Project No. E-16-602

Project Director: Warren C. Strahle

School/Lab: Aerospace Engineering

Sponsor: National Science Foundation; Washington, D.C.

Type Agreement: Grant No. CME-8022366 dated 2/19/81

Award Period: From 2/1/81 To 6/30/82 (Performance) 9/30/82 (Reports)

Sponsor Amount: $67,244 (First year funding only)

Cost Sharing: $5,952 (E-16-352) (First year only)

Title: Pressure Velocity Correlation in Reacting Turbulent Flows

Administrative Data

1) Sponsor Technical Contact: George K. Lea, National Science Foundation; Washington, D.C. 20550

2) Sponsor Admin./Contractual Contact: Al Rice; National Science Foundation, Washington, D.C. phone 202-357-9626

Reports: See Deliverable Schedule

Security Classification: N/A

Defense Priority Rating: N/A

Restrictions

See Attached NSF Supplemental Information Sheet for Additional Requirements

Travel: Foreign travel must have prior approval - Contact OCA in each case. Domestic travel requires sponsor approval where total will exceed greater of $500 or 125% of approved proposal budget category.

Equipment: Title vests with GIT

Comments: *entire period charges can be incurred

Copies To:

Administrative Coordinator
Research Property Management
Accounting Office
Procurement Office

Research Security Services
Reports Coordinator (OCA)
Legal Services (OCA)
Library, Technical Reports

EES Information Office (2)
Project File (OCA)
Other: __________
SPONSORED PROJECT TERMINATION/CLOSEOUT SHEET

Date: 10/12/83

Project No. E-16-602

Includes Subproject No.(s) NONE

Project Director(s) Warren C. Strahle

Sponsor National Science Foundation

Title: Pressure Velocity Correlation in Reacting Turbulent Flows

Effective Completion Date: 7/31/83 (Performance) (Reports)

Grant/Contract Closeout Actions Remaining:

[X] None

[] Final Invoice or Final Fiscal Report

[] Closing Documents

[] Final Report of Inventions

[] Govt. Property Inventory & Related Certificate

[] Classified Material Certificate

[] Other

Continues Project No. E-16-696

Continued by Project No. E-16-696

COPIES TO:

Project Director
Research Administrative Network
Research Property Management
Accounting
Procurement/EES Supply Services
Research Security Services
Reports Coordinator (OCA)
Legal Services

Library
GTRI
Research Communications (2)
Project File
Other

Form OCA 5B 1004
PROGRESS REPORT

The program, as of this writing, has been underway for 21 months. Significant progress in theoretical and experimental work is as follows:

1. The first known measurement of the $p'v'$ correlation in a reactive turbulent flow has been accomplished by intrusive measurements on a premixed jet flame. Simultaneous stagnation pressure, temperature, and heat transfer (velocity) measurements were performed in a small measurement volume at various stations along the flame axis.

2. The correlation is large and produces a contribution as mechanical work in the turbulent stress equations which cannot be ignored.

3. After several initial developments for simple flames, a fully three dimensional model for the $v''_k \frac{\partial p}{\partial x_i}$ correlation has been developed. It has been checked in the constant density limit for some classical flows and been found reasonable. It has been applied to a turbulent jet diffusion flame and found to bring excellent agreement between theory and experiment.

4. The theoretical model predicts an intense source of turbulence in premixed, one-dimensional flames, in accordance with experimental expectations.

The three dimensional model for $v''_k \frac{\partial p}{\partial x_i}$, which is the correlation which directly appears in turbulence stress equations, represents a marked departure from past practice. This model is currently under peer review, but is bound to stir up some controversy. Its success, however, in the diffusion flame and premixed flame problems attest to its usefulness. Direct measurement of this quantity has proved elusive, however, because a gradient is involved. The derivative taxes intrusive measurement methods. In order to counter this limitation a new experimental rig has been constructed and is currently under checkout. In this rig, LDV will be employed for velocity measurements, and it is hoped that laser Rayleigh scattering may be used for density determination. The pressure measurement, as always, will have to be made intrusively.
The following publications and presentations have resulted from this grant:

Refereed Publications

Other Publications

Verbal presentations have been made of papers 1 and 3 under Refereed Publications above, where # 3 was an invited paper at the 19th Combustion Symposium in Haifa, Israel. Paper 2 under Other Publications will be presented at the 21st Aerospace Sciences Meeting. The senior author received his Ph.D under this program.