undergraduate Certificate in Cognitive Science, and an Undergraduate Minor in Cognitive Science. For further information on these educational programs, see the listing under the College of Computing, the administrative home of the program, or visit www.cc.gatech.edu/cogsci.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

PHILOSOPHY, SCIENCE, AND TECHNOLOGY

PST 1101. Introduction to Philosophical Analysis
3-0-3.
An introduction to the nature of philosophy through the critical analysis of selected works, such as Descartes, Hobbes, and Locke. The relationship of philosophy to science, religion, and culture will be emphasized.

PST 2050. Philosophy and Political Theory
3-0-3.
Survey of political thought from ancient times, relating classical and modern political theories to problems of the modern democratic state. Special emphasis on the problems of the individual and state.

PST 2068. Science and Values in the Policy Process
3-0-3.
Normative and logical structures of policy analysis, with applications of moral theories and deductive reasoning to cases in policy analysis. Frameworks include utilitarianism, benefit/cost analysis, and rights theories.

PST 3102. Ancient Philosophy
3-0-3.
Development of philosophy from the pre-Socratics to the medieval Christian synthesis and the early development of science in the fourteenth and fifteenth centuries.

PST 3103. Modern Philosophy
3-0-3.
A study of the development of philosophy from the views of Bacon and Descartes to the Tractatus and to existential thought. Traces the philosophic response to modern science in the rational and empirical traditions.

PST 3105. Ethical Theories
3-0-3.
Surveys traditional ethical theories of value, obligation, and rights and applies these theories to contemporary social problems such as abortion, euthanasia, poverty and distributional equity, and environmental problems.

PST 3109. Ethics and Technical Professions
3-0-3.
Ethical reasoning in the context of professional work in science and technology. Prepares future technical professionals to approach decisions with a coherent ethical framework.

PST 3113. Logic and Critical Thinking
3-0-3.
Symbolic logic and applications of logic in critical reading and thinking by exploring modern systems of symbolic logic and their implications for science. Emphasizes skills in critical thinking and writing based on the principles of logic.

PST 3115. Philosophy of Science
3-0-3.
Examination of the nature and processes of scientific inquiry, including the status of scientific knowledge, identification of pseudoscientific claims, and the role of values in generating and using scientific knowledge.

PST 3127. Science, Technology, and Human Values
3-0-3.
Exploration of the boundaries between science, religion, and social values, examining science and technology in a broader social context. Examines claims that science is isolated from social problems and values.

PST 3790. Introduction to Cognitive Science
3-0-3.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PSYC, and ISYE 3790.

PST 4110. Theories of Knowledge
3-0-3.
Critical examination of perception, verification, a priori and a posteriori knowledge, meaning and criteria of truth, and cognitive significance of scientific and philosophical propositions. Evolution of epistemology.

PST 4112. Philosophic Themes in Asian Thought
3-0-3.
Prerequisite(s): PST 1101
Survey of selected metaphysical and ethical ideas in the religious and philosophic traditions of East Asia, including Hindu conceptions of the self and causality, Buddhism and Zen, and the ethical naturalism of Confucianism and Taoism.

PST 4174. Perspectives in Science and Technology
3-0-3.
Comparative analysis of frameworks for interpreting science and technology, discussed in light of case studies. Selected frameworks include philosophical, historical, cognitive, and sociological.

PST 4176. Environmental Ethics
3-0-3.
Conceptual and normative foundations of environmental attitudes and values. Impacts of traditional and modern beliefs that shape human attitudes toward nature on creating a more compatible relationship between humans and their environment.
PST 4752. Philosophical Issues in Computation
3-0-3.
Prerequisite(s): PST 3115
Introduction to metaphysical and epistemological issues in foundations, methods, and implications of computing. Issues include minds, brains, and machines; representation and language; and simulating nature. Crosslisted with CS 4752.

PST 4790. Seminar in Cognitive Science
3-0-3.
A seminar-type course in cognitive science focusing on integrating and deepening students' cognitive science knowledge and skills. Topics include memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PSYC, and ISYE 4790.

PST 4791. Integrative Project in Cognitive Science
3-0-3.
An integrative course in cognitive science focusing on the integration and use of concepts and skills from cognitive science. A different integrative project or set of projects will be taken on each semester; students will contribute on the basis of their background and skills. Crosslisted with CS, ISYE, and PSYC 4791.

PST 4792. Design Project in Cognitive Science
3-0-3.
Individual project with a cognitive science faculty member, designed as a supplement to the student’s senior design project or thesis in their major area. Crosslisted with CS, ISYE, and PSYC 4792.

PST 4801, -2, -3. Special Topics
3-0-3.

PST 4901, -2, -3. Special Problems
Credit hours to be arranged.

General Information
The discipline of political science is included within the Ivan Allen College within the School of Public Policy and the Sam Nunn School of International Affairs. Undergraduate courses in political science are intended to broaden students’ perceptions of political processes and governmental institutions. Many of these courses are taught under the PUBP or INTA prefix. Students should consult with the political science faculty concerning course offerings.

Political science courses may be used to satisfy the distribution requirement in social sciences, including the state-mandated requirement on constitutions of the United States and Georgia. This requirement may be satisfied by completion of POL 1101 or PUBP 3000, or INTA 1200, or HIST 2111 or 2112. The requirement also may be satisfied by examination.

Certificate and minor programs in political science, administered by the School of Public Policy, are available for students who wish to concentrate course work in this discipline. The certificate in political science requires 12 hours of course work, chosen in consultation with the faculty. The minor in political science requires 18 hours of course work (at least 12 hours at the 3000 level or higher), also chosen with the advice of the faculty coordinator.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

POLITICAL SCIENCE

POL 1101. Government of the United States
3-0-3.
The purposes, structure, and functions of national and state governments, focusing on participation, institutions, and the policy process. Foundations of law, civil rights and civil liberties, role of the media, parties and elections, and policy processes.

POL 2101. State and Local Government
3-0-3.
Politics and government processes at the state and local levels.
Ivan Allen College

Established in 1990
Location: 107 D.M. Smith Building, 685 Cherry Street
Telephone: 404.894.6822
Fax: 404.385.0504

Chair and Professor—Susan E. Cozzens.
Assistant Professors—Michael Farmer, Hans Klein, Jon J. Johnston, Juan Rogers.
Professors Emeritus—Stanley Carpenter, J. David Roessner.

General Information
Who will own the Internet, and under what rules? Which new reproductive technologies will be developed and which declared illegal? How do we balance economic growth and the needs of ecological systems? Questions like these are answered through collective decision-making processes involving business, government, and the public. Public policy is the process of defining, debating, and deciding the issues. As public life becomes increasingly technology intensive, the unique skills and knowledge gained by a policy degree become more valuable.

At Georgia Tech, public policy students learn how to analyze, study, and solve problems in the real world. They explore controversies over technology-intensive issues, and learn how to bring data and analysis into the decision process. Public policy graduates prepare themselves for careers in government, nonprofit organizations, business, or law as consultants, policy analysts, and managers.

The School of Public Policy offers B.S., M.S., and Ph.D. degrees in Public Policy. The School shares responsibilities for offering undergraduate courses in political science, philosophy, and other social sciences with the other units in the Ivan Allen College. Students interested in public policy in the urban context will also find relevant courses offered by the City Planning Program in the College of Architecture.

Certificates
The School of Public Policy offers four undergraduate certificates.

- The Public Policy Certificate features courses on government and business decision processes, especially those involving science, technology, environment, or regional development.
- The Pre-Law certificate prepares students for decisions about law school through a pre-law seminar and courses on constitutional and judicial processes, plus selected courses in computer science, economics, history, and international affairs.
- The Political Science Certificate focuses on how government works, from the local to the national level.
- The Philosophy, Science, and Technology Certificate provides broad perspectives and critical thinking about science and technology, emphasizing values and ethics.

The certificates enrich any Georgia Tech degree and particularly serve students who are planning graduate studies in law, medicine, business, or the social sciences. All the certificates require a minimum of 12 semester hours of concentration. Students interested in planning a certificate program in one of the four areas should contact the School of Public Policy for further information. A faculty advisor assists each student in planning a program of study to meet his or her needs and interests.

Minor Programs
The School offers minors in Public Policy; Political Science; and Philosophy, Science, and Technology for students wishing a concentration outside their major that provides greater depth than the certificate programs. Each minor requires a minimum of 18 hours of credit (12 semester hours at the 3000 level or higher) with a grade of C or better in each. Completion of a minor will be recognized on the student's final university transcript.
Undergraduate Program

Bachelor of Science

The Bachelor of Science in Public Policy (B.S.P.P.) is designed to provide an education that combines strong analytical skills with understanding of a range of substantive policy issues and the political, social, and cultural forces that shape public policies. The B.S.P.P. core courses provide students with the broad political and philosophical foundations of thought pertinent to public policy, a base of rigorous quantitative and qualitative analytical approaches, and a solid understanding of the political, social, and cultural dynamics that structure policy debates and policy outcomes. Elective courses are offered in such areas as environmental policy, science and technology policy, information and telecommunication policy, and urban and regional development policy. The program's emphasis on the development of problem-solving and analytical skills constitutes a strong comparative advantage for B.S.P.P. graduates.

Bachelor of Science in Public Policy
(Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>ENGLISH COMP. I</td>
</tr>
<tr>
<td>MATH 1501 or MATH 1712</td>
<td>4</td>
</tr>
<tr>
<td>LAB SCIENCE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>POL 1101</td>
<td>AMERICAN GOVERNMENT</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102</td>
<td>ENGLISH COMP II</td>
</tr>
<tr>
<td>MATH 1502 or MATH 1711</td>
<td>4</td>
</tr>
<tr>
<td>LAB SCIENCE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321</td>
<td>INTRO. TO COMPUTING</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064</td>
<td>WELLNESS</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PST 2050</td>
<td>PHIL. & POLITICAL THEORY</td>
</tr>
<tr>
<td>PUBP 2012</td>
<td>FOUND of PUBLIC POLICY</td>
</tr>
<tr>
<td>LAB SCIENCE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2112</td>
<td>THE UNITED STATES SINCE 1877</td>
</tr>
<tr>
<td>ECON 2105</td>
<td>MACROECONOMICS</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 3010</td>
<td>BUREAUCRACY AND POLICY IMPLEMENTATION</td>
</tr>
<tr>
<td>PST 2068</td>
<td>SCIENCE & VALUES IN POLICY</td>
</tr>
<tr>
<td>LAB SCIENCE (CHEM, BIOL, PHYS, EAS)</td>
<td>4</td>
</tr>
<tr>
<td>HIST ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106</td>
<td>MICROECONOMICS</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 3201</td>
<td>INTRO. TO SOCIAL POLICY</td>
</tr>
<tr>
<td>PUBP 4113</td>
<td>STATISTICAL ANALYSIS</td>
</tr>
<tr>
<td>PST/PUBP 3XXX or 4XXX</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 3110</td>
<td>RESEARCH METHODS</td>
</tr>
<tr>
<td>PUBP 3XXX</td>
<td>ELECTIVE</td>
</tr>
<tr>
<td>PUBP 3600</td>
<td>SUSTAINABILITY, TECH. & POLICY</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 3XXX or 4XXX ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUBP 4600</td>
<td>SENIOR THESIS</td>
</tr>
<tr>
<td>PUBP 3XXX or 4XXX ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>PST/PUBP 3XXX or 4XXX ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HRS)</td>
<td></td>
</tr>
</tbody>
</table>

Requirements and Electives

Designated Courses in the Major

The core curriculum for the major consists of:

POL 1101 | Government of the U.S. |
PUBP 2012 | Foundations of Public Policy |
PST 2050 | Philosophy and Political Theory |
Elective Courses in the Major
Students must take an additional 15 hours of courses in public policy as electives, usually focusing on a concentration in a substantive area of public policy or in policy analytic methods. These courses are selected from among those with PUBP, POL, and PST prefixes, in consultation with an advisor.

Nonmajor Cluster
Students must take a minimum of 12 hours from a list of courses related to the study of public policy. These courses include HIST 2112, ECON 2105, ECON 2106, and another course in history, sociology, international affairs, or science, technology, and culture (LCC). This course must be chosen in consultation with the student's advisor.

Senior Seminar/Thesis
A capstone course usually taken in the student's last year before graduation, the Senior Seminar and Thesis (PUBP 4600) involves writing an original policy analysis relevant to a public or nonprofit agency.

Mathematics
Previous course work in calculus is assumed in the core statistics course for majors as well as in economics courses in public policy. To prepare, students are advised to fulfill the mathematics requirement by taking MATH 1501-2, MATH 1711-12, or MATH 1711 with either 1501 or 1502, will also satisfy the requirement. Students cannot receive credit for both MATH 1712 and MATH 1501 or 1502.

Science and Engineering
Public policy majors must take at least one sequence in a laboratory science (typically BIOL 2068, CHEM 1211-1311/1312, EAS 1600-01, or PHYS 2211-12). To obtain a greater understanding of the methods and substance of science and engineering, public policy majors must take two additional courses in science- or engineering-related fields. These courses must be chosen in consultation with the student's advisor.

Computer Science
Students are required to complete CS 1321.

Social Sciences
The 12-hour social sciences requirement may be satisfied by taking one of the following: HIST 2111, HIST 2112, INTA 1200, POL 1101, or PUBP 3000 (to satisfy state requirements regarding course work on the history and Constitutions of the United States and Georgia), plus an additional 9 hours of other social science courses (history, economics, international affairs, political science, public policy, sociology, and selected courses in psychology), as approved by the student's advisor. Because POL 1101 is required for all B.S.P.P. majors, public policy majors are strongly urged to take POL 1101 to satisfy this requirement. Public policy majors may not count social science courses for both their degree requirements (including the nonmajor cluster but excluding POL 1101) and the social science requirements.

Humanities and Fine Arts
Students are required to complete ENGL 1101-2 and an additional six hours in the humanities and fine arts. Additional courses may be chosen from the list of approved humanities courses in this catalog. Public policy majors may not count PST courses for both their degree requirements and the Humanities and Fine Arts requirements.

Health and Performance Sciences
Students are required to complete HPS 1040, 1062, 1063, or 1064. The 2 credit hours earned for these courses do not count toward the 120-hour requirement for the B.S. degree.

Free Electives
To graduate, each student must have accumulated at least 120 semester hours of credit toward the Bachelor of Science in Public Policy degree. Therefore, in addition to the requirements listed...
previously, the student must take a sufficient number of elective courses either within or outside Public Policy to reach 120 hours. Typically, this will allow the student approximately 18 hours of free electives.

Graduate Programs

Master's Program

The Master of Science in Public Policy is designed for students with strong analytical backgrounds, such as those received in engineering, natural science, or an analytically oriented social science or humanities curriculum. Graduate studies in public policy focus on areas in which either the consequences of scientific and technological activity have significant public policy implications, or technical and scientific information is a significant input to the policy-making process. Current areas of specialization for the School include science and technology policy, environmental policy, and regional economic development policy.

The M.S. in Public Policy requires 46 credit hours of study, including either (a) three hours devoted to producing a professional policy research paper or team research project or (b) nine hours for a thesis. In general, it is expected that students planning to enter employment upon completing the degree will choose the paper or project option, while students planning to continue their graduate work will choose the thesis option.

The program requires a 25-credit hour core curriculum consisting of five substantive elements: policy and organizational analysis; ethics, philosophy, and public policy; economics and public finance; methods of analysis, including quantitative analysis and research design; and a capstone course in public policy analysis. In addition, there is a required one-credit hour introductory graduate seminar in public policy. Based on prior course work or a test-out exam, students may request up to six credit hours of exemptions from core courses. In individual cases, students may be required to take pre-core preparatory courses to be ready for graduate studies in particular methodological or analytical areas. Core courses include:

- PUBP 6001: Introduction to Public Policy
- PUBP 6010: Ethics, Epistemology, and Public Policy
- PUBP 6012: Fundamentals of Policy Processes
- PUBP 6112: Research Design in Policy Processes
- PUBP 6114: Applied Policy Methods and Data Analysis
- PUBP 6116: Microeconomics for Policy Analysis
- PUBP 6118: Public Finance and Policy
- PUBP 6201: Public Policy Analysis

Plus one of the following:
- PUBP 6014: Organization Theory
- PUBP 6017: Public Management
- PUBP 6018: Policy Implementation and Administration

Students must achieve a grade of B or higher in all core courses. In addition to elective courses in the School of Public Policy, students may develop their own programs of study, by taking courses in other Georgia Tech schools, including those in the Ivan Allen College and the Colleges of Architecture, Management, Sciences, and Engineering. A summer internship, work experience, or co-op assignment between the first and second years offers students insight into a research or professional setting related to their career interests.

Doctoral Programs

The Ph.D. in Public Policy prepares students for advanced professional work or for academic careers. Georgia Tech houses two Ph.D. programs in Public Policy, including one offered jointly with Georgia State University. The programs stress intellectual and methodological rigor, building upon the theory and applications of quantitative analysis, political and organizational analysis, research design, and economics.

All students must have completed the equivalent of the core courses for the Master of Science in Public Policy (see description of the M.S. degree). The doctoral degree is built upon a core curriculum of six three-credit hour courses (seven in the joint program). These courses are designed to provide students with a theoretical and methodological foundation for conducting public policy research. Core courses include:
Ivan Allen College

PUBP 8200 Advanced Research Methods I
PUBP 8205 Advanced Research Methods II
PUBP 8211 Microeconomic Theory and Applications
PUBP 8500 Research Seminar in Public Policy
PUBP 8510 Logic of Policy Inquiry
PUBP 8520 Scope and Theory of Public Policy

Additionally, for the joint program, students must take PUBP 8813, Advanced Topics in Analysis and Evaluation. Details on the requirements of the joint program, including equivalent courses at Georgia State, are available on the website.

This core is supplemented with in-depth study of particular substantive areas of public policy. The Georgia Tech program focuses on three substantive specialties: science and technology policy, environmental policy, and urban and regional development policy. Students may pursue concentrations with groups of courses already developed by the faculty or an individualized concentration with the written approval of the student's advisor and the Graduate Committee. A major area of concentration has a capstone seminar at the Ph.D. level that majors are required to complete. The minor concentration is an area of study that is taken outside the School of Public Policy. A student's advisor, in conjunction with the School of Public Policy Graduate Committee, determines the total number of hours required under a major and minor concentration. In most instances the major will consist of 4 classes (12 credit hours) and the minor will consist of 3 classes (9 credit hours).

Other requirements for the Ph.D. include completion of the one-year residency requirement; admission to candidacy for the degree through completion of a qualification process (three credit hours of preparation for Ph.D. qualifiers and three credit hours of dissertation colloquium); and completion and successful defense of a doctoral dissertation (nine credit hours).

In summary, the credits required for the Ph.D. are usually as follows:

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core</td>
<td>18 hours (21 for the joint program)</td>
</tr>
<tr>
<td>Major</td>
<td>12 hours</td>
</tr>
<tr>
<td>Minor</td>
<td>9 hours</td>
</tr>
<tr>
<td>Qualifiers</td>
<td>3 hours (written exam)</td>
</tr>
<tr>
<td>Colloquium</td>
<td>3 hours (oral exam: presentation of dissertation proposal)</td>
</tr>
<tr>
<td>Dissertation</td>
<td>9 hours</td>
</tr>
<tr>
<td>Total</td>
<td>54 hours (57 for the joint program)</td>
</tr>
</tbody>
</table>

This total assumes that a student already has satisfied the core requirements of the master's degree (at most an additional 25 hours).

Financial Aid
Most Ph.D. students receive financial assistance, chiefly through sponsored research projects and teaching assistantships.

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

PUBLIC POLICY

An in-depth exploration of American public policy, with emphasis on the dynamics of policymaking in policy areas such as health care, research, energy and environment, income maintenance, and economic development.

Analysis of the legislative process with a focus on institutional roles and group dynamics, including selection of legislators, interaction with other governmental institutions, and the role of analysis in shaping legislation.

Examines the American social and political system through the prism of Constitutional issues decided by the U.S. Supreme Court.

An exploration of the roles and activities of bureaucracies in the implementation of policies and programs, with emphasis on practical issues of public management.

The functions, structures, and procedures of state and federal court systems, including selection and appointment of judges, judicial activism, influences on court decisions, and enforcement of court decisions.

PUBP 3110. Research Methods and Problem Solving 3-0-3.
Conceptual and methodological issues in policy studies, including causality, explanation, models, threats to research, data collection, and assessment of applicability to policy issues. Design of research strategies.
PUBP 3201. Introduction to Social Policy
3-0-3.
A survey of public policies directed toward social problems in America and their evolution and reform. Development of role of government in addressing issues related to poverty and social welfare.

PUBP 3212. State Policymaking
3-0-3.
This course provides an introduction to politics at the state and local levels of government.

PUBP 3214. African-American Politics
3-0-3.
An exploration of the organizations, strategies, and issues that have defined African-American political life in the post-civil rights era in the United States.

PUBP 3600. Sustainability, Technology, and Policy
3-0-3.
Ethical, scientific, technological, economic, and political dimensions of sustainable human practices, applying multidisciplinary perspectives to challenges facing public and private-sector approaches to sustainability.

PUBP 3610. Pre-Law Seminar
3-0-3.
Prerequisite(s): PUBP 3000 or PUBP 3016
Examination of the legal profession and areas of legal specialization (e.g., contract, property, intellectual property, international). Emphasizes skills and values that are essential to success in law school and competent lawyering.

PUBP 4113. Statistical Analysis for Public Policy
3-0-3.
Introduction to probability, descriptive statistics, inferential statistics and analysis, and microcomputer spreadsheets. Emphasizes application of basic statistical concepts to typical public policy and administration problems.

PUBP 4120. Survey Research Methods
3-0-3.
Methods for producing and reporting valid surveys, including composition of questions, design and implementation of survey strategies, and analysis and communication of results.

PUBP 4130. Policy Analysis and Program Evaluation
3-0-3.
Prerequisite(s): PUBP 3110
Analytical methods for rational planning and policy analysis, emphasizing “learning by doing” as students examine alternative types of policy analysis, establish evaluation criteria, and evaluate policy implementation.

PUBP 4200. Social Policy Issues
3-0-3.
Prerequisite(s): PUBP 3201
A review of conceptual and analytical perspectives in social policy and coverage of major areas of persistent social problems, including health care, welfare reform, housing, education, reproductive issues, and gerontology.

PUBP 4201. Metropolitan Governance
3-0-3.
Explores fragmented governance, shared problems, and political entrenchment, which pose challenges to regional cooperation in metropolitan areas, focusing on environmental, transportation, and public service issues.

PUBP 4211. Urban Policy
3-0-3.
Prerequisite(s): POL 1101
Urban policy and urban economic development examined historically, nationally, and locally. Approaches to urban development and redevelopment.

PUBP 4212. Women and Public Policy
3-0-3.
The status of women in American society as a function of rights and opportunities conferred upon women by governmental actions and as influenced by forces of social change.

PUBP 4226. Business and Government
3-0-3.
How government regulates business and markets, and how business exercises power and influence on government in areas such as antitrust, financial markets, safety and health, and environmental quality.

PUBP 4314. Environmental Policy and Regulation
3-0-3.
Prerequisite(s): POL 1101
Using case studies of local, national, and international environmental issues, this course examines the roles of economics, law, political institutions, science, and technology in shaping environmental policies.

PUBP 4316. World Food, Population, and Environment
3-0-3.
Prerequisite(s): POL 1101
Interdisciplinary perspectives on relationships among technology, markets, and the structure of social institutions in responding to the challenge of managing an expanding world economy with growing consumption demands.

PUBP 4338. Environmental Impact Assessment
3-0-3.
Examines policy, planning, and methodological issues in the environmental impact assessment of engineering systems. Emphasizes regulatory aspects of environmental analysis and key analytical techniques, and the incorporation of environmental considerations into engineering design processes.

PUBP 4410. Science, Technology, and Public Policy
3-0-3.
Examination of relationships between science, technology, and government and their mutual influence on public and private decisions.

PUBP 4414. Technology, Innovation, and Policy
3-0-3.
Theories and concepts of technological innovation and diffusion, economic development, and the role of public and private institutions in technological development at the firm, industry, regional, national, and international levels.
PUBP 4416. Critical Issues in Science and Technology
3-0-3.
Exploration of technology and technological society, going beyond utility and functionality to consider justice, meaningfulness, and self-realization. Perspectives include political economy, aesthetics, and social change.

PUBP 4512. Politics of Telecommunication Policy
3-0-3.
Prerequisite(s): POL 1101
A review of the politics and environment of telecommunication policymaking, including the role of communication in society, the impact of government on the evolution of communications technologies, and proposals for reform.

PUBP 4514. Mass Communication Policy
3-0-3.
Prerequisite(s): POL 1101
Examines mass media influences, activities, characteristics, and behavior with respect to the political process and government. Structure of media markets, characteristics of news and advertising, and impacts of changing technologies on political processes.

PUBP 4530. Introduction to Geographic Information Systems
3-0-3.
Overview of GIS concepts, methods, and terminology. Introduction to PC-based GIS software. Applications to marketing, natural resource management, and public information systems. Students use case studies to design and implement actual projects.

PUBP 4532. Advanced GIS Topics: Spatial Analysis, GIS Programming, and Map Internet Server
3-0-3.
Prerequisite(s): PUBP 4530
Introduction to raster-based GIS software, Avenue script language, and map Internet server. Applications to marketing, natural resource management, and public information systems.

PUBP 4600. Senior Seminar/Thesis
3-0-3.
A capstone course usually taken in the student's last term before graduation, the Senior Seminar and Thesis involves writing an original paper entailing policy analysis relevant to a public or nonprofit agency.

PUBP 4756. Technology Forecasting and Assessment
3-0-3.
Develops skills in methods for technology monitoring, forecasting and assessment; draws on examples in various emerging technologies. Collection and analysis of quantitative and qualitative data on emerging technologies and their implications. Crosslisted with ISYE 4756.

PUBP 4801, -2, -3. Special Topics
3-0-3.

PUBP 4875, -76, -77. Special Topics in Political Science
3-0-3.

PUBP 4901, -2, -3. Special Problems
Credit hours to be arranged.

PUBP 4951. Georgia Internship Program
3-0-3.
Prerequisite(s): POL 1101
Work-study program assigning students to a project in state or local government. Students prepare research papers analyzing their work experiences relative to theory from the social science or policy studies.

PUBP 4952. Legislative Internship Program
3-0-3.
Prerequisite(s): POL 1101
Students work full-time for the Georgia General Assembly for elected officials or committees. Students prepare research papers analyzing their work experiences relative to theory from the social science or policy studies. Spring semester only.

PUBP 6001. Introduction to Public Policy
1-0-1.
An introduction to the field of public policy, including an overview of the scope of the field and examples of public policy analysis.

PUBP 6010. Ethics, Epistemology, and Public Policy
3-0-3.
Examination of the role of ethics and epistemology in public decision-making including the effects of values of professionals on public institutions and private sector organizations.

PUBP 6012. Fundamentals of Policy Processes
3-0-3.
The political and governmental context of policy is presented, from agenda setting to evaluation. Examines constitutional and federal contexts of policy, the role of various input mechanisms in shaping policy decisions, the processes by which government institutions make decisions (and the interactions among these institutions), and approaches for understanding and anticipating policy decision making.

PUBP 6014. Organization Theory
3-0-3.
A broad overview of the theoretical issues pertaining to the management of organizations. The course explores both "macro" (i.e., external relations, strategies, and structures) organizational issues. While this is a survey course, we will be concentrating much of our attention on current challenges to bureaucracy as a form of organization. In particular we will be using theories to examine trends toward re-engineering corporations or re-inventing government agencies. Satisfies policy implementation, management, and organization theory requirement.

PUBP 6017. Public Management
3-0-3.
Using case studies and a field exercise, students will examine how public policies are executed and managed. Underlying the course is the assumption that public management is the management of political authority and that strategic thinking can make for effective public management. Satisfies policy implementation, management, and organization theory requirement.
PUBP 6018. Policy Implementation and Administration
3-0-3.
This course gives special attention to institutional processes in efforts to coordinate policy implementation at the federal level and within the intergovernmental context; the analysis of implementation and enforcement of policy by regulatory agencies with the support of state governments and private sector agents; challenges to implementation by policy type; and the analysis of policy tools and administrative discretion in implementation. Satisfies policy implementation, management, and organization theory requirement.

PUBP 6112. Research Design in Policy Science
3-0-3.
The objectives for this course include: (1) providing a broad overview of research methods and research criteria; (2) giving students the opportunity to conduct data-based research and analysis; (3) providing more specialized knowledge of one set of research techniques (e.g. survey research, case studies, experimentation - varies by term); and (4) providing experience in presenting and defending research.

PUBP 6114. Applied Policy Methods and Data Analysis
3-0-3.
This course will focus on how to design, carry out, present, and interpret quantitative analyses of policy problems. Topics include probability, inferential statistics, regression analysis, general linear models, non-parametric analyses, and graphical analysis, as time permits. Classes will focus on (1) the course project, (2) discussions of assigned readings and problems, and (3) data analysis using spreadsheets and a standard statistical package.

Note: Students without preparation in basic statistical concepts and computer methods will be required to take appropriate courses at the 4000 level prior to admission to this course.

PUBP 6116. Microeconomics for Policy Analysis
3-0-3.
Microeconomic theory is studied with applications to public problems. Students will be introduced to price-generating processes in an economy, demand and supply theory, market equilibrium, welfare economics, categories of market failure, and the public sector's role.

PUBP 6118. Public Finance Policy
3-0-3.
Examines the theory, practice, and policy implications of federal, state, and local government budgeting and finance. Topics include government spending decisions with a focus on aggregate demand and supply, fiscal policy, budgeting practice, and introduction to cost/benefit analysis.

PUBP 6201. Public Policy Analysis
3-0-3.
This course provides a capstone experience for public policy students. The course addresses real-world policy issues and various approaches to analyzing them. The course relies heavily on cases and exercises.

PUBP 6218. Quantitative Models in Public Policy
3-0-3.
Prerequisite(s): PUBP 6114
This course lays a foundation for model building, and through the introduction of a variety of software packages will provide some hands-on experience with elementary model building. Decision models will be emphasized. Some familiarity with data analysis, probability, and statistical models is assumed. The goal of the course is to equip students with basic model-building tools, familiarize them with common problems in modeling, and improve their ability to create and evaluate simple models of policy problems.

PUBP 6221. Policy and Program Evaluation
3-0-3.
Approaches to evaluation policies and programs are presented using examples and case studies to contrast evaluation methods as well as the organizational and political context for evaluation.

PUBP 6226. Business and Government
3-0-3.
Examines government regulation of business operations and the economy from a broad perspective.

PUBP 6300. Earth Systems
3-0-3.
Describes the scientific principles and interactions that make up the Earth's environmental system. The course examines the interaction of natural and human influences that shape the development and operation of the Earth system and how public and private decision-making impacts this system.

PUBP 6310. Environmental Issues
3-0-3.
Provides an overview of basic concepts and methods of environmental policy analysis and implementation through a case study approach. Cases will range from local to global environmental policy issues. The goal of the course will be to expose students to the broad range of social and physical problems referred to as "environmental" problems, and to orient the student for future work in the field.

PUBP 6312. Economics of Environmental Policy
3-0-3.
This course addresses key concepts in environmental economics, including externalities, efficiency, social welfare, and environmental quality as a public good. Addresses environmental problems (i.e. water resources, air quality, urbanization) and vehicles of collective environmental action.

PUBP 6314. Policy Tools for Environmental Management
3-0-3.
Explores the various regulatory, managerial, and legal mechanisms available to policy analysts and decision makers for protecting environmental quality.

PUBP 6320. Sustainable Systems: Concepts and Measures
3-0-3.
This course is a historical introduction to sustainable development. The ethical, economic, ecological, and technological
dimensions of sustainability are examined. Topics include sustainable development in developing and developed countries; ecosystem health and resilience; the global carrying capacity controversy; sustainable communities, new urbanism, and regenerative technologies; designs for disassembly; appropriate technologies; and the politics of technologies.

PUBP 6324. Environmental and Technological Risk Management 3-0-3.
Introduction to analytical, social, and policy issues that comprise environmental and technological risk management. Provides an understanding of how risk can be incorporated into decision making, and the role of information in quantifying risk. Analyzes case studies to see why it is important to take risk into account, and examines the role of risk management in promoting environmental protection, safety, and health.

Examines the goals and objectives of environmentalists, with special attention to the literature of environmental ethics.

PUBP 6329. Environmental Policy and Implementation 3-0-3.
The concepts and methods of environmental policy analysis and implementation are presented through a case study approach.

Presents the legal and institutional framework within which environmental law is developed and implemented in the United States and internationally. Also examines the major pollution control statutes, and reviews international law and conventions to address trans-boundary environmental issues.

Examination of the relationships between science, technology, and government, including policies for support, control, and application of science and technology.

PUBP 6402. Research Policy and Management 3-0-3.
Examines challenges in research policy and management. The research activities of public, private, and not-for-profit organizations are contrasted in examining strategic planning, allocation of resources, technology transfer, and research evaluation practices.

Federal and state policies to stimulate innovation; sources and stimuli for innovation; role of universities and industry consortia; comparative innovation policy; and evaluation of technology policy.

Explores concepts, issues, and policies related to regional development, economic development, industrial change, and technology policy.

PUBP 6417. Critical Perspectives on Science and Technology 3-0-3.
This course seeks to stimulate students' critical thinking about science and technology and their relationships to markets, politics, and societies. Discussions include topics such as the social organization of scientific and technical communities, the roles of economic and political forces in science and technology, the shaping of the technical workforce, and the implications of science and technology for concepts that go beyond utility and competitiveness to include justice and self-realization.

PUBP 6421. Development of Large-Scale, Socio-Technical Systems 3-0-3.
Analyzes development of large systems such as smart highways, computer networks, electrical power, weapons, and space. Teaches practical skills including negotiation, coalition building, strategy, and innovation politics.

PUBP 6501. Information Policy and Management 3-0-3.
Examination of the information age from policy and management perspectives. The course will explore concepts and issues related to the formation and implementation of information policies.

PUBP 6513. The Politics of Communications Policy 3-0-3.
An examination of the political processes that make communications policy. The course covers the historical origins of government management of communications, Federal Communications Act, Federal Communications Commission, Congress, judiciary, executive, and special interest activity. Communications is compared to other types of policies. The discussions include historical and contemporary communications issues.

PUBP 6514. Mass Communications Policy 3-0-3.
Traces the evolution of broadcasting, cable, and other mass media policies. Examines the functioning/impact of mass communications in a changing technological environment.

PUBP 6530. Introduction to Geographic Information Systems 3-0-3.
Introduction to the application of geographic information systems (GIS) to public policy issues. Students develop an understanding of GIS software and hardware components, develop facility with a desktop GIS software package, explore digital data availability on the Internet, learn data transfer procedures, learn cartographic projection methods, and apply GIS and environmental management data to analyze a selected program.

PUBP 6534. Public Information Systems 3-0-3.
Design, development, and management of information systems for the public sector.
PUBP 6600. Foundations of Local Economic Development Planning and Policy
3-0-3.
Introduction to the context, theory, process, and practice of local economic development planning and policy. Topics covered include differing theoretical and conceptual explanations of the economic development process; international, national, and regional factors affecting local economic development; federal, state, and local roles; key elements in the economic development process; and contrasting economic development approaches.

PUBP 6602. Economic Development Analysis and Practice
3-0-3.
Strategy development, methods of analysis, and approaches to practice for urban and regional economic development policy and planning.

3-0-3.
Applies analytical techniques and practices of public policy and planning to urban issues, synthesizing varied public policy techniques and practices in a case study context.

PUBP 6606. Urban Development Policy
3-0-3.
Introduces elements of urban policy and urban economic development by examining them historically, nationally, and locally. Approaches to urban development and redevelopment are analyzed.

PUBP 6608. Management of Technology: External Environment
3-0-3.
Examines factors in external environment essential to managing technology. Considers technological innovation process in context of international competitiveness and roles of governments.

PUBP 6753. Comparative Science and Technology Policy
3-0-3.
Examination of the social, political, and cultural contexts of science and technology, and how they affect the research, development, and regulatory policies of nations. Crosslisted with INTA 6753.

PUBP 6777. Analysis of Emerging Technologies
3-0-3.
This course develops skills in the use of selected methods for technology monitoring, forecasting, and assessment. Also examines current status and prospects in selected emerging technology domains. Crosslisted with ISYE 6777.

PUBP 6780. Knowledge Management
3-0-3.
Prerequisite(s): MGT 6050
This course enables students to conceptually think about the modern organization as a knowledge-based, information-processing enterprise and to acquire analytical skills necessary to be a successful manager of a knowledge-based organization. Case studies and an organizational audit are used to examine knowledge-based organizations. Crosslisted with MGT 6780.

PUBP 6801. Research Paper
3-0-3.
Either a professional policy research paper or a team research project including a co-authored policy research monograph prepared for a government or public affairs client.

PUBP 7000. Master's Thesis
Credit hours to be arranged.

PUBP 8200. Advanced Research Methods I
3-0-3.
The course will cover advanced analytical and modeling methods. Topics may include nonparametric statistical methods, path analysis, principal component, and factor analysis of econometrics.

PUBP 8205. Advanced Research Methods II
3-0-3.
Experimental and quasi-experimental design, survey research methods and evaluation. Case study and qualitative analysis may also be included.

PUBP 8211. Microeconomic Theory and Applications
3-0-3.
Extensions of microeconomic theory—consumer theory, firm theory, and markets—to situations involving many periods and uncertainty. Introduces students to general equilibrium, externality, and welfare economics.

PUBP 8500. Research Seminar in Public Policy
3-0-3.
Prerequisite(s): PUBP 8205 and PUBP 8520
Exploration of the purpose of and approaches used in public policy research. Requires development of original empirical research.

PUBP 8510. Logic of Policy Inquiry
3-0-3.
This course presents the conceptual foundations of models of policy inquiry. Topics include the scientific, rational-actor, and ethical models. The ethical values underlying cost benefit analysis, pareto-optimal models, and market models are also examined.

PUBP 8520. Scope and Theory of Public Policy
3-0-3.
Overview of core literature of public policy including theories of public policy, the history of public policy studies, the institutional structure of policy analysis, the profession of policy research, and the intellectual bases of public policy studies.

PUBP 8530. Advanced Science and Technology Policy
3-0-3.
Overview of core literature of technology and science policy, theories of innovation, and intellectual foundations of technology and science policy.

PUBP 8540. Advanced Environmental Policy
3-0-3.
Overview of core literature of environmental policy, theories of environmental policy, and intellectual foundations of environmental policy.
General Information

The Women, Science, and Technology (WST) program does what no other gender studies program does—it links science and technology issues to those issues more traditionally associated with women's studies. The WST minor prepares Tech students—women and men majoring in engineering, science, social sciences, and humanities—to live and work in an increasingly diverse world. The minor helps students develop an understanding of the human side of science and engineering, involving not only gender issues, but inequalities of race and class as well.

WST courses reflect on the theoretical and practical dimensions of diversity. Students are encouraged to explore the values associated with scientific culture and to learn to synthesize knowledge across the disciplines, while viewing science and engineering as social and cultural forces that shape relations among women and men.

A WST minor must take the following Institute prerequisites (or their equivalents): ENGL 1101: English Composition, ENGL 1102: English Composition, and one of the following: HIST 2111: U.S. History to 1877; HIST 2112: U.S. History Since 1877; POL 1101: American Government; PUBP 3000: American Constitutional Issues; INTA 1200: American Government in Comparative Perspective. Each minor must take the following two (2) required courses: HTS 3021: Women in Science and Engineering; LCC 3304: Science, Technology, and Gender. Each minor must also take four (4) courses from the following HTS and LCC courses, at least one of which should be from the HTS, and one from the LCC, list. With permission of the WST co-coordinators, a student may substitute one related course (described below). Each student must have at least 12 credit hours of 3000- and/or 4000-level courses, and a total of 18 credit hours must be presented for the WST minor.

History, Technology, and Society

HTS 2082: Technology and Science in the Industrial Age
HTS 2084: Technology and Society
HTS 3007: Sociology of Work, Industry, and Occupations
HTS 3016: Women and Gender in the United States
HTS 3017: Sociology of Gender
HTS 3082: Sociology of Science
Women, Science, and Technology

HTS 3084: Culture and Technology
HTS 3086: Sociology of Medicine and Health

Literature, Communication, and Culture
LCC 2100: Introduction to Science, Technology, and Culture
LCC 3224: Gender Studies
LCC 3306: Science, Technology, and Race
LCC 3302: Science, Technology, and Ideology
LCC 3308: Environmentalism and Ecocriticism
LCC 3316: Science, Technology, and Postcolonialism
LCC 3318: Biomedicine and Culture

With permission of WST co-coordinators, students may substitute one appropriate course not listed above under HTS and LCC. This may be chosen from special topics courses, seminars, and other courses in the Ivan Allen College that focus upon gender and social inequality or social issues of science and technology. Students may register and plan their courses of study for the WST minor by meeting with one of the co-coordinators, Mary Frank Fox (HTS) and Carol Colatrella (LCC). Students petition for the minor at the time they petition for their major degree. Minors are conferred upon graduation and appear on students' transcripts.
in biology, and a number of certificate programs that provide similar opportunities for students to develop their expertise or acquire skills or information in specific areas in addition to their major area. Students who satisfactorily complete a certificate program will receive a certificate of recognition from the department that offers the program. Certificate programs available in the College of Sciences are as follows:

(Certificate programs offered by the other colleges at Georgia Tech are also available to students in the College of Sciences.)

Certificate Programs in the College of Sciences

Biology
- Environmental Biology
- Microbiology
- Molecular Biology/Genetics

Chemistry and Biochemistry
- Biochemistry/Organic Chemistry
- Chemical Analysis
- Physical/Inorganic Chemistry

Earth and Atmospheric Sciences
- Geochemistry
- Geophysics

Health and Performance Sciences
- Health Sciences

Physics
- Applied Optics
- Computer-Based Instrumentation
- Atomic, Molecular, and Chemical Physics

Psychology
- Biopsychology
- Engineering Psychology
- Experimental Psychology
- Industrial/Organizational Psychology
- Social/Personality Psychology
School of Biology

www.gatech.edu/biology

Established in 1960
Location: Cherry Emerson Building
Telephone: 404.894.3700
Fax: 404.894.0519

Chair and Professor—Roger M. Wartell; Harry and Linda Teasley Chair in Environmental Biology and Professor—Mark Hay.

Professors—Mark Borodovsky, David B. Dusenbery, Dwight H. Hall, Terry W. Snell, Thomas G. Tornabene.

Associate Professors—Jung Choi, Thomas J. DiChristina, E. Lloyd Dunn, Paul Edmonds, Gunther U. Holzer, Joseph Montoya, Jeanette Yen.

Assistant Professors—Yury Chernoff, Feng Dong, Igor Jouline, Julia Kubanek, Patricia Sobecky, Marc Weissburg.

Adjunct Faculty—Leonid Bunimovich, Marc Frischer, Diane Lavett, Mindy Millard-Stafford, Peter Verity.

General Information

Programs of study offered by the School of Biology allow students to gain competence in several different areas of the biological sciences. The curricula in all degree programs in the School encourage breadth by incorporating course selections from other schools and departments. The Institute, with its strengths in science, computing, mathematics, and engineering, provides unique opportunities for careers in the biological sciences and related areas.

The bachelor of science degree program consists of a combination of requirements and electives that ensure a balanced background in the fundamental areas of biology, while providing an opportunity to emphasize an area of interest in the junior and senior years. The School also offers graduate programs leading to the M.S. and Ph.D. degrees. The degree programs include course work, faculty and student seminars, and independent research. Faculty members are actively engaged in research fields such as bioinformatics, bioremediation, biophysics, chemical ecology, microbiology, and molecular biology/genetics.

Undergraduate Program

The undergraduate curriculum for the Bachelor of Science in Biology degree is well suited to prepare students for employment in research and other technical positions; for graduate studies in the biological sciences; or for admission to medical, dental, veterinary, or other professional schools. The minimum number of total hours required for a bachelor's degree is 122. Many students make use of the opportunity to participate in faculty-directed research through special problems courses, which may be used for technical elective credit. The School also offers a minor in biology, as well as certificate programs in environmental biology, microbiology, and molecular cell biology/genetics.

Bachelor of Science in Biology (Suggested Schedule)

Undergraduate Program

The undergraduate curriculum for the Bachelor of Science in Biology degree is well suited to prepare students for employment in research and other technical positions; for graduate studies in the biological sciences; or for admission to medical, dental, veterinary, or other professional schools. The minimum number of total hours required for a bachelor's degree is 122. Many students make use of the opportunity to participate in faculty-directed research through special problems courses, which may be used for technical elective credit. The School also offers a minor in biology, as well as certificate programs in environmental biology, microbiology, and molecular cell biology/genetics.

Bachelor of Science in Biology (Suggested Schedule)

Undergraduate Program

The undergraduate curriculum for the Bachelor of Science in Biology degree is well suited to prepare students for employment in research and other technical positions; for graduate studies in the biological sciences; or for admission to medical, dental, veterinary, or other professional schools. The minimum number of total hours required for a bachelor's degree is 122. Many students make use of the opportunity to participate in faculty-directed research through special problems courses, which may be used for technical elective credit. The School also offers a minor in biology, as well as certificate programs in environmental biology, microbiology, and molecular cell biology/genetics.
Bachelor of Science in Biology — Business Option

The curriculum and suggested course schedule for the B.S. in Biology — Business Option are similar to the one described previously, with the following exceptions. Only five hours of technical electives from biology-related courses are required. Students take PSYC 2220 (Industrial/Organizational Psychology) and ECON 2106 (Principles of Economics) in partial fulfillment of social science electives in the second and third years. In the third and/or fourth years, students must take MGT 3000 (Accounting) and MGT 3300 (Marketing). One additional management elective course is taken from a list that includes MGT 3062, 3150, 3076, 4191, and 4660. Biology majors in this option still select a project lab course, two track elective courses, five hours of technical electives, and ten hours of free electives.

Electives

Humanities and Social Sciences Electives

See “Core Curriculum,” Information for Undergraduate Students, pages 31-32, for lists of approved courses. All students are required to take one course from HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200 to satisfy state requirements regarding the history and Constitutions of the United States and Georgia; an additional nine hours of social sciences; and six hours of humanities.

Track, Technical, and Free Electives

Track electives: Students select one of the three tracks in their junior and senior years and are required to take the project lab course in that track and two courses from a group associated with the track. Courses must be taken for a letter grade.

Technical electives: Eleven hours must be earned in courses chosen from a list approved by the School of Biology (available in the School of Biology’s main office). The list includes upper-level biology courses, up to three hours of Special Problems research experience, as well as courses in other schools. Courses must be taken for a letter grade.

Free electives: The remaining 13 hours beyond courses required for humanities, social sciences, and physical education are free electives and may be taken on a pass/fail basis to the extent

1 The core biology courses (Ecology, Genetics, Statistical and Mathematical Biology, Introductory Microbiology, Cell Biology) may be taken in any order.

2 Each student must select one of three track options; Environmental Biology, Microbiology, or Molecular Biology/Genetics. Track electives and technical electives are selected from a list for each track obtained from the School of Biology.
allowed under the catalog "Rules and Regulations" section.

Minor and Certificate Programs

A minor in biology is available to all non-biology majors. The minor program provides a concentration in modern biological sciences and is especially valuable for students considering biomedical or environmental fields. The basic requirement is 18 semester hours in biology, of which 12 hours must be at the 3000 level or higher. Further information is available from the School's undergraduate coordinator.

Certificate programs are available in Molecular Biology/Genetics, Environmental Biology, and Microbiology/Microbial Technology. A certificate requires a minimum of 12 hours in biology, at least 9 of which must be at the 3000 level or higher. Courses required by name and number in a student's major program of study shall not be counted toward the certificate. Further information is available from the undergraduate coordinator in the School of Biology.

Graduate Programs

The School of Biology provides advanced training and research opportunities in a variety of areas ranging from molecular biology to ecology. Some of the areas of current research are genomic sequence analysis, mechanisms of gene expression and DNA replication, signal transduction in plant and animal cells, environmental microbiology, bioremediation, sensory mechanisms in small animals, biological oceanography, and ecosystem toxicology.

Master of Science in Bioinformatics

This is a 3-semester focused professional master's degree program combining 37 semester hours of courses in computer science, advanced molecular biology and biochemistry, statistics, and bioinformatics. A full-time summer internship in a corporate or academic bioinformatics group is an essential part of the curriculum. With input and assistance from corporate partners, the program is geared to training and placing graduates into lucrative jobs in the high-demand specialty field of bioinformatics. More information is available from the coordinator of the M.S. bioinformatics program.

Master of Science

The requirements for the M.S. degree are a research thesis and 30 semester hours of class work, which includes 12 credit hours in a major field. Twelve of the semester hours must be in formal graduate-level courses. The thesis must be defended in an oral examination. A non-thesis master's degree is available for students unable to carry out a thesis project; information on its requirements is available from the graduate coordinator in the School of Biology.

Doctor of Philosophy

Each Ph.D. student must acquire a thorough knowledge of a selected area of specialization, a broad knowledge of the field, and competence in the basic sciences. The main emphasis is on the successful completion of an original and independent research project. Credit hour requirements total 40, including 12 research credit hours and 9 credit hours in an approved minor. A maximum of 16 credit hours from an M.S. program may be applied to the doctoral program. Admission to candidacy requires passing a written comprehensive examination and an oral exam based on a written research proposal. Each Ph.D. student must write a comprehensive dissertation based on the student's scholarly research. Additional information on the graduate program is available from the graduate coordinator in the School of Biology.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

Biology

Biol 1510. Biological Principles

3-3-4.

An introduction to the basic principles of modern biology, including biomacromolecules, bioenergetics, cell structure, genetics, homeostasis, evolution, and ecological relationships.

Biol 1520. Introduction to Organismic Biology

3-3-4.

An introduction to biology at the organ and organismal levels, with emphasis on physiological processes and integration of growth and development.
Biology

BIOL 2334. Genetics
3-3-4.
Prerequisite(s): BIOL 1510
The principles of inheritance as described by Mendel and by biochemical genetics.

BIOL 2335. General Ecology
3-0-3.
Prerequisite(s): BIOL 1520
Introduction to the principles and implications of ecology; designed for biology majors and interested non-majors. Emphasized structure and function of natural populations, communities, and ecosystems.

BIOL 2801, -2, -3, -4, -5. Special Topics
Credit hours equal last digit in course number.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological sciences.

BIOL 2901, -2, -3, -4, -5. Special Problems
Credit hours to be arranged.
Research problems in biology under the supervision of a faculty member.

BIOL 3310. Introductory Microbiology
3-3-4.
Basic biology of bacteria, fungi, algae, and viruses, with emphasis on bacteriology.

BIOL 3331. Cell Biology
3-3-4.
Prerequisite(s): BIOL 1510
Structure and function of cells and their organelles.

BIOL 3332. Statistical and Mathematical Biology
3-3-4.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
An introduction to statistical methods and their applications in the preparation and interpretation of biological experiments. Laboratory sessions emphasize numerical problem solving.

BIOL 3751. Human Anatomy and Physiology
3-0-3.
Study of human anatomy and fundamental physiological mechanisms. Topics include nervous, musculoskeletal, and cardiorespiratory systems. Free elective for biology majors. Crosslisted with HPS 3751.

BIOL 4010. Aquatic Ecology
3-0-3.
Prerequisite(s): BIOL 2335
Physics, chemistry, and ecology of aquatic communities and ecosystems. Physical, chemical, and biological investigations of lakes, streams, and estuaries.

BIOL 4220. Bacterial and Viral Genetics
3-0-3.
Prerequisite(s): BIOL 3510 and BIOL 2334
Bacterial and viral genetics with emphasis on the integration of genetic studies with biochemical and physical analysis of synthesis, structure, and function of nucleic acids and proteins.

BIOL 4290. Recombinant DNA Project Laboratory
1-6-3.
Prerequisite(s): BIOL 2334
Project lab focused on the methods of recombinant DNA technology, including preparation and cloning of DNA, PCR amplification, and biochemical methods of analysis.

BIOL 4340. Medical Microbiology
3-0-3.
Prerequisite(s): BIOL 3310
Advanced study of bacteria, protozoa, fungi, and viruses that cause human diseases; emphasis on epidemiology, mechanisms of disease causation, prevention, and treatment.

BIOL 4390. Microbiology Project Laboratory
1-6-3.
Prerequisite(s): BIOL 3310
This project lab involves investigations on the physiology of growth and metabolic activities of microorganisms.

BIOL 4410. Microbial Ecology
3-0-3.
Prerequisite(s): BIOL 2335 and BIOL 3310
Advanced studies of microbial ecosystems, the specific roles of bacteria in maintaining ecological balance, and the evolution of the ecosystem in response to changing environments.

BIOL 4418. Microbial Physiology
3-0-3.
Prerequisite(s): BIOL 3310 and BIOL 3331
Study of the physiology of growth and metabolic activities of microorganisms.

BIOL 4423. Population Biology
3-0-3.
Prerequisite(s): BIOL 2334 and BIOL 2335
Population ecology and population genetics including: population structure, dynamics, modeling, demographic analysis, population regulation, genetic variation, selection, genetic drift, gene flow, genetic divergence, and speciation.

BIOL 4430. Environmental Sustainability
3-0-3.
Prerequisite(s): BIOL 1510
A general survey of the responses of biological systems to various kinds of radiation and air or water pollution.

BIOL 4440. Plant Physiology
3-0-3.
Prerequisite(s): BIOL 3331 and CHEM 2312
Chemical transformation in photosynthesis, photophysiology and water relationships, organic nutrition and effects of hormones on growth and development of plants.

BIOL 4442. Plant Physiology Laboratory
0-6-2.
Prerequisite(s): BIOL 3331 and CHEM 2312
Experiments designed to familiarize students with current methods used in plant physiology and plant molecular biology. One or more weekend trips are usually included.
BIOLOGY 4446. Animal Physiology
3-0-3.
Prerequisite(s): BIOL 3331
Systems physiology including nerves, muscles, kidney, digestion, circulation, endocrinology, reproduction, and respiration.

BIOLOGY 4450. Senior Seminar
1-0-1.
Senior students present seminars on recent research topics based on research experience or literature research.

BIOLOGY 4464. Developmental Biology
3-0-3.
Prerequisite(s): BIOL 2334
Investigations of cell differentiation and development using the tools of molecular genetics and cell biology.

BIOLOGY 4469. Molecular Biology
3-0-3.
Topics in molecular biology related to genetic processes, including genetic engineering techniques, gene expression and regulation, genome structure and stability, and molecular evolution. Emphasis on eukaryotic organisms.

BIOLOGY 4471. Behavioral Biology
3-0-3.
Prerequisite(s): BIOL 1510 and (MATH 1502 or MATH 1512 or MATH 15X2) and MATH 1522 and PHYS 2212
An introduction to the study of the principles of behavior of all kinds of organisms, from microbes to mammals.

BIOLOGY 4478. Biophysics
3-0-3.
Prerequisite(s): BIOL 1510
Biophysical aspects of nucleic acids, proteins, and their interactions.

BIOLOGY 4490. Ecology Project Laboratory
1-6-3.
Prerequisite(s): BIOL 2335
This project lab is an introduction to the analytical techniques and physical and chemical methods useful in modern ecological studies.

BIOLOGY 4570. Immunology and Immunohemistry
3-0-3.
Prerequisite(s): BIOL 3331 and BIOL 2334
A survey of modern immunology and its applications.

BIOLOGY 4571. Immunohemistry Laboratory
0-3-1.
Co-requisite: BIOL 4570.
Laboratory techniques in immunology and immunohemistry.

BIOLOGY 4755. Mathematical Biology
3-0-3.
An introduction to practical applications of mathematical models to help unravel the underlying mechanisms involved in biological processes. Crosslisted with MATH 4755.

BIOLOGY 4801, -2, -3, -4, -5. Special Topics
Credit hours equal last digit in course number.
This designation enables the School of Biology to provide new lecture courses dealing with areas of current interest in biological science.

BIOLOGY 4901, -2, -3, -4, -5. Special Problems
Credit hours to be arranged.
Research problem in biology under supervision of a faculty member. To be offered any term with credit to be arranged. Seven hours is the maximum allowed for technical elective credit.

BIOLOGY 6608. Prokaryotic Molecular Genetics
3-0-3.
Prerequisite(s): BIOL 2334
Molecular mechanisms of bacterial and plasmid genetic processes. Topics covered include genome organization, DNA replication, transcription, and translation.

BIOLOGY 6611. Advanced Microbial Physiology
3-0-3.
Prerequisite(s): BIOL 4418 and CHEM 4511
Advanced studies of selected aspects of the physiology of prokaryotic and eukaryotic microorganisms.

BIOLOGY 6612. Advanced Bacterial Metabolism
3-0-3.
Prerequisite(s): BIOL 6611
A study of microbial chemistry with emphasis on catabolic events.

BIOLOGY 6626. Physiological Ecology
3-0-3.
Prerequisite(s): BIOL 4010
Study of the basic physiological processes and systems in vertebrates and invertebrates. Comparative study on how these systems are adapted for specific environments and functions.

BIOLOGY 6628. Aquatic Toxicology
3-0-3.
Prerequisite(s): BIOL 4010
Study of the biological effects of toxicants on aquatic organisms; mechanisms of toxicity, biotransformation, toxicity tests, ecological risk assessment.

BIOLOGY 6630. Advanced Microbial Ecology
3-0-3.
Prerequisite(s): BIOL 4010
Advanced studies of selected aspects of the ecology of prokaryotic and eukaryotic organisms.

BIOLOGY 6765. Geomicrobiology
3-0-3.
Prerequisite(s): EAS 3311 and (BIOL 4410 or BIOL 4418)
Interactions between microorganisms and the geosphere, microbial energetics and genetics; geochemical controls on microbial diversity and activity. Crosslisted with EAS 6765.

BIOLOGY 7000. Master's Thesis
Credit hours to be arranged.

BIOLOGY 7010. Advanced Cell Biology
3-0-3.
Prerequisite(s): BIOL 3331
Current topics in eukaryotic cell biology including membrane
functions, intracellular sorting and compartmentalization, cell signaling, cell cycle, cytoskeleton, cell adhesion, motility, and current experimental approaches.

Biol 7023. Bioinformatics
2-3-3.
Prerequisite(s): MATH 3215 or MATH 3225
Introduction to mathematical, statistical, and computer methods of nucleic acid and protein sequence analysis and interpretation. Algorithms for gene finding, protein structure and function prediction, and constructing phylogenetic trees.

Biol 7101. Advanced Sensory Ecology
3-0-3.
A quantitative analysis of how organisms of all kinds obtain information about their environment, and how they use it to guide locomotions.

Biol 7668. Eukaryotic Molecular Genetics
3-0-3.
Topics in molecular genetics of eukaryotic organisms, including gene structure and expression, protein processing and folding, genome stability, and molecular evolution.

Biol 7670. Advances in Biomolecular Separation Techniques
3-0-3.
Introduction to modern biomolecular separation methods. Topics include theory of chromatography, discussion of chromatography and electrophoretic techniques for protein, nucleic acid separations, and other biological substances.

Biol 7913. Advances in Microbiology
2-0-2.
Topics of current interest in microbial physiology, applied microbiology, microbial ecology, and medical microbiology.

Biol 7914. Advances in Bacteriology
2-0-2.
Topics of current interest in the physiology and ecology of bacteria and applications to practical problems.

Biol 7923. Advances in Ecology
2-0-2.
Topics of current interest in the general areas of population growth and limitation, and the structure and stability of ecosystems.

Biol 7924. Advances in Environmental Biology
2-0-2.
Topics of current interest in environmental biology.

Biol 7963. Advances in Molecular Biology
2-0-2.
Topics of current interest in molecular biology.

Biol 7964. Advances in Genetics
2-0-2.
Topics of current interest in genetics.

Biol 8001. Seminar
2-0-2.
Presentation of research seminar.
Associate Professor—Angus Wilkinson.
Assistant Professors—Robert M. Dickson, Donald Doyle, Christoph J. Fahrni, Rigoberto Hernandez, Nicholas V. Hud, Julia Kubanek, L. Andrew Lyon, Boris Mizaikoff, Allen Orville, Katherine L. Seley, C. David Sherrill, Suzanne B. Shuker, Marcus Weck, Z. John Zhang.
Adjunct Faculty—Haskell W. Beckham, Charles A. Eckert, Anthony Shuker, Z.L. Wang, C.P. Wong.
Academic Advisor—J. Cameron Tyson.
Laboratory Coordinators—Toby F. Block, Robert A. Braga.

General Information
The School offers courses in chemistry required for various engineering and science curricula, as well as for students interested in medical school, for the degree Bachelor of Science in Chemistry, and for graduate work leading to the degrees Master of Science in Chemistry and Doctor of Philosophy in Chemistry.

Undergraduate Program
The Bachelor of Science in Chemistry degree program consists of a combination of requirements and electives that ensure a strong foundation in physical, inorganic, organic, and analytical chemistry while providing the flexibility to tailor the curriculum to satisfy specific interests or career goals. Biochemistry, Polymers, Materials, and Business Options are available for students who wish to include these fields as substantial components of their program. Students who wish to prepare for the Georgia Teaching Certificate (T-4) may do so by taking the necessary teacher education courses. The judicious use of free electives also enables the student to achieve considerable knowledge of other disciplines at Georgia Tech such as chemical engineering, materials engineering, computing, physics, mathematics, management, textiles, and biology. The chemistry curriculum options enable majors who are interested in medical, dental, or law school to meet admission requirements of these schools.

Certificate Programs
The School of Chemistry and Biochemistry offers, for non-chemistry majors, programs of study leading to certificates in three areas: biochemistry/organic chemistry, chemical analysis, and physical/inorganic chemistry. These certificate programs should be of interest to students considering careers in medicine or chemical-related industries, as well as those who wish to strengthen their background in areas of chemistry that are not required by their major.

Each certificate program requires a minimum of 12 hours in a coherent program with at least 9 hours at the 3000 level or higher. These courses must be chosen from the list of courses in the given emphasis area and must be completed with a grade of C or better. Courses required by the student's major may not be used in the certificate program. Courses which may be taken to satisfy the certificate requirements are as follows:

- **Biochemistry/Organic Chemistry Certificate** - CHEM 2312, 2313, 2380, 3511, 4311, 4341, 4511, 4512, 4581
- **Chemical Analysis Certificate** - CHEM 2380, 3211, 3411, 3412, 4341, 4401
- **Physical/Inorganic Chemistry Certificate** - CHEM 2380, 3111, 3380, 3411, 3412, 3481, 4452

Additional information regarding undergraduate programs is available by writing to the Director of Undergraduate Studies, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400.

Bachelor of Science in Chemistry
(Suggested Schedule)

<table>
<thead>
<tr>
<th>First Year - First Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>ENGLISH COMP 1</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501</td>
<td>CALCULUS 1</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321</td>
<td>INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064</td>
<td>WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>
Chemistry and Biochemistry

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Electives

Social Sciences Electives

See "Information for Undergraduates" for information relative to the Institute requirement of 12 hours of humanities and 12 hours of social sciences (pages 31-32). All students must satisfy state requirements regarding course work in the history and constitutions of the United States and Georgia. HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200 fulfill these requirements.

Chemistry Electives

Chemistry electives include CHEM 3482 and all CHEM 4000-level courses except Chem 4681, specifically required biochemistry courses, and CHEM 4901-3. With approval, graduate-level chemistry courses may also be used as chemistry electives.

Technical Electives

The technical elective requirement may be fulfilled by courses in science, engineering, and computing at the 3000 level or higher. A maximum of three hours toward the technical elective requirement may be chosen from CHEM 4901-3.

Biochemistry Option

Students who wish to prepare for careers that require proficiency in biochemistry may do so by choosing the Biochemistry Option under the Bachelor of Science in Chemistry curriculum. This option may be of interest to students who plan careers in medicine, teaching, or research, as well as those who wish to broaden their curriculum by including courses in this rapidly growing field.
Bachelor of Science in Chemistry - Biochemistry Option (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 English Composition I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 Intro. To Computing</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 Wellness</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 English Composition II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 Calculus II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 1510 Biological Principles</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1311 Inorganic Chem I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1313 Quantitative Methods</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 Organic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 Calculus III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 Physics I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101</td>
<td>3</td>
</tr>
<tr>
<td>or PUBP 3000 or INTA 1200</td>
<td></td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2312 Organic Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2380 Synthesis Lab I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212 Physics II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3411 Physical Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3111 Inorganic Chemistry I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3380 Synthesis Lab II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4511 Biochem I</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3412 Physical Chemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481 Physical Chemistry Lab I</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 4512 Biochemistry II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4581 Biochemistry Lab I</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4601 Chem. Seminar</td>
<td>2</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Biochemistry Electives

At least one of the biochemistry electives chosen must contain a laboratory component. The biochemistry electives are: CHEM 4521, 4582, and biology courses BIOL 3310, 3331, 3332, 4220, 4290, 4340, 4418, 4440, 4464, 4469, 4478, 4570, 4571.

Polymers and Materials Option

Students who wish to prepare for careers where a knowledge of polymers and/or materials would be beneficial may do so by choosing the Polymers Option or the Materials Option under the Bachelor of Science in Chemistry curriculum. These options may be of interest to students who plan careers in industry, teaching, or research, as well as those who wish to broaden their curriculum by including these important fields.
Bachelor of Science in Chemistry - Polymers Option (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 1510 BIOLOGICAL PRINCIPLES</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1311 INORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1313 QUANTITATIVE METH.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2312 ORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2380 SYNTHESIS LAB I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3411 PHYSICAL CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3111 INORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3380 SYNTHESIS LAB II</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3412 PHYSICAL CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481 PHYSICAL CHEMISTRY LAB</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 3211 ANALYTICAL CHEMISTRY</td>
<td>5</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4681 ADVANCED CHEM. LAB</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3511 or 4511 or 4512 BIOCHEMISTRY</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4775 POLYMER SCIENCE I</td>
<td>3</td>
</tr>
<tr>
<td>POLYMER ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMISTRY ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 4776 POLYMER SCIENCE II</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Polymer Electives

The polymer electives may be fulfilled by polymer courses in science and engineering at the 3000 level or higher.

Bachelor of Science in Chemistry - Materials Option (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 1510 BIOLOGICAL PRINCIPLES</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1311 INORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1313 QUANTITATIVE METH.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2312 ORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2380 SYNTHESIS LAB I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3411 PHYSICAL CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3111 INORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3380 SYNTHESIS LAB II</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3412 PHYSICAL CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481 PHYSICAL CHEMISTRY LAB</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 3211 ANALYTICAL CHEMISTRY</td>
<td>5</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>
Bachelor of Science in Chemistry – Business Option (Suggested Schedule)

College of Sciences

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2312 ORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2380 SYNTHESIS LAB I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2312 ORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2380 SYNTHESIS LAB I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2220 INDUST./ORGANIZ. PSYCHOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Bachelor of Science in Chemistry – Business Option (Suggested Schedule)

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2312 ORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 2380 SYNTHESIS LAB I</td>
<td>2</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2220 INDUST./ORGANIZ. PSYCHOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Bachelor of Science in Chemistry – Business Option (Suggested Schedule)

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 2311 ORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>
Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3411 PHYSICAL CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3111 INORGANIC CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3380 SYNTHESIS LAB II</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3000 ACCOUNTING</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 3412 PHYSICAL CHEMISTRY II</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 3481 PHYSICAL CHEMISTRY LAB</td>
<td>2</td>
</tr>
<tr>
<td>CHEM 3211 ANALYTICAL CHEMISTRY</td>
<td>5</td>
</tr>
<tr>
<td>ECON 2106 PRIN. MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 4681 ADVANCED CHEM. LAB</td>
<td>5</td>
</tr>
<tr>
<td>CHEM 3511 or 4511 or 4512 BIOCHEMISTRY</td>
<td>3</td>
</tr>
<tr>
<td>CHEM ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3500 MARKETING MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGT ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Management Electives
Management electives include MGT 3150, 3076, 4191, 4660; the latter 3 courses have a prerequisite of MGT 3062.

Graduate Programs
The School of Chemistry and Biochemistry offers programs for doctoral and master's degrees in the fields of analytical, biochemistry, inorganic, organic, physical, and polymer chemistry.

The goal of the doctoral program is to provide proficient knowledge in a specialized area of chemistry, with particular emphasis being placed on original, independent, and scholarly research. Students working toward a Ph.D. must complete 12 credit hours of courses in their major area (analytical, biochemistry, inorganic, organic, physical, or polymers) and 9 credit hours in a minor (which might include courses outside of the department). Students should complete all course requirements in the first year of graduate study and present a seminar in the second year. The Ph.D. candidacy examination consists of a series of examinations in the major area based on a reading assignment from the recent literature and an original research proposal to be completed by the end of the second year. Independent research for the Ph.D. is demonstrated by completion of published work.

Two different programs of study leading to a master's degree are offered by the School of Chemistry and Biochemistry. The formal requirements for the M.S. degree (thesis option) are 24 credit hours of approved course work beyond the bachelor's degree, along with an approved M.S. thesis. The formal requirement for the M.S. degree (nonthesis option) is 30 credit hours of approved course work beyond the bachelor's degree. The M.S. degree (nonthesis option) is a terminal degree in this department. Active research fields include: biomolecular structure, molecular biology, and biophysics; computational and theoretical chemistry; inorganic and materials chemistry; nanotechnology; pharmaceutical and bio-organic chemistry; photochemistry, photobiology, and excited state dynamics; polymer chemistry; and sensors, environmental, and analytical chemistry.

Financial Aid
Financial support is available for graduate study in the School of Chemistry and Biochemistry. The usual form of financial aid for first-year students is the teaching assistantship. Most students beyond the first year are appointed as research assistants. Both teaching and research assistants receive full tuition waivers.

Additional information on the graduate program is available by writing the Graduate Coordinator, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332-0400, or via the Web at www.chemistry.gatech.edu.
Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

CHEMISTRY AND BIOCHEMISTRY

Note: All students are required to wear safety glasses while working in the laboratories. The glasses will be provided at the student's expense.

CHEM 1310. General Chemistry
3-3-4.
Fundamental laws and theories of chemical reactions. Topics include atomic structure; bonding theory; stoichiometry; properties of solids, liquids, and gases; chemical thermodynamics; electrochemistry; and kinetics.

CHEM 1311. Inorganic Chemistry I
3-0-3.
Prerequisite(s): CHEM 1310
A continuation of CHEM 1310. Topics include chemical equilibrium, acids, bases, descriptive inorganic chemistry and materials, introduction to organic chemistry.

CHEM 1312. Inorganic Chemistry Lab I
0-3-1.
Prerequisite(s): CHEM 1311*
Laboratory to accompany Inorganic Chemistry I. Topics include qualitative and quantitative analysis of inorganic and organic compounds.

CHEM 1313. Quantitative Analysis
2-4-3.
Prerequisite(s): CHEM 1311*
Laboratory experimentation emphasizing quantitative chemical analysis.

CHEM 1315. Survey of Organic Chemistry
3-0-3.
Prerequisite(s): CHEM 1310
Survey of organic chemistry as the basis for biochemical processes and commercial applications.

CHEM 2311. Organic Chemistry I
3-0-3.
Prerequisite(s): CHEM 1311
An introduction to structure and reactivity of organic molecules.

CHEM 2312. Organic Chemistry II
3-0-3.
Prerequisite(s): CHEM 2311
The second course in the series dealing with the structure and reactivity of organic molecules.

CHEM 2313. Organic and Bio-Organic Chemistry
3-0-3.
Prerequisite(s): CHEM 2311
A second course in organic chemistry that extends the study to topics in biochemistry.

CHEM 2380. Synthesis Laboratory I
1-4-2.
Prerequisite(s): CHEM 2311 and (CHEM 1312 or CHEM 1313) and (CHEM 2312* or CHEM 2313*)
Methods for preparation, isolation, and characterization of complex organic molecules, natural products, and polymers.

CHEM 2801, -2, -3. Special Topics
Credit hours equal last digit in course number.
Prerequisite(s): CHEM 1311
Lecture course in current special topics in chemistry and biochemistry. Topics will vary from year to year.

CHEM 2901, -2, -3. Special Problems in Chemistry
Credit hours to be arranged.
Prerequisite(s): CHEM 1311
Course of individual instruction, which will include library conference and laboratory experience.

CHEM 3111. Inorganic Chemistry II
3-0-3.
Prerequisite(s): CHEM 1311
A study of the reactions and structures of inorganic compounds and principles, generalizations, and theories that assist in understanding their behavior.

CHEM 3211. Analytical Chemistry
3-5-5.
Prerequisite(s): CHEM 2380 and CHEM 3412*
Introduction to the theory and practice of modern chemical analysis.

CHEM 3281. Instrumental Analysis for Engineers
3-3-4.
Prerequisite(s): CHEM 2380 and CHEM 3412*
Provides a background to modern analytical chemistry and instrumental methods of analysis with applications to engineering and other areas.

CHEM 3371. Organic Chemistry Laboratory
1-4-2.
Multi-step organic synthesis and inorganic synthesis. Use of chemical literature and advanced spectroscopic techniques.

CHEM 3380. Synthesis Laboratory II
1-6-3.
Prerequisite(s): CHEM 2380 and CHEM 3111*
Multi-step organic and inorganic synthesis. Use of the chemical literature and advanced spectroscopic techniques.

CHEM 3411. Physical Chemistry I
3-0-3.
Prerequisite(s): CHEM 1311
Chemical thermodynamics, energetics of chemical reactions, changes of state, and electrochemistry.

CHEM 3412. Physical Chemistry II
3-0-3.
Prerequisite(s): CHEM 1311
Quantum mechanics, atomic and molecular structure, bonding theory, molecular spectroscopy, and statistical mechanics.
CHEM 3481. Physical Chemistry Laboratory I 0-6-2.
Prerequisite(s): (CHEM 2380 and CHEM 3411) or (CHE 2200 and CHEM 3411)
Laboratory investigations of physical principles applied to chemical systems.

CHEM 3482. Physical Chemistry Laboratory II 0-6-2.
Prerequisite(s): CHEM 3481
Laboratory investigations of physical principles applied to chemical systems.

CHEM 3511. Survey of Biochemistry 3-0-3.
Prerequisite(s): CHEM 2312
Introductory course in biochemistry dealing with the chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

Prerequisite(s): CHEM 2312
Construction reactions and functional group interconversions as applied to multi-step organic synthesis.

Prerequisite(s): CHEM 2312
Theory and application of NMR, mass spectrometry, and infrared spectroscopy in the determination of organic structures.

CHEM 4401. Molecular Spectroscopy 3-0-3.
Prerequisite(s): CHEM 3412
Introduction to the theory and applications of molecular spectroscopy, including electronic, vibrational, rotational transitions, and selection rules.

Prerequisite(s): CHEM 3111 and CHEM 3412
Application of the concepts of physical and inorganic chemistry to the structure of solids and their chemical and physical properties.

Prerequisite(s): CHEM 2312
The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

CHEM 4521. Biophysical Chemistry 3-0-3.
Prerequisite(s): CHEM 3412 and CHEM 4511
The physical chemistry of biological systems, biological macromolecules, and biological aggregates.

CHEM 4581. Biochemistry Laboratory I 1-6-5.
Prerequisite(s): (CHEM 3511 or CHEM 4511) and (CHEM 3371 or CHEM 3380)
Modern biochemical techniques including methods for protein, nucleic acid, and lipid isolation and characterization; enzyme assays, chromatography, electrophoresis, and use of databases.

CHEM 4582. Biochemistry Laboratory II 1-6-3.
Prerequisite(s): CHEM 4512 and CHEM 4581
Laboratory techniques in the isolation and characterization of biological molecules with special emphasis on modern techniques.

Prerequisite(s): CHEM 4511 and CHEM 4512
Student presentations of recent research topics in chemistry or biochemistry based on lab experience and/or literature searches.

CHEM 4681. Advanced Chemistry Laboratory 1-10-5.
Prerequisite(s): CHEM 3211 and CHEM 3380
A molecular laboratory involving a series of multi-part experiments that build upon chemical principles and experimental techniques introduced in earlier courses and Instructional laboratories.

CHEM 4775. Polymer Science and Engineering I: Formation and Properties 3-0-3.
Prerequisite(s): CHEM 2312 and CHEM 3411
An introduction to the chemistry, structure, and formation of polymers; physical states and transitions; and physical and mechanical properties of polymer fluids and solids. Crosslisted with CHE, ME, MSE, and TFE 4775.

CHEM 4776. Polymer Science and Engineering II: Analysis, Processing, and Laboratory 2-3-3.
Prerequisite(s): CHEM 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775
Polymer fabrication processes and methods of characterization and identification of polymers are presented. Experiments in polymerization, processing, and property evaluation of polymers. Crosslisted with CHE, ME, MSE, and TFE 4776.

CHEM 4901, -2, -3. Special Problems in Chemistry Credit hours to be arranged.
Course of individualized instruction that will include library, conference, and laboratory investigations.

CHEM 6170. Inorganic Chemistry I 3-0-3.
A series of key topics in inorganic chemistry will be reviewed: acids/bases, redox processes, bonding and structure, transition metal chemistry, and coordination complexes.

CHEM 6171. Inorganic Chemistry II 3-0-3.
Contemporary topics in inorganic chemistry including bioinorganic chemistry, reaction mechanisms and kinetics, optical and magnetic properties of molecular species, and inorganic materials.
CHEM 6172. Physical Methods in Inorganic Chemistry
3-0-3.
An introduction to the use of physical methods in inorganic chemistry including vibrational spectroscopy, multinuclear NMR, EST, Mossbauer, magnetometry, NQR, PES, diffraction, and EXAFS.

CHEM 6181. Chemical Crystallography
3-0-3.
The collection and interpretation of diffraction data. Single crystal structure analysis, powder diffraction for phase identification and quantitative analysis, and Rietveld refinement.

CHEM 6182. Chemistry of the Solid State
3-0-3.
An introduction to the chemistry of the solid state. Synthetic methods, measurement of properties, structure of solids, and theory of electrical, optical, and magnetic properties.

CHEM 6183. Organometallic Chemistry
3-0-3.
The chemistry of main group and transition metal organometallics. Including synthetic methods, homogeneous catalysis and catalytic cycles, and synthetically useful organometallic reagents.

CHEM 6271. Identification of Organic Compounds
3-0-3.
Description of molecular structure and identification of organic compounds using spectroscopic techniques.

CHEM 6272. Physical Organic Chemistry
3-0-3.
Physical methods in organic chemistry; determination of reaction pathways.

CHEM 6281. Mass Spectrometry
3-0-3.
Topics include sample handling, ionization methods, MS/MS, and quantitative analysis.

CHEM 6282. Chemical Sensors
3-0-3.
Origins of selectivity, principles of transduction mechanisms, and construction and applications of modern chemical sensors.

CHEM 6283. Electroanalytical Chemistry
3-0-3.
Coulometry, electrolytic separations, polarography chronopotentiometry, coulometric titrations, voltammetry, and hydrodynamic electrochemical methods of analysis.

CHEM 6284. Environmental Analytical Chemistry
3-0-3.
Application of techniques from analytical chemistry in monitoring the environment.

CHEM 6285. Analytical Spectroscopy
3-0-3.
Modern analytical spectroscopy and use of analytical techniques in chemistry and chemical engineering.
CHEM 6501. Biochemistry I & II
3-0-3.
The chemistry and biochemistry of proteins, lipids, carbohydrates, nucleic acids, and other biomolecules.

CHEM 6571. Enzymology
3-0-3.
Structure and chemistry of enzymes, enzyme mechanism, enzyme kinetics, enzyme inhibitors, and medicinal chemistry.

CHEM 6572. Macromolecular Structure
3-0-3.

CHEM 6573. Molecular Biochemistry
3-0-3.
Current topics in molecular biology including eukaryotic transcriptions, RNA processing, repair and recombination, immunity, viruses, DNA fingerprinting, and genome sequencing.

CHEM 6581. Protein Crystallography
3-0-3.
Application of crystallographic principles to the structure determination of macromolecules by molecular replacement, multiple isomorphous replacements. High-speed data collection methods and cryocrystallography.

CHEM 6582. Biophysical Chemistry
3-0-3.
Applications of the principles and techniques of physical chemistry in biochemistry, with emphasis on the equilibrium and dynamic behavior of macromolecules in solution.

CHEM 6583. Drug Design and Discovery
3-0-3.
Application of principles of chemistry and biology to the creation of knowledge leading to the introduction of new therapeutic agents.

CHEM 6584. Contemporary Biochemistry
3-0-3.
Topics vary from year to year, but will include subjects from the biochemical literature, such as in J. Biological Chemistry.

CHEM 6750. Preparation and Reaction of Polymers
3-0-3.
Prerequisite(s): CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775
A detailed treatment of the reactions involved in the synthesis of both artificial and natural polymers, including preparation and degradative reactions of polymer systems. Crosslisted with CHE and TFE 6750.

CHEM 6751. Physical Chemistry of Polymer Solutions
3-0-3.
Prerequisite(s): (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777 or TFE 4777)
Study of polymer solutions, polymer miscibility, absorptions, sorptions, plasticization, molecular weights, molecular weight distributions, and interfacial phenomena using thermodynamics and statistical mechanics. Crosslisted with CHE, MSE and TFE 6751.

CHEM 6752. Polymer Characterization
3-0-3.
Prerequisite(s): (CHE 4775 or CHEM 4775 or ME 4775 or MSE 4775 or TFE 4775) or (ME 4777 or MSE 4777 or TFE 4777)
This course introduces the student to surface, near-surface, and structural methods of polymer characterization. Specialized techniques critical to physical structure are emphasized. Crosslisted with CHE, MSE, and TFE 6752.

CHEM 6755. Theoretical Chemistry of Polymers
3-0-3.
Prerequisite(s): CHEM 6471 and (CHEM 6751 or CHEM 6751 or MSE 6751 or TFE 6751)
Thermodynamics and microscopic dynamics of polymers. Fundamental concepts, including scaling concepts, governing anisotropy of polarizability, phase transitions, morphology, time-dependent correlations, etc., are discussed. Crosslisted with MSE and TFE 6755.

CHEM 7000. Master's Thesis
Credit hours to be arranged.

CHEM 7001. Introduction to Research
1-6-3.
Introduction to laboratory techniques, experimental design, library and database searching, and presentations.

CHEM 8000. Seminar in Chemistry
1-0-1.

CHEM 8001. Faculty Seminar
2-0-2.

CHEM 8002. Information Resources for Chemists and Biochemists
2-0-2.

CHEM 8003. Student Seminar
2-0-2.

CHEM 8810. Special Topics in Inorganic Chemistry
3-0-3.
Topics from the inorganic chemistry research literature.

CHEM 8820. Special Topics in Analytical Chemistry
3-0-3.
Topics from the analytical chemistry research literature.

CHEM 8830. Special Topics in Organic Chemistry
3-0-3.
Topics from the organic chemistry research literature.

CHEM 8840. Special Topics in Physical Chemistry
3-0-3.
Topics from the physical chemistry research literature.

CHEM 8850. Special Topics in Biochemistry
3-0-3.
Topics from the biochemistry research literature.
CHEM 8870. Special Topics in Polymer Chemistry
3-0-3.
Topics from the polymer research literature.

CHEM 8901. -2. -3. Special Problems
Credit hours to be arranged.

CHEM 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding graduate teaching assistantships.

CHEM 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding graduate research assistantships.

CHEM 9000. Doctoral Thesis
Credit hours to be arranged.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.

School of Earth and Atmospheric Sciences

www.eas.gatech.edu

Established in 1970
Location: 221 Bobby Dodd Way
Telephone: 404.894.3893
E-mail: ugradcor@eas.gatech.edu (undergraduate coordinator);
gradcor@eas.gatech.edu (graduate coordinator)

Chair and Professor—Glen R. Cass; Graduate Coordinator and Professor—E. Michael Perdue; Undergraduate Coordinator and Professor—Derek M. Cunnold; Regents’ Professor and Smithgall Chair—William L. Chameides; Georgia Research Alliance Eminent Scholar and Professor—Shaw Liu; Institute Professor—Chia Szu (C.S.) Kiang.

Professors—George Chimonas, Douglas D. Davis, Philip N. Froelich, L. Timothy Long, Robert P. Lowell, Charles E. Weaver (emeritus), Paul H. Wine.

Associate Professors—Patricia M. Dove, Rong Fu, L. Gregory Huey, Ellery D. Ingall, Carolyn D. Ruppel, J. Marion Wampler.

Principal Research Scientist—Fred L. Eisele.
Senior Research Scientists—Rob Black, Carlos Cardelino, Gao Chen, Mian Chin, Yongqiang Liu, Scott Sandholm, Robert Stickel.

Adjunct Associate Professors—Clark R. Alexander, Thomas DiChristina, Albin Gasiewski, Carmen Nappo, Shahrokh Rouhani.
Adjunct Assistant Professors—Joel Kostka, Kavita Philip, Vijay Madisetti.

General Information
The School of Earth and Atmospheric Sciences is the principal academic unit at Georgia Tech focusing on the Earth, its physical and chemical environment, and its resources. All facets of the Earth's system (including its geosphere, atmosphere, and hydrosphere) are studied within the School over a wide range of spatial and temporal scales, and an Earth System Science approach is emphasized. These studies provide basic information for assessing the Earth's resources and environmental quality, as well as the evolution of the Earth's environment and the possible future changes to this environment on the local, regional, and global scale.

The undergraduate degree program, instituted in 1993, offers students an introduction to the Earth System, including aspects of environmental science, by way of an holistic and integrated approach to Earth System Science. The prime objective of the undergraduate program is to provide a technically rigorous education for the next generation of earth and atmospheric scientists. This program provides students with a qualitative and quantitative understanding of the complex interplay among the global dynamic systems of the Earth, oceans, atmosphere, and biota. Selected courses in the degree program are designed to play an important service role in providing basic knowledge in Earth System Science to students of science, engineering, management, and public policy.

In the area of graduate education, the School
offers programs leading to the master of science and doctor of philosophy degrees. Persons with a bachelor's degree in environmental science, biology, chemistry, engineering, geology, mathematics, meteorology, or physics, and a keen desire to understand the chemistry and physics of the natural environment, are invited to apply to the School's graduate program. The School's educational program is divided into three coupled and interdependent areas of specialization: 1) atmospheric sciences (including atmospheric chemistry, dynamics, and physics); 2) geochemistry; and 3) solid earth geophysics. Students may conduct research in these areas or in multidisciplinary areas such as biospheric-atmospheric interactions, climate and global change, engineering geology, environmental studies and public policy, and remote sensing.

The School's research and study in oceanography is carried out in cooperation with the faculty of the Skidaway Institute of Oceanography at Savannah, Georgia. Students with interests in oceanography may conduct their thesis research at the Skidaway Institute after completing course work at Georgia Tech.

Undergraduate Program

The program leading to the degree Bachelor of Science in Earth and Atmospheric Sciences is based on 35 hours of core courses within the School and 41 hours of required courses in mathematics/computing and science. These courses provide a strong foundation in Earth System Science, including "hands-on" experiences in collection and interpretation of environmental data and in predictive modeling. The program prepares students for graduate study or for immediate employment in fields such as environmental chemistry, environmental monitoring, remote sensing, exploration geophysics, geological engineering and geological hazards, impact assessment, meteorology, and environmental policy. Electives (22 hours), both within the School and in other units of Georgia Tech, allow students considerable flexibility in tailoring their degree programs according to individual career goals within the earth and atmospheric sciences. Appropriate selection of courses, chosen in consultation with the undergraduate coordinator, leads to specialized tracks in several of the above subject areas. A business track, which allows students to substitute two management courses for EAS technical electives, is also available. The School provides incentives and encouragement for students to participate in ongoing research with the faculty.

In addition to campuswide academic requirements for graduation, a grade of C or better is required in the following courses for the bachelor's degree in Earth and Atmospheric Sciences: MATH 1501, MATH 1502, PHYS 2211, CHEM 1310, BIOL 1510 or 1520, and an acceptable computing course.

Minor in Earth and Atmospheric Sciences

A minor in Earth and Atmospheric Sciences may be obtained by completing 28 hours of specified courses in mathematics, science, and computing, plus 18-19 hours of specified EAS courses.

Certificate Programs

The School of Earth and Atmospheric Sciences offers programs of study for non-School majors leading to certificates in two areas of emphasis: geochemistry and solid earth geophysics. Each course must be completed with a grade of C or better.

Additional information regarding undergraduate programs, the minor, and the certificate programs is available by contacting Undergraduate Coordinator, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0340.

Bachelor of Science in Earth and Atmospheric Sciences (Suggested Schedule)

<table>
<thead>
<tr>
<th>First Year - First Semester</th>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101</td>
<td>ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501</td>
<td>CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310</td>
<td>GENERAL CHEMISTRY</td>
<td>4</td>
</tr>
<tr>
<td>EAS 1600</td>
<td>INTRO. TO ENV. FIELD SCIENCE</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>
Bachelor of Science in Earth and Atmospheric Sciences - Business Option (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 INORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1312 INORGANIC CHEMISTRY LAB</td>
<td>1</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1311 INORGANIC CHEMISTRY I</td>
<td>3</td>
</tr>
<tr>
<td>CHEM 1312 INORGANIC CHEMISTRY LAB</td>
<td>1</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>EAS 2601 EARTH PROCESSES</td>
<td>4</td>
</tr>
<tr>
<td>BIOL 1510 OR 1520</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>EAS 2602 EARTH THROUGH TIME</td>
<td>3</td>
</tr>
<tr>
<td>EAS 2650 QUANTITATIVE METHODS</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or</td>
<td>3</td>
</tr>
<tr>
<td>PUBP 3000 or INTA 1200</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>18</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 3601 EARTH SYSTEM CHEMISTRY</td>
<td>5</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>EAS 3602 EARTH SYSTEM PHYSICS</td>
<td>5</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 4420 ENVIRON. FIELD METHODS</td>
<td>4</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 4602 BIOGEOCHEMICAL CYCLES</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4610 EARTH SYS MODELING</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>7</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)
Earth and Atmospheric Sciences

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 3601 EARTH SYSTEM CHEMISTRY</td>
<td>5</td>
</tr>
<tr>
<td>MGT 3000 ACCOUNTING FOR DECISION MAKING</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3300 MARKETING MANAGEMENT I</td>
<td>3</td>
</tr>
<tr>
<td>BIOL 1510 OR 1520</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 3602 EARTH SYSTEM PHYSICS</td>
<td>5</td>
</tr>
<tr>
<td>ECON 2106 MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>EAS TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101</td>
<td>3</td>
</tr>
<tr>
<td>or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 4420 ENVIRON. FIELD METHODS</td>
<td>4</td>
</tr>
<tr>
<td>EAS TECHNICAL ELECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>4</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>EAS 4610 EARTH SYSTEMS MODELING</td>
<td>3</td>
</tr>
<tr>
<td>EAS 4602 BIOGEOCHEMICAL CYCLES</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3150 PRINCIPLES OF MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Substitutions
With permission from the School, other courses in biology may be substituted for BIOL 1510-20.

Electives
EAS students are required to complete 12 hours of technical electives in science, engineering, and math. Those students who choose the business track may substitute two management courses for EAS technical electives. All EAS students are required to complete an additional 10 hours of free electives in areas such as languages, management, or public policy. Students should consult the School's undergraduate coordinator for advice on their electives.

Humanities, Social Sciences, and Health Sciences Electives
Students are referred to "Information for Undergraduate Students" for information regarding the Institute requirements of 12 hours of humanities and 12 hours of social sciences. The 12 semester hours of social sciences must include a course that satisfies the state requirement regarding course work in the history and constitutions of the United States and Georgia. Suitable courses include HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200. All students must satisfactorily complete a health sciences requirement—HPS 1040, 1062, 1063, or 1064—during their freshman year.

Graduate Programs

Master's Degree Programs
Students can choose a program of study leading to either the designated master's degree (with thesis) or the undesignated master's degree (without thesis). General requirements for these degrees are found in this catalog under “Information for Graduate Students.” In either program of study, students can specialize in atmospheric sciences, geochemistry, or solid earth geophysics. With approval of the School's faculty, multidisciplinary programs of study are also permitted. Students entering the master's degree program need an academic background that includes a minimum of one year of university-level courses in calculus, chemistry, and physics. Students who lack this academic background are required to complete appropriate remedial courses, for which they will not receive graduate credit.

Students can satisfy the requirements for the designated master's degree by completing a faculty-approved set of courses and a master's thesis in earth and atmospheric sciences. With approval of the School chair, students can satisfy the requirements for the undesignated master's degree by completing a faculty-approved set of courses and a six-hour Special Problems course. This course must take the form of a research project supervised by the student's advisor and culminating in a written final report.

Doctoral Program
Doctoral students are engaged primarily in original, independent research that culminates in the doctoral dissertation. In this School, students can
specialize in atmospheric sciences, geochemistry, or solid earth geophysics. With approval of the School's faculty, multidisciplinary programs of study are also permitted. In each area of specialization, doctoral students are required to complete a faculty-approved set of core courses and a comprehensive examination. Students are also required to complete nine semester hours of course work in an academic minor.

Certificate Program in Geohydrology

Students completing the master's degree or doctoral degree requirements of the School may be awarded a Multidisciplinary Geohydrology Certificate if their program of study satisfies the requirements of the Multidisciplinary Geohydrology program. Additional details can be found in this catalog under "Multidisciplinary Certificate Programs in Engineering."

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

EARTH AND ATMOSPHERIC SCIENCES

EAS 1600. Introduction to Environmental Science

3-3-4.

Prerequisite(s): MATH 1501* or MATH 1511* or MATH 15X1

Introduction to environmental field science. Case study approach. Exposure to basic field equipment and techniques, analysis of data.

EAS 1601. Habitable Planet

3-3-4.

Introduction to the origin and evolution of Planet Earth, creation of the universe and the elements, early history of Earth, radiisotope geochemistry and the timing of events in the universe, the galaxy, and on Earth. Formation of the atmosphere and oceans. Climate.

EAS 2601. Earth Processes

3-3-4.

Prerequisite(s): CHEM 1311 and CS 1321 and PHYS 2211* and (MATH 2401* or MATH 2411* or MATH 24X1)

Broad perspective on the processes of the Earth that impact humankind. Project-based and problem-solving laboratory exercises.

EAS 2602. Earth through Time

3-0-3.

Prerequisite(s): EAS 2601 or EAS 1600

Dynamic processes affecting the Earth system on all time scales.

EAS 2650. Quantitative Techniques in Earth and Atmospheric Sciences

3-3-4.

Prerequisite(s): (MATH 2401* or MATH 2411* or MATH 24X1) and PHYS 2211*

Integrated course in mathematical, physical, and computing techniques for application in earth and atmospheric sciences.

EAS 2750. Physics of the Weather

3-0-3.

An introductory treatment of the application of the basic physical laws to the understanding of weather phenomena. Crosslisted with PHYS 2750.

EAS 2801, -2, -3, -4. Special Topics

Credit hours equal last digit in course number.

EAS 2900. Special Problems

Credit hours to be arranged.

EAS 3601. Earth System Chemistry: Theory and Practice

4-3-5.

Prerequisite(s): CHEM 1311 and CHEM 1312 and EAS 2650

The chemistry and chemical processes that comprise and sustain the Earth system and its components, the solid Earth, the hydrosphere, the atmosphere, and biosphere.

EAS 3602. Earth System Physics: Theory and Practice

4-3-5.

Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3) and PHYS 2212 and EAS 2601 and EAS 2650

Physics of the solid Earth, the atmosphere, and the hydrosphere. Basic structure, gravity, heat and energy transfer, fluids, waves, and magnetics as applied to the Earth system.

EAS 4200. Structural Geology and Continuum Mechanics

3-3-4.

Prerequisite(s): EAS 2601 and PHYS 2211

Structural geology and continuum mechanics for scientists and civil engineers. Stress and strain in rocks; faults, joints, and folds; basic field mapping; and laboratory exercises.

EAS 4300. Oceanography

3-0-3.

EAS 4420. Environmental Field Methods

2-6-4.

Prerequisite(s): EAS 2601 and (EAS 3601 or EAS 3602)

Semester-long focus on single environmental project in the local area. Chemical and physical techniques for parameterizing environmental problems; data analysis, report writing, and interpretation of results in societal context.
EAS 4430. Remote Sensing and Data Analysis
2-3-3.
Prerequisite(s): PHYS 2212
Introduction to the remote sensing of the atmosphere and the Earth. Laboratory examples of data and image analysis for remote sensing applications.

EAS 4510. Exploration Geophysics
3-3-4.
Prerequisite(s): EAS 3602
Methods of exploration geophysics, including refraction and reflection seismology, resistivity, gravity, magnetics, and ground-penetrating radar. Includes laboratory work and introduction to operation of field equipment.

EAS 4515. Fluids in the Earth's Crust I
3-0-3.
Prerequisite(s): (MATH 2403 or MATH 2413 or MATH 24X3) and EAS 2601
Fundamentals of porosity and permeability in soils, sediments, and crystalline rocks; basic physics of fluid flow through interconnected pore spaces and cracks; introductory analysis of fluid flow as an agent of heat and chemical transport in geological systems.

EAS 4520. Seismic Methods in Exploration Geophysics
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3
A study of seismic reflection exploration methods and theory. Examples are taken from oil industry exploration and production and near-surface environmental imaging.

EAS 4602. Biogeochemical Cycles
3-0-3.
Prerequisite(s): EAS 3601 and EAS 3602 and (BIOL 1510 or BIOL 1520)
An investigation of global change focusing on the chemical, physical, geological, and biological processes that cycle the elements through the Earth system.

EAS 4610. Earth System Modeling
3-0-3.
Prerequisite(s): EAS 3601 or EAS 3602*
An introduction to computer modeling in Earth system science.

EAS 4620. Environmental Biogeochemistry of Soils and Sediments
3-3-4.
Prerequisite(s): EAS 2601 and EAS 3601 and PHYS 2212
Advanced study of the mineralogical and biochemical character of soil and sediment environments and the biological processes occurring in these subsurface systems.

EAS 4651. Practical Internship
0-9-3.
Faculty-supervised and approved independent internship, employment, or research project related to earth and atmospheric sciences.

EAS 4795. Groundwater Hydrology
3-0-3.
Prerequisite(s): (MATH 2403 and PHYS 2212 and CEE 3040) or EAS 3602
Dynamics of flow and solute transport in groundwater including theory, implementation, and case studies. Crosslisted with CEE 4795.

EAS 4801, -2, -3, -4. Special Topics
Credit hours equal last digit in course number.

EAS 4900. Special Problems
Credit hours to be arranged.

EAS 6111. The Earth System
2-0-2.
Exploration of processes linking the Earth and atmosphere.

EAS 6122. Biogeochemical Cycles
3-0-3.
A multidisciplinary exploration of the chemical, physical, geological, and biological processes that cycle the nutrient elements through the Earth system and thereby maintain a habitable planet.

EAS 6124. Principles of Oceanography
3-0-3.

EAS 6126. Global Tectonics
3-0-3.
Prerequisite(s): EAS 3601 and EAS 3602
Global tectonics from the integrated perspective of geophysical observations, geochemical fluxes, structural evolution of plate boundaries, and features within plates.

EAS 6128. Fluids in the Earth's Crust
3-0-3.
Prerequisite(s): EAS 4515
Advanced treatment of fluid flow, heat transfer, and reactive transport in porous and cracked rocks; stability of flow; double-diffusive systems; evolution of permeability in geologic systems; introduction to multiphase flow.

EAS 6132. Introduction to Climate Change
3-0-3.
The climate of the Earth, its radiation budget, greenhouse gases and their sources and sinks, potential changes due to anthropogenic activities, and detection of climate changes.

EAS 6134. Inverse Methods and Time Series Analysis in Earth and Atmospheric Sciences
3-0-3.
Theory of data acquisition, time series analysis, and discrete inverse theory, with applications in the earth and atmospheric sciences.
EAS 6211. Geochemical Thermodynamics
3-0-3.
Fundamental principles of chemical equilibria in geochemical systems with emphasis on solution properties and mineral water equilibria.

EAS 6212. Geochemical Kinetics
3-0-3.
Prerequisite(s): EAS 6211
Fundamental principles of biogeochemical kinetics and mathematical treatment of coupled transport and reaction in natural environments. Interpretation of field and experimental data using kinetic theory.

EAS 6214. Aqueous Geochemistry
3-0-3.
Prerequisite(s): EAS 6211
Chemical processes that regulate compositions of natural waters at or near the Earth's surface, with emphasis on quantitative calculations of acid-base, solubility, and redox equilibria.

EAS 6216. Isotope Geochemistry
3-0-3.
Biogeochemical significance of nuclear isotopes, both radioactive and stable.

EAS 6221. Mineral Surface Geochemistry
3-0-3.
Prerequisite(s): EAS 6212
Interactions of aqueous solutions with the surface of minerals and particles, with emphasis on molecular and thermodynamic models of ion sorption in complexation reactions, crystal growth, and dissolution processes in Earth environments.

EAS 6240. Organic Geochemistry
3-0-3.
Origin and transformation of organic matter in the Earth's environment, with emphasis on properties and reactions of highly complex mixtures such as humic substances.

EAS 6311. Physics of the Earth
3-0-3.
Physics of the Earth's interior. Composition and structure of core, mantle crust. Introduction to seismic wave propagation; gravitational, geomagnetic, and temperature fields.

EAS 6312. Geodynamics
3-0-3.
Prerequisite(s): EAS 6311
Quantitative discussion of dynamical processes in the solid Earth; viscous flow, glacial rebound, fluid dynamical instabilities, thermal convection; lithospheric dynamics; and evolution of the core.

EAS 6214. Seismology
3-0-3.
The propagation of seismic waves, the description of earthquake motion and evaluation of earthquake damage. Examples provide experience in the interpretation of seismic data.

EAS 6320. Structural Geology and Continuum Mechanics
3-3-4.
Prerequisite(s): EAS 2601
Structural geology and continuum mechanics for scientists and civil engineers. Stress and strain in rocks; faults, joints, and folds; basic field mapping; and laboratory exercises.

EAS 6330. Sedimentary Basin Analysis
3-0-3.
Prerequisite(s): EAS 3602
Analysis of continental and marine sedimentary basins including deformation style, driving forces for basin information sedimentation and sequence stratigraphy, subsidence, hydrologic cycle, and hydrocarbon maturation.

EAS 6340. Computational and Theoretical Seismology
2-3-3.
Prerequisite(s): EAS 6314
Advanced topics in the theory and computation of seismic wave generation and propagation. Theory of earthquake sources, surface waves, ray paths, and wave propagation.

EAS 6401. Introduction to Atmospheric Chemistry
2-0-2.
Introduction to basic chemical principles related to chemical processes in the atmosphere.

EAS 6410. Atmospheric Chemistry
3-0-3.
Application of fundamental principles of chemistry to understanding the critical factors controlling the levels and distributions of atmospheric trace gases and their variation in time.

EAS 6412. Introduction to Physical Meteorology
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3
Application of the fundamental principles of thermodynamics to the atmosphere; including hydrostatic equilibrium and static stability, derivation of Clausius-Clapeyron Equation, cloud microphysics, radiative transfer, and the Earth's energy budget.

EAS 6420. Introduction to Principles of Atmospheric Chemical Instrumentation
3-3-4.
Introduction to the mechanical, electrical, and optical aspects of modern instrumentation used in atmospheric chemical research.

EAS 6421. Fundamentals of Instrumentation and Sensor Design in Atmospheric Chemistry
3-6-5.
Prerequisite(s): EAS 6420
Fundamental analysis of factors controlling sensitivity, and detectivity of research instrumentation used in atmospheric chemistry including derivations of signal strength relationships and the extraction of weak signals from atmospheric and instrument noise.

EAS 6501. Introduction to Atmospheric Dynamics
2-0-2.
Introduction to the basic fundamental fluid dynamics that control atmospheric motions.
EAS 6511. Introductory Fluid Dynamics and Synoptic Laboratory
2-3-3.
Fundamental principles of atmospheric fluid dynamics, analysis of meteorological codes, weather data and patterns, and numerical weather prediction products.

EAS 6512. Dynamic Meteorology
2-3-3.
Prerequisite(s): EAS 6511
An introduction to the use of geophysical fluid dynamics in describing and modeling the atmosphere.

EAS 6521. Tropospheric Dynamics
3-0-3.
Prerequisite(s): EAS 6512

EAS 6530. Middle and Upper Atmospheric Dynamics
3-0-3.
The dynamics of the stratosphere, polar vortex, tropical "pump," ozone hole, wave activity, Eliassen-Palm Flux, and potential vorticity.

EAS 6751. Physical Properties and Rheology of Rocks
2-3-3.
Structure, physical properties, and rheology of minerals and rocks with applications to engineering structures and natural phenomena in the Earth. Fundamentals of rock mechanics and crack propagation. Crosslisted with CEE 6751.

EAS 6761. Contaminated Sediment Geochemistry
3-0-3.
Prerequisite(s): EAS 6214
Acquaints students with fate of major pollutants, nutrients, and organic compounds, such as pesticides, PAHs and trace metals in sedimentary systems. Crosslisted with CEE 6761.

EAS 6765. Geomicrobiology
3-0-3.
Prerequisite(s): EAS 3601 and (BIOL 4410 or BIOL 4418)
Interactions between microorganisms and the geosphere; microbial energetics and genetics; geochemical controls on microbial diversity and activity; redox and acid-base balances; biogeochemical cycles; and evolution. Crosslisted with BIOL 6765.

EAS 6790. Air Pollution Physics and Chemistry
3-0-3.
Interaction to the physical and chemical processes affecting the dynamics and fate of air pollutants at the local, regional, and global scales. Particular emphasis is on tropospheric pollutant chemistry and transport. Crosslisted with CEE 6790.

EAS 6792. Air Pollution Meteorology and Chemistry
3-0-3.
Air pollution history, atmospheric stability and boundary layer dynamics, atmospheric dispersion, atmospheric transport, and air pollution modeling. Crosslisted with CEE 6792.

EAS 6793. Atmospheric Boundary Layer
3-0-3.
Structure and dynamics of atmospheric boundary layers. Introduction to turbulence and turbulent transport. Crosslisted with CEE 6793.

EAS 6794. Atmospheric Chemical Modeling
3-0-3.
Prerequisite(s): EAS 6410 and (EAS 6790 or CEE 6790)
Application of modern numerical methods to the prediction of atmospheric chemical and physical compositions; specific applications using computer models developed by students are included. Crosslisted with CEE 6794.

EAS 6795. Atmospheric Aerosols
3-0-3.
Prerequisite(s): EAS 6410 and (EAS 6790 or CEE 6790)
Chemical and physical properties of natural and anthropogenic aerosols. Sources, transport, transformation, and fate of primary/secondary, organic/inorganic, atmospheric semi-volatiles, and aerosols. Crosslisted with CEE 6795.

EAS 7000. Master's Thesis
Credit hours to be arranged.

EAS 7999. Preparation for Ph.D. Qualifying Exam
Credit hours to be arranged.

EAS 8001. Seminar
1-0-1.
A forum for graduate students in earth and atmospheric sciences to present and discuss topics related to their research interests.

EAS 8011, -12, -13. Seminar
Credit hours equal last digit in course number.
A forum for graduate students in earth and atmospheric sciences to present and discuss topics related to their research interests.

EAS 8801, -2, -3, -4, -5, -6. Special Topics
Credit hours equal last digit in course number.

EAS 8823. Special Topics with a Laboratory
2-3-3.

EAS 8824. Special Topics with a Laboratory
3-3-4.

EAS 8825. Special Topics with a Laboratory
3-6-5.

EAS 8901, -2, -3, -4. Special Problems
Credit hours to be arranged.

EAS 8997. Teaching Assistantship
Credit hours to be arranged.

EAS 8998. Research Assistantship
Credit hours to be arranged.

EAS 8999. Preparation for Doctoral Dissertation
Credit hours to be arranged.
RAS 9000. Doctoral Thesis
Credit hours to be arranged.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.

Department of Health and Performance Sciences

www.hps.gatech.edu

Established in 1990 (formerly Physical Education and Recreation, established 1942)
Location: Weber/SST Building, Centennial Research Building
Telephone: 404.894.3986
Fax: 404.894.9982

Department Head and Professor—Robert J. Gregor; Associate Department Head and Professor—Phil Sparling; Associate Professor—Mindy Millard-Stafford; Assistant Professors—Jay Alberts, Thomas Burkholder, Mark D. Geil; Research Associate II—Linda B. Rosskopf; Research Associate I—Teresa Snow.

General Information
Faculty in the Department of Health and Performance Sciences (HPS) are focused on understanding the science of movement, the physiological basis of movement control, and on instruction related to the importance of maintaining sound physiological systems. Our approach to these tasks involves every biological level utilizing both basic and applied sciences. For example, attempts to understand how molecules transmit signals in skeletal muscle have a foundation in basic molecular biology and ultimately relate to the applied science of movement control. Faculty interests range from the behavioral (Alberts, Sparling) to the systemic (Geil, Gregor, Millard-Stafford) to the molecular levels (Burkholder). At the undergraduate level the Department instructs all Georgia Tech students in their health and wellness requirement and offers a Certificate in Health Science addressing students' desire for basic medical science education. At the graduate level HPS is currently developing a Focused Master's Program in Prosthetics and Orthotics. Together with units in the College of Engineering, our faculty offer cutting-edge instruction coupled with sound clinical training and a foundation in movement science. A graduate program offering a Ph.D. is currently under development. The Department is unique to the Georgia Tech community but founded in interdisciplinary teaching and research fundamental to the mission of the Institute.

The Health Sciences Requirement
All Georgia Tech students must satisfactorily complete the health and wellness requirement. It is recommended the requirement be taken during the freshman year and consists of one two-hour course, either HPS 1040, Health Concepts and Strategies, or HPS 1062, 1063, 1064 (Fitness Concepts). It is suggested that students with physical disabilities enroll in HPS 1040. The Department may grant credit to transfer students for comparable courses completed at other institutions. Students who have completed their health and wellness requirement are encouraged to elect additional courses of interest in health and movement science.

Other Health and Performance Sciences (HPS) courses may be used as free electives or technical electives, if approved by the major school. Individual schools may allow up to three hours of courses to be counted toward degree requirements. Students should check the curricula of their individual schools to determine the number of hours they may apply toward the degree. To supplement the experiences in the health and wellness requirement, students are encouraged to participate in associated programs sponsored by the Department and the Division of Student Affairs, including those offered by the Wellness Center headquartered at the Student Health Center.

Certificate Program in Health Sciences
The Department of Health and Performance Sciences offers a multidisciplinary certificate program in the health sciences. It is designed for students from any major who wish to broaden or supplement their educational experiences and career opportunities in areas related to the health sciences, human biology, bioengineering, or biomedical engineering. The certificate program is based in human anatomy, physiology, and human
movement sciences, but allows students the flexibility to elect courses in specific areas of interest. Specific information regarding the certificate may be obtained by contacting the HPS Office (Room 112) in the Weber/SST building.

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

HEALTH AND PERFORMANCE SCIENCES

- **HPS 1002. Aerobic Conditioning: Cross Training** 0-2-1.
 Development of cardiorespiratory endurance through a variety of aerobic activities: stationary cycling, rowing, stair climbing, treadmill, and other activities.

- **HPS 1004. Aerobic Conditioning: Running** 0-2-1.
 Primary emphasis on improvement of cardiorespiratory endurance through an individually tailored program of jogging/running and stretching.

- **HPS 1006. Aerobic Dance** 0-2-1.
 Improvement of flexibility, strength, and primarily cardiorespiratory endurance through basic dance exercise. Course components also include fitness assessment and weight control.

- **HPS 1008. Aerobic Conditioning: Swimming** 0-2-1.
 Primary emphasis on improvement of cardiorespiratory endurance, as well as flexibility and muscular endurance, through an individualized program of swimming and other aquatic exercises. Intermediate swimming skills required.

- **HPS 1010. Physical Conditioning: Strength Training** 0-2-1.
 Instruction and demonstration of basic conditioning with emphasis on muscular strength and endurance. Includes training principles and safety precautions.

 Scientifically based and current medical information presented through lecture, laboratory, and self-directed study enabling increased knowledge, the development of strategies, and the promotion of self-responsibility for enhancing personal health.

 Science-based fitness/wellness concepts. Role of exercise in health and quality of life. Assessment and development of personal fitness through swimming.

 Science-based fitness/wellness concepts. Role of exercise in health and quality of life. Assessment and development of personal fitness through cross training.

- **HPS 3300. Principles of Health Promotion** 3-0-3.
 Through small group discussions and lectures, this class examines contemporary health issues facing college students and the theory and skill required to conduct promotion activities.

- **HPS 3400. Issues of Drug and Substance Use** 2-0-2.
 Prerequisite(s): HPS 1040 or HPS 1062 or HPS 1063 or HPS 1064
 Class presentations and discussions of contemporary substance use and abuse issues, following an overview of drug use history, legislation, pharmacology, and selected abusable drugs.

- **HPS 3500. Nutrition and Health** 2-0-2.
 Prerequisite(s): HPS 1040 or HPS 1062 or HPS 1063 or HPS 1064
 Study of human nutrition as an applied science. Nutrition physiology: metabolism, energy, production, biochemical aspect, role of nutrients, weight control mechanisms, and preventative nutrition in health management will be covered topics.

- **HPS 3600. Muscle Structure and Plasticity** 3-0-3.
 Prerequisite(s): BIOL 1510
 Provides an in-depth understanding of the biological processes underlying skeletal muscle structure and function.

- **HPS 3751. Human Anatomy and Physiology** 3-0-3.
 Prerequisite(s): BIOL 1510
 Study of human anatomy and fundamental physiological mechanisms with concentration on skeletal, muscular, nervous, circulatory, respiratory, digestive, urinary, endocrine, and reproductive systems. Crosslisted with BIOL 3751.

- **HPS 3801, -2, -3, -4. Special Topics in Health and Performance Sciences**
 Credit hours equal last digit in course number.

- **HPS 3901, -2, -3. Special Problems**
 Credit hours to be arranged.

- **HPS 3904. Special Problems**
 Credit hours to be arranged.
 Projects conducted in the Exercise Science Laboratory under the direction of a faculty exercise physiologist. Exposure to research investigation including laboratory procedures and instrumentation.
HPS 4100. Exercise Physiology
2-3-3.
Prerequisite(s): HPS 3751 or BIOL 3751
Physiology of human movement with emphasis on metabolic, cardiorespiratory, and musculoskeletal aspects; associated topics include body composition, thermoregulation, and ergogenic aids.

HPS 4200. Kinesiological Basis of Human Movement
2-3-3.
Prerequisite(s): HPS 3751 or BIOL 3751
Analysis of human movement from the broad perspectives of kinesiology, neural control, and human anatomy to include the study of locomotion in both healthy and clinical populations; tasks and various movements of the upper extremities.

School of Mathematics

www.math.gatech.edu

Established in 1952
Location: Skiles Building
Telephone: 404.894.2700
Fax: 404.894.4409

Chair and Professor—Richard Duke; Coordinator of Graduate Programs and Professor—William L. Green; Coordinator of Undergraduate Programs and Associate Professor—Michael T. Lacey; Director of Advising and Assessment—Enid Steinbart; Regents’ Professors—William F. Ames (emeritus), Leonid Bunimovich, Jack K. Hale (emeritus).

Associate Professors—Nathaniel Chafee, Xu-Yan Chen, Wilfrid Gangbo, Christopher Heil, Dar-Vieg Ho (emeritus), Roger D. Johnson (emeritus), Daniel A. Klein, Wing-Suet Li, John P. Line (emeritus), James M. Osborn (emeritus), E. Juanita Pitts (emerita), William R. Smythe Jr. (emeritus), Jonathan E. Spingarn, Frank W. Stallard (emeritus), Jeff Steif, Andrzej Swiech, Prasad Tetali, Xingxing Yu.

Assistant Professors—Saguata Basu, Mihai Ciucu, Laszlo Erdös, Stavros Garoufalidis, Robert W. Ghrist, Guillermo Goldshtein, John McCuan, Gerd Mockenhaupt, John Pelesko, Liang Peng, Dana Randall, Margaret Symington.

Instructors—Rena Brakebill, John Elton, Klara Grodzinsky.

General Information
Mathematics forms an integral part of the curricula of most students at Georgia Tech. Consequently, the School of Mathematics offers a wide range of courses serving students in the various engineering, science, and management disciplines. In addition, the School offers programs of study leading to the bachelor’s, master’s, and doctoral degrees in mathematics.

Such programs of study serve as preparation for mathematics careers, professional schools, and graduate studies.

In addition to basic courses in mathematics, the School offers a variety of specialized courses at the undergraduate and graduate levels, emphasizing areas related to the research activities of the faculty. At present, these include mathematical analysis, applied mathematics, differential equations and partial differential equations, geometry, scientific computing, probability, statistics, combinatorics, mathematical physics, topology, and algebra.

The School of Mathematics has excellent computer facilities that are used in conjunction with an increasing number of courses and programs of study. A cooperative plan for students who wish to combine practical experience with academic work is available for mathematics majors.

Undergraduate Programs
The School of Mathematics offers programs leading to two undergraduate degrees: the Bachelor of Science in Applied Mathematics and the Bachelor of Science in Discrete Mathematics. Both programs emphasize the study of core mathematics as well as its applications. They provide excellent preparation for employment as well as graduate study in mathematics and related fields.
Applied Mathematics
Reflecting the scientific environment at Georgia Tech, the bachelor’s program in applied mathematics trains students in the traditional core mathematics curriculum, as well as in its applications. The undergraduate program is sufficiently flexible to accommodate the wide variety of interests of undergraduate majors, and yet by its scientific breadth, it prepares the student for the extensive employment opportunities that exist for applied mathematicians. Students are encouraged to develop an expertise in another field related to mathematics. This can be accomplished by developing a program of study involving technical electives and an appropriate concentration within mathematics. Some of the more popular fields include physics, computer science, electrical engineering, industrial engineering, operations research, economics, and management. In addition, the School of Mathematics has a large, well networked computer lab that is utilized in courses throughout the undergraduate curriculum.

Students may count no more than two hours of course work in physical education toward graduation. Only free electives or MATH 4999 in the degree program may be taken on a pass/fail basis, and no more than nine hours are allowed under this option.

In addition to the institutional requirement of at least a 2.0 grade point average for the entire academic program, the School of Mathematics requires a grade of C or better in each of MATH 4107, 4317, 4318, and 4320.

Bachelor of Science in Applied Mathematics (Suggested Schedule)

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year - First Semester</td>
<td></td>
</tr>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Year - Second Semester</td>
<td></td>
</tr>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>LAB SCIENCE (EAS, CHEM, BIOL)</td>
<td>4</td>
</tr>
<tr>
<td>CS 1322 OBJECT-ORIENTED PROGRAMMING</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year - First Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>LCC HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second Year - Second Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 2406 ABSTRACT VECTOR SPACES</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year - First Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 3012 APPLIED COMBINATORICS</td>
<td>3</td>
</tr>
<tr>
<td>3XXX ELECTIVE (ENGINEERING OR SCIENCE)</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3XXX ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Year - Second Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 3215 PROBABILITY & STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3XXX ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>3XXX ELECTIVE (ENGINEERING OR SCIENCE)</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fourth Year - First Semester</td>
<td></td>
</tr>
<tr>
<td>MATH 4107 ABSTRACT ALGEBRA I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4320 COMPLEX ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4317 ANALYSIS I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3XXX ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>
Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4318 ANALYSIS II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4640 NUMERICAL ANALYSIS I</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Substitutions
Honors physics and mathematics courses may be substituted for the corresponding regular courses.

Electives

Humanities and Social Sciences Electives
The School of Mathematics recommends that students take a one-year sequence of courses in a modern language and that they begin the sequence of required 4000-level mathematics courses in the junior year. All students must satisfy a state requirement regarding course work in the history and constitutions of the United States and Georgia by taking one course from HIST 2111, HIST 2112, INTA 1200, POL 1101, or PUBP 3000.

A requirement for a 3XXX elective may be satisfied by taking a course in the required area at the 3000 level or higher. In particular, 4000- and 6000-level courses may also be used to meet these requirements, provided they are in the right subject.

Discrete Mathematics
Certain areas of mathematics have become increasingly important over the past 20 years due to the introduction of computing into nearly every aspect of science, technology, and business. These are the branches of mathematics that are devoted to the study of “discrete” as opposed to “continuous” structures. The methods of discrete mathematics are used whenever objects are to be counted, when the relationships between finite sets are examined, and when processes involving a finite number of steps are studied. These methods become essential when, for example, computer algorithms are analyzed, transportation networks or communications systems are designed, or when optimal schedules are sought. Many problems associated with the transmission and storage of information, the design of complicated circuits, or the identification of organic chemicals require the tools of discrete mathematics. Several fields of application, most notably operations research and computer science, not only use the techniques of discrete mathematics, but have also contributed significantly to the development of the subject. For this reason, the curriculum for this bachelor’s degree program combines basic work in mathematics and science and advanced studies in discrete mathematics with substantial training in these areas of application. After completion of the program’s core requirements in the first two years, students take 18 hours of mathematics, 6 hours of computer science, and 6 hours of systems engineering. Nine hours of approved technical electives are to be selected from an approved list of courses in mathematics, computing, electrical engineering, and operations research. Four hours for the senior research project and 12 hours of free electives complete the program.

Bachelor of Science in Discrete Mathematics (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>LAB SCIENCE (EAS, CHEM, BIOL)</td>
<td>4</td>
</tr>
<tr>
<td>CS 1322 OBJECT-ORIENTED PROGRAMMING</td>
<td>3</td>
</tr>
<tr>
<td>CS 1050 PROOFS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>LCC HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>
Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2406 ABSTRACT VECTOR SPACES</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2602 LINEAR & DISCRETE MATH</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012 APPLIED COMBINATORICS</td>
<td>3</td>
</tr>
<tr>
<td>CS 2130 LANGUAGES & TRANSLATION</td>
<td>4</td>
</tr>
<tr>
<td>CS 3500 THEORY I</td>
<td>4</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3215 PROBABILITY & STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>CS 4500 THEORY II</td>
<td>3</td>
</tr>
<tr>
<td>ISYE 4231 ENGINEERING OPTIMIZATION</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>12</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4080 SENIOR PROJECT I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 4107 ABSTRACT ALGEBRA I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4022 INTRO. TO GRAPH THEORY</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4317 ANALYSIS I</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4090 SENIOR PROJECT II</td>
<td>2</td>
</tr>
<tr>
<td>ISYE 3332 RANDOM SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Substitutions

PHYS 2141-2-3 may be substituted for PHYS 2121-2-3. MATH 4580 may be substituted for ISYE 3231. Honors physics and math courses may be substituted for the corresponding regular courses.

Electives

English Elective
Any English course that carries humanities credit.

Health and Performance Sciences
A maximum of three hours of PE may be used toward degree requirements.

Humanities and Social Sciences
The School of Mathematics recommends that students take a one-year sequence of courses in a modern language and that they begin the sequence of required 4000-level mathematics courses in the junior year. All students must satisfy a state requirement regarding course work in the history and constitutions of the U.S. and Georgia by taking one course from HIST 2111, HIST 2112, INTA 1200, POL 1101, or PUBP 3000.

A requirement for a 3XXX elective may be satisfied by taking a course in the required area at the 3000 level or higher. In particular, 4000- and 6000-level courses may also be used to meet these requirements, provided they are in the right subject.

Minor in Mathematics
A student may earn a minor in mathematics by fulfilling, in addition to the general Institute requirements, one of the possibilities below; that is, one of I, or II. Part II itself offers six possibilities:

I. MATH 4317, Math 4107, Math 4305, and 9 additional hours of 3000-level or above mathematics courses.

or

II. At least 9 hours in one of the following fields:
 i) analysis: MATH 4317, 4318, 4320, 4581, 4640, 4641
 ii) algebra and number theory: MATH 4107, 4108, 4150, 4305, 4012
 iii) probability and statistics: MATH 3215, 3770, 4221, 4222, 4225, 4261, 4262, 4280
 iv) dynamics and differential equations: MATH 4347, 4348, 4541, 4542, 4581
 v) discrete mathematics: MATH 3012, 4012, 4022, 4032, 4580
 vi) geometry and topology: MATH 4431, 4432, 4441

and 9 additional hours of 3000 or above mathematics courses.

Substitutions

PHYS 2141-2-3 may be substituted for PHYS 2121-2-3. MATH 4580 may be substituted for ISYE 3231. Honors physics and math courses may be substituted for the corresponding regular courses.
For further information, consult the departmental advisor.

Business Option

The School of Mathematics offers a Business Option variant of both undergraduate degree programs. This option is designed for students who wish to acquire and document the skills and knowledge needed for success as a scientific entrepreneur. Students electing this option complete the degree requirements as listed above, except that two of their social science electives must be:

- PSYC 2200 Indust./Organ. Psych. (3)
- ECON 2106 Prin. of Microecon. (3)

and they must take

- MGT 3000 Accounting (3)
- MGT 3300 Marketing Mgt. I (3)

in place of six hours of 3XXX technical electives, and

- MGT 3150 Prin. of Mgt. (3)

in place of three hours of free electives.

For further information, consult the departmental advisor.

Bachelor of Science in Applied Mathematics - Business Option (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>or INTA 1200</td>
<td></td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2220 INDUSTRIAL/ORGANIZATIONAL PSY.</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2406 ABSTRACT VECTOR SPACES</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>ECON 2106 MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012 APPLIED COMBINATORICS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3000 ACCOUNTING</td>
<td>3</td>
</tr>
<tr>
<td>MATH 3XXX ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3215 PROBABILITY & STATISTICS</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3500 MARKETING MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3107 ABSTRACT ALGEBRA I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4320 COMPLEX ANALYSIS</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4317 ANALYSIS I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3XXX ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3150 PRIN. OF MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4318 ANALYSIS II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4640 NUMERICAL ANALYSIS I</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>8</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)
Bachelor of Science in Discrete Mathematics - Business Option (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>HPS 10401/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HIST 2111 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>LAB SCIENCE (EAS, CHEM, BIOL)</td>
<td>4</td>
</tr>
<tr>
<td>CS 1322 OBJECT-ORIENTED PROGRAMMING</td>
<td>3</td>
</tr>
<tr>
<td>CS 1050 PROOFS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2220 INDUSTRIAL/Organizational PSY.</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2406 ABSTRACT VECTOR SPACES</td>
<td>3</td>
</tr>
<tr>
<td>MATH 2602 LINEAR & DISCRETE MATH.</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>ECON 2106 PRIN. MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3012 APPLIED COMBINATORICS</td>
<td>3</td>
</tr>
<tr>
<td>CS 2330 LANGUAGES & TRANSLATION</td>
<td>4</td>
</tr>
<tr>
<td>CS 3500 THEORY I</td>
<td>4</td>
</tr>
<tr>
<td>MGT 3000 ACCOUNTING</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4080 SENIOR PROJECT I</td>
<td>2</td>
</tr>
<tr>
<td>MATH 4107 ABSTRACT ALGEBRA I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4022 INTRO. TO GRAPH THEORY</td>
<td>3</td>
</tr>
<tr>
<td>MATH 4317 ANALYSIS I</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3150 PRINCIPLES OF MANAGEMENT</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4090 SENIOR PROJECT II</td>
<td>2</td>
</tr>
<tr>
<td>ISYE 3332 RANDOM SYSTEMS</td>
<td>3</td>
</tr>
<tr>
<td>TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Graduate Programs

The School of Mathematics provides opportunities for study in a wide range of mathematical disciplines. First-year graduate sequences include algebra, analysis, differential equations, numerical analysis, probability, statistics, and topology in addition to courses in methods of applied mathematics.

A program of study leading to a master's degree in applied mathematics should include analysis consisting of MATH 6327 and either MATH 6580 or MATH 7334. In addition, students should take 6 hours of course work, subject to the approval of the School of Mathematics, at the 4000 level or higher outside the School. The remaining 18 hours required may be taken under a thesis option or under a non-thesis option. Under the thesis option, the program must include a thesis (9 thesis hours) and 9 additional hours of course work at the 4000 level or higher, 6 hours of which must be in mathematics at the 6000 level or higher. Under the non-thesis option, the program
must include 18 additional hours of course work at the 4000 level or higher, with at least 12 hours at the 6000 level or higher in mathematics. Under the non-thesis option, the program must also include a concentration consisting of 6 hours of course work at the 6000 level or higher in a field of mathematics chosen in consultation with the student's advisor, and a sufficient number of hours at the 6000 level or higher to ensure that the program includes a total of at least 21 hours at this level. Under either of these options, MATH 6701 and 6702, as well as all courses required by number for the Bachelor of Science in Applied Mathematics (MATH 3012, 3215, 4107, 4317, 4318, 4320, and 4640), do not carry degree credit for graduate mathematics majors and may not be used to fulfill these degree requirements.

Students must maintain an overall grade point average of at least 3.0 and receive a grade of C or better in each mathematics course in the program of study.

Before admission to candidacy for the master's degree, each student must pass either a master's oral comprehensive examination or the written portion of the mathematics doctoral comprehensive examination.

The doctoral program requires 51 hours of course work, with grades of C or better, beyond the undergraduate degree. At least 36 hours, chosen to the satisfaction of the student's research advisor and the School's Graduate Committee, must be taken at the 6000 level in mathematics, and a further 9 hours must be taken outside the School of Mathematics at the 4000 level or higher in the student's minor field of study. The program must also include 6 additional hours at the 6000 level. Work on a master's thesis (thesis hours) may not be counted toward any of the 51 hours specified above, but course work for the master's degree may be counted. At least 6 hours of the minor should be completed within 3 years of the student's admission to the doctoral program.

Prior to admission to candidacy for the doctoral degree, each student must pass the comprehensive examination, which consists of a written examination in real analysis and algebra and an oral examination in the student's proposed area of specialization. Doctoral students must also satisfy the Institute requirements with respect to the dissertation and final oral examination.

Center for Dynamical Systems and Nonlinear Studies

As part of the research and graduate programs in the School of Mathematics, the Center for Dynamical Systems and Nonlinear Studies sponsors distinct but interrelated activities in dynamical systems, differential equations, and algebra and applications. The Center offers postdoctoral and visiting faculty appointments as well as financial aid to graduate students affiliated with the Center. The director of the Center is Professor Konstantin Mishaikow.

Southeastern Applied Analysis Center

Georgia Tech's Southeastern Applied Analysis Center, directed by Prof. Leonid Bunimovich, is a regional resource for research and education in applied mathematics, and for outreach to industry. The Center sponsors regional and international conferences and organizes focused research in many areas of mathematics and applications.

Program in Algorithms, Combinatorics, and Optimization

One of the most rapidly growing areas of research in applied mathematics, computer science, and operations research has been that dealing with discrete structures. This has been most evident in the fields of combinatorics, discrete optimization, and the analysis of algorithms. Increasingly, work in each of these subjects has come to depend on knowledge of all of them. Indeed, many of the most significant advances have resulted from the efforts of researchers in more than one, if not all three, of these areas.

In response to these developments, Georgia Tech has introduced a doctoral degree program in algorithms, combinatorics, and optimization (ACO). This multidisciplinary program is sponsored jointly by the School of Mathematics, the School of Industrial and Systems Engineering, and the College of Computing. Faculty for the program are drawn from these three sponsoring units, as well as from the School of Electrical and Computer Engineering and the DuPree College of Management.

The ACO program is arranged to bring together the study of discrete structures and the design and
analysis of algorithms in areas such as graph theory, integer programming, combinatorial optimization, and polyhedral theory. It is intended for students possessing a strong background in one or more of the fields represented by the three sponsoring units. Each student in the program has a single home department chosen from the School of Mathematics, the School of Industrial and Systems Engineering, and the College of Computing. Courses for the program are drawn from all three of these units, and include study in such areas as combinatorial methods, algebraic structures, probability, the analysis of algorithms, computational complexity, linear programming, discrete optimization, and convex analysis.

Interdisciplinary Master's Degree Programs

Program in Statistics
For information concerning the graduate program in statistics, refer to page 189.

Program in Bioinformatics
For information concerning the graduate program in bioinformatics, refer to page 307.

Program in Quantitative and Computational Finance
The Master of Science degree program in Quantitative and Computational Finance (MSQCF) is a multidisciplinary program under the Provost of the Georgia Institute of Technology, with home units of the DuPree College of Management, the School of Mathematics in the College of Sciences, and the School of Industrial and Systems Engineering in the College of Engineering.

The main objective of the Master of Science degree program in Quantitative and Computational Finance (MSQCF) is to provide students with the practical skills and theoretical understanding they need to be leaders in the formulation, implementation, and evaluation of the models used by the financial sector to structure transactions, manage risk, and construct investment strategies.

The MSQCF program is well structured both to cover the fundamentals needed to understand and model a wide variety of problems in finance, and to allow specialization to build expertise in specific approaches, techniques, and problem areas. For the fundamentals, the MSQCF program emphasizes both foundational concepts within finance and also the principles and techniques needed for the formulation, implementation, and testing of financial models. The program is not just centered on one type of problem; students develop expertise for a range of career paths that use quantitative and computational reasoning. For their area of specialization, students are encouraged to develop expertise that draws on the unsurpassable strengths present in the many related quantitative, computational, and mathematical areas present at Georgia Tech.

The prerequisites of the MSQCF program include the following:
- interest in the problems of finance, and a high level of mathematical ability that has been demonstrated within past performance on appropriate course work and standardized testing;
- mathematical background — a working knowledge of calculus (differential and integral calculus of one variable, the multivariate calculus, fundamentals of linear algebra and linear systems of equations, and differential equations) and undergraduate calculus-based probability and statistics;
- basic programming background — basic knowledge of a programming language such as MatLab programming, Visual Basic, C, or Fortran; and
- Institute and academic unit requirements for admission to graduate study.

Master of Science in Quantitative and Computational Finance Curriculum Requirements

Required Core Courses (18 semester hours)

- MGT 6078 Finance and Investments
- MGT 6081 Derivative Securities
- MATH 6635 Numerical Methods in Finance
- ISYE/MATH 6759 Stochastic Processes in Finance I
- ISYE/MATH 6767 Design and Implementation of Systems to Support Computational Finance
- ISYE/MATH/MGT 6769 Fixed Income Securities
Three semester hours from the following:
ISYE 6673
Financial Optimization Models
MATH 6235
Stochastic Processes in Finance II
MGT 6090
Management of Financial Institutions

Six semester hours from the following:
ISYE/MATH 6783
Statistical Techniques of Financial Data Analysis
ISYE/MATH/MGT 6785
The Practice of Quantitative and Computational Finance
MGT 7061
Empirical Finance

Nine semester hours of free electives at the 6000 level or higher

Total semester hours: 36

For the nine semester hours of free electives at the 6000 level or higher, students choose at least three additional electives from the above electives categories or from other courses. Students are encouraged to choose electives to develop expertise within a specific area such as statistical data analysis, economic analysis, finance, risk management/optimization, or model implementation. It is strongly recommended that students who do not have previous course work in economics take ECON 6100 Economic Analysis for Managers (or its equivalent).

Courses of Instruction
Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

MATHEMATICS

MATH 1113. Precalculus
4-0-4.
Analytic geometry, the function concept, polynomials, exponential, logarithmic, trigonometric functions, mathematical induction, and the theory of equations.

MATH 1501. Calculus I
4-0-4.
Prerequisite(s): MATH 1113 or SAT 550
Differential calculus and basic integral calculus including the fundamental theorem of calculus and the underlying theory of limits and continuity. Credit not allowed for both MATH 1501 and MATH 1712.

MATH 1502. Calculus II
4-0-4.
Prerequisite(s): MATH 1501 or MATH 1511 or MATH 15X1
This course concludes the treatment of single variable calculus and begins linear algebra, the linear basis of the multivariable theory.

MATH 1511. Honors Calculus I
4-0-4.
The topics covered parallel those of 1501 with a somewhat more intensive and rigorous treatment. Credit not allowed for both honors calculus and the corresponding regular calculus course.

MATH 1512. Honors Calculus II
4-0-4.
Prerequisite(s): MATH 1501 or MATH 1511
The topics covered parallel those of 1502 with a somewhat more intensive and rigorous treatment. Credit not allowed for both honors calculus and the corresponding regular calculus course.

MATH 1522. Linear Algebra for Calculus
2-0-2.
Prerequisite(s): MATH 15X2
Basic topics in linear algebra, such as those covered in MATH 1502, and needed for MATH 2401. May not be taken for credit by students who have taken MATH 1502.

MATH 1601. Introduction to Higher Mathematics
3-0-3.
Prerequisite(s): MATH 1501 or MATH 1511 or MATH 15X1
This course is designed to teach problem solving and proof writing. Mathematical subject matter is drawn from elementary number theory and geometry.

MATH 1711. Finite Mathematics
4-0-4.
Prerequisite(s): MATH 1113 or SAT score of 550 or higher
Linear equations, matrices, linear programming, sets and counting, probability, and statistics.

MATH 1712. Survey of Calculus
4-0-4.
Prerequisite(s): MATH 1113 or SAT score of 550 or higher
Techniques of differentiation, integration, application of integration to probability and statistics, and multidimensional calculus. Credit not allowed for both MATH 1712 and 1501.

MATH 2401. Calculus III
4-0-4.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Multivariable calculus: Linear approximation and Taylor’s theorems; Lagrange multiplies and constrained optimization; multiple integration and vector analysis including the theorems of Green, Gauss, and Stokes.
Mathematics

MATH 2403. Differential Equations
4-0-4.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Methods for obtaining numerical and analytic solutions of elementary differential equations. Applications are also discussed with an emphasis on modeling.

MATH 2406. Abstract Vector Spaces
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
A proof-based development of linear algebra and vector spaces, with additional topics such as multilinear algebra and group theory.

MATH 2411. Honors Calculus III
4-0-4.
Prerequisite(s): MATH 1502 or MATH 1512
The topics covered parallel those of MATH 2401 with a somewhat more intensive and rigorous treatment. Credit is not allowed for both honors calculus and the corresponding regular calculus course.

MATH 2413. Honors Differential Equations
4-0-4.
Prerequisite(s): MATH 1502 or MATH 1512
The course treats the theory of ordinary differential equations from an advanced perspective, delving into the theory as well as computational aspects. It is designed for mathematics majors and others who wish to take advanced courses in the area.

MATH 2601. Calculus III for Computer Science
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Topics in linear algebra and multivariate calculus and their applications in optimization and numerical methods, including curve fitting, interpolation, and numerical differentiation and integration.

MATH 2602. Linear and Discrete Mathematics
4-0-4.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 24X1
Topics in linear algebra, sequences, differences, finite sums, and difference equations; multivariate optimization with an emphasis in discrete and recursive methods.

MATH 2801, -2, -3, -4, -5. Special Topics
Credit equals last digit in course number.
Courses on special topics of current interest in mathematics.

MATH 3012. Applied Combinatorics
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Elementary combinatorial techniques used in discrete problem solving: counting methods, solving linear recurrences, graph and network models, related algorithms, and combinatorial designs. Must have at least 12 of mathematics to take this course.

MATH 3215. Introduction to Probability and Statistics
3-0-3.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 24X1 or MATH 2601
This course is a problem-oriented introduction to the basic concepts of probability and statistics, providing a foundation for applications and further study.

MATH 3225. Honors Probability and Statistics
3-0-3.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 2601
The topics covered parallel those of MATH 4215, with a more rigorous and intensive treatment. Credit is not allowed for both MATH 3215 and 3225.

MATH 3770. Statistics and Applications
3-0-3.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 2601
Introduction to probability, probability distributions, point estimation, confidence intervals, hypothesis testing, and linear regression and analysis of variance. MATH majors may not take this course for credit. Crosslisted with ISYE 3770 and CEE 3770.

MATH 4012. Algebraic Structures in Coding Theory
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Introduction to linear error correcting codes with an emphasis on the algebraic tools required, including matrices, vector spaces, groups, polynomial rings, and finite fields.

MATH 4022. Introduction to Graph Theory
3-0-3.
Prerequisite(s): MATH 3012
The fundamentals of graph theory: trees, connectivity, Euler torus, Hamilton cycles, matchings, colorings, and Ramsey theory.

MATH 4032. Combinatorial Analysis
3-0-3.
Prerequisite(s): MATH 3012
Combinatorial problem-solving techniques including the use of generating functions, recurrence relations, Polya theory, combinatorial designs, Ramsey theory, matroids, and asymptotic analysis.

MATH 4080, -90. Senior Project I & II
2-0-2.
A two-course sequence of faculty-directed independent research culminating in the writing of a senior thesis and its presentation.

MATH 4107. Abstract Algebra I
3-0-3.
Prerequisite(s): MATH 2406
This course develops in the theme of "Arithmetic congruence and abstract algebraic structures." Strong emphasis on theory and proofs.
MATH 4108. Abstract Algebra II
3-0-3.
Prerequisite(s): MATH 4107
Continuation of Abstract Algebra I, with emphasis on Galois theory, modules, polynomial fields, and the theory of linear associative algebra.

MATH 4150. Introduction to Number Theory
3-0-3.
Prerequisite(s): MATH 2406
Primes and unique factorization, congruencies, Chinese remainder theorem, Diophantine equations, Diophantine approximations, quadratic reciprocity. Applications such as fast multiplication, factorization, and encryption.

MATH 4221. Stochastic Processes I
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Simple random walk and the theory of discrete time Markov chains.

MATH 4222. Stochastic Processes II
3-0-3.
Prerequisite(s): MATH 4221
Renewal theory, Poisson processes and continuous time Markov processes, including an introduction to Brownian motion and martingales.

MATH 4255. Monte Carlo Methods
3-0-3.
Prerequisite(s): (MATH 3215 or MATH 3225) and CS 1322
Probability distributions, limit laws, and applications through the computer.

MATH 4261. Mathematical Statistics I
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Sampling distributions, Normal, t, chi-square, and f distributions. Moment generating function methods, Bayesian estimation, and introduction to hypothesis testing.

MATH 4262. Mathematical Statistics II
3-0-3.
Prerequisite(s): MATH 4261
Hypothesis testing, likelihood ratio tests, nonparametric tests, bivariate and multivariate normal distributions.

MATH 4280. Introduction to Information Theory
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
The measurement and quantification of information. These ideas are applied to the probabilistic analysis of the transmission of information over a channel along which random distortion of the message occurs.

MATH 4305. Topics in Linear Algebra
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512
Finite dimensional vector spaces, inner product spaces, least squares, linear transformations, and the spectral theorem for normal transformations. Applications to convex sets, positive matrices, and difference equations.

MATH 4317. Analysis I
3-0-3.
Prerequisite(s): MATH 2406
Real numbers, topology of Euclidean spaces, Cauchy sequences, completeness, continuity and compactness, uniform continuity, series of functions, and Fourier series.

MATH 4318. Analysis II
3-0-3.
Prerequisite(s): MATH 4317
Differentiation of functions of one real variable, Riemann-Stieljes integral, the derivative in R^n, and integration in R^n.

MATH 4320. Complex Analysis
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Topics from complex function theory, including contour integration and conformal mapping.

MATH 4347. Partial Differential Equations I
3-0-3.
Prerequisite(s): MATH 2406 and (MATH 2403 or MATH 2413 or MATH 24X3)
Method of characteristics for first and second order partial differential equations, conservation laws and shocks, and classification of second order systems and applications.

MATH 4348. Partial Differential Equations II
3-0-3.
Prerequisite(s): MATH 4347
Green's functions and fundamental solutions. Potential, diffusion, and wave equations.

MATH 4431. Introduction to Topology
3-0-3.
Prerequisite(s): MATH 4317
Point set topology, topological spaces and metric spaces, continuity and compactness, homotopy, and covering spaces.

MATH 4432. Introduction to Algebraic Topology
3-0-3.
Prerequisite(s): MATH 4317
Introduction to algebraic methods in topology. Includes homotopy, the fundamental group, covering spaces, simplicial complexes. Applications to fixed point theory and group theory.

MATH 4441. Differential Geometry
3-0-3.
Prerequisite(s): MATH 2401 or MATH 2411 or MATH 24X1
The theory of curves, surfaces, and more generally, manifolds. Curvature, parallel transport, covariant differentiation, and Gauss-Bonnet theorem.

MATH 4541. Dynamics and Bifurcations I
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3
A broad introduction to the local and global behavior of nonlinear dynamical systems arising from maps and ordinary differential equations.
MATH 4542. Dynamics and Bifurcations II
3-0-3.
Prerequisite(s): MATH 4541
A continuation of Dynamics and Bifurcations I.

MATH 4580. Linear Programming
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522) or MATH 1712
A study of linear programming problems, including the simplex method, duality, and sensitivity analysis with applications to matrix games, integer programming, and networks.

MATH 4581. Classical Mathematical Methods in Engineering
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413
The Laplace transform and applications, Fourier series, boundary-value problems for partial differential equations.

MATH 4640. Numerical Analysis I
3-0-3.
Prerequisite(s): MATH 2403 or MATH 2413 or MATH 24X3 or MATH 2602
Introduction to numerical algorithms for some basic problems in computational mathematics. Discussion of both implementation issues and error analysis.

MATH 4641. Numerical Analysis II
3-0-3.
Prerequisite(s): MATH 4640
Introduction to the numerical solution of initial and boundary-value problems in differential equations.

MATH 4755. Mathematical Biology
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Problems from the life sciences and the mathematical methods for solving them are presented. The underlying biological and mathematical principles and the interrelationships are emphasized. Crosslisted with BIOL 4755.

MATH 4777. Vector and Parallel Scientific Computation
3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512 or (MATH 15X2 and MATH 1522)
Scientific computational algorithms on vector and parallel computers. Speed-up and algorithm complexity, interprocesses communication, synchronization, modern algorithms for linear systems, programming techniques, and code optimization. Crosslisted with CS 4777.

MATH 4801, -2, -3, -4, -5. Special Topics
Credit hours equal last digit in course number.
Courses on special topics of current interest in mathematics.

MATH 4999. Special Problems
Credit hours to be arranged.
Reading or research in topics of current interest.

MATH 6014. Graph Theory
3-0-3.
Prerequisite(s): MATH 4022
Fundamentals, connectivity, matchings, colorings, extremal problems, Ramsey theory, planar graphs, and perfect graphs. Applications to operations research and the design of efficient algorithms.

MATH 6021. Topology of Euclidean Spaces
3-0-3.
Prerequisite(s): MATH 4317 and (MATH 2406 or MATH 4305)
Metric spaces, normed linear spaces, convexity and separation; polyhedra and simplicial complexes; surfaces; and Brouwer fixed point theorem.

MATH 6121. Algebra I
3-0-3.
Prerequisite(s): MATH 4107 and (MATH 2406 or MATH 4305)
Graduate-level linear and abstract algebra including groups, finite fields, classical matrix groups and bilinear forms, multilinear algebra, and matroids. First of two courses.

MATH 6122. Algebra II
3-0-3.
Prerequisite(s): MATH 6121
Graduate-level linear and abstract algebra including rings, fields, modules, some algebraic number theory, and Galois theory. Second of two courses.

MATH 6221. Advanced Classical Probability Theory
3-0-3.
Prerequisite(s): MATH 4221
Classical introduction to probability theory including expectation, notions of convergence, laws of large numbers, independence, large deviations, conditional expectation, martingales, and Markov chains.

MATH 6235. Stochastic Processes in Finance
3-0-3.
Prerequisite(s): MATH 2403 and (ISYE 6759 or MATH 6759)
Advanced mathematical modeling of financial markets, derivative securities pricing, and portfolio optimization. Concepts from advanced probability and mathematics are introduced as needed.

MATH 6241. Probability I
3-0-3.
Prerequisite(s): MATH 6327
Develops the probability basis requisite in modern statistical theories and stochastic processes. Topics include measure and integration foundations of probability, distribution functions, convergence concepts, laws of large numbers, and central limit theory. First of two courses.

MATH 6242. Probability II
3-0-3.
Prerequisite(s): MATH 6241
Develops the probability basis requisite in modern statistical theories and stochastic processes. Topics of this course include results for sums of independent random variables, Markov processes, martingales, Poisson processes, and Brownian motion, conditional probability and conditional expectation, and topics from ergodic theory. Second of two courses.
MATH 6262. Statistical Estimation
3-0-3.
Prerequisite(s): MATH 4262
Basic theories of statistical estimation, including optimal estimation in finite samples and asymptotically optimal estimation. A careful mathematical treatment of the primary techniques of estimation utilized by statisticians.

MATH 6263. Testing Statistical Hypotheses
3-0-3.
Prerequisite(s): MATH 4262
Basic theories of testing statistical hypotheses, including a thorough treatment of testing in exponential class families. A careful mathematical treatment of the primary techniques of hypothesis testing utilized by statisticians.

MATH 6266. Linear Statistical Models
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Basic unifying theory underlying techniques of regression, and analysis of variance and covariance from a geometric point of view. Modern computational capabilities are exploited fully. Students apply the theory to real data through canned and coded programs.

MATH 6267. Multivariate Statistical Analysis
3-0-3.
Prerequisite(s): MATH 4262
Multivariate normal distribution theory, correlation and dependence analysis, regression and prediction, dimension-reduction methods, sampling distributions and related inference problems, selected applications in classification theory, multivariate process control, and pattern recognition.

MATH 6300. Fractal Geometry
3-0-3.
Prerequisite(s): MATH 6327
Hausdorff dimension, box counting dimension, iterated function systems, continued fractions, number theory, Julia sets.

MATH 6307, -8. Ordinary Differential Equations I & II
3-0-3.
Prerequisite(s): MATH 4542
Two-course sequence that develops the qualitative theory for systems of ordinary differential equations. Topics include stability, Lyapunov functions, Floquet theory, attractors, invariant manifolds, bifurcation theory, and normal forms.

MATH 6314. Industrial Mathematics I
3-0-3.
Prerequisite(s): (MATH 2403 or MATH 2602) and MATH 4640
Applied mathematics techniques to solve real-world problems. Topics include mathematical modeling, asymptotic analysis, differential equations, and scientific computation. Prepares the student for MATH 6515.

MATH 6315. Industrial Mathematics II
3-0-3.
Prerequisite(s): MATH 6514
Applications of mathematical techniques from MATH 6514 to solve real-world problems. Group projects to solve industrial problems in topics chosen by the instructor.
MATH 6580. Introduction to Hilbert Spaces 3-0-3.
Prerequisite(s): MATH 2403 and (MATH 2406 or MATH 4305)
Geometry, convergence, and structure of linear operators in
infinite dimensional spaces. Applications to science and engi-
neering including integral equations and ordinary partial dif-
ferential equations.

MATH 6583. Integral Equations and Transforms 3-0-3.
Prerequisite(s): MATH 6701 or (MATH 2406 and MATH 2403)
or (MATH 2403 and MATH 4305)
Volterra and Fredholm linear integral equations, relation to dif-
ferential equations, solution methods, Fourier, Laplace and
Mellin transforms, applications to boundary value problems,
and integral equations.

MATH 6584. Special Functions of Higher Mathematics 3-0-3.
Prerequisite(s): MATH 4320
Gamma function, exponential function, orthogonal polynomi-
als, Bessel, Legendre and hypergeometric functions, applica-
tion to singular ordinary differential equations, and separation
of variables for partial differential equations.

Prerequisite(s): MATH 2403 and (MATH 3215 or MATH 3225)
Basic numerical and simulation techniques used in the pricing
of derivative securities and in related problems in finance.

Prerequisite(s): MATH 4640
Introduction to the implementation and analysis of numerical
algorithms for the numerical solution of the classic partial dif-
ferential equations of science and engineering. Must have
knowledge of a computer programming language and familiar-
ity with partial differential equations and elements of scientific
computing.

Analysis and implementation of numerical methods for nonlin-
ear partial differential equations including elliptic, hyperbolic,
and/or parabolic problems. Must have knowledge of classic
linear partial differential equations and exposure to numerical
methods for partial differential equations at the level of MATH
6640 or numerical linear algebra at the level of MATH 6643.

MATH 6643. Numerical Linear Algebra 3-0-3.
Prerequisite(s): MATH 2406 or MATH 4305
Introduction to the numerical solution of the classic problems
of linear algebra including linear systems, least squares,
Singular value decomposition, and eigenvalue problems.

Prerequisite(s): MATH 2406 or MATH 4305
Iterative methods for linear and nonlinear systems of equations
including Jacobi, G-S, SOR, CG, multi-grid, Newton quasi-
Newton, updating, and gradient-based methods.

Prerequisite(s): MATH 4317 and MATH 4640
Theoretical and computational aspects of polynomial, rational,
trigonometric, spline, and wavelet approximation.

Prerequisite(s): MATH 2403 and MATH 4640
Analysis and implementation of numerical methods for initial
and two-point boundary value problems for ordinary differen-
tial equations.

Prerequisite(s): MATH 4641
Approximation of the dynamical structure of a differential
equation and preservation of dynamical structure under dis-
cretization. Must be familiar with dynamical systems and
numerical methods for initial and boundary value problems in
ordinary differential equations.

Prerequisite(s): MATH 2403 and (MATH 2406 or MATH 4305)
Review of linear algebra and ordinary differential equations,
brief introduction to functions of a complex variable.

MATH 6702. Math Methods of Applied Sciences II 3-0-3.
Prerequisite(s): MATH 6701 or (MATH 2406 and MATH 2403)
or (MATH 2403 and MATH 4305)
Review of vector calculus and its applications to partial dif-
ferential equations.

MATH 6705. Modeling and Dynamics 3-0-3.
Prerequisite(s): MATH 1502 or MATH 1512
Mathematical methods for solving problems in the life sci-
ences. Models-based course on basic facts from the theory of
ordinary differential equations and numerical methods of their
solution. Introduction to the control theory, diffusion theory,
maximization, minimization, and curve fitting. Math majors
may not use this course toward any degree in the School of
Mathematics.

MATH 6759. Stochastic Processes in Finance I 3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Mathematical modeling of financial markets, derivative securi-
ties pricing, and portfolio optimization. Concepts from proba-
bility and mathematics are introduced as needed.
MATH 6761. Stochastic Processes I
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225

MATH 6762. Stochastic Processes II
3-0-3.
Prerequisite(s): MATH 6761 or ISYE 6761

MATH 6767. Design and Implementation of Systems to Support Computational Finance
3-0-3.
Introduction to large-scale system design to support computational finance for options, stocks, or other financial instruments.

MATH 6769. Fixed Income Securities
3-0-3.
Prerequisite(s): (MATH 3215 or MATH 3225) and (MGT 6060 or MGT 6078)
Description, institutional features, and mathematical modeling of fixed income securities. Use of both deterministic and stochastic models.

MATH 6781. Reliability Theory
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Reliability systems and related distributions, failure rate functions and nonparametric classes, accelerated life testing, dependent failure analysis, and statistical inference of reliability data. Crosslisted with ISYE 6781.

MATH 6785. Statistical Techniques of Financial Data Analysis
3-0-3.
Prerequisite(s): MATH 3215 or MATH 3225
Fundamentals of statistical inference for models used in the modern analysis of financial data.

MATH 6785. The Practice of Quantitative and Computational Finance
3-0-3.
Case studies, visiting lecturers from financial institutions, student group projects of an advanced nature, and student reports, all centered around quantitative and computational finance.

MATH 6793. Advanced Topics in Quantitative and Computational Finance
3-0-3.
Advanced foundational material and analysis techniques in quantitative and computational finance.

MATH 7000. Master's Thesis
Credit hours to be arranged.

MATH 7012. Enumerative Combinatorics
3-0-3.
Prerequisite(s): MATH 4032
Fundamental methods of enumeration and asymptotic analysis including the use of inclusion/exclusion, generating functions, and recurrence relations. Applications to strings over a finite alphabet and graphs.

MATH 7016. Combinatorics
3-0-3.
Prerequisite(s): MATH 4022
Fundamental combinatorial structures including hypergraphs, transversal sets, colorings, Sperner families, intersecting families, packings and coverings, perfect graphs, and Ramsey theory. Algebraic and topological methods and applications.

MATH 7018. Probabilistic Methods in Combinatorics
3-0-3.
Prerequisite(s): MATH 4022 and MATH 6221
Applications of probabilistic techniques in discrete mathematics, including classical ideas using expectation and variance, as well as modern tools such as martingale and correlation inequalities.

MATH 7244-45. Stochastic Processes and Stochastic Calculus I & II
3-0-3.
Prerequisite(s): MATH 6242
An introduction to the Ito stochastic calculus and stochastic differential equations through a development of continuous-time martingales and Markov processes. Two-course sequence.

MATH 7334. Operator Theory
3-0-3.
Prerequisite(s): MATH 6327

MATH 7337. Harmonic Analysis
3-0-3.
Prerequisite(s): MATH 6527
Fourier analysis in Euclidean space. Basic topics including L^1 and L^2 theory; advanced topics such as distribution theory, uncertainty, and Littlewood-Paley theory.

MATH 7581. Calculus of Variations
3-0-3.
Prerequisite(s): MATH 4317
Minimization of functionals, Euler-Lagrange equations, sufficient conditions for a minimum; geodesic, isoperimetric and time of transit problems, variational principles of mechanics, applications to control theory.

MATH 7586. Tensor Analysis
3-0-3.
Prerequisite(s): MATH 2403 and (MATH 2406 or MATH 4305)
Review of linear algebra, multilinear algebra, algebra of tensors, co- and contravariant tensors, tensors in Riemann spaces, geometrical interpretation of skew tensors.

MATH 7999. Preparation for Doctoral Comprehensive Examination
Credit hours to be arranged.
MATH 8800. Special Topics
3-0-3.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8801, -2, -3, -4, -5. Special Topics
Credit hours equal last digit in course number.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8810. Special Topics
3-0-3.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8811, -12, -13, -14, -15. Special Topics
Credit hours equal last digit in course number.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8820. Special Topics
3-0-3.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8821, -22, -23, -24, -25. Special Topics
Credit hours equal last digit in course number.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8830. Special Topics
3-0-3.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8831, -32, -33, -34, -35. Special Topics
Credit hours equal last digit in course number.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8840. Special Topics
3-0-3.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8841, -42, -43, -44, -45. Special Topics
Credit hours equal last digit in course number.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8850. Special Topics
3-0-3.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8851, -52, -53, -54, -55. Special Topics
Credit hours equal last digit in course number.
This course enables the School of Mathematics to comply with requests for courses in selected topics.

MATH 8900, -01, -02, -03. Special Problems
Credit hours to be arranged.

MATH 8997. Teaching Assistantship
Credit hours to be arranged.
For students holding graduate teaching assistantships.

MATH 8998. Research Assistantship
Credit hours to be arranged.
For students holding graduate research assistantships.

MATH 9000. Doctoral Thesis
Credit hours to be arranged.

School of Physics

www.physics.gatech.edu

Established in 1939
Location: Howey Building
Telephone: 404.894.5201
Fax: 404.894.9958

Chair and Regents' Professor—Ronald Fox;
Associate Chair for Graduate Programs and Professor—Helmut Biritz; Associate Chair for Undergraduate Programs and Professor—Ian Gatland; Callaway Chair and Regents' Professor—Uzi Landman; Georgia Research Alliance Eminent Scholar Chair and Professor—Rick Trebino; Glen Robinson Chair and Professor—Predrag Cvitanovic; Regents' Professor—Martin Ray Flannery.

Professors Emeriti—Tino Ahrens, Don Harmer, Eugene Patronis, Henry Valk, R.A. Young.

Associate Professors—Edward Conrad, Phillip First, M. Brian Kennedy.

Assistant Professors—Michael Chapman, Dragomir Davidovic, Roman Grigoriev, Alexei Marchenkov, Carlos Sa de Melo, Michael Schatz, Li You.

Adjunct Faculty—William Ditto.

Research Scientist II—Andrew Scherbakov.

Academic Professionals—Eric Murray, James Sowell.
General Information
Physics is primarily a basic science, and fundamental research into the principles of physics continues to occupy the attention of many physicists. The study of physics has also become increasingly important as a basis for fundamental research in interdisciplinary areas such as biophysics, chemical physics and materials science, and as an applied science in government and industrial labs. Furthermore, as society becomes more technically oriented, an education in physics can provide an advantageous pre-professional foundation.

The School of Physics offers basic service courses to freshmen and sophomores, some advanced service courses for students in other units of the Institute, and advanced studies leading to the bachelor's, master's, and Ph.D. degrees in physics. The School seeks to provide elective freedom in its degree programs in order to enable students with a wide variety of goals to construct programs of study suitable for them.

In addition to offering courses in the fundamentals of physics, the School provides numerous specialized courses at all levels, particularly in areas related to the research interests of the faculty. These areas of research currently include: acoustics; atomic, molecular, and chemical physics; biophysics; computational materials science; nonlinear mechanics and chaos; nuclear and particle physics; optics and laser physics; condensed matter physics; quantum logic; relativity; statistical mechanics; physics instruction; and interdisciplinary areas of biophysics and materials science. Opportunities exist in all these areas and in other areas through collaboration with faculty of other schools and colleges for Special Problems courses, master's theses, and doctoral dissertations.

Program planning information supplementary to this catalog is available from the School of Physics. A brochure further describing the opportunities for graduate study and research is also available upon request.

Undergraduate Programs
The School of Physics offers two undergraduate degrees, the Bachelor of Science in Physics and the Bachelor of Science in Applied Physics. The basis of the former degree is the traditional preparation of a student for graduate study in physics. The degree program in applied physics may be better suited for entry into industry or government upon graduation, preparation for further professional training (medicine, law, dentistry, or business), or preparation for graduate study in some other discipline. The applied physics program differs from the traditional one in that a few courses intended primarily as preparation for graduate study in physics are replaced by courses oriented toward the applications of physics.

Each of the baccalaureate programs contains the following: (a) courses needed to meet general institutional degree requirements; (b) a core of technical courses intended to give a strong background in mathematics and the physical principles of mechanics, electricity and magnetism, thermodynamics, and the quantum theory that governs physical phenomena at the microscopic level of molecules, atoms, and nuclei; (c) technical electives that enable the student to explore areas of his or her choice in greater depth; (d) Special Problems courses involving undergraduate research, and (e) free electives, about 15 percent of the total hours, which may be employed to schedule additional technical or nontechnical courses.

The considerable flexibility inherent in the physics curricula is advantageous to students who wish to work out individual programs of study. At the same time, this flexibility suggests the need for consultation with advisors so students can make the best use of elective hours and avoid scheduling difficulties that may arise in later semesters. Students may utilize their elective freedom in the physics curricula to specialize in particular areas of physics, to prepare for careers in interdisciplinary areas of science, to compose a preprofessional program, or to gain a background in other technical or nontechnical disciplines. To assist students in planning programs of study with emphasis directed toward a particular objective, the School has formulated suggestions for the use of elective hours. Supplementary materials, available from the School office, include suggestions relevant to the following areas of study: preparation for graduate study in physics; acoustics; applied optics; atomic, molecular, and chemical physics; biophysics; computational physics; nonlinear dynamics and chaos; solid state physics; and preparation for teaching secondary education. Attention is also directed to the possibility of using elective hours for Special Problems (PHYS 3900-1-2 or 4900-1-2) conducted under the supervision of a faculty member.
Since some students who earn a degree in physics have transferred from other disciplines, the School has planned its degree programs to enable most students to transfer into physics with little or no loss of credit.

A total of 120 credit hours (exclusive of wellness) and a grade point average of at least 2.0 in physics courses numbered 3000 and higher are requisites for the bachelor's degree in physics.

Certificate Program in Physics
The School of Physics offers a program of study leading to a certificate in Applied Optics. The purpose of this program is to prepare students for a career in industry where basic physical understanding is applied to the solution of technological problems. Course requirements, which are fulfilled in the junior and senior years, are detailed in brochures available from the School.

Bachelor of Science in Physics (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101</td>
<td>3</td>
</tr>
<tr>
<td>or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2213 INTRO. TO MOD. PHYSICS</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3201 CLASSICAL MECHANICS I</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3143 QUANTUM MECHANICS I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3122 ELECTROSTATICS & MAGNET</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3141 THERMODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3123 ELECTRODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4321 ADVANCED LAB I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 4142 STATISTICAL MECHANICS</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVES</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 4601 SENIOR SEMINAR I</td>
<td>1</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4143 QUANTUM MECHANICS II</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 4602 SENIOR SEMINAR II</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>5</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)
Bachelor of Science in Applied Physics (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1101 ENGLISH COMPOSITION I</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1501 CALCULUS I</td>
<td>4</td>
</tr>
<tr>
<td>CHEM 1310 CHEMISTRY I</td>
<td>4</td>
</tr>
<tr>
<td>HIST 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 14

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGL 1102 ENGLISH COMPOSITION II</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502 CALCULUS II</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2211 PHYSICS I</td>
<td>4</td>
</tr>
<tr>
<td>CS 1321 INTRO. TO COMPUTING</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 16

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2401 CALCULUS III</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2212 PHYSICS II</td>
<td>4</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVES</td>
<td>6</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 17

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2403 DIFFERENTIAL EQUATIONS</td>
<td>4</td>
</tr>
<tr>
<td>PHYS 2213 INTRO. TO MOD. PHYSICS</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3201 CLASSICAL MECHANICS I</td>
<td>3</td>
</tr>
<tr>
<td>SOCIAL SCIENCE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 16

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3143 QUANTUM MECHANICS I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3122 ELECTRO. & MAGNET.</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3266 COMPUTATIONAL PHYSICS</td>
<td>4</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 16

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 3141 THERMODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3123 ELECTRODYNAMICS</td>
<td>3</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>5</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 17

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4321 ADVANCED LAB I</td>
<td>3</td>
</tr>
<tr>
<td>PHYS 3211 ELECTRONICS I</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 4601 SENIOR SEMINAR I</td>
<td>1</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 15

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 4206 ELECTRONICS II</td>
<td>5</td>
</tr>
<tr>
<td>PHYSICS or TECHNICAL ELECTIVE</td>
<td>5</td>
</tr>
<tr>
<td>PHYS 4602 SENIOR SEMINAR II</td>
<td>1</td>
</tr>
<tr>
<td>FREE ELECTIVES</td>
<td>3</td>
</tr>
</tbody>
</table>

TOTAL SEMESTER HOURS: 14

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)

Electives

Physics and Technical Electives

These include physics courses and selected courses in other disciplines. At most six hours may be below the 3000 level.

Humanities and Social Sciences

Students whose scores are sufficiently high on the College Board SAT Verbal and the English achievement examinations may, in consultation with the School of Literature, Communication, and Culture, replace ENGL 1001 or 1002 with other English courses.

All students are required to pass examinations or courses in the history and constitutions of the United States and Georgia. HIST 2111, HIST 2112, POL 1101, PUBP 3000, or INTA 1200 fulfill this requirement.

See "Information for Undergraduate Students" (pages 31-32) for additional information relative to the 24 credit-hour requirement in the humanities and the social sciences.
Physics
Students who have demonstrated competence in mathematics are encouraged to substitute the honors sequence PHYS 2231-2 for PHYS 2211-2.

Business Option
Students pursuing a B.S. in Physics or Applied Physics as a terminal degree may find the Business Option advantageous. This option uses six hours of social science credits for PSYC 2220 and ECON 2106 and nine hours of free electives for MGT 3000, MGT 3300, and MGT 3150. Or, using another three hours of free electives, MGT 3150 may be replaced by a combination of MGT 3062 and either MGT 3076, MGT 4191, or MGT 4660.

Graduate Programs

Master's Programs
The School of Physics offers two master's degrees: the Master of Science in Physics and the Master of Science in Applied Physics.

The Master of Science in Physics is the traditional physics degree and normally comprises the program a graduate student follows in the initial course of study toward a doctorate. Students may fulfill the requirements by taking 30 hours of course work or by electing a master's thesis in lieu of 6 hours of course work.

The School of Physics recommends that most programs include:

First Semester
- PHYS 6101 Classical Mechanics I (3)
- PHYS 6103 Electromagnetism I (3)
- PHYS 6105 Quantum Mechanics I (3)
- PHYS 6124 Mathematical Methods of Physics I (3)

Second Semester
- PHYS 6107 Statistical Mechanics (3)
- PHYS 6104 Electromagnetism II (3)
- PHYS 6106 Quantum Mechanics II (3)
- PHYS 6125 Mathematical Methods of Physics II (3)

A minimum of 30 course hours is required, of which at least 18 hours must be in physics. For the thesis option, 6 hours in the major field may be replaced by 6 hours of thesis work. At least 12 of the course hours must be at the graduate level (6000 level or greater) if a thesis is elected. Otherwise, at least 21 course hours at the graduate level must be taken.

The Master of Science in Applied Physics prepares individuals for careers in industrial, independent, or government laboratories. It is a good choice as a terminal master's degree.

In most cases an area of concentration such as acoustics or optics is chosen. It is then usual to select technical electives related to that area. A complete program of study must be developed by the student with the assistance of appropriate faculty, and the program must be approved by the graduate coordinator. The degree requires 28 credits in approved physics and technical electives. Of these, six credits are required in a Practicum (Physics 8991-8993 or Physics 7000).

Doctoral Program
This degree program comprises recommended course work in fundamental physics, the successful completion of the School's comprehensive examination, four required courses in advanced physics, and an independent research investigation that culminates in the Ph.D. thesis. The Institute additionally mandates that nine credit hours be earned in a "minor" field that differs from the discipline of physics of the Ph.D. investigation.

In preparation for the comprehensive examination, the School recommends that the first year of graduate study be devoted to course work as follows:

First Semester
- PHYS 6101 Classical Mechanics I (3)
- PHYS 6103 Electromagnetism I (3)
- PHYS 6105 Quantum Mechanics I (3)
- PHYS 6124 Mathematical Methods of Physics I (3)

Second Semester
- PHYS 6107 Statistical Mechanics I (3)
- PHYS 6104 Electromagnetism II (3)
- PHYS 6106 Quantum Mechanics II (3)
- PHYS 6125 Mathematical Methods of Physics II (3)

The four required courses in advanced physics must be chosen from those with course numbers in the interval 7001-7699. These may be taken at any time and may not be used to satisfy the Institute's "minor" requirement.
Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course. An asterisk (*) denotes prerequisite courses that may be taken concurrently.

PHYSICS

PHYS 1000. Physics Orientation
1-0-1.
Guest lectures will describe career opportunities in physics, the role physicists play in education, government, and industrial laboratories, and programs available to physics majors.

PHYS 2001. Evolution of Physics
2-0-2.
Prerequisite(s): PHYS 2211
The development of physics concepts and doctrines from early times to the near future, with social and philosophical correlates.

PHYS 2021. The Solar System
3-0-3.
This course covers Ancient and Renaissance astronomy, gravity, sky phenomena, telescopes, and the solar system.

PHYS 2022. Stars, Galaxies, and the Universe
3-0-3.
This course covers optics, telescopes, stellar characteristics and evolution, galaxies, the universe, and the big bang. Physics topics include mechanics, optics, atomic, nuclear, and relativity.

PHYS 2030. Physics of Music
2-0-2.
An introduction to the physical principles underlying the production, transmission, and detection of musical sounds.

PHYS 2211. Introductory Physics I
3-3-4.
Prerequisite(s): MATH 1502* or MATH 1512*
A calculus-based course with a laboratory covering classical mechanics, applications of classical mechanics, oscillations, and waves.

PHYS 2212. Introductory Physics II
3-3-4.
Prerequisite(s): PHYS 2211 or PHYS 2231
A calculus-based course with a laboratory covering electromagnetism, applications of electromagnetism, light, and modern physics.

PHYS 2213. Introduction to Modern Physics
3-0-3.
Prerequisite(s): PHYS 2212 or PHYS 2232
A survey of twentieth-century physics. Developments of several branches of physics up to their present frontiers, including historical and philosophical perspectives.

PHYS 2231. Honors Physics I
4-3-5.
Prerequisite(s): MATH 1502* or MATH 1512*
Parallels introductory Physics I (PHYS 2211). Some topics treated in more depth or more extensively. A rigorous physics foundation requiring demonstrated competence in mathematics.

PHYS 2232. Honors Physics II
4-3-5.
Prerequisite(s): PHYS 2211 or PHYS 2231
Parallels introductory Physics II (PHYS 2212). Some topics treated in more depth or more extensively. No modern physics content. A rigorous physics foundation requiring demonstrated competence in mathematics.

PHYS 2750. Physics of the Weather
3-0-3.
An introductory treatment applying basic physical laws to understanding weather phenomena. Crosslisted with EAS 2750.

PHYS 2801, -2, -3, -4. Special Topics
Credit hours equal last digit in course number.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 2900, -01, -02. Special Problems
Credit hours to be arranged.
Course involving special problems in physics are offered from time-to-time.

PHYS 3021. Stellar Astrophysics
3-0-3.
Prerequisite(s): PHYS 2212 or PHYS 2232
Develops a working knowledge of stellar and extra-stellar galactic astronomy. Includes stellar structure, nucleosynthesis, stellar evolution, and degenerate objects.

PHYS 3043. Wave Mechanics
3-0-3.
Prerequisite(s): PHYS 2212 or PHYS 2232
A first introduction to wave mechanics with emphasis on practical calculations. The rules of quantum mechanics will be illustrated by many working examples.

PHYS 3122. Electrostatics and Magnetostatics
3-0-3.
Prerequisite(s): (PHYS 2212 or PHYS 2232) and (MATH 2403* or MATH 2413* or MATH 24X3)
First of two courses on the physics of electromagnetism. Topics include Coulomb's Law, Ampere's Law, scalar and vector potentials. Laplace's equation and static and magnetic fields in matter.

PHYS 3123. Electrodynamics
3-0-3.
Prerequisite(s): PHYS 3122
Second of two courses on the physics of electromagnetism. Topics include time-dependent phenomena including Faraday's Law, the Maxwell equations, electromagnetic radiation, and electromagnetic waves.
PHYS 3141. Thermodynamics
3-0-3.
Prerequisite(s): (PHYS 2212 or PHYS 2232) and (MATH 2403* or MATH 2413* or MATH 24X3)
Introduction to the basic concepts of thermodynamics. Thermodynamic laws will be developed with an emphasis on the macroscopic point of view. Applications of the basic principles will be considered briefly.

PHYS 3143. Quantum Mechanics I
3-0-3.
Prerequisite(s): (PHYS 2212 or PHYS 2232) and (MATH 2403* or MATH 2413* or MATH 24X3)
First of two courses that develop the principles of quantum mechanics. Topics include the state vector concept, Heisenberg and Schrodinger pictures, uncertainty relations, and exact solvable models in one dimension.

PHYS 3151. Mathematical Physics
3-0-3.
Prerequisite(s): (PHYS 2212 or PHYS 2232) and (MATH 2403* or MATH 2413* or MATH 24X3)
A review of the mathematical techniques required for the description of physical systems encountered in mechanics, electromagnetism, thermal physics, and quantum mechanics.

PHYS 3201. Classical Mechanics I
3-0-3.
Prerequisite(s): (PHYS 2212 or PHYS 2232) and (MATH 2403* or MATH 2413* or MATH 24X3)
Dynamics of particles including oscillations and planetary motion, rotation of rigid bodies, and collisions.

PHYS 3202. Classical Mechanics II
3-0-3.
Prerequisite(s): PHYS 3201
A continuation of PHYS 3201. Topics include Lagrangian and Hamiltonian techniques, and many body mechanics.

PHYS 3211. Electronics I
3-6-5.
Prerequisite(s): PHYS 2212 or PHYS 2232
A first course in both theoretical and applied electronics that is based on a thorough grounding in circuit as well as device physics.

PHYS 3223. Geometrical Optics and Lens Design
3-0-3.
Prerequisite(s): PHYS 2212 or PHYS 2232
Principles of geometrical optics using ray tracing techniques. Stops, pupils, aberrations, and photometry. Design and analysis of lenses using current lens design software.

PHYS 3224. Geometrical Optics Laboratory
1-3-2.
Prerequisite(s): PHYS 3223*
Measurement of parameters of optical surfaces, lenses, and systems using a variety of techniques.

PHYS 3225. Modern Optics
3-0-3.
Prerequisite(s): PHYS 2212 or PHYS 2232
Principles of wave propagation, coherence, polarization, diffraction, and Fourier Optics; laser theory including the interaction of light with matter.

PHYS 3226. Modern Optics Laboratory
1-3-2.
Prerequisite(s): PHYS 3225*
Measurement of parameters of optical surfaces, lenses, and systems using a variety of modern optics techniques.

PHYS 3265. Acoustics
3-0-3.
Prerequisite(s): PHYS 2212 or PHYS 2232
A course in classical acoustics and applied electroacoustics taught through the palliative of a study of sound reinforcement and reproduction systems.

PHYS 3266. Computational Physics
3-3-4.
Prerequisite(s): PHYS 2212 or PHYS 2232
Computer solutions of realistic physics problems such as projectiles in resistive media, electromagnetic sources and fields, atomic scattering, and band pass filters.

PHYS 3801, -2, -3, -4. Special Topics
Credit hours equal last digit in course number.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 3900, -01, -02. Special Problems
Credit hours to be arranged.
Courses involving special problems in physics are offered from time to time.

PHYS 4142. Statistical Mechanics
3-0-3.
Prerequisite(s): PHYS 3141 and PHYS 3143
The statistical basis of thermodynamics is developed. Topics include entropy and the second law, partition functions and free energy, systems of variable particle number, and quantum statistics.

PHYS 4143. Quantum Mechanics II
3-0-3.
Prerequisite(s): PHYS 3143
Second of two courses that develop the principles of quantum mechanics. Topics include angular momentum, hydrogen atom, variation methods, perturbation theory, matter-radiation interactions, and identical particles.

PHYS 4146. Special Relativity
3-0-3.
Prerequisite(s): PHYS 3143
The unification of space and time emerging from the physics of light, and its experimental and theoretical consequences.

PHYS 4206. Electronics II
3-6-5.
Prerequisite(s): PHYS 3211
A course in electronic instrumentation emphasizing signal processing, both analog and digital, and computer interfacing.
PHYS 4220. Optical Design
3-0-3.
Prerequisite(s): PHYS 3223
Principles of optical and optomechanical design including tolerancing, specification, and thermal compensation of systems.

PHYS 4222. Solid State Devices
3-0-3.
Prerequisite(s): PHYS 3141 and PHYS 3143
Course provides an understanding of contemporary research on solid state devices. Topics include band structure, p-n junctions, transistors, superlattices, lasers and detectors, charge coupled devices, and others.

PHYS 4251. Biophysics
3-0-3.
Prerequisite(s): (PHYS 2212 or PHYS 2232) and BIOL 1510
Physical principles applied to molecular and cellular biology. Topics include chemiosmosis, self-assembly, protein biosynthesis, and the mechanisms of muscle and nerve function.

PHYS 4261. Atomic Physics
3-0-3.
Prerequisite(s): PHYS 3143
Course provides an introduction to the fundamentals of atomic physics, the structure of atoms, and their interaction with static and radiation fields.

PHYS 4262. Solid State Physics
3-0-3.
Prerequisite(s): PHYS 3143
A first course in the physics of crystalline solids. Core topics include crystal lattices, diffraction, bonding, elastic properties, band theory, as well as others.

PHYS 4263. Nuclei, Particles, and Fields
3-0-3.
Prerequisite(s): PHYS 3143
An introduction to nuclear and subnuclear systems. Topics include nuclear models, radioactive decay, nuclear reactions, quarks, accelerators, reactors, and stellar nucleosynthesis.

PHYS 4267. Nonlinear Dynamics and Chaos
3-0-3.
Prerequisite(s): PHYS 3201
A modern introduction to nonlinear phenomena. Topics include driven oscillators, entrainment, bifurcation, fractals, and control of chaos. Examples are drawn from physical systems.

PHYS 4321, -22. Advanced Laboratory I & II
1-6-3.
Prerequisite(s): PHYS 3143
Experiments are conducted that demonstrate basic principles from various fields of physics. An emphasis is placed on contemporary concepts in modern physics.

PHYS 4421. Introduction to Continuum Physics
3-0-3.
Prerequisite(s): PHYS 3201
A modern introduction to continuum physics. Topics include elastic theory, dislocations and waves, fluid mechanics and dynamics, and instabilities in fluids.

PHYS 4601, -2. Senior Seminar I & II
1-0-1.
Representative research programs in the school are described by advanced graduate students, postdoctoral students, and faculty members.

PHYS 4655. Introductory Diffraction Studies
2-0-4.
Introductory theory and practice of x-ray and neutron diffraction techniques, including single crystals and powders. Laboratory work is strongly correlated with principles developed in the lectures.

PHYS 4751. Laser Theory and Applications
3-0-3.
Prerequisite(s): PHYS 2212 or PHYS 2232
Provides an introduction to the theory and applications of laser principles and related instrumentation. Emphasis is on the fundamental principles underlying laser action. Crosslisted with ECE 4751.

PHYS 4801, -2, -3, -4. Special Topics
Credit hours equal last digit in course number.
Courses in special topics of current interest in physics are presented from time to time.

PHYS 4900, -01, -02. Special Problems
Credit hours to be arranged.
Courses involving special problems in physics are offered from time to time.

PHYS 6011. Nuclear and Particle Physics
3-0-3.
Quantum mechanics of nuclear and subnuclear systems. Topics include shell, collective and pairing models, multi-quark systems, group theoretical and dynamic algebra techniques.

PHYS 6101. Classical Mechanics I
3-0-3.
Newtonian mechanics, Hamilton's variational principle, Lagrangian and Hamiltonian mechanics, central forces, rigid body motion, and small oscillations.

PHYS 6102. Classical Mechanics II
3-0-3.
Prerequisite(s): PHYS 6101
Canonical transformations, Hamilton-Jacobi theory, canonical perturbation theory, and an introduction to the Lagrangian formulations for continuous systems and fields.

PHYS 6103. Electromagnetism I
3-0-3.

PHYS 6104. Electromagnetism II
3-0-3.
Prerequisite(s): PHYS 6103
Theory of generation of electromagnetic waves, their propagation, scattering, and diffraction. Covariant formulation of electrodynamics and application to radiation from charged particles.
PHYS 6105. Quantum Mechanics I
3-0-3.
An axiomatic development of quantum mechanics. Topics include linear vector spaces, linear operators, infinitesimal transformations, function space, representation, and transformation groups.

PHYS 6106. Quantum Mechanics II
3-0-3.
Prerequisite(s): PHYS 6105
Applications of quantum mechanics. Topics include systems with spin and angular momentum, atomic structure, time-dependent phenomena, scattering, and various methods of modeling and approximations.

PHYS 6107. Statistical Mechanics I
3-0-3.
Equilibrium statistical mechanics for closed and open systems. Probability distribution for classical and quantum systems. Partition functions and associated thermodynamical potentials.

PHYS 6110. Survey of Physics
5-0-5.
This course provides a review of basic theories in classical and quantum physics through the solution of problems. It provides an excellent preparation for students planning to take the doctoral qualifying exam. This course cannot be used for credit toward a graduate degree in physics.

PHYS 6124. Mathematical Methods of Physics I
3-0-3.
First of two courses on mathematical methods used in classical mechanics, electromagnetism, quantum mechanics, and statistical physics. Topics include complex analysis, vectors and matrices, and Sturm-Liouville theory.

PHYS 6125. Mathematical Methods of Physics II
3-0-3.
Second of two courses on mathematical methods. Topics include partial differential equations, random processes, and group theory.

PHYS 6201. Applied Quantum Mechanics
3-0-3.
Basic postulates of quantum mechanics, one-dimensional energy eigenvalue problems. Potential wells, tunneling phenomena.

PHYS 6202. Applied Electromagnetism
3-0-3.
A course centered on the solution of practical problems encountered in the transmission and reception of electromagnetic signals via transmission lines, waveguides, and radiation.

PHYS 6203. Solid State Physics
3-0-3.
A first course in the physics of crystalline solids. Core topics include crystal lattices, diffraction, bonding, elastic properties, band theory, as well as others.

PHYS 6204. Electronics I
3-0-4.
A first course in both theoretical and applied electronics based on a thorough grounding in circuit as well as device physics.

PHYS 6206. Electronics II
3-6-4.
A course in electronic instrumentation with an emphasis on signal processing, both analog and digital, and computer interfacing.

PHYS 6210. Condensed Matter Physics I
3-0-3.
Introduction to condensed matter physics. Crystal structure, electronic and thermal properties, response to external electric and magnetic fields.

PHYS 6211. Condensed Matter Physics II
3-0-3.
Prerequisite(s): PHYS 6210
Collective and many-electron properties in condensed matter systems. Topics include second quantization, magnetism, phase transitions, and superconductivity.

PHYS 6265. Atomic Physics I
3-0-3.
Prerequisite(s): PHYS 4145
This course provides a detailed description of atomic structures and interactions. It contains applications of advanced quantum mechanics to problems in modern atomic physics.

PHYS 6267. Atomic Physics II
3-0-3.
Prerequisite(s): PHYS 6265
This course will provide detailed descriptions of non-relativistic atomic/molecular scattering/reaction processes.

PHYS 6300. Graduate Laboratory
1-6-3.
Experiments are conducted that demonstrate basic principles from various fields of physics. An emphasis is placed on contemporary concepts in modern physics.

PHYS 6771. Optoelectronics: Materials, Processes, and Devices
3-0-3.
Optoelectronic materials, physical processes, and devices. Includes compound semiconductor materials, excitation, recombination, gain, as well as modulation processes, and devices such as emitters, detectors, and modulators. Crosslisted with ECE 6771.

PHYS 6787. Quantitative Electrophysiology
3-0-3.
A quantitative presentation of electrophysiological systems in biomedical organisms, emphasizing the electrical properties and modeling of neural and cardiac cells and systems. Crosslisted with BMED and ECE 6787.

PHYS 7000. Master's Thesis
Credit hours to be arranged.

PHYS 7123. Statistical Mechanics II
3-0-3.
Prerequisite(s): PHYS 6107
Principles of non-equilibrium statistical mechanics, both classical and quantal. Emphasis is on the dynamics of fluctuations, their measurement, and their relationship to transport properties.
PHYS 7125. Gravity
3-0-3.
Prerequisite(s): PHYS 6101 and PHYS 6103
The theory of gravity, describing how matter curves spacetime and spacetime guides matter, with its experimental and theoretical applications.

PHYS 7141. Many-Particle Quantum Mechanics
3-0-3.
Prerequisite(s): PHYS 6106
Quantum mechanics of interacting Fermi and Bose particles. Topics include second quantization, diagrammatic perturbation theory, variational methods, and path integrals.

PHYS 7143. Group Theory and Quantum Mechanics
3-0-3.
Prerequisite(s): PHYS 6106
Foundations of group representation theory with applications in atomic, molecular, nuclear, and solid state physics.

PHYS 7147. Quantum Field Theory
3-0-3.
Prerequisite(s): PHYS 6106
Introduction to quantum field theory, with an emphasis in quantum electrodynamics. Second quantization, Dirac equation, Feynman diagrams, quantum electrodynamics, and electro-weak interactions.

PHYS 7150. Quantum Logics
3-0-3.
Prerequisite(s): PHYS 6106
The revision of classical logic and set theory to accommodate the phenomena of quantum interference, with experimental and theoretical consequences.

PHYS 7221. Statistical Optics
3-0-3.
Prerequisite(s): PHYS 4143 or PHYS 6106
Basic course on the interaction of light with matter, based on quantum theory. Applications to the laser and to the study of coherence properties of light.

PHYS 8001. Seminar
1-0-1.
Representative research programs in the School are described by advanced graduate students, postdoctoral students, and faculty members. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research.

PHYS 8002. Graduate Student Seminar
1-0-1.
Representative research programs in the School are described by advanced graduate students, postdoctoral students, and faculty members. The experimental basis of physics is illustrated through accounts of great experiments of importance to contemporary research.

PHYS 8801, -2, -3, -4. Special Topics
Credit hours equal last digit in course number.

PHYS 8901. Special Problems
Credit hours to be arranged.

PHYS 8991, -92, -93. Master's Practicum
Credit hours to be arranged.

PHYS 8997. Teaching Assistantship
Credit hours to be arranged. For graduate students holding a graduate teaching assistantship.

PHYS 8998. Research Assistantship
Credit hours to be arranged. For graduate students holding a graduate research assistantship.

PHYS 9000. Doctoral Thesis
Credit hours to be arranged.

An asterisk (*) denotes prerequisite courses that may be taken concurrently.

School of Psychology

www.gatech.edu/psychology

Established in 1959
Location: Psychology Building
Telephone: 404.894.2680 or 404.894.2683
Fax: 404.894.8905

Chair and Professor—Randall Engle; Associate Chair and Professor—Fredda Blanchard-Fields; Director and Professor Emeritus—Edward H. Loveland; Regents' Professor—Anderson D. Smith; Professors—Phillip L. Ackerman, Albert N. Badre, Jack M. Feldman, Arthur D. Fisk, Christopher K. Hertzog, Ruth Kanfer, Terry L. Maple, M. Jackson
Marr, Stanley A. Mulaik (emeritus), M. Carr Payne Jr. (emeritus).

Associate Professors—Dorrit Billman, Richard Catrambone, Gregory M. Corso, Elizabeth T. Davis, Todd J. Maurer, Wendy A. Rogers, Craig M. Zimring.

Assistant Professors—Gregory Berns, Gilad Chen, Zenzi Griffin, David Robertson, Daniel Spieler.

Instructors—Judith Crothers-Flamming, Dianne Leader.

Adjunct Professors—Mollie Bloomsmith, Kristin Boyle, Theodore J. Doll, Debra L. Forthman, Leonard W. Poon.

General Information
The School of Psychology offers programs of study leading to the Bachelor of Science in Applied Psychology and the Master of Science and Doctor of Philosophy in Psychology. It also offers training in the basic and applied aspects of the science of behavior for the student majoring in architecture, engineering, management, and natural sciences. The undergraduate curriculum provides a broad-based natural science approach to the study of psychology. Courses in mathematics, biology, and chemistry, for instance, complement the psychology courses. The curriculum also stresses methodological issues so that students learn the fundamentals for carrying out solid research.

Undergraduate Program
The curriculum is technically oriented and stresses quantitative and experimental approaches to the study of behavior. The undergraduate curriculum is based on a strong emphasis in the sciences and mathematics and provides an excellent preparation for graduate school in psychology, medical school, law school, and other professional and academic graduate programs. In addition, many students with the B.S. degree in psychology choose to enter a variety of fields including computer software design, human resources, marketing, human factors, system design, personnel selection and training, and management.

Bachelor of Science in Applied Psychology (Suggested Schedule)

First Year - First Semester
Course Number/Name Hours
BIOL 1510 BIOLOGICAL PRINCIPLES 4
ENGL 1101 ENGLISH COMPOSITION I 3
HPS 1040/1062/1063/1064 WELLNESS 2
MATH 1501 CALCULUS I 4
PSYC 1101 GENERAL PSYCHOLOGY 3
TOTAL SEMESTER HOURS 16

First Year - Second Semester
Course Number/Name Hours
BIOL 1520 INTRO. TO ORG. BIOLOGY 4
ENGL 1102 ENGLISH COMPOSITION II 3
MATH 1502 CALCULUS II 4
PSYC 2103 HUMAN DEVELOPMENT 3
TOTAL SEMESTER HOURS 14

Second Year - First Semester
Course Number/Name Hours
CHEMISTRY/PHYSICS ELECTIVE 4
HUMANITIES ELECTIVE 3
CS 1321 COMPUTER SCIENCE I 3
PSYC 2010 RESEARCH METHODS 3
PSYC 2210 SOCIAL PSYCHOLOGY 3
TOTAL SEMESTER HOURS 16

Second Year - Second Semester
Course Number/Name Hours
CHEMISTRY/PHYSICS ELECTIVE 4
PSYC 2020 PSYCHOLOGICAL STATISTICS 4
PSYCHOLOGY ELECTIVE 3
FREE ELECTIVE 2
SOCIAL SCIENCE ELECTIVE 3
TOTAL SEMESTER HOURS 16

Third Year - First Semester
Course Number/Name Hours
HIST 2111 or 2112 or POL 1101 or PUBP 3500 or INTA 1200 3
PSYC 3011 COGNITIVE PSYCHOLOGY 4
PSYC 3020 BIOPSYCHOLOGY 3
FREE ELECTIVES 6
TOTAL SEMESTER HOURS 16
Bachelor of Science in Applied Psychology - Business Option (Suggested Schedule)

First Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1510</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1101</td>
<td>3</td>
</tr>
<tr>
<td>HPS 1040/1062/1063/1064 WELLNESS</td>
<td>2</td>
</tr>
<tr>
<td>MATH 1501</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 1101</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3031</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

First Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1520</td>
<td>4</td>
</tr>
<tr>
<td>ENGL 1102</td>
<td>3</td>
</tr>
<tr>
<td>MATH 1502</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2103</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMISTRY/PHYSICS ELECTIVE</td>
<td>4</td>
</tr>
<tr>
<td>HUMANITIES ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2010</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 2110</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Second Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEMISTRY/PHYSICS ELECTIVE</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2020</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 2220</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2111 or 2112 or POL 1101 or PUBP 3000 or INTA 1200</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3011</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 3020</td>
<td>3</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>ECON 2106 MICROECONOMICS</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Third Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH/PROGRAMMING REQUIREMENT</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3031</td>
<td>4</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3000 ACCOUNTING FOR DECISION MAKING</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>16</td>
</tr>
</tbody>
</table>

Fourth Year - First Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 3011</td>
<td>4</td>
</tr>
<tr>
<td>PSYC 3020</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3031</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>13</td>
</tr>
</tbody>
</table>

Fourth Year - Second Semester

<table>
<thead>
<tr>
<th>Course Number/Name</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH/PROGRAMMING REQUIREMENT</td>
<td>3</td>
</tr>
<tr>
<td>PSYC 3031</td>
<td>4</td>
</tr>
<tr>
<td>FREE ELECTIVE</td>
<td>3</td>
</tr>
<tr>
<td>MGT 3500 MARKETING MANAGEMENT I</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL SEMESTER HOURS</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL PROGRAM HOURS = 120 SEMESTER HOURS PLUS WELLNESS (2 HOURS)
Psychology

Fourth Year - Second Semester

Course Number/Name	Hours
- PSYCHOLOGY CAPSTONE COURSE	4
- SOCIAL SCIENCE ELECTIVE	3
- FREE ELECTIVE	3
- MGT 3150 OR 3310 OR 4191 OR 4331	3

Total Semester Hours = 13

Total Program Hours = 120 Semester Hours Plus Wellness (2 Hours)

Requirements and Electives

General Education
- Humanities/Fine Arts (12 hrs)
- Social Science (12 hours, including 3 hours of Const. & History; PSYC 1101 counts toward the 12 hours)
- Wellness (2 hrs)
- Chemistry/Physics (8 hrs): either one year of chemistry (1310, 1311, 1312) or one year of physics (2211, 2212), or one semester of each
- Biology (8 hrs): Biol 1510, 1520
- Computer Science (3 hrs): CS 1321
- Mathematics (11 hrs): one year of calculus (1501, 1502) plus either a third mathematics course (at least 3 hrs) or a second computer science class that teaches a programming language

Preliminary Courses
- PSYC 1101 General Psychology (3-0-3)
- PSYC 2010 Research Methods (w/lab) (3-0-3)
- PSYC 2020 Psychological Statistics (w/lab) (3-3-4)

Required Courses
- PSYC 2103 Human Development (3-0-3)
- PSYC 2210 Social Psychology (3-0-3)
- PSYC 3011 Cognitive Psychology (w/lab) (3-3-4)
- PSYC 3020 Biopsychology (3-0-3)
- PSYC 3031 Exp. Anal. of Behay. (w/lab) (3-3-4)

Required Capstone Course
- PSYC 4031 Applied Experimental Psychology (w/lab) (3-3-4)
 or
- PSYC 4501 Senior Thesis/Practicum (1-9-4)

Elective Courses (at least four must be taken)
- PSYC 2220 Industrial/Organizational Psychology (3-0-3)
- PSYC 2230 Abnormal Psychology (3-0-3)
- PSYC 2240 Personality Theory (3-0-3)
- PSYC 2270 Engineering Psychology (3-0-3)
- PSYC 3040 Sensation and Perception (3-0-3)
- PSYC 3060 Comparative Psychology (3-0-3)
- PSYC 3790 Introduction to Cognitive Science (3-0-3) (crosslisted w/ CS & ISYE)
- PSYC 4010 Human Abilities (3-0-3)
- PSYC 4050 History and Systems (3-0-3)
- PSYC 4090 Cognitive Neuroscience (3-0-3)
- PSYC 4100 Behavioral Pharmacology (3-0-3)
- PSYC 4200 Advanced Topics in Cognitive Psychology (3-0-3)
- PSYC 4260 Psychology of Aging (3-0-3)
- PSYC 4270 Psychological Testing (3-0-3)
- PSYC 4310 Field Studies in Animal Behavior I (1-6-3)
- PSYC 4320 Field Studies in Animal Behavior II (1-6-3)
- PSYC 4770 Psychology and Environmental Design (2-3-3)
- PSYC 4801-4 Special Topics (3-0-3) [permission of instructor & junior/senior standing]
 Only a total of 3 hours may be applied toward the psychology elective
- PSYC 4900-10 Special Problems (credit hours arranged) [permission of instructor junior/senior standing]
 Only a total of 3 hours may be applied toward the psychology elective

Other Psychology Classes that May be Offered But Will Not Satisfy the Major Requirements (i.e., they can be free electives only)
- PSYC 2300 Psych. of Advertising (3-0-3)
- PSYC 2901->2903 Special Problems (arranged hours) [permission of instructor]
- PSYC 2400 Psychology and Contemporary Issues in Society (3-0-3)
- PSYC 4750 Human-Computer Interface Design & Eval. (crosslisted w/CS) (3-0-3)
- PSYC 4790 Seminar in Cognitive Science (w/lab) (crosslisted w/ CS & ISYE) (3-0-3)
- PSYC 4791 Integrative Project in Cognitive Science (3-0-3)
- PSYC 4792 Design Project in Cognitive Science (3-0-3)
Premedical Preparation
Premedical students must take chemistry (CHEM 1310, 1311) AND physics (PHYS 2211, 2212). In addition, premedical students must take EITHER CHEM 1312 (Inorganic Laboratory) OR 1313 (Introduction to Quantitative Methods) AND CHEM 2311 (Organic I), 2312 (Organic II), AND 2380 (Synthesis Laboratory I).

Business/Management Option
For a psychology major to complete the Business/Management option, he or she must take the following courses:

Required
- ECON 2106 Principles of Microeconomics (3)
- MGT 3000 Accounting for Decision Making (3)
- MGT 3300 Marketing Management I (3)
- PSYC 2220 Industrial/Organizational Psychology (3)

Electives (One course from list below must be taken)
- MGT 3150 Principles of Management (3)
- MGT 3310 Marketing Research: Qualitative Aspects
- MGT 4191 The Entrepreneurship Forum (3)
- MGT 4331 Consumer Behavior

Graduate Programs
Doctoral candidates take a core curriculum in general psychology and quantitative methods. Doctoral candidates will complete all requirements for the master's degree, which includes writing a research thesis.

The master's degree prepares the student for continuation of graduate work toward the Ph.D. Most students require a minimum of two calendar years to complete the master's degree, which includes writing a thesis.

The doctoral program provides the student with an opportunity for advanced study in experimental (focus areas in cognitive science, cognitive aging, and animal behavior), industrial-organizational, or engineering psychology. Each of these curricula consists of additional courses and programs of individual study and research beyond the core curriculum, which contribute to a strong background in general experimental psychology and the student's area of specialization. The doctoral program will ordinarily require at least four years for students who enter immediately after obtaining the bachelor's degree.

Admission to graduate study in psychology with full graduate standing in the School of Psychology requires the equivalent of an undergraduate major in psychology or a related field with courses in general and experimental psychology, as well as psychological statistics. All applicants should submit scores on the Graduate Record Examination.

The psychology faculty will consider admissions applications from competent students who have majored in subjects other than psychology.

Graphics, Visualization, and Usability (GVU)

Center's Suggested Courses for Graduate Minor
To fulfill their graduate minor requirements, psychology graduate students may take an interdisciplinary sequence of courses suggested by the Graphics, Visualization, and Usability Center. Three different tracks of study are designed to provide a systematic overview of a given area: one specializing in graphics, another in visualization, and a third in usability. Courses for these three tracks are specified in the College of Computing section of this catalog.

Graduate Certificate in Cognitive Sciences
Cognitive science is an interdisciplinary research area spanning psychology, computer science, linguistics, and philosophy. The certificate in cognitive science provides students with a structured set of courses from related disciplines. Psychology students usually sample artificial intelligence courses (from computer science) and human systems engineering courses (from industrial and systems engineering). Two interactive courses are specifically designed to give students a systematic exposure to cognitive science. The courses for the certificate can also function as the student's graduate minor. An extended description of the program can be found in the catalog section for the College of Computing.
Psychology

Courses of Instruction

Figures entered below the course number and title of each course signify the number of class hours per week, the number of lab hours per week, and the semester hour credit earned for the completed course.

PSYCHOLOGY

PSYC 1000. Adjustments to College Life
1-0-1.
Discussion of topics related to academic and professional success including time management, learning skills, career planning, psychological hardiness, teamwork, and leadership.

PSYC 1101. General Psychology
3-0-3.
A survey of methods, findings, and theories of the science of mind and behavior.

PSYC 2010. Research Methods
2-3-3.
Prerequisite(s): PSYC 1101
Introduction to methods used in conducting research on human behavior. Experimental research will be emphasized, but the course will cover other methods and some statistics.

PSYC 2020. Psychological Statistics
3-3-4.
Prerequisite(s): MATH 1502 and PSYC 2010
Introduction to probability and statistics as applied to psychological data. Tests for means, variances, correlation, ANOVA, and regression.

PSYC 2103. Human Development over the Life Span
3-0-3.
Prerequisite(s): PSYC 1101
Theories and issues in human development including cognitive, social, and emotional development. The course is organized topically rather than chronologically.

PSYC 2210. Social Psychology
3-0-3.
Prerequisite(s): PSYC 1101
Consideration of the behavior of individuals in social contexts, including interpersonal and group settings.

PSYC 2220. Industrial/Organizational Psychology
3-0-3.
An introduction to industrial/organizational psychology providing an overview of behavior in the workplace and psychology applied in industrial and organizational settings.

PSYC 2230. Abnormal Psychology
3-0-3.
Prerequisite(s): PSYC 1101
This course surveys the spectrum of psychiatric disorders (symptoms, epidemiology, etiology, and treatment) and provides a perspective on adaptive functioning and psychological resilience.

PSYC 2240. Personality Theory
3-0-3.
Prerequisite(s): PSYC 1101
Introduction to major approaches to personality theory.

PSYC 2270. Introduction to Engineering Psychology
3-0-3.
Prerequisite(s): PSYC 1101
Engineering psychology presented as an integral component in the design and evaluation of human-machine systems. Applied problems and general methodological questions are examined.

PSYC 2300. Psychology of Advertising
3-0-3.
Prerequisite(s): PSYC 1101
An examination of contemporary advertiser's use of basic psychological principles in advertising. Concepts explored include memory, attention, comparative advertising, and attitude change.

PSYC 2400. Psychology and Contemporary Issues in Society
3-0-3.
Prerequisite(s): PSY 1101
Contributions of psychology to an appreciation of selected contemporary issues.

PSYC 2801, -2, -3. Special Topics
Credit hours equal last digit in course number.
Special Topics of current interest.

PSYC 2901, -2, -3. Special Problems
Credit hours to be arranged.
Prerequisite(s): PSYC 1101
Special problems of current interest.

PSYC 3011. Cognitive Psychology
3-3-4.
Prerequisite(s): PSYC 2020
Exploration of the central aspects of human cognition including pattern recognition, attention, memory, language, categorization, problem solving, and decision making; phenomena and methods are stressed.

PSYC 3020. Biopsychology
3-0-3.
Prerequisite(s): PSYC 1101 and BIOL 1520
Neurophysiological, endocrinological, and biochemical bases of sensory and motor functioning, motivation, learning, memory, and behavior dysfunction.

PSYC 3031. Experimental Analysis of Behavior
3-3-4.
Prerequisite(s): BIOL 1510 and PSYC 2020
History, theory, and methods of behavior analysis. Topics include shaping, stimulus-stimulus and response-consequence contingencies, stimulus control, and choice.

PSYC 3040. Sensation and Perception
3-0-3.
Prerequisite(s): BIOL 1510 and PSYC 1101
An examination of how sensations and perceptions are processed by humans. Topics covered will include vision, hearing, the skin senses, taste, smell, and the vestibular senses.

PSYC 3060. Comparative Psychology
2-2-3.
Prerequisite(s): PSYC 1101 and BIOL 1520
Consideration of principles and research methods of animal
psychology and ethology. Literature reviews and reports, field trips, and laboratory studies.

PSYC 3790. Introduction to Cognitive Science
3-0-3.
Prerequisite(s): PSYC 1101
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition, including memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and ISYE 3790.

PSYC 4010. Human Abilities
3-0-3.
Prerequisite(s): PSYC 2020
Introduction to differential psychology providing an overview of differences in humans. Topics such as abilities, temperament, and group differences (e.g., gender) are addressed.

PSYC 4031. Applied Experimental Psychology
3-3-4.
Prerequisite(s): PSYC 3011
Consideration of the applications of methods and data of experimental psychology. Understanding of human capabilities and limitations is applied to design of technology and environments.

PSYC 4050. History and Systems
3-0-3.
Prerequisite(s): PSYC 1101
A survey of the history, methods, and content of modern psychological theory, research, and application. Schools of psychology (e.g., structuralism, functionalism, behaviorism, Gestalt psychology) and central theories of psychology will be reviewed in their historical and philosophical context.

PSYC 4090. Cognitive Neuroscience
3-0-3.
Prerequisite(s): PSYC 3011
Examination of the neural basis of cognitive function. Basic anatomy and methods are covered. Primary focus is on contemporary problems in the neurocognitive study of perception, memory, language, and attention, as well as disorders in these domains.

PSYC 4100. Behavioral Pharmacology
3-0-3.
Prerequisite(s): PSYC 1101 and BIOL 1520 and CHEM 1310
An analysis of drug-behavior interactions with emphasis on basic pharmacology, role of contingencies in drug effects, mechanisms of drug dependency, drugs as stimuli, and basic neuropharmacology.

PSYC 4200. Advanced Topics in Cognitive Psychology
3-0-3.
Prerequisite(s): PSYC 3011
An advanced survey in various topics in cognitive psychology. Topics will vary over time.

PSYC 4260. Psychology of Aging
3-0-3.
Prerequisite(s): PSYC 1101
Survey of research concerned with the nature and causes of adult age differences in behavior.

PSYC 4270. Psychological Testing
3-0-3.
Prerequisite(s): PSYC 2020
Fundamentals of psychological test construction (reliability and validity) and applications of intelligence, personality, and interest assessment. Topics will include theoretical, practical, ethical, and legal issues.

PSYC 4310. Field Studies in Animal Behavior I & II
1-6-3.
Course takes place in the field (Africa, South America, or Asia) and is limited to 15 qualified students. Lectures by instructor provide in-class portion. Visits to national parks, game reserves, and in-the-field observations will introduce students to natural habitats.

PSYC 4501. Senior Thesis/Practicum
1-9-4.
Prerequisite(s): PSYC 2020
For selected students to conduct original work under the direction of a faculty member.

PSYC 4750. Human-Computer Interface Design and Evaluation
3-0-3.
Prerequisite(s): PSYC 1101 and CS 1321
Human-computer interface is considered in terms of user-system compatibility. Concepts in human factors and interface design are covered in relation to capabilities of both humans and computers. Crosslisted with CS 4750.

PSYC 4770. Psychology and Environmental Design
2-3-3.
Prerequisite(s): PSYC 1101

PSYC 4790. Seminar in Cognitive Science
3-0-3.
Prerequisite(s): PSYC 1101
A seminar-type course in cognitive science focusing on integrating and deepening students' cognitive science knowledge and skills. Topics include memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and ISYE 4790.

PSYC 4791. Integrative Project in Cognitive Science
3-0-3.
Prerequisite(s): PSYC 1101
An integrative course in cognitive science focusing on integrating and deepening students' cognitive science knowledge and skills. Topics include memory, language, problem solving, learning, perception, and action. Crosslisted with CS, PST, and ISYE 4790.

PSYC 4792. Design Project in Cognitive Science
3-0-3.
Individual project with a cognitive science faculty member, designed as a supplement to the student's senior design project or thesis in his or her major area. Crosslisted with CS, ISYE, and PST 4792.
PSYC 4801, -2, -3, -4. Special Topics
3-0-3.
Prerequisite(s): PSYC 1011
Special topics or courses of an experimental nature.

PSYC 4900, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10.
Special Problems
Credit hours to be arranged
Prerequisite(s): PSYC 1101
Students engage in individual and group projects under the direction of a faculty member.

PSYC 6011. Cognitive Psychology
3-0-3.
Survey course on human cognition including pattern recognition, attention, memory, categorization, problem solving, consciousness, decision making, intention, and the relation between mind and brain.

PSYC 6012. Social Psychology
3-0-3.
Fundamental theory and research in social behavior including social perception/cognition, attitude formation and change, social influences, and group processes.

PSYC 6013. Biopsychology
3-0-3.
Neurophysiological, endocrinological, and biochemical bases of sensory and motor functioning, motivation, learning, memory, and behavior dysfunction.

PSYC 6014. Sensation and Perception
3-0-3.
This course examines how sensations and perceptions of the outside world are processed by humans, including physiological, psychophysical, ecological, and computational perspectives.

PSYC 6015. Developmental Psychology
3-0-3.
Overview of concepts, assumptions, methods, theories, and research in human development across the life span including cognitive, emotional, and social behavior.

PSYC 6016. Experimental Analysis of Behavior
3-0-3.
Conceptual, methodological, and theoretical issues in the experimental analysis of behavior with special emphasis on classical and operant conditioning as foundations for complex behavior.

PSYC 6017. Human Abilities
3-0-3.
Theory, methods, and applications of research on human abilities, including intelligence, aptitude, achievement, learning, aptitude treatment interactions, information processing correlates, and measurement issues.

PSYC 6018. Principles of Research Design
3-0-3.
Co-requisite: PSYC 6019.
Introduction to basic principles and practices of empirical research in psychology. Covers both experimental and correlational methods and designs.

PSYC 6019. Statistical Analysis of Psychological Data I
4-3-5.
Co-requisite: PSYC 6018.
Introductory treatment of descriptive and inferential statistics as applied to psychological research.

PSYC 6020. Statistical Analysis of Psychological Data II
4-3-5.
Prerequisite(s): PSYC 6019
Introductory treatment of inferential statistics, especially the general linear model, as applied to psychological research.

PSYC 6021. Personality Theories
3-0-3.
Survey of personality theories, research, and methods of assessment.

PSYC 6750. Human-Computer Interface
3-0-3.
Describes the characteristics of interaction between humans and computers and demonstrates techniques for the evaluation of user-centered systems. Crosslisted with CS 6750.

PSYC 6795. Introduction to Cognitive Science
3-0-3.
Multidisciplinary perspectives on cognitive science. Interdisciplinary approaches to issues in cognition including memory, language, problem solving, learning, perception, and action. Crosslisted with CS and ISYE 6795.

PSYC 7000. Master's Thesis
Credit hours to be arranged.

PSYC 7020. Survey of Cognitive Aging
3-0-3.
Introduction to theory and research on adult cognitive development including intelligence, attention, memory, and problem solving.

PSYC 7101. Engineering Psychology I: Methods
3-0-3.
Basic methods used to study human-machine systems including both system analysis and human performance evaluation techniques. These methods will be applied to specific systems.

PSYC 7102. Engineering Psychology II: Displays, Controls, and Workspace Design
3-0-3.
Basic principles of human factors for the design, evaluation, and use of displays, controls, and workspace layouts including new technologies and associated human factors problems.

PSYC 7103. Engineering Psychology III: Environmental Stressors and Human Performance
3-0-3.
Environmental stressors and their influences on human performance, physiological function, and emotional responses including work/rest cycles, jetlag, noise, vibration, glare, weightlessness, etc.
PSYC 7104. Psychomotor and Cognitive Skill Learning and Performance
3-0-3.
Human capabilities and limitations for learning and performing psychomotor and cognitive skills are studied.

PSYC 7201. Industrial/Organizational Psychology
3-0-3.
This course introduces an overview of issues relevant to behavior in the workplace and psychology applied in industrial and organizational settings.

PSYC 7202. Employee Selection
3-0-3.
The course provides a conceptual framework for personnel selection guided by scientific principles, research, and theory as well as by professional, legal, and technical guidelines.

PSYC 7203. Motivation and Job Attitudes
3-0-3.
Examines theory and pragmatics in description, prediction, and measurement of work-related behavior and associated evaluations. Includes theoretical and methodological problems in field and laboratory contexts.

PSYC 7204. Training and Development
3-0-3.
This course will focus on theory, principles, techniques, and practices relevant to training and developing human resources. Research and professional literature will be examined.

PSYC 7301. Introduction to Multivariate Statistics
3-0-3.
Foundations for multivariate analysis including properties of linear composite variables, multiple regression, multiple and partial correlation, MANOVA, factor analysis, multiple discriminant analysis, canonical correlation, etc.

PSYC 7302. Structural Equation Modeling
3-0-3.
Methods of causal modeling to study causal relations including issues of causality, establishing causality, fundamentals of linear structural equation modeling with latent variables, and fitting models.

PSYC 7303. Psychometric Theory
3-0-3.
Preparation of students in statistical theory and techniques relevant to becoming professionally involved in construction, analysis, and evaluation of psychology and personnel tests.

PSYC 7700. Professional Problems
2-0-2.
Discussion of issues faced by professional psychologists in the areas of teaching, research, and professional practice. Ethical issues in all of these areas are emphasized.

PSYC 7701. Teaching Practicum
1-3-2.
Supervised college teaching including techniques, course and curriculum design, and evaluation. Students will prepare and present lectures with direct observations and video taping for discussion.

PSYC 7790. Cognitive Modeling
2-6-4.
Prerequisite(s): CS 6795 or ISYE 6795 or PSYC 6795
A hands-on course covering a range of cognitive modeling methodologies. It explores the analysis, development, construction, and evaluation of models of cognitive processing. Crosslisted with CS and ISYE 7790.

PSYC 7999. Preparation for Doctoral Qualifying Exam
Credit hours to be arranged.

PSYC 8000. Seminar in Experimental Psychology
3-0-3.
Critical examination of current problems in a selected area of general experimental psychology. Areas to be discussed may vary each time course is offered.

PSYC 8010. Seminar in Cognitive Psychology
3-0-3.
Critical examination of current problems in a selected area of cognitive psychology. Area to be discussed may vary each time course is offered.

PSYC 8020. Seminar in Cognitive Aging
3-0-3.
Critical examination of current problems in a selected area of cognitive aging. Area to be discussed may vary each time course is offered.

PSYC 8030. Seminar in Comparative Psychology
3-0-3.
Critical examination of current problems in a selected area of comparative psychology. Area to be discussed may vary each time course is offered.

PSYC 8040. Seminar in Engineering Psychology
3-0-3.
Prerequisite(s): PSYC 6011
Critical examination of current problems in a selected area of engineering psychology. Area to be discussed may vary each time course is offered.

PSYC 8050. Seminar in Industrial/Organizational Psychology
3-0-3.
Critical examination of current problems in a selected area of industrial/organizational psychology. Areas to be discussed may vary each time course is offered.

PSYC 8060. Seminar in Quantitative Psychology
3-0-3.
Presentation and discussion of quantitative approaches to psychology. Topics will vary, but might include neural networks, measurement theory, behavioral ecology, modeling, system dynamics, etc.

PSYC 8795. Colloquium in Cognitive Science
1-0-1.
Reading of research papers by leading cognitive scientists, attendance at their colloquia, and meeting with them to discuss research. Crosslisted with CS and ISYE 8795.
PSYC 8800. Special Topics in Applied Statistics
3-0-3.
Covers current issues and recent advances in the application of statistical methods to research in psychology. Instructors select the specific focus for a given seminar.

PSYC 8890. Special Topics in Cognitive Science
3-0-3.

PSYC 8900. Special Problems in Experimental Psychology
Credit hours to be arranged.
Students conduct research under direction of a faculty member on problems in the general area of experimental psychology.

PSYC 8901. Special Problems in Engineering Psychology
Credit hours to be arranged.
Students conduct research under the direction of a faculty member on problems in the general area of engineering psychology.

PSYC 8902. Special Problems in Industrial/Organizational Psychology
Credit hours to be arranged.
Students conduct research under the direction of a faculty member on problems investigating some psychological aspect of industrial/organizational problems.

PSYC 8997. Teaching Assistantship
Credit hours to be arranged.
For graduate students holding a teaching assistantship.

PSYC 8998. Research Assistantship
Credit hours to be arranged.
For graduate students holding a research assistantship.

PSYC 9000. Doctoral Thesis
Credit hours to be arranged.
Student Rules and Regulations

Originally approved by the faculty May 24, 1949. The most recent major revision was approved by the faculty on February 6, 2001.

Index

I. Purpose
II. Academic Calendar
III. Responsibility for Notices and Change of Address
IV. Attendance
V. Grades and Scholastic Average
VI. Scholastic Regulations
 A. Classification of Students
 B. Eligibility for Class Rings
 C. Academic Standing
 D. Maximum Schedule Load
 E. Academic Honors
 F. Change of Major
 G. Exceptions
VII. Deficiencies
VIII. Withdrawal from School and Readmission
IX. Scheduling
X. Pass/Fail System
XI. Cross Enrollment - Atlanta Regional Consortium for Higher Education (ARCHE)
XII. Examinations
 A. General
 B. Examinations for Advanced Standing
 C. Regulations Covering Final Examinations
XIII. Undergraduate Degrees
 A. General
 B. Residency Rule
 C. Ten-Year Rule
 D. Requirements for a Degree
 E. Graduation with Academic Distinction
 F. Second Undergraduate Degree
 G. Minors
XIV. Graduate Degrees
XV. Student Motor Vehicles
XVI. Medical Regulations
XVII. Extracurricular Activities
 A. Participation
 B. Scheduling of Events
 C. Student Organizations
 D. Fraternity and Sorority Regulations
 E. Intercollegiate Athletics Regulations
XVIII. Student Conduct Code
 A. General
 B. Academic Honor Code
 C. Academic Misconduct
 D. Nonacademic Misconduct
XIX. Regents' Statement on Disruptive Behavior
XX. Disciplinary Administration
 A. Disciplinary Procedures
 B. Student Honor Committee
 C. Student Judiciary
 D. Procedural Rights of the Accused
 E. Hearing Procedures
 F. Disciplinary Measures
 G. Appeal Procedures
XXI. Student Academic Grievance Procedures
 A. Applicability of the Grievance Procedures
 B. Overview of Grievance Process
 C. Steps in the Grievance Process
 D. Remedies
XXII. Exceptions
XXIII. Student Bill of Rights
I. Purpose
These regulations are intended to set forth the requirements of the faculty to the end that a large student body may live and work together harmoniously with a minimum of friction and misunderstanding. Each student is expected to be a law-abiding citizen and to obey the laws of the city of Atlanta, Fulton County, the state of Georgia, and the United States.

II. Academic Calendar
A. Standard Calendar
The standard academic calendar of the Georgia Institute of Technology consists of fall and spring semesters and an accelerated summer session. Each semester normally includes approximately 15 weeks of instruction plus one week of final examinations; the normal summer session includes approximately 11 weeks of instruction plus one week of final examinations. An "academic year" consists of the fall and spring semesters; a "catalog year" consists of an academic year plus the preceding summer session. "Term" may refer to either a semester or a summer session. The Office of the Registrar publishes the official calendar for each academic term.

B. Other Academic Terms
In addition to the standard academic calendar, certain programs may be offered on other schedules. All such offerings are subject to the approval of the Institute Undergraduate Curriculum Committee, Institute Graduate Committee, and/or the registrar, as appropriate. With approval, such programs may operate under different academic rules, such as credit-hour limits or withdrawal dates, than those specified for standard academic terms.

III. Responsibility for Notices and Change of Address
A. Notices
All students will have an e-mail account through the Georgia Institute of Technology that will be their official point of contact, and they are expected to check this account each school day. Students are also expected to be aware of notices that appear on the Student Access System as well as general notices that appear in the *Technique*. It is the student's responsibility to check the Student Access System during the drop/add period of registration and during the term to verify the accuracy of his/her schedule and for notices. Schedules should be verified at least once during the first five weeks of the term and once after mid-term.

B. Change of Address
Students are responsible for reporting all changes within one week on the Student Access System.

C. Unclaimed Mail
Students are responsible for returning to the front window of the post office all mail in their post office boxes that is unclaimed after three days.

IV. Attendance
A. General
1. Each term, a course listing is published showing the time period for each class.
2. If an instructor should be late in meeting the class, the students shall wait 20 minutes after the published starting time. If the instructor has not arrived by that time, the students may leave unless specifically notified to await the instructor's arrival.

B. Class Attendance
1. There are no formal institutional regulations regarding class attendance at the Georgia Institute of Technology. The resources of the Institute are provided for the intellectual growth and development of the students who attend. A schedule of courses is provided for the students and faculty to facilitate an orderly arrangement of the program of instruction. The fact that classes are scheduled is evidence that attendance is important; students should, therefore, maintain regular attendance if they are to attain maximum success in the pursuit of their studies.
2. All students are responsible for obtaining an understanding of each instructor's policy regarding absences; all students are expected to attend announced quizzes, laboratory periods, and final examinations. Although it is recognized that occasionally it may be necessary for students to be absent from scheduled classes or laboratories for personal reasons, students are responsible for all material covered in their absences, and they are responsible for the academic consequences of their absences. Work missed may be made up if the reasons for absences are acceptable to the instructors.
3. Students who are absent because of participation in approved Institute activities (such as
field trips and athletic events) will be permitted to make up the work missed during their absences. Approval of such activities will be granted by the Student Academic and Financial Affairs Committee of the Academic Senate, and statements of the approved absence may be obtained from the Office of the Registrar.

V. Grades and Scholastic Average

A. Grades

1. The letter grades for completed courses used in the calculation of scholastic average are the following:
 - A — excellent (four quality points)
 - B — good (three quality points)
 - C — satisfactory (two quality points)
 - D — passing (one quality point)
 - F — failure, must be repeated if in a required course (no quality points)

2. The following grades will be used in the cases indicated and will not be included in the calculation of scholastic average:
 - S — passing of a course taken under pass/fail or completion of a course in which no letter grade may be assigned
 - U — unsatisfactory in a course taken under pass/fail or unsatisfactory performance in a course for which no letter grade may be assigned
 - V — assigned when the course has been audited; no credit given; and implies no academic achievement on the part of the student

3. The following grades will be used in the cases indicated and will not be included in the calculation of scholastic average:
 - I — incomplete. Assigned when a student was doing satisfactory work, but for nonacademic reasons beyond his/her control and deemed acceptable by the instructor, was unable to meet the full requirements of the course. If the student’s performance was so poor as to preclude his/her passing, the instructor shall assign the grade of F. Refer to section VII.B for regulations regarding removal of the I grade.
 - W — withdrawal without penalty. Withdrawals from individual courses without penalty will not be permitted after the end of the sixth week of the spring and fall semesters, and at the end of the fifth week during the accelerated summer semester, except in cases of hardship as determined by the Institute Undergraduate Curriculum Committee or Graduate Committee, as appropriate. Withdrawal from school will not be permitted after 60 percent of the term except in cases of hardship as determined by the Institute Undergraduate Curriculum Committee or Graduate Committee, as appropriate. With the exception of part-time graduate students, students who withdraw from school and receive all grades of W will not ordinarily be permitted to re-enroll the next succeeding term. Refer to section VIII.B for regulations regarding readmission.

 NR — not reported. Assigned when an instructor fails to submit grades by the published deadline, through no fault of the student.

4. Final grades are reported to the registrar at the end of each term.

5. If a final course grade is believed to be in error, the student should contact the professor as soon as possible. In general, no change of grade will be made after the end of the student’s next term in residence.

B. Academic Average

The academic average is calculated as the ratio of the total number of quality points earned to the total number of credit hours in which a final letter grade has been assigned.

VI. Scholastic Regulations

A. Classification of Students

1. Undergraduate students, with the exception of non degree-seeking students, shall be classified at the end of each term by the Office of the Registrar on the basis of the total number of semester credit hours for which they have credit in accordance with the following schedule:

<table>
<thead>
<tr>
<th>Classification</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshman</td>
<td>0-29</td>
</tr>
<tr>
<td>Sophomore</td>
<td>30-59</td>
</tr>
<tr>
<td>Junior</td>
<td>60-89</td>
</tr>
<tr>
<td>Senior</td>
<td>90+</td>
</tr>
</tbody>
</table>

2. Graduate and special students who have completed all requirements for a particular classification as defined by their major department may request reclassification through their major department.

3. Students scheduled for at least 12 credit hours in a semester are classified as full-time students; those scheduled for 6-11 hours are classified as part-time students; and those scheduled for 1-5 hours are classified as less-than-part-time students.
B. Eligibility for Class Rings
A student may purchase a class ring any time after receiving credit for 70 semester credit hours.

C. Academic Standing
1. The assignment of academic standing is based on both the student's most recent term and overall grade point average.
2. The minimum satisfactory academic average is 1.70 for freshmen and joint-enrolled high school students; 1.90 for sophomores; 2.00 for juniors, seniors, and special undergraduates; 2.70 for master's and special graduate students; and 3.00 for doctoral students.
3. Good academic standing
 Students not on academic probation are in good academic standing.
4. Academic warning
 a) Academic warning is a subcategory of good academic standing, differing only in the maximum allowable schedule load.
 b) A student who has an overall academic average below the minimum satisfactory scholarship requirement, or whose academic average for work taken during any term is below this requirement, shall be placed on academic warning.
5. Academic probation
 a) A student on academic warning whose academic average is below the minimum satisfactory scholarship requirement for any term shall be placed on academic probation.
 b) A student also may be placed on academic probation through other actions, as described in the following section.
6. Dismissal for unsatisfactory scholarship
 a) The Institute may drop from the rolls at any time a student whose record in scholarship is unsatisfactory.
 b) An undergraduate student whose academic average for any term is 1.00 or below may be referred to the Undergraduate Curriculum Committee, which may place the student on academic probation or drop, regardless of the student's previous record, if such action is deemed advisable.
 c) A graduate student whose academic average for any term is 2.00 or below may be placed on academic probation or dropped, regardless of the student's previous record.
 d) A student on academic probation whose scholastic average for the term of probation is below the minimum satisfactory scholarship requirement and whose overall academic average is below the minimum satisfactory scholarship requirement shall be dropped from the rolls for unsatisfactory scholarship.
 e) The record of a student on academic probation whose term average is unsatisfactory, but whose overall academic record is satisfactory, may be reviewed by the Undergraduate Curriculum Committee or the Graduate Committee, as appropriate. The student may be dropped or may be continued on academic probation.
7. Academic review
 A student who normally would be dropped from the rolls for academic deficiencies but appears from the record not to have completed the term may be placed on academic review. This is a temporary standing that makes the student ineligible for registration. If no acceptable explanation is given within a reasonable time, the standing is changed to drop.
8. The academic standing regulations given previously for graduate students do not preclude a school from having more rigorous requirements.

D. Maximum Schedule Load
1. The maximum number of credit hours for which an undergraduate student may register in fall or spring semester, based on his or her academic standing, is as follows:
 - Good: 21 semester hours
 - Warning: 16 semester hours
 - Probation: 14 semester hours
2. The maximum number of credit hours for which an undergraduate student may register in a normal summer term, based on his or her academic standing, is as follows:
 - Good: 16 semester hours
 - Warning: 14 semester hours
 - Probation: 12 semester hours
3. A graduate student may register for a maximum of 21 semester hours in fall or spring semester and a maximum of 16 semester hours during the normal summer term.
4. Requests for schedule overloads must be recommended by the student's major school and approved by the Institute Undergraduate Curriculum Committee or Graduate Committee, as appropriate.
E. Academic Honors
The Institute encourages excellence in scholarship and gives official recognition to undergraduate students whose work is superior in any given term.
1. Dean’s List — includes all degree-seeking undergraduates who, during the preceding term, made an academic average of 3.00 or higher, completed a schedule of at least 12 hours of course work on a letter-grade basis, and are not on academic warning or probation or subject to any disciplinary action. (All grades must be reported.)
2. Faculty honors — includes all degree-seeking undergraduates who during the preceding term made an academic average of 4.00, completed a schedule of at least 12 hours of course work on a letter-grade basis with no W grades, and are not on academic warning or probation or subject to any disciplinary action. (All grades must be reported.)

F. Change of Major
1. Undergraduate students, by filing the required form, will be permitted one unrestricted transfer between majors (including undecided) until they have accumulated credit for 60 hours. After 60 hours or upon subsequent request for transfer, the transfer will be permitted at the discretion of the school that the student is seeking to enter. (Note: Certain majors, because of high enrollment, have been granted a waiver of the one unrestricted transfer regulation. Students should consult with the individual school concerning its current transfer policy.)
2. Graduate students, by filing the required form, may transfer with the concurrence of the schools involved and the graduate dean.

G. Exceptions
Exceptions to these scholastic regulations may be made by the Undergraduate Curriculum Committee or the Graduate Committee, as appropriate, whenever a consideration of the student’s complete record indicates that the application of a specific regulation will result in injustice.

VII. Deficiencies
A. General
1. A student who has received a grade of I, F, or U in a course has a deficiency in the course.
2. A student whose final grade is F or U has a failure in that course. The student must repeat and pass the course in class before credit will be allowed. (See section B.4 below.)

B. Removal of Deficiencies
1. If a grade of I (incomplete) is assigned in a course, the incomplete must be removed and the grade change reported by the end of the student’s next term in residence or, if the student has not been enrolled, by the end of the term one calendar year from the date the incomplete was assigned. Failing to remove the I in the allotted time will result in the I being changed to the grade of F. To remove the incomplete, the student should consult with the instructor as soon as possible after the term is over and complete whatever remaining work is outlined by the instructor. Repeating the course for credit does not remove the grade of I.
2. A student who has a failure in a required course must schedule that course the next time it is offered while the student is in residence.
3. A degree candidate who has a single course deficiency for graduation will be permitted one re-examination immediately following the commencement exercises and thereafter, one examination per annum, until the deficiency is removed. Upon receipt of the reactivated degree petition for the following term, the registrar may authorize a re-examination. The examination should be scheduled only following its authorization. The examination will be graded S or U and the grade so recorded. The previously assigned F or U will remain a part of the record and a notation will be made on the student’s transcript that the course requirement was satisfied by a re-examination. The student who successfully completes the re-examination will then be eligible to graduate without being required to re-register for the deficient course.
4. A degree candidate who has otherwise completed all requirements for graduation and who has an incomplete in laboratory work taken during his or her final term in residence may remove the incomplete at the convenience of the department of instruction concerned.
III. Withdrawal from School and Readmission

A. Withdrawal

1. Withdrawal from school will not be permitted after 60 percent of the term except in cases of hardship as determined by the Institute Undergraduate Curriculum Committee or Graduate Committee, as appropriate. With the exception of part-time graduate students, students who withdraw from school and receive all grades of W will not ordinarily be permitted to re-enroll the next succeeding term. A student may withdraw from school via the Student Access System by the posted deadline in the Official School Calendar published in the OSCAR. All holds on the student's record must be cleared prior to withdrawal.

2. Students who cease attendance without withdrawing via the Student Access System will receive grades of F, U, or I for the courses in which they were registered that term.

3. Permission and/or formal resignation are not required when a student has completed an official school term and does not register for the succeeding term.

4. See section V.A.3 for further information on withdrawal.

B. Readmission

1. Any student who is not enrolled for two or more consecutive terms must apply for readmission. This application, with all the pertinent supporting information (except possibly another college transcript: see 2 below), must be submitted to the registrar before the deadline for the term for which readmission is requested, as listed below:
 - Fall - July 1
 - Spring - December 1
 - Summer - April 1

 Applications received after these deadlines will not be accepted.

2. Students who have attended other colleges should plan their readmission so as to allow ample time for official transcripts from those colleges to be sent to Georgia Tech. If official transcripts have not been received prior to the last day of registration, the student seeking readmission will not be allowed to complete registration.

3. Any student in good standing who is not enrolled for a single term will be allowed to re-enroll without applying for readmission to the Institute. There will be no distinction between the terms of the regular academic year and the summer term.

4. A student who is on academic warning or academic probation who is not enrolled for a single term will have an automatic hold placed on registration that must be cleared by the student's major school. For example, a student is placed on academic probation at the close of fall term and fails to enroll by the close of registration for the spring term. An automatic registration hold will be set, which must be cleared by the major school before the student can register for any future term.

5. A student who has been dropped once for unsatisfactory scholarship will ordinarily not be readmitted. A student who seeks an exception to this rule must have been out of the Institute for at least one term of the academic year and have had a conference with the major school concerning the readmission. The readmission application deadline for a student who has been dropped is two months prior to the published readmission deadline for the term. Because the summer term is not included in the academic year, students who are dropped at the end of the spring term will not be eligible for readmission until the beginning of the following spring term.

6. A student who is dropped a second time for unsatisfactory scholarship will not be readmitted to the Institute.

7. Any student, except a part-time graduate student, who withdraws during a term and wishes to return the following term must complete a Petition to the Faculty for consideration. This petition must be submitted to the registrar before the deadline for the term for which readmission is requested.

C. Transfer Credit

1. Course work pursued at another institution after dismissal from Georgia Tech for unsatisfactory scholarship may be considered as evidence for readmission.

2. If readmitted, a student will not necessarily be given transfer credit for work taken at another institution after dismissal from Georgia Tech.

3. With the exception of courses from which a
student withdraw and received a grade of W or V, in no case will transfer credit be allowed for courses completed at another institution that have previously been taken at Georgia Tech.

D. Study Abroad

Any student in good standing choosing to participate in an approved study abroad program for two or more terms must complete a Student Information Update form with the study abroad coordinator prior to departure. This form will enable the student to re-enroll for the term of "planned re-entry" without submitting a formal readmission application. It will be the student's responsibility to inform the study abroad coordinator of any change in the planned re-entry date.

IX. Scheduling

A. General

1. All previously scheduled course work takes precedence over newly scheduled material. Therefore, all work that is incomplete from a previous term should be completed, or arrangements to complete it should be made prior to placing emphasis on new course work.

2. Students must follow the approved curriculum of the academic school in which they are registered. Students who do not follow the approved curriculum may be denied registration privileges.

3. Each student is strongly advised each term to schedule all prerequisite courses. Students who do not have the stated prerequisites for a course but believe they have the required knowledge to fulfill prerequisite requirements should contact the department of instruction.

4. The completion of incomplete work from a previous term and the scheduling of out-of-sequence courses are the responsibility of the student, and they will be consequently held accountable. The number of scheduled hours allowed for a term may be adjusted to take into consideration the amount of incomplete work remaining regardless of the student's academic standing.

5. Students may not repeat courses on a letter-grade basis in which the grade of B or higher has been earned previously.

6. Subject to approval by a faculty advisor, a course may be taken more than once for academic credit. All grades will count in determining the scholastic average, but the course will be counted only once for credit toward a degree.

7. See section X for Institute rules for courses taken on a pass/fail basis.

B. Academic Load

1. Maximum credit hour loads are given in section VI.D. Any hours above these limits must have prior approval of the Undergraduate Curriculum Committee or the Graduate Committee, as appropriate.

2. Graduate students must maintain a minimum of three credit hours each term of enrollment. Exceptions to this regulation may be made during the student's graduation term.

C. Auditing of Courses

1. Auditing of courses will be permitted to regularly enrolled students who have obtained the approval of their advisor and the departments concerned. Such courses count at full value in computing the student's load.

2. The grade for auditing is V (visitor), and this grade will have no effect on the student's grade point average.

3. No academic credit is granted for audit participation in a course.

4. Students are not permitted to change to or from an auditing status except through the regular procedures for schedule change or withdrawal. Any student who does not meet the instructor's requirements for a successful audit will be withdrawn with a grade of W assigned at the end of the term.

X. Pass/Fail System

A. General

1. At the option of the student's major school, credit toward a bachelor's degree may be allowed for courses taken under the pass/fail system and completed with a grade of pass.

2. The major school must approve all pass/fail courses included in the final program of study, and students should become aware of school requirements.

3. In graduate programs, thesis research hours will be evaluated on a pass/fail basis.

4. Pass/fail enrollment in any course may be restricted by the school or department offering the course.

5. Students who are permitted to register under the pass/fail system will be so designated on
the official class rolls; the grades recorded will be S for satisfactory or U for unsatisfactory. These grades will not be included in the calculation of the grade point average and cannot be changed to a grade that will count in the average.

6. Withdrawals from courses taken on a pass/fail basis will follow the same rules that govern withdrawals from courses included in the scholastic average.

B. Credit Hours Permitted
1. The maximum number of pass/fail hours permitted in an undergraduate program of study depends upon the number of semester credit hours that will be completed at Georgia Tech, as follows:

<table>
<thead>
<tr>
<th>Hours included in program of study</th>
<th>Hours allowed on pass/fail basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 to 70 credit hours</td>
<td>3 credit hours</td>
</tr>
<tr>
<td>71 to 90 credit hours</td>
<td>6 credit hours</td>
</tr>
<tr>
<td>91 or more credit hours</td>
<td>9 credit hours</td>
</tr>
</tbody>
</table>

2. For a second undergraduate degree, these limitations apply to the credit hours included in the program of study for that second degree.

3. A master’s degree program of study may include up to three semester credit hours on a pass/fail basis.

XII. Examinations

A. General
1. All re-examinations, examinations for advanced standing, and special examinations must be authorized by the registrar before being scheduled.
2. If the instructor considers it necessary during an examination, students may be required to present their student identification card to the instructor or an authorized representative.

B. Examinations for Advanced Standing
1. Students who offer satisfactory evidence that they are qualified to do so may receive credit for a course by examination. Such an examination is called an examination for advanced standing.
2. Examinations for advanced standing require the recommendation of the department of instruction in which the course is offered, payment of the appropriate fee, and authorization by the registrar.
3. Examinations for advanced standing will ordinarily be offered during the week of final examinations.
4. A student will not be allowed to take an examination for advanced standing in a given course more than twice.
5. An examination for advanced standing will be reported with an S or U grade. Neither grade will be included in the calculation of the scholastic average.
C. Regulations Covering Final Examinations
1. The Office of the Registrar will publish the final examination schedule and policies each term.
2. A student reporting to a final examination room more than 15 minutes after the scheduled starting time shall not be allowed to take the examination unless a satisfactory explanation is presented to the instructor conducting the examination.

XIII. Undergraduate Degrees
A. General
1. To be considered for admission to candidacy for a degree, a student must have passed the Regents’ Test and must make a formal petition for the degree during the term preceding the final term in residence. A petition for degree will not be accepted until the Regents’ Test has been passed.
2. Students desiring to withdraw their name from the rolls of degree candidates must formally withdraw the petition for degree before the end of the seventh week of the semester (or fourth week of the summer term). This privilege will be extended to a degree candidate only once.
3. A degree program may include a maximum of four hours of basic ROTC and a maximum of six hours of advanced ROTC.
4. The diploma of a candidate for a degree shall bear the date of the commencement at which the degree is awarded.
5. All requirements for the degree must be completed and certified by the registrar no later than 48 hours after final grades for the term are due. If a candidate for a degree is not certified by the appropriate deadline, the candidate will be graduated at the next scheduled commencement. The diploma will bear the date of the commencement at which the degree is awarded. It is the responsibility of the student to reactivate the degree petition for the appropriate term.

B. Residency Rule
No student may be considered a candidate for a degree unless the final 36 credit hours required for the degree are earned in residence at Georgia Tech and approved by the major school.

C. Ten-Year Rule
Work that was completed more than 10 years prior to commencement must be validated by special examinations before it can be counted toward a degree.

D. Requirements for a Degree
1. To be a candidate for a degree, undergraduate students must have passed or be enrolled in all courses required for the degree, must have a scholastic average for their entire academic program of at least 1.95, and must have done creditable work in their departmental courses so as to merit the recommendation for the degree by the chair and faculty of their school.
2. Students, with the approval of their school or specialization, may satisfy the requirements for an undergraduate degree by meeting all of the requirements listed in any one of the catalogs in effect during the period of their enrollment in the Institute or during their last two years (prior to their enrollment at Georgia Tech) in the program at one of the RETP schools. A catalog is in effect for a student only if the student’s date of matriculation is prior to the ending date of the spring term shown in the appropriate Institute academic calendar.
3. Constitution and history examinations
 a) The Georgia law as amended March 4, 1953, requires that before graduation all students pass examinations or pass comparable courses in United States and Georgia history as well as the United States and Georgia constitutions.
 b) For courses that may satisfy the constitution and history requirements, refer to the Information for Undergraduate Students/Academic Regulations section of this catalog.
4. Regents’ Testing Program
 All students completing requirements for baccalaureate degrees are required by the University System of Georgia to pass an examination designed to measure proficiency in reading and English composition. This examination is known as the Regents’ Test. It must be passed before a petition for graduation will be accepted. Students should obtain further information from the registrar.
5. Wellness requirement
 a) Unless medically exempted, all students are required to satisfy the wellness requirement as specified in the Information for Undergraduate Students/Academic Regulations section of this catalog prior to graduation.
b) The Health Information Record on file with
the director of Health Services will be used
to determine any medical exemptions from
the wellness courses. All certificates of dis-
ability from personal physicians must be
endorsed by Student Health Services before
they will be accepted by the Department of
Health and Performance Sciences.

E. Graduation with Academic Distinction
1. For graduation with highest honor, the mini-
imum scholastic average shall be 3.55. For
graduation with high honor, the minimum
scholastic average shall be 3.35. For gradu-
ation with honor, the minimum scholastic aver-
age shall be 3.15.
2. A student must have earned at least 70 semes-
ter credit hours (excluding remedial course
work) at Georgia Tech to graduate with highest
honor, with high honor, or with honor.
3. In order to qualify for graduation with honors,
all grades or grade corrections affecting the
honors designation must be received and certi-

fied by the registrar by the end of the normal
workday immediately prior to commencement.

F. Second Undergraduate Degree
1. A student enrolled for a second undergradu-
ate degree shall be classified as an under-
graduate student, except that a graduate
student wishing to pursue a second undergradu-
ate degree will remain classified as a graduate
student. A graduate student, with approval of
the major school, may work toward a second
undergraduate degree while pursuing a gradu-
ate program.
2. To be a candidate for a second undergraduate
degree, a student must have the recommenda-
tion of the chair of the school concerned and
the approval of the Undergraduate Curricu-
lum Committee.
3. To obtain a second undergraduate degree, a
student must complete all major required
courses for the degree and earn credit for a
total of at least 36 credit hours in excess of the
requirement for any previous degrees earned.
4. All regulations in section XIII apply to students
completing second undergraduate degrees.

G. Minors
1. A student may complete a minor in another
academic field while completing the require-
ments of his or her major degree program.
2. With the approval of the major school, the
student should consult an advisor in the minor
field, who can inform the student of the
requirements for the minor.
3. When a student petitions for a degree, he or
she should complete the petition for a minor
and have it approved by the minor advisor. The
petition for a minor must accompany the peti-
tion for the major degree when reviewed for
approval by the major school.
4. The minor will be conferred at the same time
the degree is conferred.
5. The minor will not be printed on the diploma,
but both the degree and minor will be
recorded on the student's transcript.
6. Minors may not be conferred retroactively
upon students who have graduated.

XIV. Graduate Degrees
A complete description of Institute requirements
for the master's and doctoral degrees is given in
this catalog in the section titled "Information for
Graduate Students." Students desiring to withdraw
their name from the rolls of degree candidates
must formally withdraw the petition for degree
before the deadline specified in section XIII.A.2.

XV. Student Motor Vehicles
Students desiring to operate motor vehicles on
campus are subject to all rules set forth by the
Georgia Tech motor vehicle regulations.

XVI. Medical Regulations
A Medical Entrance Form and proof of required
immunizations and tuberculosis screening must be
on file with the Student Health Center. Failure to
provide this information may result in a health
hold and delay of registration.

XVII. Extracurricular Activities
A. Participation
1. In order to be eligible for participation in
extracurricular activities, a student must satisfy
the following requirements:
 a) be enrolled in a degree program;
 b) maintain a schedule with at least six credit
 hours on a credit basis or be a student in
 the Cooperative Division on work term; and
 c) not be on academic or disciplinary
 probation.
2. Changes in academic standing that affect eligi-
bility become effective when determined by the
Institute at the end of each term (normally the
Scholastic Regulations

Tuesday following final examination week), except that a student whose academic standing changes from good to probation shall remain eligible through the day preceding the first day of instruction of the following academic term.

3. Any student placed on academic drop/dismissal, review, suspension, or expulsion is immediately ineligible for participation.

4. Participation also requires satisfaction of any additional requirements established by the Student Activities Committee of the Academic Senate.

B. Scheduling of Events

1. During the first week of each term, a schedule of public performances to be sponsored by each student organization must be submitted to the Division of Student Affairs for approval by the Student Academic and Financial Affairs Committee of the Academic Senate.

2. All student organizations must make written application to, and receive permission from, the Division of Student Affairs to hold a social function. The request must be submitted at least one week before the date of the activity, and the permission must be received before making any agreements in connection with the function.

3. In each term, the weekend before final examinations is closed to student-sponsored extracurricular events.

C. Student Organizations

Requirements and standards for chartering a student organization are established by the Student Activities Committee of the Academic Senate and are available from the Division of Student Affairs.

D. Fraternity and Sorority Regulations

1. To be eligible for initiation, a student must be a full-time student not on academic or disciplinary probation.

2. The initiation of any individual must be registered with and approved by the Division of Student Affairs prior to the initiation.

3. The individual must meet all Georgia Tech Interfraternity Council (I.E.C.) or Panhellenic requirements concerning initiation.

4. All fraternities and sororities are subject to the rules established by the Georgia Tech I.E.C./Panhellenic.

E. Intercollegiate Athletics Regulations

1. To be eligible for intercollegiate athletic competition, a student must satisfy the following requirements:
 a) be eligible to participate in extracurricular activities, as defined in section XVII.A;
 b) be carrying a full-time workload as defined in section VI.A.2;
 c) be making satisfactory progress toward a degree; and
 d) meet any further requirements of the NCAA or other governing organization; see the athletic director for details.

2. No student may be excused from regularly scheduled classes for athletic practice.

3. No student may participate in more than two sports in intercollegiate competition in any school year, except by permission of the Division of Student Affairs. Being manager or assistant manager is counted as participation within the meaning of this rule.

XVIII. Student Conduct Code

A. General

A student enrolling in the Georgia Institute of Technology assumes an obligation to conduct himself or herself in a manner compatible with the Institute's function as an educational institution. Actions considered inimical to the Institute and subject to discipline fall into the categories of academic and nonacademic misconduct.

B. Academic Honor Code

Article I: Honor Agreement

Having read the Georgia Institute of Technology Academic Honor Code, I understand and accept my responsibility as a member of the Georgia Tech community to uphold the Honor Code at all times. In addition, I understand my options for reporting honor violations as detailed in the code.

Article II: Honor Code

Section 1. Statement of Purpose

The members of the Georgia Tech community believe that a fundamental objective of the Institute is to provide the students with a high-quality education while developing in them a sense of ethics and social responsibility. We believe that trust is an integral part of the learning process, and that self-discipline is necessary in this pursuit. We also believe that any instance of dishonesty hurts the entire community. It is with this in mind that we have set forth an Academic Honor Code at Georgia Tech.
Section 2. Objectives
An Honor Code at Georgia Tech aims to cultivate a community based on trust, academic integrity, and honor. It specifically aims to accomplish the following:
- Ensure that students, faculty, and administrators understand that the responsibility for upholding academic honesty at Georgia Tech lies with them;
- Prevent any students from gaining an unfair advantage over other students through academic misconduct;
- Ensure that students understand that academic dishonesty is a violation of the profound trust of the entire academic community;
- Clarify what constitutes academic misconduct among students at Georgia Tech and what is expected of them by the Institute, the faculty, and their peers;
- Cultivate an environment at Georgia Tech where academic dishonesty is not tolerated among the students;
- Secure a centralized system of education and awareness of the Honor Code.

Section 3. Student Responsibilities
Students are expected to act according to the highest ethical standards.

The immediate objective of an Honor Code is to prevent any students from gaining an unfair advantage over other students through academic misconduct. For clarification of the definition of student academic misconduct, see section XVIII.C. While these acts constitute assured instances of academic misconduct, other acts of academic misconduct may be defined by the professor.

Students must sign the Honor Agreement affirming their commitment to uphold the Honor Code before becoming a part of the Georgia Tech community. The Honor Agreement may reappear on exams and other assignments to remind students of their responsibilities under the Georgia Institute of Technology Academic Honor Code.

Section 4. Faculty Responsibilities
Faculty members are expected to create an environment where honesty flourishes. In creating this environment, faculty members are expected to do the following:
- Make known to their class as specifically as possible what constitutes appropriate academic conduct as well as what comprises academic misconduct; this includes but is not limited to the use of previously submitted work, collaborative work on homework, etc.;
- Provide copies of old exams or lists of sample questions to the Georgia Tech library for students to review;
- Avoid the re-use of exams;
- Include a paragraph containing information about the Georgia Tech Academic Honor Code on the syllabus for each class they teach; and
- Report instances of academic dishonesty to the Office of the Dean of Students.

In addition to these expectations, it is recognized that faculty have the authority to superimpose their own interpretations on some aspects of academic conduct including, but not limited to the following:
- Old exams for use during open-book exams;
- Contents of formula sheets allowed on exams;
- Use of calculators on exams;
- Collaboration on out-of-class assignments; and
- Use of previously submitted out-of-class assignments.

Article III: Honor System

Section 1. Governing Bodies
The Georgia Institute of Technology Academic Honor Code recognizes the present bodies given the power to enforce the academic regulations of the Institute. The Honor Code recognizes the dean of students to be the principal administrator to enforce Institute disciplinary measures as presently specified in section XX.A of the Student Rules and Regulations.

The Honor Code also recognizes the Student Honor Committee as that body given jurisdiction to hear all cases of alleged academic misconduct as currently specified in section XX.B of the Student Rules and Regulations.

Section 2. Reporting Honor Code Violations
In order for an Honor Code to function, members of the Georgia Tech community must not tolerate violations of it by anyone. Community members are at their discretion to use any of
three options to report suspected Honor Code violations:
1. A student may simply desire to confront the fellow student with the perceived infraction. While this option is the most likely to enact widespread change in attitude and behavior among students (because the violator would understand that they are violating the trust of their peers and not some abstract body of people), it is still expected that an alleged violator will be reported to the dean of students.
2. A student may choose to approach the professor of the class in which the alleged infraction occurred and seek his or her input on how to proceed. A result of a conference of this type would be the professor's awareness that the alleged violator needs closer monitoring to ascertain reasonable certainty of guilt before being reported to the dean of students.
3. A student may choose to seek the advice of an honor advisor (see Article III, Section 3). Meetings with honor advisors shall address issues of policy and procedure only. Specifics of an individual case are not to be discussed. After a consultation with an honor advisor, a student may choose to submit a formal accusation of academic misconduct to the vice president for Student Services.

Section 3. Student Honor Advisory Council
Students composing the Student Honor Advisory Council are to become well versed in all aspects of the Georgia Institute of Technology Academic Honor Code and the procedures for reporting an honor violation, as well as those procedures for the trying of cases of suspected academic misconduct before the Student Honor Committee. The Council is to act as an information resource to all members of the Georgia Tech community on issues related to the Honor Code.

Complete copies of the Academic Honor Code may be obtained from the Office of the Dean of Students.

C. Academic Misconduct
Academic misconduct is any act that does or could improperly distort student grades or other student academic records. Such acts include but need not be limited to the following:

1. Possessing, using, or exchanging improperly acquired written or verbal information in the preparation of any essay, laboratory report, examination, or other assignment included in an academic course;
2. Substitution for, or unauthorized collaboration with, a student in the commission of academic requirements;
3. Submission of material that is wholly or substantially identical to that created or published by another person or persons, without adequate credit notations indicating the authorship (plagiarism);
4. False claims of performance for work that has been submitted by the claimant;
5. Alteration or insertion of any academic grade or rating so as to obtain unearned academic credit;
6. Deliberate falsification of a written or verbal statement of fact to a member of the faculty so as to obtain unearned academic credit;
7. Forgery, alteration, or misuse of any Institute document relating to the academic status of the student.

D. Nonacademic Misconduct
Nonacademic misconduct includes the following specifically prohibited acts whenever, unless otherwise stated, such acts occur on Institute-owned or controlled property or Institute-related premises:
1. Alcohol abuse, including
 a) conspicuous or flagrant possession of alcoholic beverage;
 b) intoxication made manifest by boisterousness, rowdiness, obscene or indecent conduct or appearance, or vulgar, profane, lewd, or unbecoming language;
 c) disorderly conduct associated with the use of alcoholic beverages.
2. Pushing, unjustifiably striking or physically assaulting, or otherwise intentionally threatening or endangering the person of any member of the faculty, administration, staff, or student body, or any visitor to the campus.
3. Disorderly conduct, including
 a) breach of the peace or obstruction or disruption of teaching, research, administration, disciplinary procedure, or other Institute activities, including its public service functions or other authorized activities;
b) refusal to vacate a building, street, sidewalk, driveway, or other facility when directed to do so by any properly identified Institute faculty, administration, or staff personnel while these persons are acting in the performance of their duties;

c) lewd, indecent, or obscene conduct or expression;

d) failure to comply with instructions or directions of any properly identified faculty, administration, or staff personnel while these persons are acting in the performance of their duties.

4. Drug abuse, including the use or possession (without valid medical or dental prescriptions), manufacture, furnishing, sale, or any distribution of any narcotic or dangerous drug controlled by law; this provision is not intended to regulate alcoholic beverages, which are covered in item 1.

5. Unauthorized use of college facilities including:

a) unauthorized entry into any Institute building, office, or other facility or remaining in any building after normal closing hours;

b) unauthorized use of any Institute telephone facility or of any other Institute facilities;

c) possessing, making, or causing to be made any key for any Institute facility without proper authorization;

d) unauthorized use of another student or faculty member’s password to gain access to the computer or computer output. This includes but is not limited to any knowing and willing use of fraudulent means to process computer programs and access computer files.

6. Furnishing false information to any Institute official or offering false statement in any Institute disciplinary hearing.

7. Forgery, alteration, or misuse of any Institute document, record, or identification.

8. Any hazing action that tends to cause or allow physical or mental suffering in connection with rites or ceremonies of induction, initiation, or orientation into Institute life or into the life of any Institute group or organization.

9. Safety violations, including:

a) intentional false reporting of a fire or that any explosive device has been placed on Institute property;

b) tampering with fire-fighting equipment, safety devices, or other emergency or safety equipment;

c) setting an unauthorized fire;

d) possession of unauthorized fireworks, firearms, ammunition, or dangerous weapons or materials;

e) unauthorized sale, possession, furnishing, or use of any incendiary device or bomb;

f) use of smoking tobacco, in any form, in facilities or areas posted with “No Smoking” signs or where smoking has been prohibited by any faculty member or other official.

10. Theft and/or unauthorized possession of Institute property or property of a member of the Institute community or campus visitor.

11. Malicious or unauthorized damage or destruction to Institute property or property belonging to any member of the Institute community or campus visitor.

12. Violation of rules governing residence in Institute-owned or controlled property such as dormitories, family housing, fraternities, sororities, and organization housing.

13. Playing of games of skill or chance for money or other items of value.

14. Failure to remit, return, or submit financial obligations, property, or records of the Institute within the time prescribed by the Institute.

15. Knowingly acting in concert with any other person to perform an unlawful act or to violate an Institute regulation or policy.

17. Violation of the Regents’ Statement on Disruptive Behavior, the full text of which is given in section XIX.

18. Repeated violations of the published Rules and Regulations of the Institute, which cumulatively indicate an unwillingness or inability to conform to the Institute standards for student life.

19. Violation of the conduct code, wherever it may occur; violation of the laws of any city, county, state, or the United States, where the violation creates a clear and present danger of material interference with the normal or orderly processes of the Institute or its requirements of appropriate discipline.
XIX. Regents' Statement on Disruptive Behavior

The following is the policy of the Board of Regents regarding disruptive behavior in any institution of the University System. The rights, responsibilities, and prohibitions contained in this statement are incorporated as a part of these regulations.

The Board of Regents of the University System of Georgia reaffirms its policies to fully support freedom of expression by each member of the academic community and to preserve and protect the rights and freedom of its faculty members and students to engage in debate, discussion, peaceful and nondisruptive protests, and dissent. The following statement relates specifically to the problem described below. It does not change or in any way infringe upon the Board's existing policies and practices in support of freedom of expression and action. Rather, it is considered necessary to combat the ultimate effect of irresponsible disruptive and obstructive actions by students and faculty that tend to destroy academic freedom and the institutional structures through which it operates.

In recent years, a new and serious problem has appeared on many college and university campuses in the nation. Some students, faculty members, and others have on occasion engaged in demonstrations, sit-ins, and other activities that have clearly and deliberately interfered with the regular and orderly operation of the institution concerned. Typically, these actions have been the physical occupation of a building or campus area for a protracted period of time or the use or display of verbal or written obscenities involving indecent or disorderly conduct.

These actions have gone beyond all heretofore recognized bounds of meetings for discussion, persuasion, or even protest in that 1) acquiescence to demands of the demonstrators is the condition for dispersal and 2) the reasonable and written directions of institutional officials to disperse have been ignored. Such activities thus have become clearly recognizable as an action of force, operating outside all established channels on the campus, including that of intellectual debate and persuasion, which are at the very heart of education.

The Board of Regents is deeply concerned by this problem. Under the Constitution of the state of Georgia, under all applicable court rulings, and in keeping with the tradition of higher education in the United States, the Board is ultimately responsible for the orderly operation of the several institutions of the University System and the preservation of academic freedom in these institutions. The Board cannot and will not divest itself of this responsibility.

Of equal or even greater importance, such action of force as has been described previously destroys the very essence of higher education. This essence is found in the unhampered freedom to study, investigate, write, speak, and debate on any aspect or issue of life. This freedom, which reaches its full flowering on college and university campuses, is an essential part of American democracy, comparable to the jury system or the electoral process.

For these reasons and in order to respond directly and specifically to this new problem, the Board of Regents stipulates that any student, faculty member, administrator, or employee, acting individually or in concert with others, who clearly obstructs, disrupts, or attempts to obstruct or disrupt any teaching, research, administrative, disciplinary, public service activity, or any other activity authorized to be discharged or held on any campus of the University System of Georgia is considered by the Board to have committed an act of gross irresponsibility and shall be subject to disciplinary procedures, possibly resulting in dismissal or termination of employment.

The Board reaffirms its belief that all segments of the academic community are under a strong obligation and have a mutual responsibility to protect the campus community from disorderly, disruptive, or obstructive actions, which interfere with the academic pursuits of teaching, learning, and other campus activities.

The Board of Regents understands that this policy is consistent with resolutions adopted by the American Association of University Professors in April 1968, by the Association of American Colleges in January 1968, and by the executive committee of the Association for Higher Education in March 1968, condemning actions taken to disrupt the operations of institutions of higher education.

XX. Disciplinary Administration

A. Disciplinary Procedures

1. All acts of misconduct (excepting violations of motor vehicle regulations) on the part of students shall be reported to the dean of students,
who is designated the principal administrator to enforce Institute disciplinary measures as they pertain to student academic or nonacademic misconduct.

2. The dean of students shall investigate alleged acts of student misconduct. If the investigation indicates that further action is necessary, the dean of students shall notify the accused in writing. This written notification shall contain a statement of the nature of the alleged or suspected misconduct and state the sections of the conduct code the student is alleged to have violated.

3. The dean of students or the authorized representative will normally confer with the accused student and, at this conference, the student may admit or deny the alleged violation, the student may waive further hearing and appeal(s) in writing and request that the dean of students take appropriate action, or may request a hearing as specified in 4, 5, or 6 below.

4. Cases of academic misconduct will normally be referred to the Student Honor Committee, which shall hear and try cases involving academic misconduct on the part of any student.

5. Cases of serious nonacademic misconduct that may result in suspension or expulsion will normally be referred to the Graduate Judiciary or Undergraduate Judiciary Cabinet, which shall hear and try these cases. This does not preclude possible legal actions by appropriate law enforcement agencies in those cases of nonacademic misconduct in violation of federal, state, or local law.

6. If the case does not involve possible suspension or expulsion, the dean of students ordinarily shall make full disposition of the case except that he or she, at the request of the accused or for good cause, may refer any case of nonacademic misconduct to the Graduate Judiciary or Undergraduate Judiciary Cabinet.

7. Students accused of an act of academic misconduct or nonacademic misconduct are encouraged to notify their parents or guardian of the charges. Parents or guardian will, if requested, be granted a conference with the dean of students prior to the hearing.

8. An accused student will continue to attend classes and required Institute functions until the hearing is held and a decision is rendered. Exceptions to this will be made when the student's presence may create a clear and present danger of materially interfering with the Institute's normal operations or the requirements of appropriate Institute discipline. In such cases, the dean of students may impose temporary protective measures, including interim suspension, pending the hearing; such protective measures, if applied, will be without reasonably avoidable prejudice to the student.

B. Student Honor Committee

1. The Student Honor Committee shall consist of four members of the corps of instruction elected from the Academic Faculty and two undergraduate students with at least junior standing elected by the Undergraduate Student Council and one graduate student elected by the Graduate Student Senate. Student members must have good academic standing and must not be on disciplinary probation. The chairperson shall be elected annually by the committee from among the Academic Faculty members. The secretary shall be appointed by the chairperson.

2. The committee shall hear and try all cases referred to it involving alleged misconduct in academic matters on the part of students. The decision in the case shall be transmitted to the office or offices responsible for recording it, for notifying the student officially, and for implementing the action.

3. In its distributed minutes and in the annual report of its activities and findings, the committee shall preserve the anonymity of individuals by generalizing the issues involved and the actions taken.

C. Student Judiciary

1. The Graduate Judiciary shall consist of a graduate student chairperson and six graduate student justices. The graduate student justices and chairperson shall be currently enrolled, full-time graduate students in good academic standing and not on disciplinary probation. They are appointed by the graduate student body president and approved by the Graduate Student Senate. The Graduate Judiciary shall normally hear all cases of graduate student nonacademic misconduct in which there is the possibility of suspension or expulsion of the accused student.

2. The Undergraduate Judiciary Cabinet shall consist of an undergraduate student chairperson
and 10 undergraduate student justices. The undergraduate student justices and chairperson will be currently enrolled, full-time undergraduate students in good academic standing and not on disciplinary probation. They are appointed by the student body president and approved by the Undergraduate Student Council. The Undergraduate Judiciary Cabinet shall normally hear all cases of undergraduate student nonacademic misconduct in which there is a possibility of suspension or expulsion of the accused student.

D. Procedural Rights of the Accused
Students accused of an act of misconduct and summoned to a hearing before the Student Honor Committee, Graduate Judiciary, or Undergraduate Judiciary Cabinet have the right to:
1. be accompanied by an advisor of their choice;
2. remain silent with no inference of guilt drawn therefrom;
3. question the complainant;
4. present evidence in their behalf;
5. call pertinent witnesses in their behalf;
6. cross examine witnesses;
7. challenge and unseat as many as four student justices in Undergraduate Judiciary Cabinet hearings (the chairperson cannot be struck; a quorum of six student justices and the chairperson must remain);
8. appeal.

E. Hearing Procedures
1. The chairperson of the appropriate hearing body shall set the date, time, and place of the hearing, shall notify the members of the hearing body, and shall summon all principals in the case (defendants and witnesses).
2. The chairperson of the appropriate hearing body shall notify the accused student in writing at least three days in advance of the scheduled hearing. The written notification should, if reasonably possible, be hand delivered; if not reasonably possible, notification should be by registered mail to the student's local address. The written notification should specify
 a) the date, time, and place for the hearing;
 b) the nature of the alleged or suspected misconduct with which the student is accused, with sufficient particularity to ensure opportunity to prepare for the hearing; and
 c) names of witnesses scheduled to appear.
3. Decisions for the hearing body shall be by majority vote. A quorum for the Student Honor Committee shall consist of five members: three faculty members and two students. A quorum for the Undergraduate Judiciary Cabinet shall consist of the chairperson and six justices. A quorum for the Graduate Judiciary shall consist of the chairperson and four justices.
4. Members of the hearing body shall disqualify themselves if their personal involvement in the hearing is of such a nature as to prejudice the case.
5. The hearings of the Student Honor Committee, Graduate Judiciary, and Undergraduate Judiciary Cabinet shall ordinarily be closed except for the accused, the accused's advisor, and those directly involved; exceptions may be made at the discretion of the chairperson. The hearing body may exclude any person who may be reasonably expected to interfere materially with the hearing or who does interfere materially with the hearing. Hearing body deliberations are closed to all but the hearing body members.
6. The hearing body shall make a tape recording and/or summary transcription of the proceedings.
7. The hearing body shall provide a brief written summary of each case with recommendations for appropriate disciplinary action to the dean of students and to the student involved.
8. The dean of students will review the case and recommendations and implement disciplinary action.

F. Disciplinary Measures
For violations of Institute rules and regulations or for acts of student misconduct, academic or nonacademic, the following disciplinary measures may be taken. This list is not exhaustive and may be modified to meet particular circumstances in any case.
1. Expulsion — permanent severance of the student's relationship with the Institute.
2. Disciplinary suspension — temporary severance of the student's relationship with the Institute for a specific period of time, though not less than one term.
 A student expelled or suspended shall leave the campus and not visit the campus during the period of suspension or expulsion, except when on official school business. To violate this stipulation would adversely affect the student's chances for readmission.
3. Reprimand – an oral and/or written statement of disapproval issued to the student.
4. Restriction – exclusion from participation in social activities and loss of identification card privileges.
5. Disciplinary probation – notice to the student that any further major disciplinary violation may result in suspension or expulsion; may include setting of restrictions and/or issuing a reprimand. A student on disciplinary probation is not in good standing and may not participate in extracurricular activities.
6. Fines.
7. Restitution – reimbursement for damage to or misappropriation of property; this may take the form of appropriate service or other compensation.
8. Forced withdrawal – withdrawal from the academic course within which the offense occurred without credit for the course.
9. Change in grade – grade change for the course in which the offense occurred.

G. Appeal Procedures
1. If accused students or accusers are dissatisfied with the action taken by the dean of students, they may appeal the case in writing to the vice president of student affairs of Georgia Tech within five business days after the action about which there is a complaint. Such appeal shall recite all reasons for dissatisfaction with the previous decision.
2. The vice president of student affairs, within five business days, shall refer the appeal to the Student Grievance and Appeal Committee. This committee shall review all facts and circumstances connected with the case and within five class days shall make its findings and report thereon to the vice president of student affairs. After consideration of the committee’s report, the vice president of student affairs within five business days shall make a decision that will be final so far as the Institute is concerned.
3. The Student Grievance and Appeal Committee shall consist of three members of the corps of instruction elected from the Academic Senate and two students with at least junior standing elected jointly by the Student Council and the Graduate Senate. The chairperson shall be elected annually by the committee from among the elected Academic Senate members. The secretary shall be appointed by the chairperson.

4. The Board of Regents of the University System of Georgia is the final appellate authority for all cases involving students who have been suspended or expelled. Should aggrieved persons be dissatisfied with the decision of the vice president of student affairs, they may apply to the Board of Regents, without prejudice to their position, for a review of the decision. The application for review shall be submitted in writing to the executive secretary of the Board within a period of 20 days following the decision of the president. This application for review shall state the decision complained of and the redress desired. A review of the Board is not a matter of right but is within the sound discretion of the Board. If the application for review is granted, the Board, or a committee of the Board, shall investigate the matter thoroughly and render its decision thereon within 60 days from the filing date of the application for review or from the date of any hearing that may be held thereon. The decision of the Board shall be final and binding for all purposes.

XXI. Student Academic Grievance Procedures
The procedures set forth here are intended to provide students at the Georgia Institute of Technology a means for setting forth grievances relating to academic matters and grade disputes when the student believes that an instructor has acted unfairly or improperly in assignment of grades. It is not the intention of these procedures to provide a forum for questioning the judgment or grading policies of faculty.

A. Applicability of the Grievance Procedures
1. Subject Matter: These procedures apply to the review of grievances concerning academic matters and grade disputes.
2. Grievant: These procedures shall be the appellate procedures for students at the Georgia Institute of Technology. Students who have pursued a formal grievance procedure or who have pursued informally the resolution of a grievance in their own school, college, or unit and have had that appeal dismissed, may submit the grievance for review under these procedures.
B. Overview of Grievance Process
1. Informal resolution attempted at the school, department, or unit level.
2. Formal resolution sought at the school, department, or unit level.
3. Formal resolution sought at the Institute level: appeal reviewed and, if so determined, heard by the Student Grievance and Appeal Committee.

C. Steps in the Grievance Process
(to be followed in the order presented)
1. The student shall attempt to resolve the grievance with the individual faculty member, the department, or the unit involved.
2. If the grievance is not resolved in step C.1. and the student elects to continue the grievance process, the student may request a formal hearing setting forth in writing the complaint and the remedy sought at the school, college, or unit level. Upon receipt of such appeal, the unit director will acknowledge the appeal in writing within seven calendar days, and will expeditiously proceed to constitute an ad hoc appeal committee. The unit director will serve as a nonvoting member of the committee. In addition, the following four committee members will be selected:
 • One tenured faculty member from within the unit, selected by the unit director.
 • One member of the academic faculty, selected by the student. The student may elect not to select a faculty member; in that case, the committee will consist of three members.
 • One member from outside the unit, selected by the Student Grievance and Appeal Committee in consultation with the unit director.
 • One member of the academic faculty selected by the faculty member whose action is in question.

 This committee will proceed with due haste to examine the merits of the complaint and to render a decision within 30 days. During the proceedings, the student may present any and all evidence that the student deems necessary to support the complaint, except that the committee must agree that the evidence is in some way relevant. Such evidence may consist of documentation and/or testimony, within reason.

 Both complainant and respondent may be accompanied by advisors; the role of advisor must, however, be restricted to advice. Complainant and respondent must make their own cases before the committee.
 Following a hearing and a written decision at the school, college, or unit level, the grievance is presumed to be resolved unless the grievant appeals.
3. The grievant may appeal the decision that has been rendered by the school, college, or unit to the Student Grievance and Appeal Committee.
 a) If the Committee, or subset thereof appointed by the chairperson, rules that the procedures are not applicable or that based on the facts stated by the grievant viewed in the light most favorable to the grievant, there is no basis for relief, then the appeal is denied.
 b) If the Committee rules that the Institute procedural rules are applicable and that a hearing of the appeal is warranted, the Committee shall initiate a hearing process.
 c) If a student wishes to have a grievance outcome reviewed by the Student Grievance and Appeal Committee with a view to a formal hearing, the student shall observe the following requirements:
 c)1 The appeal must be in writing. It must state the basis for the grievance and the facts that support it, including a summary of the steps that have already been taken to resolve the grievance, reasons why the student finds the resolutions unfair or unsatisfactory, and a statement of the desired remedy.
 c)2 The written appeal must be presented to the chairperson of the Student Grievance and Appeal Committee within 30 days after the student has received notice of a decision from a school, college, or unit.
 c)3 The decision as to whether a formal hearing is warranted shall be made available, in writing, to the parties concerned within 30 days after the Committee has received notice of appeal.
 c)4 The Committee may alter a deadline specified in these procedures on written timely petition of either party showing a meritorious reason for delay; if the
Committee itself needs to extend a deadline, it may do so on its own authority for periods up to 14 calendar days; for longer delays, the Committee must request an extension from the Executive Board of the Institute.

c)5 The determination of the Committee as to whether a hearing is warranted is final.

c)6 The Committee shall develop and, with the approval of the Academic Senate, establish and publish its own rules of procedure for the conduct of formal hearings.

c)7 After receiving testimony and the relevant documents, the Committee shall make a decision within 30 days on the basis of the received material.

c)8 The Committee's decision shall contain finding of fact, the decision arrived at, reasons for the decision, and the criteria or policy applied in reaching the decision.

D. Remedies

1. General: If the Committee finds, after a formal hearing, that a faculty member, a departmental committee, or an administrator of a unit has not acted fairly or properly, it will recommend a remedy. It will seek to find a remedy that can be implemented by those whose cooperation is needed. In the matter of a grade dispute, this must include the faculty member involved in the dispute.

2. Enforcement

a) If any party does not comply with the decision of the Committee, the Committee shall, upon request of any party, seek full compliance through the administrative offices of the Institute through the chief academic officer (CAO).

b) The merits of the dispute shall not be subject to review in the process of enforcement. There shall be strong presumption in favor of the remedy selected by the Committee.

3. Report of a Final Decision: After a final decision has been made in a case, the Committee shall prepare a report setting forth its findings and recommendations for action and present the report to the CAO. A copy of the report shall be presented to the parties concerned and to those persons involved in implementing the Committee's recommendations. All such communications shall be effected in person or by certified mail with a return receipt requested; such receipt will become part of the Institute records of the case.

Grade Changes: In decisions that would result in the changing of a posted grade, the CAO will instruct the unit director to ask the involved faculty member to effect the prescribed grade change, or, if cooperation is not forthcoming, to effect the grade change directly by action of the unit director. Such action shall not be construed as restrictive of the recourses of the faculty member through the usual appeal procedure of the Institute.

Care will be given that no incomplete or inaccurate information pertaining to the grievance is placed in any file; and that all evidence obtained at any stage of the process and all deliberations and proceedings be kept confidential. At the conclusion of each case, the Student Grievance and Appeal Committee shall transmit original or true copies of documents related to the case to the appropriate office of the vice president of student affairs, who shall keep such records securely as Institute records for a period of time specified by Institute statutes.

4. Final Appeal: Appeal of the decision of the Committee to the CAO shall be permitted only for the purposes of procedural review. Such appeal shall be submitted in writing, with copies to the Committee. The CAO will review the findings of the Committee, and, upon judgment that the Committee has failed to follow these procedures or has failed to follow the procedures approved by the Academic Senate for the operation of the Student Grievance and Appeal Committee (XXI.C.3.c.c6), return the case to the Committee for reconsideration, along with description of the perceived error in procedure and a recommendation for its correction.

XXII. Exceptions

Where appeals are not otherwise specified, exceptions to these regulations may be made by the appropriate faculty committee upon petition by the student and recommendation of the student's school or department. Blanket exceptions that have the effect of amending these regulations shall be referred to the Academic Senate for approval.
XXIII. Student Bill of Rights

1. The right to attend classes during their regularly scheduled time without deviation from such time and without penalty if the student cannot attend instructional hours not institutionally scheduled.

2. The right to consult with an assigned advisor for a reasonable amount of time each term.

3. The right to transfer core curriculum within the University System.

4. The right to consult with faculty outside the classroom time during regularly scheduled office hours or by appointment.

5. The right to reasonable access to campus facilities of which use is required to complete course assignments and objectives.

6. The right to receive each term for each course, a syllabus that outlines course objectives and requirements and to be informed of any changes in these syllabi at the beginning of each term.

7. The right of timely review of lecture and/or reading material before a major examination is administered.

8. The right of each student to receive access to any of his/her records kept by the institution.

9. The right to reasonable access to grading instruments and/or evaluation materials.

10. The right to be informed of the grade appeals process.

Note: “Rules and Regulations” are subject to change. The most recent version is available at www.registrar.gatech.edu.
University System Administration

Board of Regents
The Georgia Institute of Technology is one of the educational institutions constituting the University System of Georgia. The University System is governed by a 16-member Board of Regents, the members of which are appointed to seven-year terms by the governor of Georgia. The members of the Board of Regents are listed below.

Joel O. Wooten, Columbus State-at-Large
Hilton H. Howell Jr., Atlanta State-at-Large, Vice Chair, July 1, 2000 - June 30, 2001
Hugh A. Carter Jr., Atlanta State-at-Large
Charles H. Jones, Macon State-at-Large
Donald M. Leebern Jr., Atlanta State-at-Large
Martin W. NeSmith, Claxton First District
John Hunt, Tifton Second District
James D. Yancey, Columbus Third District
Juanita P. Baranco, Morrow Fourth District
Erlridge W. McMillan, Atlanta Fifth District
Kenneth W. Cannestra, Atlanta Sixth District
Joe Frank Harris, Cartersville Seventh District
Connie Cater, Macon Eighth District
Edgar L. Jenkins, Jasper Ninth District
J. Timothy Shelnut, Augusta Tenth District
Glenn S. White, Lawrenceville Eleventh District, Chairman, July 1, 2000 - June 30, 2001

Chancellor of the University System and the Administrative Staff
Chancellor Stephen R. Portch is the chief administrative officer of the University System and the chief executive officer of the Board of Regents. Members of the chancellor's administrative staff are the following:

- Gail S. Weber, secretary to the Board/executive administrative assistant
- Shelley Clark Nickel, special assistant to the chancellor

Office of Academic and Fiscal Affairs
- Daniel S. Papp, senior vice chancellor, academic and fiscal affairs
- David M. Morgan, deputy senior vice chancellor
- William R. Bowes, interim vice chancellor, fiscal affairs/treasurer
- Randall A. Thursby, vice chancellor/CIO, information and instructional technology
- Barry A. Fullerton, associate vice chancellor, student services
- Cathie M. Hudson, associate vice chancellor, planning and policy analysis
- John T. Wolfe Jr., associate vice chancellor, faculty affairs
- Kris Biesinger, assistant vice chancellor, advanced learning technologies
- Beth Brigdon, assistant vice chancellor, enterprise systems and services
- Kathleen Burk, assistant vice chancellor and director, Regents' Testing
- Jan Kettlewell, assistant vice chancellor and co-facilitator, P-16 initiative
- Joseph J. Szutz, assistant vice chancellor, planning
- Jayne Williams, assistant vice chancellor, library and customer services
- Merryl Penson, executive director, library services
- Jacqueline R. Michael, director, pre-collegiate programs
- Usha Ramachandran, interim budget director
- Albertine Walker-Marshall, director, faculty information systems
- Debra Wike, interim director, business services
- Robert Elmore, assistant director, business services

Office of External Activities and Facilities
- Thomas E. Daniel, interim senior vice chancellor, external activities and facilities
- William K. Chatham, vice chancellor, facilities
Institutional Administration

- Annie Hunt Burriss, assistant vice chancellor, development and economic services
- Linda M. Daniels, assistant vice chancellor, design and construction
- Peter J. Hickey, assistant vice chancellor, facilities
- Arlethia Perry-Johnson, assistant vice chancellor, media and publications
- Márk Demyanek, director, environmental safety
- Gita Hendessi, director, facilities planning
- John Millsaps, director, communications/marketing
- Diane Payne, director, publications

Office of Support Services
- Corlis Cummings, interim senior vice chancellor, support services
- Elizabeth E. Neely, associate vice chancellor, legal affairs
- William H. Wallace Jr., associate vice chancellor, human resources
- Robyn Crittenden, assistant vice chancellor, contracts and transactions
- J. Burns Newsome, assistant vice chancellor, prevention
- Ron Stark, assistant vice chancellor for internal audit
- Sherea Timmons, interim director, human resources

The University System of Georgia
Since 1932, all state-operated institutions of higher education in Georgia, including the Georgia Institute of Technology, have sought to accomplish their goals of instruction, public service, and research through their affiliation with the University System of Georgia. Governed by the 16-member constitutional Board of Regents under the administration of the chancellor, the 4 universities, 2 regional universities, 13 state universities, 2 state colleges, and 13 2-year colleges that compose the System retain a high degree of autonomy while cooperating with member institutions within the structure of Board policy. In addition to the formulation and administration of policy, the Board of Regents is responsible for requesting appropriations from the Georgia legislature and for allocating these funds to member institutions.

To provide students in Georgia with quality instruction leading to a variety of degrees, the Board of Regents establishes minimum academic standards, granting to each member institution the prerogative of establishing higher standards. Besides providing a foundation for sound instruction, the Board encourages public service and continuing education programs, including lectures, conferences, short courses, advisory services, extension courses, and teacher education consortiums. The Board also encourages research related to the educational objectives of the institutions and originating in societal need. Appointed by the governor and confirmed by the Georgia Senate, the members of the Board of Regents—five from the state at large and one from each of the state’s 11 congressional districts—serve for seven-year terms; the chancellor, who is not a member of the Board, is chief executive and administrative officer for the Board and the University System. Each institution has as its executive head a president, whose selection is recommended by the chancellor and approved by the Board.

Member Institutions

Research Universities
Atlanta 30332
- Georgia Institute of Technology
Athens 30602
- University of Georgia
Atlanta 30303
- Georgia State University
Augusta 30912
- Medical College of Georgia

Regional Universities
Statesboro 30460
- Georgia Southern University
Valdosta 31698
- Valdosta State University

State Universities
Albany 31705
- Albany State University
Americus 31709
- Georgia Southwestern State University
Augusta 30904
- Augusta State University
Carrollton 31018
- State University of West Georgia
Columbus 31907
- Columbus State University
Dahlonega 30597
 North Georgia College and State University
Fort Valley 31030
 Fort Valley State University
Kennesaw 30144
 Kennesaw State University
Marietta 30060
 Southern Polytechnic State University
Milledgeville 31061
 Georgia College and State University
Morrow 30260
 Clayton College and State University
Savannah 31419
 Armstrong Atlantic State University
Savannah 31404
 Savannah State University

State Colleges
Dalton 30720
 Dalton State College
Macon 31206
 Macon State College

Two-year Colleges
Albany 31707
 Darton College
Atlanta 30310
 Atlanta Metropolitan College
Bainbridge 31717
 Bainbridge College
Barnesville 30204
 Gordon College
Brunswick 31520
 Coastal Georgia Community College
Cochran 31014
 Middle Georgia College
Decatur 30034
 Georgia Perimeter College
Douglas 31533
 South Georgia College
Gainesville 30503
 Gainesville College
Rome 30162
 Floyd College
Swainsboro 30401
 East Georgia College
Tifton 31794
 Abraham Baldwin Agricultural College
Waycross 31503
 Waycross College

Board of Regents
University System of Georgia
270 Washington Street S.W.
Atlanta, Georgia 30334
404.656.6050

Georgia Tech Administration

President
G. Wayne Clough, Ph.D., president
Mark J.T. Smith, Ph.D., executive assistant to the president
Andrea Ashmore, B.A., special assistant to the president; institute partnerships
Andrew J. Harris Jr., M.P.A., special assistant to the president; director, government relations
Robert T. Harty, M.A., executive director, institute communications and public affairs

Provost
Michael E. Thomas, Ph.D., provost and vice president for academic affairs

Administration and Finance
Robert K. Thompson, M.B.A., senior vice president, administration and finance
Rob Clark, B.S., director, internal auditing
Chuck Donbaugh, B.A., associate vice president for human resources
Joel E. Hercik, M.B.A., associate vice president for financial services
Hal Irvin, Ph.D., director, organizational development
Rosalind Meyers, C.P.A., M.B.A., associate vice president for auxiliary services
Randy A. Nordin, J.D., chief legal advisor, legal affairs
Charles Rhode, M.S., associate vice president for facilities
Steve Swant, M.A., associate vice president for budget and planning
Gordon Wishon, M.S., associate vice president/associate vice provost for information technology
Advanced Technology Development Center
H. Wayne Hodges, B.A., director
Jerry T. Wilson, M.S., associate director, Middle
Georgia Technology Development Center

Auxiliary Services
Rosalind R. Meyers, C.P.A., M.B.A., associate vice president for auxiliary services
Michael Black, B.S., director, housing
E. Glenn Boyett, director, information technology for auxiliary services
Barbara Hanschke, M.B.A., director of finance for auxiliary services
Andrea Hoffer, M.S., acting director, Robert Ferst Center for the Arts
Vern Johnson, B.S., director, campus dining services
James A. Pete, M.B.A., director, Buzzcard center
Gerald Ritchie, B.A., director, bookstore
Cindy Smith, M.D., director, student health center
Richard Steele, B.Ch.E., director, student center
Rodney Weis, M.B.A., director, parking and transportation

College of Architecture
Thomas D. Galloway, Ph.D., dean
Thomas N. Debo, P.E., Ph.D., associate dean

College of Computing
Peter A. Freeman, Ph.D., dean and professor
Kurt Eiselt, Ph.D., associate dean
Ellen Witte Zegura, Ph.D., assistant dean, space and planning
Tom Pilsch, M.S., assistant dean, continuing education
Eric Trevena, B.S., director, administration
David Leonard, B.S., director, computer and network services
Mary Alice Isele, B.A., director, external affairs
Allison Elliott Tew, M.S., director, student services

College of Engineering
Jean-Lou Chameau, Ph.D., dean
April S. Brown, Ph.D., associate dean
J. Narl Davidson, Ph.D., associate dean
Jack R. Lohmann, Ph.D., associate dean
Lydia R. Howard, Ed.D., associate dean
Jane G. Weyant, Ph.D., assistant dean
R. Dale Atkins, M.S., director, continuing engineering education
Robert G. Haley, M.S., director, special projects
Raymond Reynolds, M.B.A., director, development

College of Sciences
Gary B. Schuster, Ph.D., dean
Anderson D. Smith, Ph.D., associate dean
E. Kent Barefield, Ph.D., associate dean
Blythe A. Keller, B.A., director, development
Patricia Ledon, director, finance
Gerald E. O'Brien, director, facilities

Cooperative Division
Thomas M. Akins, M.B.A., director
Robert W. James, M.A., associate director
Harold B. Simmons, M.B.A., M.A., associate director
Lisa Depew, M.Ed., coordinator
Sabrina T. Hall, M.A., coordinator
Kenneth A. Little, M.B.A., coordinator
Tina L. Payne, B.S., coordinator
Debbie Pearson, M.S., coordinator
Wayne O. Thompson, M.A., coordinator

Development
Barrett H. Carson, M.A., vice president, development
Marta H. Garcia, B.A., assistant vice president, development
Patrick J. McKenna, LL.M., assistant vice president, development

Distance Learning, Continuing Education, and Outreach
Joseph S. DiGregorio, Ph.D., vice provost
Joseph S. Boland, Ph.D., director, distance learning
Diana L. Turner, director, continuing education
Charles Windish, Ph.D., director, language institute

DuPree College of Management
Terry C. Blum, Ph.D., dean and Tedd Munchak Professor
Nate Bennett, Ph.D., associate dean
Peter Vantine, M.B.A., director, executive and professional programs
Yvette McDonald, B.A., director, undergraduate programs
Ann Johnston Scott, M.B.A., director, M.S.M. program
Mary McRee, M.S., director, M.S.M. career services
Lee Suddath, M.P.A., special assistant to the dean
Hope Wilson, M.A., director, communications
Dennis Saylor, M.B.A., director, administration and finance
Dennis Nagao, Ph.D., faculty director of EMSMOT, faculty director for information technology

Enrollment Services
Barbara Hall, B.A., associate vice president for enrollment services
Marla Jo McIver, B.S., registrar
Debbie S. Williamson, B.A., associate registrar
Candace C. Carson, B.S., assistant registrar
Deborah Smith, M.Ed., director, undergraduate admission
Ingrid Hayes, B.A., associate director, undergraduate admission
T. Jerry McTier, M.Ed., director, student financial planning and services
Marie Mons, B.B.A., associate director, student financial planning and services
Paul D. Hurst, M.S., director, special programs

Facilities
Charles Rhode, M.S., associate vice president for facilities
Edward Guida, M.S., director, environmental health and safety
Warren Page, M.E., director, operations and maintenance
Mike Patterson, B.A., director, design and construction
Jack Vickery, M.P.A., chief, campus police

Georgia Tech Alumni Association
Joseph P. Irwin, B.S., vice president and executive director
Leonard Contardo, B.A., assistant executive director, career development
Vallee Donovan, B.S., director, event management

John Dunn, B.A., assistant executive director, communications
George Griffin, B.S., assistant executive director, alumni relations
Allison Hickman, B.S., C.P.A., assistant executive director, administration
Rena Moyers, M.B.A., assistant executive director, marketing services
Lisa Nickel, M.A., assistant executive director, campus relations
James Shea, B.S., assistant executive director, annual giving

Georgia Tech Athletic Association
David T. Braine, M.A.T., director of athletics
Jooleen Akin, M.S., director, marketing and promotions
Sterling Brown, M.Ed., senior associate director of athletics
Don Lowe, M.A., director, sports medicine
Mary McElroy, M.S.M., assistant director of athletics, compliance
Carole E. Moore, Ph.D., director, academic services
Larry New, B.A., director, Homer Rice Center for Sports Performance
Kathy Noble, M.A., senior associate director of athletics
Steve Orsini, B.A., senior associate director of athletics
Lucius Sanford, B.A., director, student-athlete development
Mollie Simmons-Mayfield, B.A., assistant director of athletics, business
Mike Stamus, B.A., director, communications
Jack Thompson, B.A., senior associate director of athletics

Georgia Tech Research Corporation
Jilda Diehl Garton, M.S., associate vice provost and general manager
Barbara J. Alexander, M.B.A., director, accounting and reports
Nicolas F. Perez, M.B.A., director, operations and services
Barry Rosenberg, B.A., director, technology licensing
Georgia Tech Research Institute
Edward K. Reedy, Ph.D., vice president and director
Charles E. Brown, M.S., director, business operations
Evan Chastain, M.S., director, institute services
James W. Cofer, M.S., director, business development
Major Gen. George B. Harrison, U.S.A.F. (ret.), director, research operations
Janice P. Rogers, director, administration

Information Technology
Gordon Wishon, associate vice president and associate vice provost, information technology
John Mullin, executive director for information technology and director, operations and engineering
Herb Baines, director, information security
Michael Brandon, director, planning and programs
Linda Cabot, director, customer support
Jim Consuegra, interim director, educational technologies
Ron Hutchins, director, engineering
Jim O'Connor, director, enterprise information systems
Barbara Roper, director, resource management
Susan Paraska, assistant to associate vice president and associate vice provost, information technology

Interdisciplinary Programs/Research Centers
Thomas Bevan, director, Center for Emergency Response Technology, Instruction, and Policy (GTRI)
Samuel Blankenship, director, Space Technology Advanced Research Center (GTRI), and director, Test and Evaluation Research and Education Center (GTRI)
Terry Blum, director, DuPree Center for Entrepreneurship and New Venture Development (DuPree College of Management)
Jay David Bolter, director, Center for New Media Education and Research (Ivan Allen College)
Carol Carmichael, director, Institute for Sustainable Technology and Development (Office of the Vice Provost for Research and Dean of Graduate Studies)
Mark Clements, executive director, Interactive Media Technology Center/Biomedical Interactive Technology Center (Office of the Vice Provost for Research and Dean of Graduate Studies)
David S. Clifton Jr., general manager, Center for International Standards and Quality (EDI)
Jonathan Colton Jr., co-director, Center for Polymer Processing (College of Engineering)
Cheryl K. Contant, interim director, Center for Quality Growth and Regional Development (College of Architecture)
Larry Corey, director, Center for International Development and Cooperation (GTRI)
Steven Danyluk, director, Manufacturing Research Center (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)
Anindya Datta, director, iXL Center for Electronic Commerce (DuPree College of Management)
Joel R. Duke, director, Center for Economic Development Services (EDI)
Charles Eckert, director, Specialty Separations Center (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)
John E. Endicott, director, Center for International Strategy, Technology, and Policy (Ivan Allen College)
Charles France, director, Economic Development Administration's University Center (EDI)
Peter A. Freeman, interim director, Georgia Tech Information Security Center (College of Computing)
Steven French, director, Center for Geographic Information Systems (College of Architecture and GTRI)
Aris Georgakakos, director, Georgia Water Resources Institute (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)
Leonid Germanovich, co-director, Center for Applied Geomaterials Research (College of Engineering)
Soumen Ghosh, director, Center for Quality and Change Leadership (DuPree College of Management)
Barry Goodno, director, Mid-America Earthquake Center (College of Engineering)

Thomas Graver, director, Rapid Prototyping and Manufacturing Institute (College of Engineering)

Robert J. Gregor, director, Center for Human Movement Studies (Office of the Vice Provost for Research and Dean of Graduate Studies)

Gene Greneker, director, Severe Storms Research Center (GTRI)

Nolan Hertel, director, Nuclear Research Center (College of Engineering)

H. Wayne Hodges, director, Advanced Technology Development Center (EDI)

Nikil S. Jayant, director, Georgia Tech Wireless Institute (College of Engineering), and director, Georgia Center for Advanced Telecommunications Technology (Office of the Vice Provost for Research and Dean of Graduate Studies)

Steven W. Johnson, director, Composites Education and Research Center (College of Engineering)

Bernd Kahn, director, Environmental Resources Center (Office of the Vice Provost for Research and Dean of Graduate Studies)

Lawrence E. Kahn, director, Computer Aided Structural Engineering Center (College of Engineering)

Roozbeh Kangari, co-director, Construction Research Center (College of Architecture)

Joseph A. Koncelik, interim director, Advanced Wood Products Laboratory (College of Architecture), and director, Center for Rehabilitation Technology (College of Architecture)

Uzi Landman, director, Center for Computational Materials Science (College of Sciences)

Paul Lewis, director, Southeastern Trade Adjustment Assistance Center (EDI)

Charles L. Liotta, vice provost for Research and Dean of Graduate Studies

William Long, interim director, European Union Center (Ivan Allen College)

Sheldon W. May, director, Bioscience Center (Office of the Vice Provost for Research and Dean of Graduate Studies)

John McIntyre, director, Center for International Business Education and Research (DuPree College of Management)

David L. McDowell, director, Mechanical Properties Research Laboratory (College of Engineering)

William Meffert, director, Industrial Assessment Center (EDI)

James D. Meindl, director, Microelectronics Research Center (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)

Konstantin Mischaikow, director, Center for Dynamical Systems and Nonlinear Studies (College of Sciences)

John D. Muzzy, co-director, Center for Polymer Processing (College of Engineering)

John M. Myers, director, Center for Public Buildings (EDI)

Justin A. Myrick, director, Health Systems Research Center (College of Engineering)

Robert Nerem, director, Center for the Engineering of Living Tissues (College of Engineering), and director, Parker H. Petit Institute for Bioengineering and Bioscience (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)

Gregory Nobles, director, Southern Industrialization Center (Ivan Allen College)

Paul A. Ohme, director, Center for Education Integrating Science, Mathematics, and Computing (College of Sciences)

Zack Osborne, director, Georgia Tech Procurement Assistance Center (EDI)

Krishna Palem, director, Center for Research in Embedded Systems and Technology (College of Engineering)

Michael W. Parks, director, Center for Manufacturing Information Technology (EDI)

John Peifer, research director, Biomedical Interactive Technology Center (Office of the Vice Provost for Research and Dean of Graduate Studies)

Alan L. Porter, co-director, Technology Policy and Assessment Center (College of Engineering and Ivan Allen College)

William E. Price, co-research director, Interactive Media Technology Center (Office of the Vice Provost for Research and Dean of Graduate Studies)
Hans B. Puttgen, director, National Electric Energy Testing, Research, and Application Center (College of Engineering)
Andy Quay, co-research director, Interactive Media Technology Center (Office of the Vice Provost for Research and Dean of Graduate Studies)
H. Donald Ratliff, director, The Logistics Institute (College of Engineering)
William S. Rees Jr., director, Molecular Design Institute (College of Engineering and College of Sciences)
William T. Rhodes, director, Center GTL-CRNS Telecom (College of Engineering), and director, Center for Optical Science and Engineering (Office of the Vice Provost for Research and Dean of Graduate Studies)
Glenn Rix, director, Georgia Transportation Institute (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)
J. David Roessner, co-director, Technology Policy, and Assessment Center (College of Engineering and Ivan Allen College)
Ajeet Rohatgi, director, University Center of Excellence for Photovoltaics Research (College of Engineering)
Jarek Rossignac, director, Graphics, Visualization, and Usability Center (College of Computing)
Armistead (Ted) Russell, director, Air Resources and Engineering Center (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)
J. Carlos Santamarina, co-director, Center for Applied Geomaterials Research (College of Engineering)
Ronald W. Schafer, director, Center for Signal and Image Processing (College of Engineering)
Daniel P. Schrage, director, Center of Excellence in Rotorcraft Technology (College of Engineering)
Richard Serfozo, director, Center for Applied Probability (College of Engineering)
Weston M. Stacey Jr., director, Fusion Research Center (College of Engineering)
Chris Summers, director, Phosphor Technology Center of Excellence (College of Engineering and GTRI)
Amyn S. Teja, director, Fluid Properties Research Institute (College of Engineering)
Wayne C. Tincher, site director, National Textile Center (College of Engineering)
Gary S. Tjaden, director, Center for Enterprise Systems (GTRI)
Rao Tummala, director, Packaging Research Center (College of Engineering)
Jorge A. Vanegas, co-director, Construction Research Center (College of Architecture)
Zhong Li Wang, director, Center for Nanoscience and Nanotechnology (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)
Loren Williams, director, GTI/MCG Biomedical Research and Education Program (Office of the Vice Provost for Research and Dean of Graduate Studies)
Ajit Yoganathan, director, Bioengineering Research Center (Office of the Vice Provost for Research and Dean of Graduate Studies), and director, Georgia Tech/Emory Biomedical Technology Research Center (Office of the Vice Provost for Research and Dean of Graduate Studies)
Vacant, director, Polymer Education and Research Center (College of Engineering and Office of the Vice Provost for Research and Dean of Graduate Studies)

Ivan Allen College
Sue V. Rosser, Ph.D., dean
Richard P. Barke, Ph.D., associate dean
Kenneth J. Knoespel, Ph.D., associate dean
James A. Brannen, B.A., director, administration and finance

Libraries
Richard W. Meyer, M.A., M.S., dean and director

OMED: Educational Services
S. Gordon Moore Jr., managing partner/director
Jacqueline Cox, associate partner, programs office
Robert Hume, partner, data compilation/analysis
Mona Meddin, Ph.D., partner, instructional innovation
Letitia Nyandwi, *associate partner*, budgets/finance
Cedric Stallworth, *partner*, process control
Frank Stanley, *associate partner*, assessment/projects

Registrar
See “Enrollment Services”

Research and Graduate Programs
Charles L. Liotta, Ph.D., *vice provost* for research and dean of graduate studies
Maureen Kilroy, M.S., *assistant dean*, graduate studies and research
Keith Oden, M.S., *director*, graduate co-op and fellowship programs
Gail W. Potts, B.S., *manager*, graduate academic and enrollment services

Sponsored Programs
Jilda Diehl Garton, M.S., *associate vice provost* for research and general manager, GTRC and GTARC
G. Duane Hutchison, M.B.A., *director*, sponsored programs
Robert D. Simpkins, B.S., *manager*, contract administration

Full-time Academic Faculty and Administrators

As of February 1, 2001

After each name, the highest earned degree and its source are listed. The academic rank is followed by the individual’s major assignment. Professional registration is indicated with the state(s) of registration as follows: P.E. = Professional Engineer; L.S. = Land Surveyor; R.A. = Registered Architect; L.A. = Landscape Architect; and P.G. = Professional Geologist.

Gregory B. Abbott, M.F.A
University of Georgia
Instructor, Literature, Communication, and Culture

Said I. Abdel-Khalik, Ph.D.
University of Wisconsin
Southern Nuclear Distinguished Professor and Professor, Nuclear Engineering and Health Physics

Agaram S. Abhiraman, Ph.D.
North Carolina State University
Director, Polymer Education and Research Center and Professor, Chemical Engineering

Randal T. Abler, Ph.D.
Georgia Institute of Technology
Assistant Professor, Regional Engineering Program

Gregory Abowd, Ph.D.
University of Oxford
Associate Professor, College of Computing

Phillip L. Ackerman, Ph.D.
University of Illinois
Professor, Psychology

Ali Adibi, Ph.D.
California Institute of Technology
Assistant Professor, Electrical and Computer Engineering

Philip Adler Jr., Ph.D.
Ohio State University
Professor, Management

Pradeep K. Agrawal, Ph.D.
University of Delaware
Associate Professor, Chemical Engineering

Mustaque Ahamad, Ph.D.
State University of New York - Stony Brook
Professor, College of Computing

Ian F. Akyildiz, Ph.D.
University Erlangen-Nuremberg
Byers Professor in Telecommunications, Electrical and Computer Engineering

Jay I. Alberts, Ph.D.
Arizona State University
Assistant Professor, Economics

Christos Alexopoulos, Ph.D.
University of North Carolina - Chapel Hill
Associate Professor, Industrial and Systems Engineering

Faiz A. Al-Khayyal, Ph.D.
George Washington University
Associate Professor, Industrial and Systems Engineering
Douglas C. Allen, M.L.A. R.L.A.
(Georgia, Kentucky)
Harvard University
Professor, Architecture Program,
College of Architecture

Mark G. Allen, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Electrical and
Computer Engineering

Michael Allen, Ph.D.
University of Pennsylvania
Assistant Professor, History,
Technology, and Society

Phillip E. Allen, Ph.D.
University of Kansas
Schlumberger Professor, Electrical and
Computer Engineering

Fred C. Allwine, D.B.A.
Indiana University - Bloomington
Professor, Management

Yucel Altunbasak, Ph.D.
University of Rochester
Assistant Professor, Electrical and
Computer Engineering

Adjo Amedkudzi, Ph.D.
Carnegie Mellon University
Assistant Professor, Civil and
Environmental Engineering

Appiah Amirtharajah, Ph.D.
P.E. (Montana)
Iowa State University
Professor, Civil and Environmental
Engineering

Mostafa H. Ammar, Ph.D.
University of Waterloo, Canada
Professor, College of Computing

Jane C. Ammons, Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Professor, Industrial and Systems
Engineering

David V. Anderson, Ph.D.
Georgia Institute of Technology
Assistant Professor, Electrical and
Computer Engineering

Sigrun Andradottir, Ph.D.
Stanford University
Associate Professor, Industrial and
Systems Engineering

Libero Andreotti, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Architecture
Program, College of Architecture

Alfred D. Andrew, Ph.D.
Stanford University
Professor, Mathematics

Mustafa M. Aral, Ph.D.
Georgia Institute of Technology
Professor, Civil and Environmental
Engineering

Ronald C. Arkin, Ph.D.
University of Massachusetts - Amherst
Professor, College of Computing

Erian A. Armanios, Ph.D.
Georgia Institute of Technology
Director, Georgia Space Grant
Consortium and Professor,
Aerospace Engineering

Chris Atkeson, Ph.D.
Massachusetts Institute of Technology
Associate Professor, College of
Computing

Godfried Augenbroe, M.S.
Delft University of Technology
Associate Professor, Architecture/
Doctoral Program, College of
Architecture

Philip Auslander, Ph.D.
Cornell University
Professor, Literature,
Communication, and Culture

Farrokh Ayazi, Ph.D.
University of Michigan
Assistant Professor, Electrical and
Computer Engineering

Hayriye Ayran, Ph.D.
Texas A&M University
Assistant Professor, Industrial and
Systems Engineering

Julia E. Babensee, Ph.D.
University of Toronto
Assistant Professor, Biomedical
Engineering

Albert N. Badre, Ph.D.
University of Michigan
Professor, College of Computing

Nelson C. Baker, Ph.D.
Carnegie Mellon University
Associate Chair, Information
Technology and Associate Professor,
Civil and Environmental Engineering

Charles A. Baldwin, Ph.D.
New York University
Instructor, Literature,
Communication, and Culture

Daniel F Baldwin, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Mechanical
Engineering

Gang Bao, Ph.D.
Lehigh University
Associate Professor, Biomedical
Engineering

E. Kent Barefield, Ph.D.
Ohio State University
Associate Dean, College of Sciences,
Professor, Chemistry and
Biochemistry

Richard P. Barke, Ph.D.
University of Rochester
Associate Dean, Ivan Allen College
and Associate Professor, Public
Policy

Earl R. Barnes, Ph.D.
University of Maryland
Professor, Industrial and Systems
Engineering

Thomas P. Barnwell III, Ph.D.
Massachusetts Institute of Technology
Professor, Electrical and Computer
Engineering

John R. Barry, Ph.D.
University of California - Berkeley
Associate Professor, Electrical and
Computer Engineering

John J. Bartholdi, Ph.D.
University of Florida
Manhattan Associates Chair and
Professor, Industrial and Systems
Engineering

Catherine Bass, M.A.
University of Illinois
Instructor, Modern Languages

Saugata Basu, Ph.D.
New York University
Assistant Professor, Mathematics

Olivier A. Bauchau, Ph.D.
Massachusetts Institute of Technology
Professor, Aerospace Engineering

Ronald H. Bayor, Ph.D.
University of Pennsylvania
Professor, History, Technology, and
Society
Administration, Faculty, and Staff

Haskell W. Beckham, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Textile and Fiber Engineering

Miroslav Begovic, Ph.D.
Virginia Polytechnic Institute and State University
Associate Professor, Electrical and Computer Engineering

Johan G. Belinfante, Ph.D.
Princeton University
Professor, Mathematics

Willie J. Belton Jr., Ph.D.
Pennsylvania State University
Associate Professor, Economics

Paul J. Benkezer, Ph.D.
University of Illinois
Associate Chair for Undergraduate Programs and Associate Professor, Biomedical Engineering

Nathan Bennett, Ph.D.
Georgia Institute of Technology
Associate Professor, Management

Michael Bergin, Ph.D.
Carnegie Mellon University
Assistant Professor, Civil and Environmental Engineering

Gregory S. Berns, Ph.D.
University of California - Davis
Assistant Professor, Biomedical Engineering

Robertta Berry, J.D.
University of Wisconsin - Madison
Associate Professor, Public Policy

Yves H. Berthelot, Ph.D.
University of Texas - Austin
Professor, Mechanical Engineering

Sue A. Bidstrup Allen, Ph.D.
University of Minnesota
Associate Professor, Chemical Engineering

Dorrit Billman, Ph.D.
University of Michigan
Associate Professor, Psychology

Vicki Birchfield, Ph.D.
University of Georgia
Assistant Professor, International Affairs

H.J. Biritz, Ph.D.
University of Vienna, Austria
Associate Chair and Professor, Physics

Barbara Blackbourn, Ph.D.
University of Wisconsin - Madison
Associate Professor, Modern Languages

Fredda Blanchard-Fields, Ph.D.
Wayne State University
Professor, Psychology

W.J. Blane Jr., M.S.
Georgia Institute of Technology
Assistant Professor, Building Construction Program, College of Architecture

Douglas M. Blough, Ph.D.
Johns Hopkins University
Professor, Electrical and Computer Engineering

Terry C. Blum, Ph.D.
Columbia University
Dean, Ted Munchak Chair in Entrepreneurship, and Professor, Management

Aaron Bobick, Ph.D.
Massachusetts Institute of Technology
Associate Professor, College of Computing

Jay D. Bolter, Ph.D.
University of North Carolina - Chapel Hill
James and Mary Wesley Chair in New Media and Professor, Literature, Communication, and Culture

Andreas Bommarius, Ph.D.
Massachusetts Institute of Technology
Professor, Chemical Engineering

Wayne J. Book, Ph.D.
Massachusetts Institute of Technology
HUSCO/Ramirez Chair in Fluid Power and Motion Control and Professor, Mechanical Engineering

Raymond E. Borkman, Ph.D.
University of California - Riverside
Professor, Chemistry and Biochemistry

Mark Borodovsky, Ph.D.
Moscow Institute of Physics and Technology
Professor, Biology

Thomas D. Boston, Ph.D.
Cornell University
Professor, Economics

Ann Bostrom, Ph.D.
Carnegie Mellon University
Associate Professor, Public Policy

Lawrence A. Bottomley, Ph.D.
University of Houston
Professor, Chemistry and Biochemistry

Kirk Bowman, Ph.D.
University of North Carolina - Chapel Hill
Assistant Professor, International Affairs

Barry Bozeman, Ph.D.
Ohio State University
Director and Professor, Public Policy

Linda P. Brady, Ph.D.
Ohio State University
Chair and Professor, International Affairs

Berdimus A. (Bert) Bras, Ph.D.
University of Houston
Associate Professor, Mechanical Engineering

Peter Brecke, Ph.D.
Massachusetts Institute of Technology
Associate Professor, International Affairs

Kevin F. Brennan, Ph.D.
University of Illinois
Byers Professor in Microelectronics, Electrical and Computer Engineering

Ron Broglio, Ph.D.
University of Florida
Instructor, Literature, Communication, and Culture

Martin A. Brooke, Ph.D.
University of Southern California
Associate Professor, Electrical and Computer Engineering

April S. Brown, Ph.D.
Cornell University
Associate Dean and Professor, Electrical and Computer Engineering

Richard F. Browner, Ph.D.
University of London
Regents’ Professor, Chemistry and Biochemistry

Amy S. Bruckman, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, College of Computing

John A. Buck, Ph.D.
University of California - Berkeley
Associate Professor, Electrical and Computer Engineering

397
Faculty

James Budd, M.V.A.
University of Alberta - Edmonton
Associate Professor, Industrial Design
Program, College of Architecture

Alice Bullard, Ph.D.
University of California - Berkeley
Assistant Professor, History, Technology, and Society

Leonid Bunimovich, Ph.D.
Moscow University
Regents' Professor, Mathematics

Thomas J. Burkholder, Ph.D.
University of California - San Diego
Assistant Professor, Economics

Melissa Burns, M.A.
University of Georgia
Instructor, Modern Languages

Robert J. Butera, Ph.D.
Rice University
Assistant Professor, Electrical and Computer Engineering

Lloyd L. Byars, Ph.D.
Georgia State University
Professor, Management

James J. Bynum Jr., Ph.D.
Emory University
Associate Professor, Literature, Communication, and Culture

George L. Cain Jr., Ph.D.
Georgia Institute of Technology
Professor, Mathematics

Anthony J. Calise, Ph.D.
University of Pennsylvania
Professor, Aerospace Engineering

William R. Calleen Jr., Ph.D.
P.E. (Georgia)
Stanford University
Associate Professor, Electrical and Computer Engineering

Eric A. Carlen, Ph.D.
Princeton University
Professor, Mathematics

Wallace W. Carr, Ph.D.
P.E. (Georgia, Virginia)
Georgia Institute of Technology
Associate Professor, Textile and Fiber Engineering

W. Brent Carter, Ph.D.
Georgia Institute of Technology
Associate Professor, Materials Science and Engineering

Glen R. Cass, Ph.D.
California Institute of Technology
Chair and Professor, Earth and Atmospheric Sciences and Civil and Environmental Engineering

Richard Catrambone, Ph.D.
University of Michigan
Associate Professor, Psychology

Matthew Causey, Ph.D.
Stanford University
Assistant Professor, Literature, Communication, and Culture

Nathaniel Chafee, Ph.D.
Brown University
Associate Professor, Mathematics

Rejesh Chakrabarti, Ph.D.
University of California - Los Angeles
Assistant Professor, Management

Goutam Challagalla, Ph.D.
University of Texas - Austin
Associate Professor, Management

Jean-Lou Chameides, Ph.D.
Yale University
Smithgall Chair in Atmospheric Sciences and Regents' Professor, Earth and Atmospheric Sciences

Yih-Long Chang, Ph.D.
University of Texas - Austin
Associate Professor, Management

Michael S. Chapman, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Physics

Abhijit Chatterjee, Ph.D.
University of Illinois - Urbana-Champaign
Associate Professor, Electrical and Computer Engineering

Victoria Chung-Ping Chen, Ph.D.
Cornell University
Assistant Professor, Industrial and Systems Engineering

Xu-Yan Chen, D.Sc.
Hiroshima University
Associate Professor, Mathematics

Ye-Hwa Chen, Ph.D.
University of California - Berkeley
Associate Professor, Mechanical Engineering

Yury Chernoff, Ph.D.
Leningrad State University
Assistant Professor, Biology

Ann Chervenak, Ph.D.
University of California - Berkeley
Assistant Professor, College of Computing

George Chimonas, Ph.D.
University of Sussex
Professor, Earth and Atmospheric Sciences

Paul Chinowsky, Ph.D.
Stanford University
Assistant Professor, Civil and Environmental Engineering

Jung H. Choi, Ph.D.
University of California - San Diego
Associate Professor, Biology

Mei-Yin Chou, Ph.D.
University of California - Berkeley
Professor, Physics

Shui-Nee Chow, Ph.D.
University of Maryland
Professor, Mathematics

Bryan K. Church, Ph.D.
University of Florida
Associate Professor, Management

Mihai Ciucu, Ph.D.
University of Michigan
Assistant Professor, Mathematics

Mark A. Clements, Sc.D.
Massachusetts Institute of Technology
Director, Interactive Media Technology Center, and Professor, Electrical and Computer Engineering

G. Wayne Clough, Ph.D.
University of California - Berkeley
President of the Institute and Professor, Civil and Environmental Engineering

Joe K. Cochran Jr., Ph.D.
Ohio State University
Professor, Materials Science and Engineering
Molly Cochran, Ph.D.
London School of Economics and Political Science
Assistant Professor, International Affairs

Carol A. Colatrella, Ph.D.
Rutgers University
Associate Professor, Literature, Communication, and Culture

David M. Collard, Ph.D.
University of Massachusetts
Associate Professor, Chemistry and Biochemistry

Chiquita Collins, Ph.D.
University of Michigan
Assistant Professor, History, Technology, and Society

Jonathan S. Colton, Ph.D.
Massachusetts Institute of Technology
Professor, Mechanical Engineering

Eugene E. Comiskey, Ph.D.
C.M.A., C.P.A.
Michigan State University
Fuller E. Callaway Professor, Management

J. Alvin Connelly, Ph.D.
University of Tennessee
Associate Chair and Professor, Electrical and Computer Engineering

Edward H. Conrad, Ph.D.
University of Wisconsin
Associate Professor, Physics

Cheryl K. Contant, Ph.D.
Stanford University
Professor, City Planning Program, College of Architecture

Fred L. Cook, Ph.D.
Georgia Institute of Technology
Chair and Professor, Textile and Fiber Engineering

John A. Copeland, Ph.D.
Georgia Institute of Technology
Director, Communications Systems Center, John H. Weinrau Technology Transfer Chair, and Professor, Electrical and Computer Engineering

Sandra Corse, Ph.D.
Georgia State University
Associate Professor, Literature, Communication, and Culture

Gregory M. Corso, Ph.D.
New Mexico State University
Associate Professor, Psychology

Bettina F. Cothran, Ph.D.
Wuppertal University
Associate Professor, Modern Languages

Nora Cottille-Foley, Ph.D.
Northwestern University
Assistant Professor, Modern Languages

Susan E. Cozzens, Ph.D.
Columbia University
Chair and Professor, Public Policy

Robert M. Craig, Ph.D.
Cornell University
Professor, Architecture Program, College of Architecture

T. Hugh Crawford, Ph.D.
Duke University
Associate Professor, Literature, Communication, and Culture

Kenneth A. Cuneafre, Ph.D.
P.E. (Texas)
Pennsylvania State University
Associate Professor, Mechanical Engineering

Derek M. Cunnold, Ph.D.
Cornell University
Professor, Earth and Atmospheric Sciences

Predrag Cvitanovic, Ph.D.
Cornell University
Glen Robinson Chair in Nonlinear Sciences and Professor, Physics

Richard Dagenhart, M.Arch.,M.C.P.
R.A. (Georgia, Texas)
University of Pennsylvania
Associate Professor, Architecture Program, College of Architecture

Jiangang Dai, Ph.D.
Stanford University
Professor, Mathematics and Industrial and Systems Engineering

D. Stefan Dancila, Ph.D.
Georgia Institute of Technology
Assistant Professor, Aerospace Engineering

Steven Danyluk, Ph.D.
Cornell University
Morris M. Bryan Jr. Chair in Mechanical Engineering for Advanced Manufacturing and Professor, Mechanical Engineering

Anindy Datta, Ph.D.
University of Maryland, College Park
Associate Professor, Management

Dragomir Davidovic, Ph.D.
Johns Hopkins University
Assistant Professor, Physics

J. Narl Davidson, Ph.D.
P.E. (Georgia)
University of Michigan
Associate Dean, College of Engineering and Associate Professor, Mechanical Engineering

Douglas D. Davis, Ph.D.
University of Florida
Professor, Earth and Atmospheric Sciences

Elizabeth T. Davis, Ph.D.
Columbia University
Associate Professor, Psychology

Jeffrey A. Davis, Ph.D.
Georgia Institute of Technology
Assistant Professor, Electrical and Computer Engineering

Thomas N. Debo, Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Associate Dean and Professor, City Planning Program, College of Architecture

David DeBoer, Ph.D.
Georgia Institute of Technology
Assistant Professor, Electrical and Computer Engineering

F. Levent Degertekin, Ph.D.
Stanford University
Assistant Professor, Mechanical Engineering

Walter A. DeHeer, Ph.D.
University of California - Berkeley
Professor, Physics

Shijie Deng, Ph.D.
University of California - Berkeley
Assistant Professor, Industrial and Systems Engineering
Prateen V. Desai, Ph.D.
Tulane University
Professor, Mechanical Engineering

Reginald DesRoches, Ph.D.
University of California - Berkeley
Assistant Professor, Civil and Environmental Engineering

Stephen Paul DeWeerth, Ph.D.
California Institute of Technology
Associate Professor, Electrical and Computer Engineering

Thomas J. DiChristina, Ph.D.
California Institute of Technology
Assistant Professor, Biology

Robert Dickson, Ph.D.
University of Alabama
Assistant Professor, Management

Robert Dickson, Ph.D.
University of Chicago
Assistant Professor, Chemistry and Biochemistry

Luca Dieci, Ph.D.
University of New Mexico
Professor, Mathematics

Harris H. Dimitropoulos, Ph.D.
Aristotelion University - Greece
Associate Professor, Architecture Program, College of Architecture

William L. Ditto, Ph.D.
Clemson University
Professor, Biomedical Engineering

Karen Dixon, Ph.D.
P.E. (North Carolina, Texas, Arizona)
North Carolina State University
Assistant Professor, Civil and Environmental Engineering

Shannon P. Dobranski, M.A.
University of Texas
Instructor, Literature, Communication, and Culture

Feng B. Dong, Ph.D.
Oregon State University
Assistant Professor, Biology

William Alan Doolittle, Ph.D.
Georgia Institute of Technology
Assistant Professor, Electrical and Computer Engineering

J. Lewis Dorrity, Ph.D.
Clemson University
Associate Professor, Textile and Fiber Engineering

John E. Dorsey, Ph.D.
Michigan State University
Professor, Electrical and Computer Engineering

Patricia M. Dove, Ph.D.
Princeton University
Associate Professor, Earth and Atmospheric Sciences

Elizabeth M. Dowling, Ph.D.
R.A. (Georgia)
University of Pennsylvania
Associate Professor, Architecture Program, College of Architecture

Donald E. Doyle, Ph.D.
University of North Carolina - Chapel Hill
Assistant Professor, Chemistry and Biochemistry

William J. Drummond, Ph.D.
University of North Carolina - Chapel Hill
Associate Professor, City Planning Program, College of Architecture

Richard A. Duke, Ph.D.
University of Virginia
Chair and Professor, Mathematics

Roderick G. Duncan, Ph.D.
Stanford University
Assistant Professor, Economics

Ernest L. Dunn, Ph.D.
University of California - Los Angeles
Associate Professor, Biology

David B. Dusenbery, Ph.D.
University of Chicago
Professor, Biology and Physics

Charles M. Eastman, M.Arch., M.S.
University of California - Berkeley
Professor, College of Architecture and College of Computing

Imme Ebert-Uphoff, Ph.D.
Johns Hopkins University
Assistant Professor, Mechanical Engineering

Charles A. Eckert, Ph.D.
University of California - Berkeley
J. Erskine Love Jr. Institute Chair, Director of Specialty Separations Center and Institute Professor, Chemical Engineering

Athanassios Economou, M.Arch.
University of Southern California
Assistant Professor, Architecture Program, College of Architecture

Paul Edmonds, Ph.D.
University of Cincinnati
Associate Professor, Biology

Kurt P. Elselt, Ph.D.
University of California - Irvine
Associate Dean, College of Computing

Bruce Ellingwood, Ph.D.
University of Illinois - Urbana-Champaign
Chair and Professor, Civil and Environmental Engineering

Michael L. Poirier Elliott, Ph.D.
Massachusetts Institute of Technology
Associate Professor, City Planning Program, College of Architecture

Wedad Elmaghraby, Ph.D.
University of California - Berkeley
Assistant Professor, Industrial and Systems Engineering

Mostafa A. El-Sayed, Ph.D.
Florida State University
Julius Brown Chair and Professor, Chemistry and Biochemistry

Kirstin Ely, Ph.D.
University of Chicago
Associate Professor, Management

Leroy Z. Emkin, Ph.D.
Massachusetts Institute of Technology
Professor, Civil and Environmental Engineering

John E. Endicott, Ph.D.
Tufts University
Professor, International Affairs

Randall W. Engle, Ph.D.
Ohio State University
Chair and Professor, Psychology

Ilse Engler, M.A.
University of North Carolina - Chapel Hill
Instructor, Modern Languages
Ahmet Erbil, Ph.D.
Massachusetts Institute of Technology
Professor, Physics

Laszlo Erdos, Ph.D.
Princeton University
Assistant Professor, Mathematics

Alan Erera, Ph.D.
University of California - Berkeley
Assistant Professor, Industrial and Systems Engineering

William R. Ernst, Ph.D.
University of Delaware
Professor, Chemical Engineering

Augustine O. Esogbue, Ph.D.
University of Southern California
Professor, Industrial and Systems Engineering

Irfan Essa, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, College of Computing

Donald J. Estep, Ph.D.
University of Michigan
Professor, Mathematics

Cheol S. Eun, Ph.D.
New York University
Thomas R. Williams Chair and Professor, Management

Norberto E. Esquerra, Ph.D.
Florida State University
Associate Professor, College of Computing

Christoph J. Fahrni, Ph.D.
University of Basel, Switzerland
Assistant Professor, Chemistry and Biochemistry

Ko-Hui Michael Fan, Ph.D.
University of Maryland
Associate Professor, Electrical and Computer Engineering

Michael Farmer, Ph.D.
Ohio State University
Assistant Professor, Public Policy

Donald B. Fedor, Ph.D.
University of Illinois - Urbana-Champaign
Associate Professor, Management

Andrei G. Fedorov, Ph.D.
Purdue University
Assistant Professor, Mechanical Engineering

Robert K. Feeney, Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Professor, Electrical and Computer Engineering

Faramarz Fekri, Ph.D.
Georgia Institute of Technology
Assistant Professor, Electrical and Computer Engineering

Jack M. Feldman, Ph.D.
University of Illinois
Professor, Psychology

Jesus Felipe, Ph.D.
University of Pennsylvania
Assistant Professor, International Affairs

Aldo A. Ferri, Ph.D.
Princeton University
Associate Professor, Mechanical Engineering

David Finkelstein, Ph.D.
Massachusetts Institute of Technology
Professor, Physics

Phillip N. First, Ph.D.
University of Illinois
Associate Professor, Physics

Arthur Dan Fisk, Ph.D.
University of Illinois
Professor, Psychology

Douglas Flamming, Ph.D.
Vanderbilt University
Associate Professor, History, Technology, and Society

Martin R. Flannery, Ph.D.
University of Belfast
Regents' Professor, Physics

James Foley, Ph.D.
University of Michigan
Associate Dean and Professor, College of Computing

Robert D. Foley, Ph.D.
University of Michigan
Associate Professor, Industrial and Systems Engineering

Larry J. Forney, Ph.D.
Harvard University
Associate Professor, Chemical Engineering

Lawrence Foster, Ph.D.
University of Chicago
Professor, History, Technology, and Society

Paul Foster, Ph.D.
Ohio State University
Assistant Professor, Modern Languages

Mary Frank Fox, Ph.D.
University of Michigan
Professor, History, Technology, and Society

Ronald F. Fox, Ph.D.
Rockefeller University
Chair and Regents' Professor, Physics

Lawrence D. Frank, Ph.D.
L.A. (Washington)
University of Washington
Assistant Professor, City Planning Program, College of Architecture

Mark S. Frankel, M.A.
San Francisco State University
Instructor, Literature, Communication, and Culture

A. Bruno Frazier, Ph.D.
Georgia Institute of Technology
Assistant Professor, Electrical and Computer Engineering

Peter A. Freeman, Ph.D.
Carnegie Mellon University
Dean and Professor, College of Computing

Steven P. French, Ph.D.
University of North Carolina - Chapel Hill
Professor, City Planning Program, College of Architecture

Philip N. Froelich, Ph.D.
University of Rhode Island
Professor, Earth and Atmospheric Sciences

J. David Frost, Ph.D.
Purdue University
Director, Georgia Tech Regional Engineering Program, and Professor, Civil and Environmental Engineering

Rong Fu, Ph.D.
Columbia University
Associate Professor, Earth and Atmospheric Sciences
Richard M. Fujimoto, Ph.D.
University of California - Berkeley
Professor, College of Computing

Robert E. Fulton, Ph.D.
P.E. (Illinois)
University of Illinois
Professor, Mechanical Engineering

James B. Gaherty, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Earth and Atmospheric Sciences

Cheryl Gaillon, Ph.D.
Carnegie Mellon University
Professor, Management

Zorina S. Galis, Ph.D.
McGill School of Medicine (Montreal, Canada)
Assistant Professor, Biomedical Engineering

Thomas D. Galloway, Ph.D.
University of Washington
Dean and Professor, College of Architecture

Vicki B. Galloway, Ph.D.
University of South Carolina
Professor, Modern Languages

Wilfrid Gangbo, Ph.D.
Swiss Federal Institute of Technology
Associate Professor, Mathematics

Andres J. Garcia, Ph.D.
University of Pennsylvania
Assistant Professor, Mechanical Engineering

Stavros Garoufalidis, Ph.D.
University of Chicago
Assistant Professor, Mathematics

John W. Garver, Ph.D.
University of Colorado
Professor, International Affairs

Ian R. Gatland, Ph.D.
University of London
Associate Chair and Professor, Physics

Thomas K. Gaylord, Ph.D.
P.E. (Texas)
Rice University
Julius Brown Chair and Regents' Professor, Electrical and Computer Engineering

Mark D. Geil, Ph.D.
Ohio State University
Assistant Professor, Health and Performance Sciences

Russell T. Gentry, Ph.D.
P.E. (Michigan, Maryland)
University of Michigan
Associate Professor, Architecture Program, College of Architecture

Aristidis P. Georgakakos, Ph.D.
Massachusetts Institute of Technology
Professor and Associate Chair for Research Programs, Civil and Environmental Engineering

Rosario A. Gerhardt, Sc.D.
Columbia University
Associate Professor, Materials Science and Engineering

Leonid Germanovich, Ph.D.
Moscow State University
Associate Professor, Civil and Environmental Engineering

Jeffrey Geronimo, Ph.D.
Rockefeller University
Professor, Mathematics

S. Mostafa Ghaasaaan, Ph.D.
P.E. (California)
University of California - Los Angeles
Associate Professor, Nuclear Engineering and Health Physics

Soumen Ghosh, Ph.D.
Ohio State University
Professor, Management

Robert W. Ghrist, Ph.D.
Cornell University
Assistant Professor, Mathematics

Don P. Giddens, Ph.D.
Georgia Institute of Technology
Lawrence L. Gellerstedt Jr. Chair in Bioengineering and Professor, Biomedical Engineering

August W. Giebelhaus Jr., Ph.D.
University of Delaware
Professor, History, Technology, and Society

Jerry H. Ginsberg, E.Sc.D.
Columbia University
George W. Woodruff Chair in Mechanical Systems and Professor, Mechanical Engineering

Ari Glezer, Ph.D.
California Institute of Technology
Professor, Mechanical Engineering

Elias N. Glyptsis, Ph.D.
Georgia Institute of Technology
Professor, Electrical and Computer Engineering

John J. Goda Jr., M.S.
University of Massachusetts
Assistant Professor, College of Computing

Ashok K. Goel, Ph.D.
Ohio State University
Associate Professor, College of Computing

Marc Goetschalckx, Ph.D.
Georgia Institute of Technology
Associate Professor, Industrial and Systems Engineering

Arun M. Goldhale, Ph.D.
University of Florida
Professor, Materials Science and Engineering

David Goldsman, Ph.D.
Cornell University
Professor, Industrial and Systems Engineering

Guillermo H. Goldstein, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Mathematics

James L. Gole, Ph.D.
Rice University
Professor, Physics

Seymour Goodman, Ph.D.
California Institute of Technology
Professor, International Affairs and Professor, College of Computing

Barry Goodno, Ph.D.
P.E. (Georgia)
Stanford University
Professor, Civil and Environmental Engineering

Sidney L. Gordon, Ph.D.
Columbia University
Professor, Chemistry and Biochemistry

T. Govindaraj, Ph.D.
University of Illinois - Urbana-Champaign
Associate Professor, Industrial and Systems Engineering
Deborah R. Grayson, Ph.D.
Michigan State University
Assistant Professor, Literature, Communication, and Culture

Itzhak Green, Sc.D.
Technion-Israel Institute of Technology
Professor, Mechanical Engineering

William L. Green, Ph.D.
University of Pennsylvania
Professor, Mathematics

James K. Greenlee, M.S.
Georgia Institute of Technology
Instructor, College of Computing

Robert J. Gregor, Ph.D.
Pennsylvania State University
Head and Professor, Health and Performance Sciences

Rita Gregory, Ph.D.
P.E. (Georgia)
University of Florida
Assistant Professor, Building Construction Program, College of Architecture

Paul M. Griffin, Ph.D.
Texas A&M University
Associate Professor, Industrial and Systems Engineering

Roman Grigoriev, Ph.D.
California Institute of Technology
Assistant Professor, Physics

Diane Gromala, M.FA
Yale University
Associate Professor, Literature, Communication, and Culture

Richard A. Grusin, Ph.D.
University of California - Berkeley
Professor, Literature, Communication, and Culture

Randall Guensler, Ph.D.
University of California - Davis
Associate Professor, Civil and Environmental Engineering

Robert E. Guildberg, Ph.D.
University of Michigan
Assistant Professor, Mechanical Engineering

Mark Guzdial, Ph.D.
University of Michigan
Associate Professor, College of Computing

Thomas G. Habetler, Ph.D.
University of Wisconsin
Professor, Electrical and Computer Engineering

Steven Hackman, Ph.D.
University of California - Berkeley
Associate Professor, Industrial and Systems Engineering

Wassim M. Haddad, Ph.D.
Florida Institute of Technology
Professor, Aerospace Engineering

Louisa G. Haefele, M.A.
University of California - Irvine
Instructor, Literature, Communication, and Culture

Rami Haj-Ali, Ph.D.
University of Illinois
Assistant Professor, Civil and Environmental Engineering

Dwight H. Hall, Ph.D.
Purdue University
Professor, Biology

Mark Hallerberg, Ph.D.
University of California - Los Angeles
Assistant Professor, International Affairs

James O. Hamblen, Ph.D.
Georgia Institute of Technology
Associate Professor, Electrical and Computer Engineering

Janet M. Hampikian, Ph.D.
University of Connecticut
Associate Professor, Materials Science and Engineering

Sathyanaraya V. Hanagud, Ph.D.
Stanford University
Professor, Aerospace Engineering

Stephen R. Hanson, Ph.D.
University of Washington
Professor, Biomedical Engineering

Ronald G. Harley, Ph.D.
University of London
Duke Power Distinguished Professor, Electrical and Computer Engineering

Terry Harpold, Ph.D.
University of Pennsylvania
Assistant Professor, Literature, Communication, and Culture

Evans M. Harrell III, Ph.D.
Princeton University
Professor, Mathematics

Mary Jean Harrold, Ph.D.
University of Pittsburgh
Associate Professor, College of Computing

James G. Hartley, Ph.D.
Georgia Institute of Technology
Professor, Mechanical Engineering

Paul E. Hasler, Ph.D.
California Institute of Technology
Assistant Professor, Electrical and Computer Engineering

John J. Havick, Ph.D.
University of Iowa
Associate Professor, Public Policy

Robert G. Hawkins, Ph.D.
New York University
Professor, Management

Mark E. Hay, Ph.D.
University of California - Irvine
Harry and Linda Teasley Chair in Environmental Biology and Professor, Biology

Monson H. Hayes III, Ph.D.
Massachusetts Institute of Technology
Professor, Electrical and Computer Engineering

Anthony John Hayter, Ph.D.
Cornell University
Associate Professor, Industrial and Systems Engineering

Bonnie S. Heck, Ph.D.
Georgia Institute of Technology
Associate Professor, Electrical and Computer Engineering

Russell G. Heikes, Ph.D.
P.E. (Georgia)
Texas Technological University
Associate Professor, Industrial and Systems Engineering

Christopher E. Heil, Ph.D.
University of Maryland
Associate Professor, Mathematics

Clifford L. Henderson, Ph.D.
University of Texas - Austin
Assistant Professor, Chemical Engineering

Rigoberto Hernandez, Ph.D.
University of California - Berkeley
Assistant Professor, Chemistry and Biochemistry
David M. Herold, Ph.D.
Yale University
Professor, Management

Tyanna K. Herrington, Ph.D.
Texas Technical University
Assistant Professor, Literature, Communication, and Culture

Nolan E. Hertel, Ph.D.
P.E. (Georgia)
University of Illinois - Urbana-Champaign
Professor, Nuclear Engineering and Health Physics

David R. Hertling, Ph.D.
University of Illinois
Associate Chair and Professor, Electrical and Computer Engineering

Christopher K. Hertzog, Ph.D.
University of Southern California
Professor, Psychology

Peter J. Hesketh, Ph.D.
University of Pennsylvania
Professor, Mechanical Engineering

Dennis W. Hess, Ph.D.
Lehigh University
William W. LaRoche Jr. Chair and Professor, Chemical Engineering

Theodore P. Hill, Ph.D.
University of California - Berkeley
Professor, Mathematics

Dewey H. Hodges, Ph.D.
Stanford University
Professor, Aerospace Engineering

Larry F. Hodges, Ph.D.
North Carolina State University
Associate Professor, College of Computing

Jessica Hodgings, Ph.D.
Carnegie Mellon University
Associate Professor, College of Computing

Lissa Holloway-Attaway, M.A.
University of Georgia
Instructor, Literature, Communication, and Culture

Gunther U. Holzer, Ph.D.
University of Houston
Associate Professor, Biology

Christiana Housberg, Ph.D.
University of Delaware
Associate Professor, Electrical and Computer Engineering

Christian Houdre, Ph.D.
McGill University
Professor, Mathematics

Richard A. House, Ph.D.
University of California - Irvine
Instructor, Literature, Communication, and Culture

Jeffery S. Hsieh, Ph.D.
Syracuse University
Director, Pulp and Paper Research Center, and Associate Professor, Chemical Engineering

Ching-Hua Huang, Ph.D.
Carnegie Mellon University
Assistant Professor, Civil and Environmental Engineering

Nicholas V. Hud, Ph.D.
University of California - Davis
Assistant Professor, Chemistry and Biochemistry

L. Gregory Huey, Ph.D.
University of Wisconsin - Madison
Associate Professor, Earth and Atmospheric Sciences

Joseph L.A. Hughes, Ph.D.
Stanford University
Associate Chair and Associate Professor, Electrical and Computer Engineering

William D. Hunt, Ph.D.
University of Illinois - Urbana-Champaign
Professor, Electrical and Computer Engineering

Xiaoming Huo, Ph.D.
Stanford University
Assistant Professor, Industrial and Systems Engineering

Ellery D. Ingall, Ph.D.
Yale University
Associate Professor, Earth and Atmospheric Sciences

Mary Ann Ingram, Ph.D.
Georgia Institute of Technology
Associate Professor, Electrical and Computer Engineering

Patrick Ireland, Ph.D.
Harvard University
Co-Director, European Union Center, and Professor, International Affairs

Julie Jacko, Ph.D.
Purdue University
Associate Professor, Industrial and Systems Engineering

Joel Jackson, Ph.D.
Georgia Institute of Technology
Assistant Professor, Regional Engineering Program

Karl I. Jacob, Ph.D.
Ohio State University
Assistant Professor, Textile and Fiber Engineering

Laurence J. Jacobs, Ph.D.
Columbia University
Associate Chair for Undergraduate Programs and Associate Professor, Civil and Environmental Engineering

Jechiel I. Jagoda, Ph.D.
Imperial College, University of London
Associate Chair and Professor, Aerospace Engineering

Jiri Janata, Ph.D.
Charles University
Georgia Research Alliance Eminent Scholar in Sensors and Instrumentation and Professor, Chemistry and Biochemistry

Christopher Jarrett, M.Arch.
Columbia University
Assistant Professor, Architecture Program, College of Architecture

John J. Jarvis, Ph.D.
P.E. (Georgia)
Johns Hopkins University
Chair and Professor, Industrial and Systems Engineering

Iwona M. Jasik, Ph.D.
Northwestern University
Associate Professor, Mechanical Engineering
Nikil Jayant, Ph.D.
Stanford University
John E. Pippin Chair in Wireless Systems, Director of the Georgia Tech Broadband Institute, Executive Director of the Georgia Center for Advanced Telecommunications Technology, and Professor, Electrical and Computer Engineering
Nayrayan Jayaraman, Ph.D.
University of Pittsburgh
Associate Professor, Management
Sundaresan Jayaraman, Ph.D.
North Carolina State University
Associate Chair for Graduate Studies and Research and Professor, Textile and Fiber Engineering
Michael W.M. Jenkins, Chartered Engineer (Great Britain)
Gloucester Institute of Technology - England
Lecturer, Aerospace Engineering
Sheldon M. Jeter, Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Associate Professor, Mechanical Engineering
Shi Jin, Ph.D.
University of Arizona
Professor, Mathematics
Hanjoong Jo, Ph.D.
Pennsylvania State University
Associate Professor, Biomedical Engineering
Deborah G. Johnson, Ph.D.
University of Kansas
Professor, Public Policy
Ellis L. Johnson, Ph.D.
University of California - Berkeley
Coca-Cola Chair and Professor, Industrial and Systems Engineering
Eric N. Johnson, Ph.D.
Georgia Institute of Technology
Lockheed Martin Assistant Professor, Aerospace Engineering
W. Steven Johnson, Ph.D.
Duke University
Professor, Materials Science and Engineering
William W. Johnson, Ph.D.
University of Kentucky
Associate Professor, Modern Languages
George Barnett Johnston, M.Arch.
R.A. (Georgia, Mississippi)
Rice University
Associate Director and Associate Professor, Architecture Program, College of Architecture
Jon J. Johnston, M.S.
University of London
Assistant Professor, Public Policy
Nan Marie Jokerst, Ph.D.
University of Southern California
Associate Professor, Electrical and Computer Engineering
Christopher Jones, Ph.D.
California Institute of Technology
Assistant Professor, Chemical Engineering
Ellen Dunham Jones, M.Arch.
R.A. (New York, Virginia)
Princeton University
Associate Professor, Architecture Program, College of Architecture
Larry P. Joseph, Ph.D.
Stanford University
Assistant Professor, Modern Languages
Damir Juric, Ph.D.
University of Michigan
Assistant Professor, Mechanical Engineering
Lorraine Justice, M.Arch.
Ohio State University
Director and Associate Professor, Industrial Design Program, College of Architecture
Lawrence F. Kahn, Ph.D.
P.E. (California, Michigan, Georgia)
University of Michigan
Associate Professor, Civil and Environmental Engineering
Britta Kallin, Ph.D.
Cincinnati University
Assistant Professor, Modern Languages
Manohar P. Kamat, Ph.D.
Georgia Institute of Technology
Assistant to the Chair for Undergraduate Programs and Professor, Aerospace Engineering
Edward W. Kamen, Ph.D.
Stanford University
Julian T. Hightower Chair in Manufacturing Engineering, Associate Director of the Manufacturing Research Center, and Professor, Electrical and Computer Engineering
Ruth Kanfer, Ph.D.
Arizona State University
Professor, Psychology
Roozbeh Kangari, Ph.D.
University of Illinois
Director and Professor, Building Construction Program, College of Architecture
Masako M.A. Kanno, M.A.
Ohio State University
Instructor, Modern Languages
George A. Kardomateas, Ph.D.
Massachusetts Institute of Technology
Professor, Aerospace Engineering
E. Larry Keating, Ph.D.
University of Wisconsin
Associate Professor, City Planning Program, College of Architecture
David C. Keezer, Ph.D.
Carnegie Mellon University
Associate Professor, Electrical and Computer Engineering
Patrick Kelly, Ph.D.
Emory University
Associate Chair, Graduate Programs, and Professor, International Affairs
Robert Kennedy, Ph.D.
Georgetown University
Professor, International Affairs
Thomas Albert Brian Kennedy, Ph.D.
Queen's University of Belfast
Associate Professor, Physics
J. Stevenson Kenney, Ph.D.
Georgia Institute of Technology
Associate Professor, Electrical and Computer Engineering
Robert P. Kertz, Ph.D.
Northwestern University
Professor, Mathematics
Pinar Keskinocak, Ph.D.
Carnegie Mellon University
Assistant Professor, Industrial and Systems Engineering
Faculty

Sabir Khan, M.Arch.
Rice University
Assistant Professor, Architecture
Program, College of Architecture

Ajay Khorana, Ph.D.
C.F.A.
University of North Carolina - Chapel Hill
Associate Professor, Management

Chia Szu Kiang, Ph.D.
Georgia Institute of Technology
Institute Professor, Earth and Atmospheric Sciences

Masato Kikuchi, Ph.D.
University of Pittsburgh
Associate Professor, Modern Languages

Gordon Kingsley, Ph.D.
Syracuse University
Associate Professor, Public Policy

Leigh Kirkland, Ph.D.
Georgia State University
Instructor, Literature, Communication, and Culture

Alexander C. Kirluk, Ph.D.
Ohio State University
Associate Professor, Industrial and Systems Engineering

Daniel A. Klein, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Mathematics

Hans Klein, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Public Policy

Jackie Kleiner, J.D.
New York Law School
Associate Professor, Management

Anton Kleywegt, Ph.D.
Purdue University
Assistant Professor, Industrial and Systems Engineering

Kenneth J. Knoepfel, Ph.D.
University of Chicago
Associate Dean of Ivan Allen College and Professor, Literature, Communication, and Culture

Arthur J. Kobiasz, Ph.D.
California Institute of Technology
Associate Professor, Electrical and Computer Engineering

Sven Koenig, Ph.D.
Carnegie Mellon University
Assistant Professor, College of Computing

Paul A. Kohl, Ph.D.
University of Texas - Austin
Regents' Professor and Institute Fellow, Chemical Engineering

Robert Kolker, Ph.D.
Columbia University
Chair and Professor, Literature, Communication, and Culture

Janet L. Kolodner, Ph.D.
Yale University
Professor, College of Computing

Narayanan M. Komerath, Ph.D.
Georgia Institute of Technology
Professor, Aerospace Engineering

Joseph A. Koncelik, M.A.
Stanford University
Director, Center for Rehabilitation Technology, and Professor, Industrial Design Program, College of Architecture

Gerhard Jean Marie Krije, Ph.D.
University of Sussex
Kranzberg Professor, History, Technology, and Society

David N. Ku, Ph.D., M.D.
Georgia Institute of Technology
Lawrence P. Huang Chair in Engineering and Entrepreneurship and Regents' Professor, Mechanical Engineering

Julia Kubanek, Ph.D.
University of British Columbia
Assistant Professor, Biology

Satish Kumar, Ph.D.
Indian Institute of Technology
Professor, Textile and Fiber Engineering

Thomas R. Kurfess, Ph.D.
P.E. (Pennsylvania)
Massachusetts Institute of Technology
Professor, Mechanical Engineering

Kimberly Kurtis, Ph.D.
University of California - Berkeley
Assistant Professor, Civil and Environmental Engineering

Paul Kvam, Ph.D.
University of California - Davis
Assistant Professor, Industrial and Systems Engineering

Angela Labarca, Ph.D.
Ohio State University
Professor, Modern Languages

Michael T. Lacey, Ph.D.
University of Illinois
Associate Professor, Mathematics

W. Jack Lackey, Ph.D.
North Carolina State University
Professor, Mechanical Engineering

James S. Lai, Ph.D.
P.E. (Georgia)
Brown University
Professor, Civil and Environmental Engineering

Uzi Landman, D.Sc.
Technion-Israel Institute of Technology
Callaway Professor, Physics

Michelle C. LaPlaca, Ph.D.
University of Pennsylvania
Assistant Professor, Biomedical Engineering

Alan V. Larson, Ph.D.
University of Illinois
Associate Chair for Administration and Professor, Mechanical Engineering

Joy Laskar, Ph.D.
University of Illinois
Associate Professor, Electrical and Computer Engineering

Terri Laurenceau, M.A.
Ohio State University
Assistant Professor, Industrial Design Program, College of Architecture

W. Marshall Leach Jr., Ph.D.
Georgia Institute of Technology
Professor, Electrical and Computer Engineering

W. Jude LeBlanc, M.Arch.
Harvard University
Associate Professor, Architecture Program, College of Architecture

Joseph M. LeDoux, Ph.D.
Rutgers University
Assistant Professor, Biomedical Engineering

406
Administration, Faculty, and Staff

Eva Lee, Ph.D.
Rice University
Assistant Professor, Industrial and Systems Engineering

Jay Lee, Ph.D.
California Institute of Technology
Professor, Chemical Engineering

Kok-Meng Lee, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Mechanical Engineering

Nancy Green Leigh, Ph.D.
University of California - Berkeley
Associate Professor, City Planning Program, College of Architecture

Blake Leland, Ph.D.
Cornell University
Associate Professor, Literature, Communication, and Culture

Lionel J. Lemarchand, Ph.D.
University of Georgia
Assistant Professor, Modern Languages

Roberto Leon, Ph.D.
P.E. (Minnesota)
University of Texas - Austin
Professor, Civil and Environmental Engineering

John D. Leonard, Ph.D.
University of California - Irvine
Associate Professor, Civil and Environmental Engineering

Marc E. Levenston, Ph.D.
Stanford University
Assistant Professor, Mechanical Engineering

Ferdinand K. Levy, Ph.D.
Carnegie Mellon University
Professor, Management

Ronald B. Lewcock, Ph.D.
Cape Town University
Professor, Architecture/Doctoral Program, College of Architecture

Geoffrey Li, Ph.D.
Auburn University
Associate Professor, Electrical and Computer Engineering

Haizheng Li, Ph.D.
University of Colorado - Boulder
Assistant Professor, Economics

Wing-Suet Li, Ph.D.
University of Michigan
Associate Professor, Mathematics

Xiaoliang Li, Ph.D.
University of Virginia
Associate Professor, Modern Languages

Steven Y. Liang, Ph.D.
University of California - Berkeley
Professor, Mechanical Engineering

Timothy C. Lieuwen, Ph.D.
Georgia Institute of Technology
Assistant Professor, Aerospace Engineering

Charles L. Liotta, Ph.D.
University of Maryland
Vice Provost for Research and Dean, Graduate Studies, and Regents' Professor, Chemistry and Biochemistry

Harvey Lipkin, Ph.D.
University of Florida
Associate Professor, Mechanical Engineering

Richard Lipton, Ph.D.
Carnegie Mellon University
Frederick G. Storey Chair and Professor, College of Computing

Ling Liu, Ph.D.
Tilburg University - Netherlands
Associate Professor, College of Computing

Melin Li, Ph.D.
University of California - Berkeley
Professor, Materials Science and Engineering

Shaw C. Liu, Ph.D.
University of Pittsburgh
Professor, Earth and Atmospheric Sciences

Daniel Lizarralde, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Earth and Atmospheric Sciences

Frank Loeffler, Ph.D.
University Hohenheim
Assistant Professor, Civil and Environmental Engineering

Robert G. Loewy, Ph.D.
University of Pennsylvania
William R.T. Oakes Chair and
Professor, Aerospace Engineering

Jack R. Lohmann, Ph.D.
P.E. (Michigan)
Stanford University
Associate Dean, College of Engineering, and Professor, Industrial and Systems Engineering

Leland T. Long, Ph.D.
P.G. (Georgia)
Oregon State University
Professor, Earth and Atmospheric Sciences

William J. Long, Ph.D.
Columbia University
Professor, International Affairs

Michael Loss, Ph.D.
Eidgenossische Technische Hochschule
Professor, Mathematics

Robert P. Lowell, Ph.D.
Oregon State University
Professor, Earth and Atmospheric Sciences

Hanchao Lu, Ph.D.
University of California - Los Angeles
Associate Professor, History, Technology, and Society

Jye-Chi Lu, Ph.D.
P.E. (Michigan)
University of Wisconsin - Madison
Professor, Industrial and Systems Engineering

Peter J. Ludovice, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Chemical Engineering

Christopher S. Lynch, Ph.D.
University of California - Santa Barbara
Associate Professor, Mechanical Engineering

L. Andrew Lyon, Ph.D.
Northwestern University
Assistant Professor, Chemistry and Biochemistry

Russell D. Lyons, Ph.D.
University of Michigan
Professor, Mathematics

Blair MacIntyre, Ph.D.
Columbia University
Assistant Professor, College of Computing
Administration, Faculty, and Staff

Stephen Michielsen, Ph.D.
University of Chicago
Associate Professor, Textile and Fiber Engineering

Vincent J. Mooney, Ph.D.
Stanford University
Assistant Professor, Electrical and Computer Engineering

Justin A. Myrick, Ph.D.
University of Missouri - Columbia
Acting Director, Health Systems Research Center, and Associate Professor, Industrial and Systems Engineering

Melina Mihail, Ph.D.
Harvard University
Associate Professor, College of Computing and Industrial and Systems Engineering

Carole Moore, Ph.D.
University of California - Santa Barbara
Director of Academic Services, Athletic Association, and Adjunct Professor, History, Technology, and Society

Dennis H. Nagao, Ph.D.
University of Illinois
Associate Professor, Management

Melinda L. Millard-Stafford, Ph.D.
University of Georgia
Associate Professor, Health and Performance Sciences

Thomas F. Moran, Ph.D.
University of Notre Dame
Professor, Chemistry and Biochemistry

Usa Nair-Reichert, Ph.D.
Purdue University
Assistant Professor, Economics

Konstantin Mischaikow, Ph.D.
University of Wisconsin - Madison
Professor, Mathematics

Thomas D. Morley, Ph.D.
Carnegie Mellon University
Professor, Mathematics

Sridhar Narasimhan, Ph.D.
Ohio State University
Associate Professor, Management

Farrokh Mistree, Ph.D.
University of California - Berkeley
Professor, Mechanical Engineering

Jeffrey E. Morris, Ph.D.
California Institute of Technology
Assistant Professor, Chemical Engineering

Shamkant B. Navathe, Ph.D.
University of Michigan - Ann Arbor
Professor, College of Computing

Christine M. Mitchell, Ph.D.
Ohio State University
Professor, Industrial and Systems Engineering

Jami Elizabeth Moss, Ph.D.
University of Wisconsin - Madison
Instructor, Literature, Communication, and Culture

Subhankar Nayak, Ph.D.
Yale University
Assistant Professor, Management

Sabyasachi Mitra, Ph.D.
University of Iowa
Associate Professor, Management

Charles W. Mulford Jr., D.B.A.
Florida State University
C.P.A.

G. Paul Neitzel, Ph.D.
Johns Hopkins University
Professor, Mechanical Engineering

Boris Mizaikoff, Ph.D.
Vienna University of Technology, Austria
Assistant Professor, Chemistry and Biochemistry

Arthur C. Nelson, Ph.D.
Portland State University
Professor, City Planning Program, College of Architecture

M.F. Moad, Ph.D.
Georgia Institute of Technology
Associate Professor, Electrical and Computer Engineering

George L. Nemhauser, Ph.D.
Northwestern University
A. Russell Chandler III Chair and Institute Professor, Industrial and Systems Engineering

Gerd Mockenhaupt, Ph.D.
University of Siegen (Germany)
Assistant Professor, Mathematics

Robert M. Nerem, Ph.D.
Ohio State University
Parker H. Petit Distinguished Chair for Engineering in Medicine and Professor, Mechanical Engineering

Christine M. Mitchell, Ph.D.
Ohio State University
Professor, Industrial and Systems Engineering

James A. Mulholland, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Civil and Environmental Engineering

Janet Murray, Ph.D.
Harvard University
Graduate Director and Professor, Literature, Communication, and Culture

Robert M. Nerem, Ph.D.
Ohio State University
Parker H. Petit Distinguished Chair for Engineering in Medicine and Professor, Mechanical Engineering

Keith Molenaar, Ph.D.
University of Colorado
Assistant Professor, Civil and Environmental Engineering

Nagesh N. Murthy, Ph.D.
Ohio State University
Assistant Professor, Management

John D. Muzzy, Ph.D.
Rensselaer Polytechnic Institute
Professor, Chemical Engineering

Subhankar Nayak, Ph.D.
Yale University
Assistant Professor, Management

Renato Monteiro, Ph.D.
University of California - Berkeley
Professor, Industrial and Systems Engineering

Beth Mynatt, Ph.D.
Georgia Institute of Technology
Assistant Professor, College of Computing

Richard W. Neu, Ph.D.
University of Illinois - Urbana-Champaign
Assistant Professor, Mechanical Engineering

Joseph P. Montoya, Ph.D.
Harvard University
Associate Professor, Biology

G. Paul Neitzel, Ph.D.
Johns Hopkins University
Professor, Mechanical Engineering

Nancy Nersessian, Ph.D.
Case Western Reserve University
Professor, Public Policy and College of Computing

Kate Nesbitt, M.Arch.
Yale University
Associate Professor, Architecture Program, College of Architecture

Via Moro, D.M.D.
Northwestern University
Professor, Physiology

Richard W. Neu, Ph.D.
University of Illinois - Urbana-Champaign
Assistant Professor, Mechanical Engineering

Justin A. Myrick, Ph.D.
University of Missouri - Columbia
Acting Director, Health Systems Research Center, and Associate Professor, Industrial and Systems Engineering

Usha Nair-Reichert, Ph.D.
Purdue University
Assistant Professor, Economics
Gregory Nobles, Ph.D.
University of Michigan
Chair and Professor, History, Technology, and Society

Bryan G. Norton, Ph.D.
University of Michigan
Professor, Public Policy

Matthew C. O'Brien, Ph.D.
University of Maryland
Associate Professor, Literature, Communication, and Culture

Daryl Ogden, Ph.D.
University of Washington
Assistant Professor, Literature, Communication, and Culture

John R. Olds, Ph.D.
P.E. (Georgia)
North Carolina State University
Assistant Professor, Aerospace Engineering

Diane K. Olson, Ph.D.
State University of New York - Albany
Instructor, Literature, Communication, and Culture

Edward R. Omiecinski, Ph.D.
Northwestern University
Associate Professor, College of Computing

Thomas M. Orlando, Ph.D.
State University of New York - Stony Brook
Professor, Chemistry and Biochemistry

Allen M. Orville, Ph.D.
University of Minnesota
Assistant Professor, Chemistry and Biochemistry

Donald C. O'Shea, Ph.D.
Johns Hopkins University
Professor, Physics

Henry Owen III, Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Associate Professor, Electrical and Computer Engineering

Krishna Palem, Ph.D.
University of Texas - Austin
Professor, Electrical and Computer Engineering, and Associate Professor, College of Computing

Santosh Pande, Ph.D.
North Carolina State University
Associate Professor, College of Computing

John G. Papastavridis, Ph.D.
Purdue University
Associate Professor, Mechanical Engineering

Daniel S. Papp, Ph.D.
University of Miami
Senior Vice Chancellor for Academic Affairs, University System of Georgia, and Professor, International Affairs

R. Gary Parker, Ph.D.
Kansas State University
Director of Academic Programs and Professor, Industrial and Systems Engineering

Charles K. Parsons, Ph.D.
University of Illinois
Professor, Management

Leonard J. Parsons, Ph.D.
Purdue University
Professor, Management

Peter S. Parsonson, Ph.D.
P.E. (Georgia)
North Carolina State University
Professor, Civil and Environmental Engineering

John B. Peatman, Ph.D.
Case Western Reserve University
Professor, Electrical and Computer Engineering

John A. Pelesko, Ph.D.
New Jersey Institute of Technology
Assistant Professor, Mathematics

Liang Peng, Ph.D.
Erasmus University
Assistant Professor, Mathematics

Kurt Pennell, Ph.D.
University of Florida
Associate Professor, Civil and Environmental Engineering

John Peponis, Ph.D.
R.A. (Greece)
London University
Associate Professor, Architecture/Doctoral Program, College of Architecture

Edward M. Perdue, Ph.D.
Georgia Institute of Technology
Professor, Earth and Atmospheric Sciences

Andrew Perry, Ph.D.
Brown University
Instructor, Literature, Communication, and Culture

Georgia A. Persons, Ph.D.
Massachusetts Institute of Technology
Professor, Public Policy

Christa Peters-Liadard, Ph.D.
Princeton University
Assistant Professor, Civil and Environmental Engineering

Andrew F. Peterson, Ph.D.
University of Illinois - Urbana-Champaign
Professor, Electrical and Computer Engineering

Kavita Philip, Ph.D.
Cornell University
Assistant Professor, Literature, Communication, and Culture

Frank Pilipp, Ph.D.
University of North Carolina - Chapel Hill
Associate Professor, Modern Languages

Malcolm B. Polk, Ph.D.
University of Pennsylvania
Professor, Textile and Fiber Engineering

Alan L. Porter, Ph.D.
University of California - Los Angeles
Professor, Industrial and Systems Engineering

Colin Potts, Ph.D.
Sheffield University
Associate Professor, College of Computing

James C. Powers, Ph.D.
Massachusetts Institute of Technology
Regents' Professor, Chemistry and Biochemistry

J. V. R. Prasad, Ph.D.
Georgia Institute of Technology
Professor, Aerospace Engineering

Mark Prausnitz, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Chemical Engineering
Administration, Faculty, and Staff

Amy Pritchett, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Industrial and Systems Engineering

Calton Pu, Ph.D.
University of Washington
John P. Imlay Jr. Chair and Professor, College of Computing

Hans B. Püttgen, Ph.D.
University of Florida
President of Georgia Tech Lorraine; Director of the National Electric Energy Research, Applications, and Testing Center; and Associate Chair for External Affairs and Professor, Electrical and Computer Engineering

Sara M. Putzell, Ph.D.
Emory University
Associate Professor, Literature, Communication, and Culture

Jiannin Qu, Ph.D.
Northwestern University
Professor, Mechanical Engineering

Stephen Quirk, Ph.D.
Johns Hopkins University
Assistant Professor, Chemistry and Biochemistry

Harish Radhakrishna, Ph.D.
University of Maryland Baltimore County
Assistant Professor, Biology

Farrad Rahnema, Ph.D.
University of California - Los Angeles
Professor, Nuclear Engineering and Health Physics

Stephen E. Ralph, Ph.D.
Cornell University
Associate Professor, Electrical and Computer Engineering

Ashwin Ram, Ph.D.
Yale University
Associate Professor, College of Computing

Umakishore Ramachandran, Ph.D.
University of Wisconsin - Madison
Professor, College of Computing

Dana Randall, Ph.D.
University of California - Berkeley
Assistant Professor, Mathematics and College of Computing

H. Donald Ratliff, Ph.D.
P.E. (Florida)
Johns Hopkins University
United Parcel Services Chair and Regents' Professor, Industrial and Systems Engineering

Alan Rauch, Ph.D.
Rutgers University
Associate Professor, Literature, Communication, and Culture

Mary Lynn Reallff, Ph!D.
Massachusetts Institute of Technology
Director of Undergraduate Affairs and Associate Professor, Textile and Fiber Engineering

Matthew J. Reallff, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Chemical Engineering

William S. Rees, Ph.D.
University of California - Los Angeles
Professor, Chemistry and Biochemistry

Spyros Reveliotis, Ph.D.
University of Illinois - Urbana-Champaign
Assistant Professor, Industrial and Systems Engineering

Mary E. Rezac, Ph.D.
University of Texas - Austin
Associate Professor, Chemical Engineering

William T. Rhodes, Ph.D.
Stanford University
Professor, Electrical and Computer Engineering

Christine P. Ries, Ph.D.
University of Chicago
Professor, Economics

Frederick Riggins, Ph.D.
Carnegie Mellon University
Assistant Professor, Management

Glenn J. Rix, Ph.D.
University of Texas - Austin
Associate Professor, Civil and Environmental Engineering

H. Randal Roark, M.Arch., M.C.P.
R.A. (Georgia, Alabama)
University of Pennsylvania
Associate Professor, Architecture Program, College of Architecture

Greg Robbins, Ph.D.
Columbia University
Assistant Professor, Management

Matthew M. Roberson, Ph.D.
University of Wisconsin - Milwaukee
Instructor, Literature, Communication, and Culture

Philip J. W. Roberts, Ph.D.
California Institute of Technology
Professor, Civil and Environmental Engineering

Ronnie S. Roberts, Ph.D.
University of Tennessee
Associate Professor, Chemical Engineering

David Robertson, Ph.D.
University of Wisconsin
Assistant Professor, Psychology

Daniel A. Robinson, Ph.D.
University of Wisconsin
Professor, Mathematics

Heidi M. Rockwood, Ph.D.
University of Florida
Head and Professor, Modern Languages

Juan Rogers, Ph.D.
Virginia Polytechnic Institute and State University
Assistant Professor, Public Policy

Peter H. Rogers, Ph.D.
Brown University
Rae and Frank H. Neely Professorship and Professor, Mechanical Engineering

Wendy A. Rogers, Ph.D.
Georgia Institute of Technology
Associate Professor, Psychology

Ajeet Rohatgi, Ph.D.
Lehigh University
Georgia Power Distinguished Professor, Director of the University Center of Excellence for Photovoltaics Research and Education, and Regents' Professor, Electrical and Computer Engineering
<table>
<thead>
<tr>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>David W. Rosen, Ph.D.</td>
</tr>
<tr>
<td>University of Massachusetts - Amherst</td>
</tr>
<tr>
<td>Associate Professor, Mechanical Engineering</td>
</tr>
<tr>
<td>Catherine B. Ross, Ph.D.</td>
</tr>
<tr>
<td>Cornell University</td>
</tr>
<tr>
<td>Professor, City Planning Program, College of Architecture</td>
</tr>
<tr>
<td>Sue V. Rosser, Ph.D.</td>
</tr>
<tr>
<td>University of Wisconsin - Madison</td>
</tr>
<tr>
<td>Dean, Ivan Allen College, and Professor, History, Technology, and</td>
</tr>
<tr>
<td>Society</td>
</tr>
<tr>
<td>Jarek Rossignac, Ph.D.</td>
</tr>
<tr>
<td>University of Rochester</td>
</tr>
<tr>
<td>Professor, College of Computing</td>
</tr>
<tr>
<td>Ronald W. Rousseau, Ph.D.</td>
</tr>
<tr>
<td>P.E. (North Carolina)</td>
</tr>
<tr>
<td>Louisiana State University</td>
</tr>
<tr>
<td>Chair and Professor, Chemical Engineering</td>
</tr>
<tr>
<td>Charles Rudolph, M.B.D.</td>
</tr>
<tr>
<td>Columbia University</td>
</tr>
<tr>
<td>Assistant Professor, Architecture Program, College of Architecture</td>
</tr>
<tr>
<td>Stephen M. Ruffin, Ph.D.</td>
</tr>
<tr>
<td>Stanford University</td>
</tr>
<tr>
<td>Associate Professor, Aerospace Engineering</td>
</tr>
<tr>
<td>Carolyn D. Ruppel, Ph.D.</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Associate Professor, Earth and Atmospheric Sciences</td>
</tr>
<tr>
<td>Armistead (Ted) Russell, Ph.D.</td>
</tr>
<tr>
<td>California Institute of Technology</td>
</tr>
<tr>
<td>Georgia Power Chaired Professor and Professor, Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Carlos Sa de Melo, Ph.D.</td>
</tr>
<tr>
<td>Stanford University</td>
</tr>
<tr>
<td>Assistant Professor, Physics</td>
</tr>
<tr>
<td>Ashraf S. Saad, Ph.D.</td>
</tr>
<tr>
<td>Vanderbilt University</td>
</tr>
<tr>
<td>Associate Professor, Regional Engineering Program</td>
</tr>
<tr>
<td>Michael D. Sacks, Ph.D.</td>
</tr>
<tr>
<td>University of California - Berkeley</td>
</tr>
<tr>
<td>Professor, Materials Science and Engineering</td>
</tr>
<tr>
<td>Nader Sadegh, Ph.D.</td>
</tr>
<tr>
<td>University of California - Berkeley</td>
</tr>
<tr>
<td>Associate Professor, Mechanical Engineering</td>
</tr>
<tr>
<td>Saeid Sadri, Ph.D.</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>Assistant Professor, Building Construction Program, College of</td>
</tr>
<tr>
<td>Architecture</td>
</tr>
<tr>
<td>Francois Sainfort, Ph.D.</td>
</tr>
<tr>
<td>E cole Centrale Paris</td>
</tr>
<tr>
<td>Professor, Industrial and Systems Engineering</td>
</tr>
<tr>
<td>Richard F. Salant, Sc.D.</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Professor, Mechanical Engineering</td>
</tr>
<tr>
<td>Michael D. Salomone, Ph.D.</td>
</tr>
<tr>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td>Professor, International Affairs</td>
</tr>
<tr>
<td>Athanassios Sambanis, Ph.D.</td>
</tr>
<tr>
<td>University of Minnesota</td>
</tr>
<tr>
<td>Associate Professor, Chemical Engineering</td>
</tr>
<tr>
<td>Robert J. Samuels, Ph.D.</td>
</tr>
<tr>
<td>University of Akron</td>
</tr>
<tr>
<td>Professor, Chemical Engineering</td>
</tr>
<tr>
<td>Thomas H.B. Sanders Jr., Ph.D.</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>Regents' Professor, Materials Science and Engineering</td>
</tr>
<tr>
<td>N.L. Sankar, Ph.D.</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>Regents' Professor, Aerospace Engineering</td>
</tr>
<tr>
<td>Carlos Santamarina, Ph.D.</td>
</tr>
<tr>
<td>Purdue University</td>
</tr>
<tr>
<td>Associate Professor, Civil and Environmental Engineering</td>
</tr>
<tr>
<td>F. Michael Saunders, Ph.D.</td>
</tr>
<tr>
<td>P.E. (Georgia)</td>
</tr>
<tr>
<td>University of Illinois</td>
</tr>
<tr>
<td>Professor, Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Matthieu W.P. Savelberg, Ph.D.</td>
</tr>
<tr>
<td>Erasmus University</td>
</tr>
<tr>
<td>Professor, Industrial and Systems Engineering</td>
</tr>
<tr>
<td>David S. Sawicki, Ph.D.</td>
</tr>
<tr>
<td>Cornell University</td>
</tr>
<tr>
<td>Professor, City Planning Program, College of Architecture, and</td>
</tr>
<tr>
<td>Professor, Public Policy</td>
</tr>
<tr>
<td>Ashok Saxena, Ph.D.</td>
</tr>
<tr>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>Chair and Professor, Materials Science and Engineering</td>
</tr>
<tr>
<td>William E. Sayle II, Ph.D.</td>
</tr>
<tr>
<td>P.E. (Georgia, Washington)</td>
</tr>
<tr>
<td>University of Washington</td>
</tr>
<tr>
<td>Associate Chair and Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Ronald W. Schafer, Ph.D.</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>John O. and Marius McCarty Chair, Regents' Professor, and Institute</td>
</tr>
<tr>
<td>Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>William A. Schaffer, Ph.D.</td>
</tr>
<tr>
<td>Duke University</td>
</tr>
<tr>
<td>Professor, Economics</td>
</tr>
<tr>
<td>Michael F. Schatz, Ph.D.</td>
</tr>
<tr>
<td>University of Texas</td>
</tr>
<tr>
<td>Assistant Professor, Physics</td>
</tr>
<tr>
<td>David E. Schimmel, Ph.D.</td>
</tr>
<tr>
<td>Cornell University</td>
</tr>
<tr>
<td>Associate Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Jay H. Schlag, Ph.D.</td>
</tr>
<tr>
<td>Georgia Institute of Technology</td>
</tr>
<tr>
<td>Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Jonathan Schneer, Ph.D.</td>
</tr>
<tr>
<td>Columbia University</td>
</tr>
<tr>
<td>Professor, History, Technology, and Society</td>
</tr>
<tr>
<td>Arnold Schneider, Ph.D.</td>
</tr>
<tr>
<td>C.P.A.</td>
</tr>
<tr>
<td>Ohio State University</td>
</tr>
<tr>
<td>Associate Professor, Management</td>
</tr>
<tr>
<td>F. Joseph Schork, Ph.D.</td>
</tr>
<tr>
<td>P.E. (Georgia)</td>
</tr>
<tr>
<td>University of Wisconsin</td>
</tr>
<tr>
<td>Associate Chair and Professor, Chemical Engineering</td>
</tr>
<tr>
<td>Daniel Schrage, D.Sc.</td>
</tr>
<tr>
<td>Washington University - St. Louis</td>
</tr>
<tr>
<td>Director, Center of Excellence in Rotorcraft Technology, and Professor,</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
</tr>
<tr>
<td>Leonard Schulman, Ph.D.</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Assistant Professor, College of Computing</td>
</tr>
</tbody>
</table>
Gary B. Schuster, Ph.D.
University of Rochester
Dean, College of Sciences; Vasser Woolley Chair of Chemistry and Biochemistry; and Professor, Chemistry and Biochemistry

Karsten Schwan, Ph.D.
Carnegie Mellon University
Professor, College of Computing

Waymond R. Scott Jr., Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Professor, Electrical and Computer Engineering

Jerry M. Seitzman, Ph.D.
Stanford University
Associate Professor, Aerospace Engineering

Katherine L. Seley, Ph.D.
Auburn University
Assistant Professor, Chemistry and Biochemistry

Carol A. Senf, Ph.D.
State University of New York - Buffalo
Associate Professor, Literature, Communication, and Culture

Richard F. Serfozo, Ph.D.
Northwestern University
Professor, Industrial and Systems Engineering

Xiwei Sha, Ph.D.
Stanford University
Assistant Professor, Literature, Communication, and Culture

Radwan A. Shaban, Ph.D.
Stanford University
Associate Professor, Economics

Christina Shalley, Ph.D.
University of Illinois
Associate Professor, Management

Philip Shapiro, Ph.D.
University of California - Berkeley
Professor, Public Policy

Alexander Shapiro, Ph.D.
Ben-Gurion University of the Negev
Professor, Industrial and Systems Engineering

Gunter P. Sharp, Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Associate Professor, Industrial and Systems Engineering

Samuel V. Shelton, Ph.D.
Georgia Institute of Technology
Associate Professor, Mechanical Engineering

Ronald W. Shenk, Ph.D.
University of Colorado
Professor, Mathematics

C. David Sherrill, Ph.D.
University of Georgia
Assistant Professor, Chemistry and Biochemistry

Rumiko Shinzato-Simonds, Ph.D.
University of Hawaii
Associate Professor, Modern Languages

Olin Shivers, Ph.D.
Carnegie-Mellon University
Associate Professor, College of Computing

David J. Shook, Ph.D.
University of Illinois
Associate Professor, Modern Languages

Suzanne B. Shuker, Ph.D.
Stanford University
Assistant Professor, Chemistry and Biochemistry

Vinod R. Singhal, Ph.D.
University of Rochester
Associate Professor, Management

William E. Singhose, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Mechanical Engineering

Suresh K. Sitaraman, Ph.D.
Ohio State University
Associate Professor, Mechanical Engineering

Raghunath Sivakumar, Ph.D.
University of Illinois - Urbana-Champaign
Assistant Professor, Electrical and Computer Engineering

A.H. Peter Skelland, Ph.D.
University of Birmingham - England
Chartered Engineer and Chemist (Britain)
Professor, Chemical Engineering

Anderson D. Smith, Ph.D.
University of Virginia
Associate Dean, College of Sciences, and Regents' Professor, Psychology

Glenn S. Smith, Ph.D.
Harvard University
Pippin Chair in Electromagnetics and Regents' Professor, Electrical and Computer Engineering

Marc K. Smith, Ph.D.
Northwestern University
Associate Professor, Mechanical Engineering

Marilyn J. Smith, Ph.D.
Georgia Institute of Technology
Assistant Professor, Aerospace Engineering

Mark J.T. Smith, Ph.D.
Georgia Institute of Technology
Executive Assistant to the President and Professor, Electrical and Computer Engineering

Terry W. Snell, Ph.D.
University of South Florida
Professor, Biology

Patricia A. Sobecky, Ph.D.
University of Georgia
Assistant Professor, Biology

Joel Sokol, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, Industrial and Systems Engineering

Jude T. Sommerfeld, Ph.D.
P.E. (Georgia)
University of Michigan
Professor, Chemical Engineering

Samit Soni, Ph.D.
University of Texas - Dallas
Assistant Professor, Management

Eric A. Sonstroem, Ph.D.
Indiana University
Instructor, Literature, Communication, and Culture

Fotis Sotiropoulos, Ph.D.
University of Cincinnati
Associate Professor, Civil and Environmental Engineering

Tabitha Sparks, M.A.
University of Washington
Instructor, Literature, Communication, and Culture

Phillip B. Sparling, Ed.D.
University of Georgia
Professor, Health and Performance Sciences
Mark Spearman, Ph.D.
Texas A&M University
Associate Professor, Industrial and Systems Engineering

Robert F. Speyer, Ph.D.
University of Illinois - Urbana-Champaign
Professor, Materials Science and Engineering

Jonathan E. Spingarn, Ph.D.
University of Washington
Associate Professor, Mathematics

Marcus C. Spruill, Ph.D.
Purdue University
Professor, Mathematics

Mohan Srinivasaro, Ph.D.
Carnegie Mellon University
Assistant Professor, Textile and Fiber Engineering

Weston M. Stacey Jr., Ph.D.
Massachusetts Institute of Technology
Fuller E. Callaway Chair and Regents Professor, Nuclear Engineering and Health Physics

Arnold E. Stancell, Ph.D.
P.E. (New York)
Massachusetts Institute of Technology
Professor, Chemical Engineering

Thad Starner, Ph.D.
Massachusetts Institute of Technology
Assistant Professor, College of Computing

John T. Stasko, Ph.D.
Brown University
Associate Professor, College of Computing

Paul G. Steffes, Ph.D.
Stanford University
Professor, Electrical and Computer Engineering

Jeffrey Steif, Ph.D.
Stanford University
Associate Professor, Mathematics

Anne S. Steinemann, Ph.D.
Stanford University
Assistant Professor, City Planning Program, College of Architecture

Clifford H. Stern, M.S.
R.A. (Georgia, Alabama, Virginia)
University of Southern California
Assistant Professor, Building Construction Program, College of Architecture

Stuart R. Stock, Ph.D.
University of Illinois - Urbana-Champaign
Professor, Materials Science and Engineering

Ellen Strain, Ph.D.
University of California - Los Angeles
Assistant Professor, Literature, Communication, and Culture

Jeff Stratman, Ph.D.
University of North Carolina - Chapel Hill
Assistant Professor, Management

Jeffrey L. Streator, Ph.D.
University of California - Berkeley
Associate Professor, Mechanical Engineering

Terry S. Stihrm, Ph.D.
University of Iowa
Associate Professor, Civil and Environmental Engineering

Christopher J. Summers, Ph.D.
University of Reading
Professor, Materials Science and Engineering

Madhavan Swaminathan, Ph.D.
Syracuse University
Associate Professor, Electrical and Computer Engineering

Andrzej Szymczak, Ph.D.
Georgia Institute of Technology
Assistant Professor, College of Computing

Andrzej Szymczak, Ph.D.
Georgia Institute of Technology
Assistant Professor, College of Computing

Martial Tallulufert, Ph.D.
Northwestern University
Assistant Professor, Earth and Atmospheric Sciences

Stacy L. Takacs, Ph.D.
Indiana University
Instructor, Literature, Communication, and Culture

Ramesh R. Talreja, Ph.D.
Technical University of Denmark
Professor, Aerospace Engineering

Allen Tannenbaum, Ph.D.
Purdue University
Julian Hightower Chair and Professor, Electrical and Computer Engineering

Rina Tannenbaum, D.Sc.
Swiss Federal Institute of Technology
Associate Professor, Materials Science and Engineering

David G. Taylor, Ph.D.
University of Illinois
Associate Professor, Electrical and Computer Engineering

Richard D. Teach, Ph.D.
Purdue University
Professor, Management

D.W. Tedder, Ph.D.
P.E. (Georgia, Tennessee)
University of Wisconsin - Madison
Associate Professor, Chemical Engineering

Amyn Teja, Ph.D.
Imperial College - London
Associate Chair and Regents' Professor, Chemical Engineering

Jay P. Telotte, Ph.D.
University of Florida
Undergraduate Director and Professor, Literature, Communication, and Culture

Emmunouil M. Tentzeris, Ph.D.
University of Michigan
Assistant Professor, Electrical and Computer Engineering

Prasad Tetali, Ph.D.
New York University
Associate Professor, Mathematics
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naresh N. Thadhani, Ph.D.</td>
<td>New Mexico Institute of Mining and Technology</td>
<td>Professor, Materials Science and Engineering</td>
</tr>
<tr>
<td>Edward W. Thomas, Ph.D.</td>
<td>University College, London</td>
<td>Professor, Physics</td>
</tr>
<tr>
<td>Linda Thomas, Esq., Ph.D.</td>
<td>Georgia Bar Association</td>
<td>Assistant Professor, Building Construction Program, College of Architecture</td>
</tr>
<tr>
<td>Michael E. Thomas, Ph.D.</td>
<td>Johns Hopkins University</td>
<td>Provost and Vice President for Academic Affairs and Professor, Industrial and Systems Engineering</td>
</tr>
<tr>
<td>Robin Thomas, Ph.D.</td>
<td>Charles University</td>
<td>Professor, Mathematics</td>
</tr>
<tr>
<td>Chai-Keong Tob, Ph.D.</td>
<td>Cambridge University</td>
<td>Assistant Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Laren M. Tolbert, Ph.D.</td>
<td>University of Wisconsin - Madison</td>
<td>Chair and Professor, Chemistry and Biochemistry</td>
</tr>
<tr>
<td>Andrea Tone, Ph.D.</td>
<td>Emory University</td>
<td>Associate Professor, History, Technology, and Society</td>
</tr>
<tr>
<td>John L. Tone, Ph.D.</td>
<td>Columbia University</td>
<td>Associate Professor, History, Technology, and Society</td>
</tr>
<tr>
<td>Yung L. Tong, Ph.D.</td>
<td>University of Minnesota</td>
<td>Professor, Mathematics</td>
</tr>
<tr>
<td>Thomas G. Tornabene, Ph.D.</td>
<td>University of Houston</td>
<td>Professor, Biology</td>
</tr>
<tr>
<td>Jeffrey P. Toth, Ph.D.</td>
<td>University of North Carolina - Greensboro</td>
<td>Assistant Professor, Psychology</td>
</tr>
<tr>
<td>Craig A. Tovey, Ph.D.</td>
<td>Stanford University</td>
<td>Professor, Industrial and Systems Engineering and College of Computing</td>
</tr>
<tr>
<td>Rick Trebino, Ph.D.</td>
<td>Stanford University</td>
<td>Georgia Research Alliance Chair in Ultrafast Optical Physics and Professor, Physics</td>
</tr>
<tr>
<td>Panagiotis Tsioras, Ph.D.</td>
<td>Purdue University</td>
<td>Associate Professor, Aerospace Engineering</td>
</tr>
<tr>
<td>Kwok-Leng Tsui, Ph.D.</td>
<td>University of Wisconsin - Madison</td>
<td>Associate Professor, Industrial and Systems Engineering</td>
</tr>
<tr>
<td>Joseph M. Pettit Chair in Materials;</td>
<td>University of Illinois - Urbana-Champaign</td>
<td>Director, Electronic Packaging Research Center; and Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Gregory Turk, Ph.D.</td>
<td>University of North Carolina - Chapel Hill</td>
<td>Associate Professor, Management</td>
</tr>
<tr>
<td>Felix Uhlik, Ph.D.</td>
<td>Pennsylvania State University</td>
<td>Graduate Coordinator and Associate Professor, Building Construction Program, College of Architecture</td>
</tr>
<tr>
<td>Francis M. Ulgado, Ph.D.</td>
<td>University of Illinois - Urbana-Champaign</td>
<td>Associate Professor, Management</td>
</tr>
<tr>
<td>Charles Ume, Ph.D.</td>
<td>University of South Carolina</td>
<td>Professor, Mechanical Engineering</td>
</tr>
<tr>
<td>Steven W. Usselman, Ph.D.</td>
<td>University of Delaware</td>
<td>Associate Professor, History, Technology, and Society</td>
</tr>
<tr>
<td>John P. Uymura, Ph.D.</td>
<td>University of California - Berkeley</td>
<td>Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Ahmet Turgay Uzer, Ph.D.</td>
<td>Harvard University</td>
<td>Professor, Physics</td>
</tr>
<tr>
<td>George J. Yachtsevanos, Ph.D.</td>
<td>The City University of New York</td>
<td>Professor, Electrical and Computer Engineering</td>
</tr>
<tr>
<td>Feodor Vainstein, Ph.D.</td>
<td>Boston University</td>
<td>Professor, Regional Engineering Program</td>
</tr>
<tr>
<td>John D. Valentine, Ph.D.</td>
<td>University of Michigan</td>
<td>Associate Professor, Nuclear Engineering and Health Physics</td>
</tr>
<tr>
<td>Steven Vallas, Ph.D.</td>
<td>Rutgers University</td>
<td>Associate Professor, History, Technology, and Society</td>
</tr>
<tr>
<td>Philippe S. Van Cappellen, Ph.D.</td>
<td>Yale University</td>
<td>Associate Professor, Earth and Atmospheric Sciences</td>
</tr>
<tr>
<td>John Vande Vate, Ph.D.</td>
<td>Massachusetts Institute of Technology</td>
<td>Professor, Industrial and Systems Engineering</td>
</tr>
<tr>
<td>Jorge Vanezga, Ph.D.</td>
<td>Stanford University</td>
<td>Associate Professor, Civil and Environmental Engineering</td>
</tr>
<tr>
<td>Gregory VanHoosier-Carey, Ph.D.</td>
<td>University of Texas - Austin</td>
<td>Associate Professor, Literature, Communication, and Culture</td>
</tr>
<tr>
<td>Vijay Vazirani, Ph.D.</td>
<td>University of California - Berkeley</td>
<td>Professor, College of Computing</td>
</tr>
<tr>
<td>H. Venkateswaran, Ph.D.</td>
<td>University of Washington</td>
<td>Associate Professor, College of Computing</td>
</tr>
<tr>
<td>Erik I. Verriest, Ph.D.</td>
<td>Stanford University</td>
<td>Professor, Electrical and Computer Engineering</td>
</tr>
</tbody>
</table>
Branislav Vidakovic, Ph.D.
Purdue University
Associate Professor, Industrial and Systems Engineering

Raymond P. Vito, Ph.D.
Cornell University
Associate Chair for Undergraduate Programs and Professor, Mechanical Engineering

Barbara J. Walker, M.L.S.
Atlanta University
Librarian-Assistant Professor, Library

Brandy B. Walker, M.A.
Tulane University
Instructor, Literature, Communication, and Culture

Jesse M. Wampler, Ph.D.
Columbia University
Associate Professor, Earth and Atmospheric Sciences

C.K. Wang, Ph.D.
P.E. (Kansas)
Ohio State University
Associate Professor, Nuclear Engineering and Health Physics

Fei-Ling Wang, Ph.D.
University of Pennsylvania
Assistant Professor, International Affairs

Yang Wang, Ph.D.
Harvard University
Professor, Mathematics

Youjiang Wang, Ph.D.
P.E. (Georgia)
Massachusetts Institute of Technology
Associate Professor, Textile and Fiber Engineering

Z.L. Wang, Ph.D.
Arizona State University
Professor, Materials Science and Engineering

Andrew Ward, Ph.D.
University of Kansas
Associate Professor, Public Policy

Yorai Wardi, Ph.D.
University of California - Berkeley
Associate Professor, Electrical and Computer Engineering

Roger M. Wartell, Ph.D.
University of Rochester
Chair, Biology, and Professor, Biology and Physics

Simon Washington, Ph.D.
University of California - Davis
Associate Professor, Civil and Environmental Engineering

Roger P. Webb, Ph.D.
P.E. (Georgia)
Georgia Institute of Technology
Chair and Georgia Power Distinguished Professor, Electrical and Computer Engineering

Katja Weber, Ph.D.
University of California - Los Angeles
Assistant Professor, International Affairs

Rodney J. Weber, Ph.D.
University of Minnesota
Assistant Professor, Earth and Atmospheric Sciences

Donald Webster, Ph.D.
Stanford University
Assistant Professor, Civil and Environmental Engineering

Marcus Weck, Ph.D.
California Institute of Technology
Assistant Professor, Chemistry and Biochemistry

Marc J. Weissburg, Ph.D.
State University of New York - Stony Brook
Assistant Professor, Biology

William J. Wepfer, Ph.D.
University of Wisconsin
Associate Chair for Graduate Studies and Professor, Mechanical Engineering

Robert L. Whetten, Ph.D.
Cornell University
Professor, Chemistry and Biochemistry

Mark G. White, Ph.D.
Rice University
Professor, Chemical Engineering

Timothy M. Wick, Ph.D.
Rice University
Associate Professor, Chemical Engineering

Kurt Wiesenfeld, Ph.D.
University of California - Berkeley
Professor, Physics

Angus P. Wilkinson, Ph.D.
University of Oxford
Associate Professor, Chemistry and Biochemistry

Kenneth M. Will, Ph.D.
University of Texas - Austin
Associate Chair for Graduate Programs and Associate Professor, Civil and Environmental Engineering

Douglas B. Williams, Ph.D.
Rice University
Associate Professor, Electrical and Computer Engineering

Loren Williams, Ph.D.
Duke University
Professor, Chemistry and Biochemistry

Marilyn L. Williamson, M.Ln.
Emory University
Librarian-Assistant Professor, Library

Clyde Willman, Ph.D.
Indiana University
Instructor, Literature, Communication, and Culture

Vincent Willoughby, Ph.D.
University of California - Santa Barbara
Instructor, Literature, Communication, and Culture

Linda M. Wills, Ph.D.
Massachusetts Institute of Technology
Associate Professor, Electrical and Computer Engineering

Paul Wine, Ph.D.
Florida State University
Professor, Chemistry and Biochemistry and Earth and Atmospheric Sciences

Ward O. Winer, Ph.D.
University of Michigan, Cambridge University
School Chair, Eugene C. Gwaltney Jr. Chair, and Regents’ Professor, Mechanical Engineering

Jack Winnick, Ph.D.
P.E. (Missouri)
University of Oklahoma
Professor, Chemical Engineering

C.P. Wong, Ph.D.
Pennsylvania State University
Regents’ Professor, Materials Science and Engineering
Administration, Faculty, and Staff

John L. Wood, Ph.D.
Clark University
Professor, Physics

Robert Edward Wood, Ph.D.
University of Virginia
Associate Professor, Literature, Communication, and Culture

Brian Woodall, Ph.D.
University of California - Berkeley
Associate Professor, International Affairs

Jun Xu, Ph.D.
Ohio State University
Assistant Professor, College of Computing

Sudhakar Yalamanchili, Ph.D.
University of Texas - Austin
Professor, Electrical and Computer Engineering

Lisa Yaszek, Ph.D.
University of Wisconsin
Assistant Professor, Literature, Communication, and Culture

Wenjing Ye, Ph.D.
Cornell University
Assistant Professor, Mechanical Engineering

Jeanette Yen, Ph.D.
University of Washington
Associate Professor, Biology

P.K. Yeung, Ph.D.
Cornell University
Associate Professor, Aerospace Engineering

Anthony J. Yezi Jr., Ph.D.
University of Minnesota
Assistant Professor, Electrical and Computer Engineering

Yingfei Yi, Ph.D.
University of Southern California
Professor, Mathematics

Sotira Yiannouli, Ph.D.
Syracuse University
Associate Professor, Civil and Environmental Engineering

Minami Yoda, Ph.D.
Stanford University
Assistant Professor, Mechanical Engineering

Ajit P. Yoganathan, Ph.D.
California Institute of Technology
Associate Chair for Graduate Programs and Regents' Professor, Biomedical Engineering

Li You, Ph.D.
University of Colorado
Assistant Professor, Physics

Paul D. Young, Ph.D.
University of Chicago
Assistant Professor, Literature, Communication, and Culture

Xingxing Yu, Ph.D.
Vanderbilt University
Associate Professor, Mathematics

Andrew Zangwill, Ph.D.
University of Pennsylvania
Professor, Physics

Ellen Witte Zegura, Ph.D.
Washington University
Assistant Dean of Facilities Planning and Associate Professor, College of Computing

Han Zhang, Ph.D.
University of Texas - Austin
Assistant Professor, Management

Z. John Zhang, Ph.D.
University of Wisconsin - Madison
Assistant Professor, Chemistry and Biochemistry

Chen Zhou, Ph.D.
Pennsylvania State University
Associate Professor, Industrial and Systems Engineering

G. Tong Zhou, Ph.D.
University of Virginia
Associate Professor, Electrical and Computer Engineering

Min Zhou, Ph.D.
Brown University
Associate Professor, Mechanical Engineering

Cheng Zhu, Ph.D.
Columbia University
Associate Professor, Mechanical Engineering

Igor B. Zhulin, Ph.D.
St. Petersburg (Leningrad) State University
Assistant Professor, Biology

Craig M. Zimring, Ph.D.
University of Massachusetts
Associate Professor, Architecture/Doctoral Program, College of Architecture

Ben T. Zinn, Ph.D.
Princeton University
David S. Lewis Chair and Regents' Professor, Aerospace Engineering

Abdul-Hamid Zureick, Ph.D.
University of Illinois - Urbana-Champaign
Professor, Civil and Environmental Engineering
INDEX

Academic advising 28
Academic calendar 4
Academic common market (graduate) 35
Academic common market (undergraduate) 24
Academic Honor Code 15, 376
Academic offerings 8
Academic regulations 28
Academic standing 369
Accreditation 8
Accounting 110, 121
Administration 389
Admission of freshmen/undergraduates 26
Admission, graduate 36
Advanced placement 27
Advanced Technology Development Center 17
Aerospace engineering 128
Air Force aerospace studies 239
Air Force ROTC 239
Alcohol policy 15
Algorithms, combinatorics, optimization 95, 189, 337
Alumni Association 21
Applied mathematics 332
Applied physics 349
Applied psychology 356
Architecture, College of 53
Army ROTC 274
Assistance for persons with disabilities 13
Athletic Association 21
Attendance 367
Auditing courses 30
Band 79
Billing information 46
Biochemistry 310
Bioinformatics 307
Biotechnology 305
Biomedical engineering 94, 95, 126, 139
Broadband Institute 95
Building construction 56, 63
Career services 9
Center for the Arts 12
Chemical engineering 145
Chemistry and Biochemistry 310
City and regional planning 59, 63
Civil and environmental engineering 153
Cognitive science 94, 359
Community services 8
Composites Education and Research Center 202
Computer engineering 172
Computer ownership 15
Computer science 88
Computing, College of 86
Computing facilities 16, 87
Computing research centers 95
Constitution and history requirements 30
Continuing education 18
Cooperative plan, undergraduate 24
Cooperative program, graduate 34
Core curriculum 31, 32
Counseling Center 9
Cross enrollment 373
Dean of Students 8
Deficiencies 370
Degrees and programs of study, graduate 53, 34
Degrees and programs of study, undergraduate 23
Design computing 64
Directory information 14
Disabled accommodation 15
Disciplinary administration 380
Discrete mathematics 333
Disruptive behavior 380
Distance learning 18
Diversity issues and programs 9
Doctoral degree/dissertation 40, 41
Doctoral programs 33
DramaTech 12
Dual degree program 126
DuPree College of Management 107
Dynamical Systems and Nonlinear Studies 337
Earth and atmospheric sciences 321
Economics 241
Edutech 96
Electrical and computer engineering 169
Engineering, College of 125
Engineering science and mechanics 156
English 273
Environmental engineering 153, 157
Examinations and term grades 29, 368, 373
Extracurricular activities 375
Facility Management 63
Faculty 395
FASET Orientation 11
Fees 45, 46
Fellowships, Sponsorships, and Traineeships 49, 50
Finance 110
Financial assistance/information, graduate 49, 51
Financial assistance/information, undergraduate 47, 48
Fine arts 80
Fraternities 9
Geophysics 125
Georgia Tech Foundation 21
Georgia Tech Information Security Center 96
Georgia Tech Lorraine 19
Georgia Tech Regional Engineering Program 126
Georgia Tech Research Corporation 22
Georgia Tech Research Institute 17
Grading system 28, 368
Graduate Course Option 28
Graduate degrees 33, 375
Graduate Record Examinations 36
Graduation with honors 375
Graphics, visualization and usability 96, 359
Grievance (student) procedures 385
Health and performance sciences 329
Health information 10
Health physics 213, 226
Health sciences requirement 329
Health systems 188, 195
High school teaching 25
History 256
History and constitution requirements 30
History of technology 251
History, technology, and society 248
Housing office 9
Human-computer interaction 93
Human Relations Statement 3
Humanities and social sciences requirements 31, 32
Industrial and systems engineering 186
Industrial design 59
Information design and technology 268
Information systems certificate 91
Information Technology 16
Information technology management 110
Intellectual property policy 15
Intensive courses, writing and communication 267
About this Catalog

The statements set forth in this catalog are for informational purposes only and should not be construed as the basis of a contract between a student and this institution.

While the provisions of this catalog will ordinarily be applied as stated, Georgia Tech reserves the right to change any provision listed in this catalog, including but not limited to academic requirements for graduation, without actual notice to individual students. Every effort will be made to keep students advised of any such changes. Information on changes will be available in the offices of the registrar, the dean of students, and the major schools and colleges. It is especially important that each student note that it is his or her responsibility to be aware of current graduation requirements for a particular degree program.

This institution is in compliance with Title VI of the Civil Rights Act of 1964 and does not discriminate on the basis of race, creed, color, or national origin and is also in compliance with the provisions of Title IX of the Educational Amendments of 1972, which prohibit discrimination on the basis of sex.

It is the policy of the Institute that sexual harassment as defined in the EEOC Guidelines will not be tolerated among members of the Tech community. Any complaint of sexual harassment should be reported immediately to the appropriate person or persons designated by the vice president, dean, or director. Statistics on campus crime are available upon request from Tech's Police Department.

This catalog becomes effective with summer term 2001.
<table>
<thead>
<tr>
<th>Department</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admissions (Undergraduate)</td>
<td>404.894.4154</td>
</tr>
<tr>
<td>Aerospace Engineering</td>
<td>404.894.3001</td>
</tr>
<tr>
<td>Air Force Aerospace Studies</td>
<td>404.894.4175</td>
</tr>
<tr>
<td>Architecture (Dean's Office), College of</td>
<td>404.894.3880</td>
</tr>
<tr>
<td>Architecture Program</td>
<td>404.894.4885</td>
</tr>
<tr>
<td>Army ROTC</td>
<td>404.894.4760</td>
</tr>
<tr>
<td>Biology</td>
<td>404.894.3700</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>404.385.0124</td>
</tr>
<tr>
<td>Building Construction</td>
<td>404.894.4875</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td>404.894.2865</td>
</tr>
<tr>
<td>Chemistry and Biochemistry</td>
<td>404.894.4002</td>
</tr>
<tr>
<td>City Planning</td>
<td>404.894.2350</td>
</tr>
<tr>
<td>Civil and Environmental Engineering</td>
<td>404.894.2201</td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>404.894.2900</td>
</tr>
<tr>
<td>Computing, College of</td>
<td>404.894.3152</td>
</tr>
<tr>
<td>DuPree College of Management</td>
<td>404.894.2600</td>
</tr>
<tr>
<td>Earth and Atmospheric Sciences</td>
<td>404.894.3893</td>
</tr>
<tr>
<td>Economics</td>
<td>404.894.4919</td>
</tr>
<tr>
<td>Electrical and Computer Engineering</td>
<td>404.894.2900</td>
</tr>
<tr>
<td>Engineering, College of</td>
<td>404.894.3350</td>
</tr>
<tr>
<td>Engineering Science and Mechanics</td>
<td>404.894.2205</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td>404.894.2265</td>
</tr>
<tr>
<td>Graduate Studies and Research</td>
<td>404.894.4843</td>
</tr>
<tr>
<td>Health and Performance Sciences</td>
<td>404.894.3986</td>
</tr>
<tr>
<td>History, Technology, and Society</td>
<td>404.894.3196</td>
</tr>
<tr>
<td>Industrial and Systems Engineering</td>
<td>404.894.2300</td>
</tr>
<tr>
<td>Industrial Design</td>
<td>404.894.4874</td>
</tr>
<tr>
<td>International Affairs</td>
<td>404.894.3195</td>
</tr>
<tr>
<td>Ivan Allen College</td>
<td>404.894.1727</td>
</tr>
<tr>
<td>Literature, Communication, and Culture</td>
<td>404.894.2730</td>
</tr>
<tr>
<td>Materials Science and Engineering</td>
<td>404.894.2852</td>
</tr>
<tr>
<td>Mathematics</td>
<td>404.894.2700</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>404.894.9065</td>
</tr>
<tr>
<td>Mechanical Engineering</td>
<td>404.894.3201</td>
</tr>
<tr>
<td>Military Science</td>
<td>404.894.7327</td>
</tr>
<tr>
<td>Modern Languages</td>
<td>404.894.3193</td>
</tr>
<tr>
<td>Music</td>
<td>404.894.4771</td>
</tr>
<tr>
<td>Naval Sciences</td>
<td>404.894.3201</td>
</tr>
<tr>
<td>Nuclear and Radiological Engineering and Health Physics</td>
<td>404.894.5201</td>
</tr>
<tr>
<td>Physics</td>
<td>404.894.2680</td>
</tr>
<tr>
<td>Psychology</td>
<td>404.894.6822</td>
</tr>
<tr>
<td>Public Policy</td>
<td>404.894.3300</td>
</tr>
<tr>
<td>Sciences, College of</td>
<td>404.894.2490</td>
</tr>
<tr>
<td>Textile and Fiber Engineering</td>
<td>404.894.2490</td>
</tr>
</tbody>
</table>