Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolutions for the New Academic Year</td>
<td>1</td>
</tr>
<tr>
<td>by Donna C. Llewellyn</td>
<td></td>
</tr>
<tr>
<td>The Classroom Interview</td>
<td>2</td>
</tr>
<tr>
<td>with Dr. Charles A. Eckert</td>
<td></td>
</tr>
<tr>
<td>A Report on ISyE's Pricing Game</td>
<td>5</td>
</tr>
<tr>
<td>by Anton J. Kleywegt</td>
<td></td>
</tr>
<tr>
<td>Two Commentaries on Academic Honesty</td>
<td>6</td>
</tr>
<tr>
<td>by Raymond Vito</td>
<td></td>
</tr>
<tr>
<td>by James A. (Andy) Ozment</td>
<td></td>
</tr>
<tr>
<td>In the CETL Library</td>
<td>8</td>
</tr>
<tr>
<td>by David J. Shook</td>
<td></td>
</tr>
<tr>
<td>Tips for New Faculty</td>
<td>10</td>
</tr>
<tr>
<td>by Andres J. Garcia</td>
<td></td>
</tr>
<tr>
<td>Upcoming Events</td>
<td>12</td>
</tr>
</tbody>
</table>

Please feel free to copy and quote the contents of The Classroom giving appropriate reference/credit.

Copyright 2000
Center for the Enhancement of Teaching and Learning

Resolutions for the New Academic Year

by Donna C. Llewellyn, Ph.D.
donna.llewellyn@oars.gatech.edu

For most people, New Year’s Day arrives in January — a time to take stock of the past year, to look forward to the possibilities of a new year, and a chance to make resolutions of how we can improve ourselves. However, the academic world operates on a unique calendar, and the first day of fall term classes has always felt like our New Year’s Day.

So, I will take this opportunity to look back over my first year as Director of CETL, to look forward to the opportunities that await us, and to make some resolutions for improvement.

I will not bore the reader with a laundry list of everything that CETL has done over the past year. For information about what we do on a regular basis, I refer you, as always, to our website (http://www.cetl.gatech.edu). Of more interest here are four things that have changed. First, with the advent of semesters, we moved the course/instructor opinion survey online. This has introduced the challenges of increasing the student response rate and studying the continued validity and relevance of the survey instrument. Second, in response to an increasing concern with the role of teaching assistants in undergraduate education, we now offer an oral skills English class to international graduate teaching assistants (thanks to the generous support of the Provost’s Office). Third, technology is playing an ever more prominent role in many classes at Tech — both in the classrooms here on campus and in courses that are only available at a distance. Our student assistant program offers support to faculty who want to introduce technology — we try to help increase student learning without a corresponding increase in faculty stress.

Fourth, due in part to Yamacraw and the GTREP program, Georgia Tech brought in more new faculty this year than in any recent year. CETL’s new faculty orientation expanded to better serve these new members of the academic staff throughout their first term at Tech.

What does the coming year hold? Taking a cue from President Clough’s recent State of the Institute Address, there will be an increased emphasis

continued on page 11
Dr. Charles A. Eckert has been a teacher and a scholar for more than thirty years. For the last eleven, he has been the J. Erskine Love, Jr., Institute Professor in the School of Chemical Engineering and Director of the Center for Specialty Separations at Georgia Tech. He holds also a joint appointment in Chemistry. Previously, he was a faculty member and Department Head at the University of Illinois at Urbana-Champaign.

Professor Eckert is a leader in research linking fundamental chemistry to important applications in such diverse areas as separations, reactions, energy, environmental control, and advanced materials. He has been called the “Father of Supercritical Fluids” for his pioneering work in exploring and applying the novel properties of these unique solvents. Eckert has authored or coauthored over 200 research papers, books, and monographs on these subjects, and he has presented more than 300 invited lectures. He has directed more than 60 doctoral theses and about twenty of his former students have entered academia as faculty, chaired professors, department heads, and deans.

Major awards to Professor Eckert include a N.A.T.O. Postdoctoral Fellowship in 1964 and a Guggenheim Foundation Fellowship in 1971. In 1973, he received the Alan P. Colburn Award of the American Institute of Chemical Engineers for his applications of molecular thermodynamics to chemical kinetics. The American Chemical Society selected him for the 1977 Ipatieff Award for his studies in high pressure and catalysis. He was elected to the National Academy of Engineering in 1983. At the University of Illinois, he won the Excellence in Teaching Award in 1987, the Burlington Northern Foundation Faculty Achievement Award in 1988, and the Halliburton Engineering Education Leadership Award in 1989.

At Georgia Tech he was made an Institute Professor in 1994, and he won the Distinguished Professor Award in 1997. In 1995 he received the E. V. Murphree Award for his work in solution chemistry and separations from the American Chemical Society, and in 1999 the William H. Walker Award for his leadership in supercritical fluids, from the American Institute of Chemical Engineers. In 2000 he was selected by the Regents of the State of Georgia for their inaugural Research in Undergraduate Education Award.

Q & A:
An Interview With
Dr. Charles A. Eckert
J. Erskine Love, Jr., Institute Professor
in the School of Chemical Engineering
Director of the Center for Specialty Separations
at Georgia Tech

Q: Many professors choose their fields because they love the subject matter. Why did you become a college/university professor?

A: When I was a freshman in college, I knew I liked chemistry, so I felt that I should go into either chemistry or chemical engineering. I decided that if I were to be a scientist, I needed to get gratification from learning new information about nature, but if I wanted to apply it to solving problems I needed to be an engineer. I am the type of idealist who wants to solve problems, and I did pick chemical engineering. It was one of the better decisions I made at age 18.

As I went on in my studies, I found that teaching science and engineering was even more exciting than just doing it. I get enormous vicarious gratification from the achievements and discoveries of my students, so I became a teacher. That, too, was a good decision.

Q: How long have you taught at Georgia Tech? What have been the high points of your experience as a member of the faculty here?

A: This is my 12th year at Tech. I think what is especially exciting about Tech is the highly collegial atmosphere and the facilitation of collaborative and interdisciplinary work. People here seem more concerned about getting a job done than at other institutions I’ve worked at. Also the relationship with the community is exceptional — other research universities suffer from the “town-gown” dichotomy. Here we work so well with industry, the state, the public. It’s wonderful.
Q: How were you taught? Did any of your teachers inspire you or help you aspire to great things?

A: The undergraduate instruction I had at MIT was exceptional — very interactive and Socratic. My first two teachers of thermodynamics there, Tom Sherwood and Bob Reid, inspired me. In graduate school at Berkeley, I was privileged to work with John Prausnitz, who taught me to think creatively.

Q: Did any of your experiences as a student cause you to teach (or to avoid teaching) in a certain way?

A: I like interactive teaching as opposed to straight lecturing. I feel that if the class is small enough, pull the students into the process; it works better. For me, this means 10-30 students. I have found this less effective for classes much over 40.

Q: Do you view yourself as a teacher of students or as a teacher of your subject?

A: Absolutely, students — that is the product of a university. I love to see what they can do, and I often stay in touch after graduation.

“Children are born with creativity, so you don’t have to teach it. The point is to provide a learning environment where creativity is not only permitted, but encouraged.”

Q: Do you have a set of “tried and true” techniques that always seem to work for you in your teaching? What are they? In what aspects of your teaching do you find it beneficial to use “creative” techniques?

A: I think it is important to teach beyond the “plug and chug” approach to engineering and science. Students need to understand how things work and why they work. It is important for students to learn how to think. For this I use open-ended problems, group problems, and other nontraditional methods. Research is one of our best teaching tools, as well. Students will also need a whole range of skills that go beyond the traditional engineering and science courses — they need communications skills, teamwork and leadership skills, an understanding of ethical questions, an understanding of legal issues, and many more. A lot of this can be done in the context of engineering and science courses.

Q: Can creativity be taught?

A: Children are born with creativity, so you don’t have to teach it. The point is to provide a learning environment where creativity is not only permitted, but encouraged.

Q: What is a teacher’s biggest responsibility in the learning process of students? What is the biggest responsibility of students?

A: For both, to stay in touch. Teachers need to be sensitive to the needs and interests of the students. Students need to appreciate that teachers often address their judgment of the long-range as well as short-range interest of the students. The students need to interact in class and out of class to get the most out of the process.

continued on next page
Q: Do you encounter situations in which you are teaching students who appear unmotivated and unprepared? How do you handle this? Do you view it as part of a teacher’s job to “make it matter” to them?

A: All our students at GT are well prepared and intelligent. When they do badly it is almost always a motivation issue. Sometimes the problem is nonacademic — family, substance issues, romance, or bad roommate — and in those cases I try to get them to get help from an appropriate and qualified source. If the problem is academic, most often I have found it is because they are bored. Often an extra challenge will motivate such students. Also students learn in different fashions — most learn step by step, but some by flashes of intuition. One sophomore I advised about ten years ago was bored, and I took her into the laboratory and gave her a graduate-level research project to do. She excelled at research, and her grades went from D’s to A’s. Subsequently, she got a Ph.D. at a top department and is now a researcher for a major polymer company. I talk to her from time to time and get great satisfaction from her success.

Q: To help students succeed, what is the one thing you’d most want them to understand?

A: They need to learn that it is okay to be creative, it is okay to make mistakes. They got to GT by avoiding mistakes in high school, and they can get good grades in most of our courses by finding the right equation and filling in the right numbers. But to be really successful, they need to know that they will have to get out of the box and try things, and if everything they try works, they are not trying enough.

Q: What advice would you give to a junior faculty member who wants to succeed as an effective teacher and who also wants to get tenure here?

A: I would tell the person that he or she had better succeed as an effective teacher, as well as a researcher, to achieve tenure. I have been at Illinois, MIT, Berkeley, and Stanford, and GT is really far better than other research schools at valuing teaching. And many administrators recognize that the better researchers tend to be the better teachers.

Q: If you could make one big change in the educational system at Georgia Tech, what would it be?

A: I think we are doing really well now.

Q: What is the most important part of your job?

A: Making students successful.

Q: What is the hardest part of your job?

A: Making students successful.
Making I.T. Work
A Report on ISyE’s Pricing Game
by Anton J. Kleywegt, Assistant Professor
School of Industrial and Systems Engineering

Games have long been a popular tool for instruction. Some of the best-known examples are flight simulators used for training pilots, ship and submarine simulators used for training oceangoing crew, and mock combats used widely in the military. In the past year, several instructors in the School of Industrial and Systems Engineering (ISyE) have begun to incorporate games into their classes. Examples are the Supply Chain Game (possibly better known as the Beer Game), in which students are taught how to make and how not to make inventory management decisions; the Littlefield Game, in which students are taught how to make decisions in a make-to-order factory with several workstations; and the Retailer Game, in which students are taught how to price seasonal commodities.

During the past six months, a new instructional game was developed by Michael O’Toole, a senior in ISyE, under my direction. The name of the game is Set That Price! It was developed using the Authorware software with help from Melissa Bachman at CETL.

The purposes of the game are (1) to illustrate some concepts in game theory, specifically those involved in competitive dynamic pricing; (2) to teach techniques for strategy development; and (3) to provide a setting for teaching demand modeling and forecasting. The game will be used in the graduate class in logistics as well as the demand and revenue management class of the executive masters program in international logistics (EMIL).

The current version of the game can be played by one player against the computer or by two players against each other and the computer. Initially, each player gets an amount of product, and during the game players can change the prices of their products. Buyers tend to buy more from the seller with the cheapest prices, but even the sellers with more expensive prices may sell some units, with the probability of a sale depending on the price differences. The objective is to maximize the profit earned during the game. Players should collect data as the game progresses to forecast future demand and the future behavior of their competitors. Statistical forecasting techniques can be used to obtain and interpret these forecasts. Players also have to decide on the appropriate prices to charge as the game progresses. Optimization models can be formulated and solved to aid in the decision making process.

We hope to be able to develop additional versions of the game. One enhancement is to provide players the ability to increase their inventory by, for example, manufacturing the product or by ordering from a supplier. In these cases additional factors such as the availability of cash, raw materials and other resources, perishability, inventory holding cost, and lead times have to be taken into account. A further enhancement will allow several players (more than two) to remotely log in to a website and play the game simultaneously, competing against each other.
Faculty/Student Viewpoint:

By Raymond Vito, Associate Chair, School of Mechanical Engineering

Cheating is not something that is easy to forget. Thirty-eight years ago my physics professor handed out a quiz, asked for questions, and then promptly left the room. While he was gone, several students openly discussed the problems and how to solve them. I did not participate, but I also did not report what happened to the professor. Like most students, I thought, “you don’t rat on your friends.”

As I think back on this incident, I realize that I made a big mistake by remaining silent. Everyone lost! Clearly, the students who did not cheat — both those who did well on the exam and those who did not — had their performance skewed by the good grades of the cheaters. But as I grew older and wiser, I came to realize that the cheaters were the big losers. They thought they had gotten away with something. They cheated on this exam and did not get caught, but at what cost? Let’s examine this.

Integrity is a funny thing. It’s the ONLY thing that cannot be taken away from us by anyone. We must freely give it up and, once we do, we can NEVER get it back! Think about it. If you are robbed, you can always make more money, but ethical lapses are forever. They are very difficult — and often impossible — to recover from.

Not only do ethical lapses represent a significant personal loss to an individual, they have other consequences as well. I firmly believe that those who compromise their integrity by cheating, or other unethical conduct, also eventually get caught. When that happens, it’s painful for them and for those they love. The older you are, the worse it is. In my own working life, I have twice seen individuals throw their professional careers out the window as a consequence of unethical conduct. The impact extended to their personal lives, family, and friends. It was not a pretty sight.

So what do we do? Pogo, a character in a famous cartoon, observed: “We have met the enemy and he is us.” Pogo was right. All of us — students, faculty and administration — must work together to foster a climate of integrity at Georgia Tech. It will not happen overnight, but if we all commit ourselves to high standards of conduct, it will happen.

Establishing good communications between faculty and students is very important to this effort. A good beginning is for everyone to agree on a clear set of expectations such as we have developed with our students in Mechanical Engineering (See www.me.gatech.edu). These expectations set the stage but are just a start toward improving student-faculty communication. We can do a lot more.

Most importantly, students and faculty must confront cheating when they see it; they must live up to their responsibilities under the Honor Code. Professors need to inform students what is and what is not acceptable in their classes.

Students need to understand clearly that cheating hurts all of us. Getting familiar with the Honor Code and the work of the Honor Council is a must. Get involved! Don’t make the same mistake I made thirty-eight years ago.
Two Commentaries on Academic Honesty

By James A. (Andy) Ozment, Student, Computer Sciences

As a member of the Honor Advisory Council, I have spent four years working to advance the culture of honor and integrity at Georgia Tech. During my junior year, I became interested in a situation that was hitting close to home. In my own college, Computing, the introductory computing courses had an alarmingly high rate of students who had been detected cheating.

Alison Smith and I decided to work under the direction of Dr. Wendy Newstetter in investigating this phenomenon. In our review of literature on cheating, we encountered a study done at M.I.T. The problems and environment described in this study had remarkable similarities to those we had at Georgia Tech. Because of this, we decided to mimic the M.I.T. study as one aspect of our investigation.

We prepared a survey and provided it to students, teaching assistants, and academic staff who were associated with the Introduction to Computing course. This survey presented scenarios in which students engaged in questionable behavior. We asked each of the respondents to assign a rank to the actions of the student in each scenario: “not cheating,” “trivial cheating,” and “serious cheating.”

The results were astounding. There were huge variations between and within the groups. Even the group of four staff members surveyed did not agree with each other. This group included the two current instructors, the course creator, and the course administrator. Even when “trivial cheating” and “serious cheating” were combined into a single heading of “cheating,” significant variations remained.

Students, teaching assistants, and the staff associated with the course did not have a clear idea of which actions constituted cheating. While the problems in this course have been somewhat alleviated, I have since noticed these same problems in almost all of my campus courses.

In higher education, much emphasis has recently been placed on collaborative learning, i.e., working in teams. Students have become accustomed to being allowed or even encouraged to work together. Although some professors still expect the students to work alone, many students and some professors have begun to assume the opposite: collaborative work is the norm on any homework and is specifically disallowed if necessary.

While this situation is clearly problematic, the solution is relatively easy. Professors need to clearly state their expectations for homework assignments and exams — when and how much collaboration is permitted. Most importantly, they need to add these expectations to the syllabus and restate them the second week of class since, due to late registration, students may not attend class until the end of the first week.

But the responsibility does not lie solely at the feet of professors. No matter how explicit their expectations, situations will arise in which students are unclear as to what actions are permitted. At this point, the students have the responsibility of asking for clarification.

Georgia Tech is beginning to place a well-deserved emphasis on integrity. Higher education has an important role in challenging students to think about beliefs and values which they may have previously taken for granted. With our new Academic Honor Code, Tech has made a good start. While much work remains, I am confident that our community will continue to improve and to challenge its members. As a soon-to be alumnus, I expect to return to an institute that has become a world leader in educating its students on issues of honor and integrity. ■
The Scholarship of Teaching

Advice for New Faculty Members: Nihil Nimus is one of those books that should grace the bookshelves of every new hire in every academic discipline, and, perhaps, it should be made “required reading.” Written by Robert Boice, professor emeritus of SUNY-Stony Brook, the book is a follow-up to his very successful The New Faculty Member (1992), but it differs from that previous volume in a major way: Boice wrote Advice specifically for new, junior faculty members who too often struggle in getting their careers going. Boice states that his purpose is to provide “simple, practical information . . . that too often remains unwritten and untold” (pg. 2).

Boice grounds this guidebook in a philosophy exemplified by the Latin phrase found in the title, nihil nimus, which he translates as “nothing in excess.” In three sections of 21 chapters, Boice lays out a series of “rules” which should guide the work habits of new faculty in the three traditional camps of teaching, research, and service. While the number of rules in each camp varies, he summarizes the 10 basic rules:

1. Wait.
2. Begin early.
3. Work in brief, regular sessions.
4. Stop.
5. Balance preliminaries with formal work.
6. Moderate overattachment and overreaction.
7. Moderate negative thoughts.
8. Moderate emotions
9. Let others do some of the work.
10. Limit wasted effort.

While at first glance, such rules might seem counter-productive to success or highly subjective and not at all practical, Boice justifies his advice by describing his observations and conclusions from doing empirical research on the habits and attitudes of what he calls “quick starters — those 3 to 5 percent of novices who perform in exemplary fashion during their first few years on campus, without apparent help” (pg. 5). For each rule in each camp, he sets out to integrate appropriate background knowledge for the reader from his or others’ educational research with examples of how to enact the rule in practice.

At the end of the text, Boice provides an annotated list of related readings, as well an extensive list of references cited.

This is not necessarily the easiest book to read — it takes time, and it takes concentration to absorb the information. Although at first it seems that Boice merely repeats himself in every section (“moderation... moderation...moderation”), the logic and the practicality of his rules develop and become apparent after a few chapters. As Boice himself states, “All you need do is suspend your impatience with a book that tries to teach patience and moderation — during what may be the most impatient and immoderate period of your life. It’s not as difficult as it sounds” (pg. 9). I believe that many mid-career faculty members would read this and think, “I wish that had been suggested to me!” As a resource for new faculty members, this text is invaluable.

Boice, Robert
Allyn and Bacon (2000)
www.abacon.com
ISBN 0-205-28159-1
The Practice of Teaching
The Course Syllabus: A Learning-Centered Approach

Judith Grunert is a member of the faculty development team at the Center for Instructional Development at Syracuse University. The Course Syllabus is a description of her model for transforming the traditional course syllabus from one that describes what the course covers to a syllabus that describes what tools and information are provided to help the student learn. Since the course syllabus is often the first interaction between instructor and student, Grunert believes that a learner-centered syllabus will serve both parties by a) communicating the instructor’s beliefs regarding learning, education, and the students’ needs and interests; b) demonstrating the instructor’s values regarding course content; c) describing resources that will encourage active learning by the students; and d) minimizing misunderstandings regarding course administration.

The book is divided into three main sections. In the first section, Grunert focuses the readers’ attention on the concept of learning as “an active, constructive, contextualized process” (pg. 2). She uses that construct as the bedrock for advocating that instructors work towards developing clear, student-centered rationales for their courses, student outcomes, assessment, and course resources. Having established such rationales, the instructor’s next step is to create a syllabus that delineates and exemplifies the instructor’s beliefs and values about the course. Grunert ends this first section with a list of different syllabus functions and ways to utilize the syllabus to enhance student-interaction regarding the course.

In the second section of the book, Grunert provides a checklist of 17 possible areas of syllabus content to serve as a preparation guide. That checklist is followed by 1-3 examples for each syllabus area (title page, purpose of the course, evaluation, etc.); every example comes from an actual syllabus (most gathered from Syracuse University), and the examples cover a wide variety of disciplines and levels. Grunert does caution that while particular examples might not have been developed with an explicit learner-centered focus, “each contributes something to a learning-centered perspective” (pg. 23).

Finally, the third section of The Course Syllabus provides two lists: one that contains suggested readings, organized by topics (general teaching, active learning, assessment, computer technology, cooperative learning, course and curriculum design, critical thinking/writing, student differences, and teaching portfolios); the second lists the sources cited in the book.

One of the best features of this book is that it is a quick read. The main sections cover only 81 pages, with most of that being the examples given in Part II. It is an excellent point-of-departure for an instructor thinking about redesigning his/her syllabus in order to make it more user-friendly for students. In addition, Grunert’s suggestions for getting the instructor and students to communicate with one another about the syllabus are excellent and extremely practical.

Grunert, Judith
Anker Publishing (1997)
www.ankerpub.com

A workshop is planned for Spring Semester 2001 on How to Construct a Course Syllabus. Watch for an announcement for date and time.
Contact CETL to borrow the books reviewed in THE CLASSROOM.
Although Georgia Tech is not located on a deserted island, new faculty may sometimes feel as if they are fighting their way through a jungle. Succeeding as a new GT faculty member is not a game in which you are one of many “contestants” who must cunningly compete against each other and the environment with the objective of winning a large cash prize. Success as a new faculty member does entail surviving, but luckily you aren’t entirely on your own. In fact, Georgia Tech provides support to faculty not only to survive, but also to achieve successful professional development.

Unfortunately, most of us are overwhelmed by the many responsibilities (and distractions) that we encounter as we begin our new careers. To assist in your success, I offer the following “tips.” They have been compiled from my experiences and the experiences of my colleagues.

* **Enjoy yourself.** Yes, life is hectic and you are being pulled in many different directions.

“Teaching is one of the most rewarding activities that comes with the job of faculty member, but it can be the most time and energy consuming.”

Make sure that you take time to enjoy the really important things in life, including your family and interactions with students and colleagues.

* **Be efficient.** Time is your most valuable asset — use it wisely. Learn to prioritize all your activities. Do not be afraid to say no. Shut your office door for at least 2 hours a day so you can concentrate without interruptions.

* **Seek advice.** Find a mentor to help you with research proposals, teaching strategies, and dealing with other colleagues and students.

Meet another assistant professor who is going through the same process so that you can share your experiences. Knowledge that others are dealing with the same thing can help you keep your sanity.

* **Strive to be the best teacher, within reason.** Teaching is one of the most rewarding activities that comes with the job of faculty member, but it can also be the most time and energy consuming activity. It is too easy to neglect other important things.

* **Attack funding sources using a balanced front.** Pursue different funding sources by combining your “traditional” areas with new directions. Be creative. Write fewer but higher quality proposals.

* **Pursue and develop the “best” students.** Actively recruit and groom the best graduate students — they are the ones that make you look good (or bad).

* **Serve on review panels.** Even though these can be time consuming activities, the experience is invaluable and will certainly help you write better grant proposals.

It is important to stress that there is not one correct formula to succeed. Get involved in CETL’s programs — it’s an easy way to learn practical “tricks” and meet other professors outside your department. As mentioned before, time management is critical to efficiently balance research, teaching, and service. Know what the truly important things are and enjoy doing them — you will win something more valuable than a million dollars.
on the teaching and learning environment at Tech. Of particular interest to CETL is the growing awareness of the need to do a better job of hiring and training teaching assistants. In addition, there is a heightened demand for a broader spectrum of methods of assessing the effectiveness of instruction. So, looking ahead, here is our list of resolutions:

1. We will work with the academic units that use teaching assistant (both graduate and undergraduate) to offer centralized support and resources for training and assessing these student workers.

2. We will work with The Language Institute to expand our programs of oral skills in English for international teaching assistants.

3. We will expand our new faculty orientation program by offering more in-depth workshops for the new members of the Tech faculty.

4. We will work with the Executive Board task force to improve the course/instructor opinion survey so that the students will want to complete one for every class.

5. We will work with the academic leaders on campus to determine multi-dimensional means of assessing the teaching effectiveness of the Georgia Tech faculty.

6. We will work with the faculty to help them learn the most constructive means of using technology in their courses.

7. We will work harder to engage the entire Tech community in a discussion of teaching and learning issues.

Okay, while we are all trying to catch our breath, here is YOUR charge: come up with your own list of new academic year resolutions. When you have a list that you are comfortable with, post it in your office and refer to it throughout the year. Maybe, come the end of April, even if you find that your nonacademic resolutions have already been broken (all of those diets, exercise plans, and self-improvement goals . . .), you may find that you have been able to keep your teaching and learning goals as a central part of your academic life. Let me know!
Upcoming Events

Course/Instructor Opinion Survey online
November 27 - December 8, 2000

Schedule of Faculty Development Seminars for Spring Semester 2001
January 18, 2001
February 15, 2001
March 15, 2001
 • All seminars are held in Student Services Bldg., Room 117, from 11:00am to 1:00pm. Box lunch is provided. Please RSVP to CETL at 4-4474.
 • Specific topics for each date are to be determined — please check the CETL website for topic updates, or call our office.

Instructional Technology How-To Sessions:
 • Dates and topics are to be determined — please check the CETL website for updates, or call our office.

Other Events:
 Date TBD (Spring) Teaching Fellows Day
 Date TBD (Spring) How To Construct a Course Syllabus
 August 14-16, 2001 New Faculty Orientation 2001

For more information on these events, contact CETL at 404-894-4474

The Classroom
CETL
613 Cherry Street
Georgia Institute of Technology
Atlanta, GA 30332-0383

Copyright 2000
Center for the Enhancement of Teaching and Learning