Nanocomposite Strain Sensors

Christopher J. Tzanavaris
Motivation

• To introduce a lighter, lower cost strain sensor.
• Versatility – a wide range of applications from aerospace to structural
• To take a fresh look at strain sensors and see where there is opportunity for alteration.
Measuring Strain

- Measure conductivity
- Apply strain
- Conductivity decreases
- Strain can be interpreted as a function of conductivity
Outline

• Introduction
 ▫ Literature review and comparative analysis

• Materials overview
 ▫ Fabrication process

• Data & Results
 ▫ Examination of past and recent data
 • Issues and trends

• Conclusions
Introduction

The research is on strain sensors that are:

- Lighter
- Less expensive
 - Carbon Nanotubes (CNTs) vs. Vapor-grown Carbon Fibers (VGCFs)
 - SWCNTs cost ~$80/gram vs. $5-6/gram\(^1\)

1. http://www.cheaptubes.com/carbon-nanotubes-prices.htm#Multi_Walled_Nanotubes_Prices
Carbon nanotubes (CNTs) vs. Vapor Grown Carbon Fibers (VGCFs)

- Similar mechanical and electrical properties
- Sizes of VGCFs can vary from a few nm (similar to CNTs) to about ten microns.²
- Comparable geometry
 - High aspect ratio
 - ‘Nanofiber’ designation for VGCFs (diameter is between 10 and 100 nm) and the presence of a central hollow core.²

Materials Overview

- Vapor-grown carbon fibers (VGCF)
- Polydimethylsiloxane (PDMS)
- Curing agent

Effect of Strain on Conductivity for 10:1, 4% VGCF

Possible Solutions

- Change the ratio of base to curing agent
- Past research was with 10:1, with varying percentages of VGCF from 1.5 – 4 wt. %.
 - 10:1
 - 10:1.5
 - 10:2
 - 3 and 4 wt. % VGCF
Testing

• Tensile testing (Dynamic mechanical analysis)
 ▫ Dimensions: 20 mm x 6 mm x 1.75 mm
 ▫ Samples strained at 1%/min
 ▫ Max 25%

• Conductivity testing
 ▫ Strain applied and conductivity is measured
Tensile Modulus Data

Effect of Curing Agent and VGCF concentrations on Tensile Modulus (E)
Effect of VGCF concentration on Electrical Resistance For 10:1 Monomer:Curing Agent Ratio

- 3% VGCF, Loading
- 3% VGCF, Unloading
- 4% VGCF, Loading
- 4% VGCF, Unloading
Effect of Curing Agent Ratio on Electrical Resistance for 3% VGCF

Resistance (Ohms)

Strain (%) 0 1 2 3 4 5

10:1, Loading
10:1, Unloading
10:1.5, Loading
10:1.5, Unloading
10:2, Loading
10:2, Unloading
Conclusions

• Higher ratios show better recovery of conductivity upon unloading
• Long term trends need to be tested
 ▫ Initial stain may cause a fundamental change in fiber alignment.
 ▫ Fatigue tests will be performed
• Compare fiber alignment hypothesis with SEM images.
• Formulate a quantifiable calibration curve
Special Thanks

- Professor Kyriaki Kalaitzidou
- Brian Simpson
- Professor Gleb Yushin and his research team for use of their equipment
- Md. “Atiq” Bhuiyan

Questions???