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SUMMARY

This report summarizes work done under the ONR Contract NOOOI4-K-0418
| to Georgia Tech, between May 15, 1983 and May 15, 1984. The objec:tive of the
research was to develop prediction methods for high Réynolds number turbulent
flows over compliant surfaces. |

Neep Hézariké, Tapan Sengﬁpté and Spiro. Lekoudis were involved 1n this
project. Tapan Sengupta graduated with a Ph.D. in June 1984. Neep Hazarika is a
- candidate for an M.S.‘degree in Aerospacé Engineering.

The flow examined is the two-dimerisiona‘l turbulent boundary layer over
sinusoidal . wavy surfaces. The surfaces execuféd prescribed motion, that of a
progressive water-wave.  The main conclusions are as follows. The pressure
dominates the small skin frictioﬁ redﬁction that occ:ufs. At wavespeeds about 7/10
times the freestream speed and higher, the pressure becomes thrust producing for
the case of two-dimensional waves. When the waves are swept, the pressure
becomes thrust 'prOdu'cing as wavespeeds approach the component of the freestream
in the direction normal to the wavefront. Therefore the larger the sweep, the
smaller the wavespéeds at which the pressu.re.produces thrust.

Because of lac:i< of flexible wall experiments, with well defined motion of -
the sinusoidal wall and high wavespeeds, comparisons were made with water-wave
‘experiments. Reasonable agreement was obtained for measured quantities inside
the boundary layer.

It was estimated that the drag reduction, for the cases considered, is small.
The limited comparison with available experiments indicates that the computed
trends in the physical quantities are correct. Cofnputations using other approaches
and presSure measurements on wavy walls Qith well defined .motion are needed, in

order to examine if the turbulence model used in this study is adequate for detailed
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quantitative predictions. This is éspecially true ,giv’en-the small values of.' drag
reduction computed in the present study. Based on the results of this study, a
practical working system with a drag reducing surface with prdgfessive waves does )
- not seem feasible. .[-_lowev'er this contlusion- is restricted to the casés of wall shapes

and motions considered.



L INTRODUCTION
P.redi.ct‘ions of the high Reynoiﬁs nimber turbulént flow over complianf
surfaces are necessary for estimating drég. ‘They are also important in dec»iding on
what sha‘p&é of surfaces and '\yhat kinds of surfaée motions should be examined in
“an experiment. Because direct sirﬁulation ‘is impossibk‘e'at the interesﬁng Reynolds -
numbefs,' eit‘h.er' conventional .:‘time-aVeraging orv. large-eddy.' simuIations are the
available toolsz.‘ Conventional yav_e_ragin‘g is uged in the present study with the
‘following 'dbjecfi_vés, ‘Predict sufface‘quantities, like_Skin friétion and pressure, for.
sinusoidal surfacé waves with prescribed motibn;._compare with measured 'data;
-and, finally, estimafe ‘the drag values for such surfaces. Some of the relevant work
is described briefly in the next paragraéh. o

Sm;ill difstdrbahée"soldtidns o.ff‘t;xe Navier-Stokes equations vary because of
the differént ap>p.roximkation$ uséd ('Refe:re'nce’s 173); However, for wavy walls with
amplitudes that do not cause local flow. separation, the préssufe drag can be
predicted very accuratély. Considering the close to zerlo.tfu.ncation errors_and the
relatively smaﬂ Computer resources required for sﬁch' solutions, it seems that if the
(nonlinear) skin friction effects could _be soméhow véomput’ed, these solﬁtions could
become attractive. The next step is to use time-averaged Névier-Sto’ke’s solutions.
Because of resoluﬁon requirements (things are happening very close t(.)~the surface)
such solutions usually employ pefiodic boundary conditions in the streamwise '
direction (References 4-5). Therefore, streamwise .vbressure gradient effects are

difficult to estimate, even if the Reynolds number is high.
| A compromise between these two approaéhes has been developed and
tested under a previous contract from ONR (N00014-82-K-0271) by the author. [t
cohsists of évaluatihg a steady-streaming effect on the mean shear. "Drag values

are in excellent agreement with recent measured data on rigid wavy walls



(Reference 6). However the range oflrapplicabillity of the method is rest‘ricted to’
wave amplitudes that do not cause‘loeal flow léeparation. The schervne consists of
solving the boundary layer equations with wave-induced stresses. These stresses
are evaluated from the solution of the linear problem. Detailo about the
formulation and the numerics are .in Reference 6 and in Publication 3, 4 and 5.

The calculation procedure‘ described ‘has been applied to.the problem of ‘
two-dimensional turbulent boundary layer flow over wevy sur.faces in mo'tion_. Pure
wali translation was not examined because if is rather impractical to implement.
Progressive ‘sinusoidali surface waves. Were investigated, with their _wavefronts
normalvto the freestream direction*(t\vo-dimensional problem), or at a prescribed
sweep angle (three-dimensional problem). ‘The results from this investigation are

described in the next sections of this report. .



2. THE ANALYTICAL FORMULATION

Because a detailed. description of the formulation and the numerics used
can be found in References 6 and in Publications 3, 4 and 5, only a brief description
of the procedure will follow. The descriptibn will be for the case of swept waves,
because solutions of the tw_o—dimensional problerﬁ can be obtained by appfoa'ching
the cések of zero swéep.‘ This was alsd used to check the humerical pfbcedures. |

‘The co'ordi»nate‘system used consists of the streamiines and'the isopotential
lines of the irrotationlaliﬂow normal to the direction of. theb»wa'vefro»nt. The third
coordinate is parallel to the wavefront. Thus coordinate singularities are avoided
and the freestream-boundafy conditions afe appropriately applied. Moreover there
is not transfer of boundary conditions to the mean interfafce; a very serious soUrcef
of-error for all but the smallest wave amplitudes. | |

Classical triple decomposition of all flow variables into a fcime-averagéd
part, a rahdom part aﬁd an organized oscillation part is used. The time-averéged
| part is d,esdibéd‘ as a boundary layer flow with wave-induced stresses thavt'result_
from the organized oscillation. The organized oscillation parf is'obtained. from the
solution of the linear momentum equations. Conventionai models are used for the
random part which affects both the solution of the boundary layer part and the part
due to the organized oscillation. |

The linear problem for the case of sweep can be ‘reduced to a two-
dimensional problem oy -essentially using Squire's theorem. Howevér the evalution
of | the wave-induced stresses requires the flow component parallel fo the
wavefront. Therefore a sixth order system of the Orr-Sommerfeld type has to be
solved ite:iatively with the boundary layer flow. Convergence is rapid, primarily -

because the effect of the wave-induced stresses is confined to an area very close to



the wall..

.T_he fbllQWing checks were made in 'ofdéf‘fé evaluate the nﬁmerlcs. “The
linear two;dimensional solutions were _cofnp'ared with B.enjamih'svreSults (Réferénce ;
1) and mor_e"cbmplete linear ‘svoblution.s (ﬁeférénce‘ 2,).~ In both cases good agreement
' “was obtained (Publication &). M'oréovéf'i‘lthe r_esults;- from 'tﬁe code thét hahdles the
swept wa\'/vefcaSé- appfoached the resul_lvts for the twé—_dimensional"case as the sweep

~approached zefo. o



3. RESULTS AND DISCUSSION

As mentiongd. in the Intpoduétion, the ‘two-dimensional problem for 'rigid '
wav-y‘ walls has been e#amined un‘déré previous contract. Excellent ag'reement"
with recent experiments was obtained ‘(‘Refer_encé_ 6). .

‘ ‘I’hé most important resﬁ.ﬂt’ obtéined for the cése of ‘moving walls is'shown in
Fighre‘ l. The wall motion sirﬁUlat'es.the surface mc)btionof a deep water wave. The .
Figure shows that the IOCatibn of the maximum pressufe-moves toiwa‘r‘ds the crest -
at the low pha_se speeds, .and the tre'.n.d is reversed at highgr‘_'phaﬁe _spéed's; This
- reversal makes the presé)uré thrust broducihg, whén _the_p\ressure,maXimum éroSse_s
the trough. The tfgnd is in agreement.wi‘th Kendall’s measurements (Referéh’cei 7.
However the: measurements were done for ‘phase speeds up to half of the
_ freestream only. Thus, because f‘bf lack of expe;iméhtal data on solid -;surf'aces,
:comééris'oné Wére:mad’e with water Wave'-ex#efimé.nts.'f. o

Pressure _measuremeh-ts'c-irosé to th'e“sur:fa.ce of a water- wave underneath a |
turbﬁlent air boundary layer are pfévsehted, in-'R’efere_nce‘ 8. The variation of fhe
pressure coefficient and the 1o¢atioh of the maximum’ pressui'e are showﬁ in Figtires :
2 and 3. The trends are the same as predicted'in> 'Fi‘gurev_-l. However direct
comparison is meaningless because: | |

(@) There is a mean drift value of the water surface because of the mean

~ wind shear. This value has to be estimated. - |

(b) The upper wall of the d\énnel is close enough to affect the surface.

pressure distriblitions

(c) ' A reflected wave .is present. Its amplitudé is estimated at 6% of the

incident (Reference 8). However, because it travels upstream, it
'generétés large pressure variations.

The pressure dominated the mean shear reduction throughout the range of



’phase' speeds and wall lampl.l'.cudes Cdnsidered. Both the amplifude and phase of the
oscillating shear agrees with the meaSUredjtrends:i'h'Kendall's data. However its
contribution t'ok drag is negligible. Direct comparlsch'with Kendall's measurements
was not poss1ble because the solution 1nd1cated flow separatlon. |

In an effort to access the computed solutlons, the- amplltude and phase of
the computed velocities was compared with measurements inside the turbulent
bouindary layer. The measurements are described in References 9 and 10. Sam_ple
results iare shown'in Figures & and' 5. The agreement is good at lo‘wphase speeds
and becomes progressively wdrsr at the higher phase speeds.

Drag values for a wavetrain are shown in Figure 6. Drag reduction seems

possible ohly at the high phase speeds.‘ 'HdWever t‘he‘ beneﬁt seems to be small.; -

Notice that these calculatlons assume that the- wall motlon is a prescrlbed
travelllng wave. No equivalent drag values are est1mated for prowdmg the energy
' "for the wall monon. _.

The case of swept waves was also ihvestigated. The llnearvtheory for this
case' degenerates td the two-dimensional problem. Therefore the computational
results shown in 'Flgures 7 and 8 are reminiscent of the two-dimensional solutidns.
. When the wave speeds app.roach ‘the-value of the component'of the freestream
normal to “the wavefront, the phase of the pressure Varies.rapidly and the pressure
produces- thrust. Therefore the higher the sweep, the smaller 'the‘phase speeds at
| which this occurs. The solutlons of the ,nonline_ar problem are shown in Figures 9.
and 10. The total.reduction indrag isv,ra'the_r, small. | .

Details about the results can be found in the Publicaﬁons 3, 4 and 5.



4. CONCLUSIONS AND'RECOMMENDATIONS ~

A method for computing turbulent boundary layers over rigid and moving

swept wavy surfaces was developed Comparisons ‘were made with available

experimental results. It is concluded that the predicted drag reduction is small and

it occurs at wave speeds approaching the freestream ‘speed  velocity component

" normal to the wavefront. This conclusion is restricted to the cases considered.

The following recommendations-are made:

1.

2.

Because conventional modelling was used for closure, other numerical

'approaches have to be attempted However the'other approaches :

have  to demonstrate- equally good -or: better agreement _with
measurements than the one presented here. Pressure measurements

are not enough for accessmg turbulence models. -_Detailed shear

_ distributions have to be measured and predicted,before the validity of -

conventional turbulence-' modeling is established; especially for high
wayespeeds. |

Detailed pressure and.,she_ar'measurements on wavy surfaces with well
contro_l motion are needed. Kendall's data were obtained over a.
decade ago.“ Unfortunately the water- wave experiments contain
uncertainties that do not allow definitive evaluation of the turbulence
models. However. they support the predictions. of the analysis
developed. ‘Because "the estimated drag reductions are small,
qualitative agreement with 'measurements is not adequate and direct

quantitative comparisons are needed.



5. PUBLICATIONS AND PRESEN_TATIOhNS’

The following 'pUblications and preSentations resulted frdm the: work

supported by thls contrac:t. :

l.

2.

Presentanon at the FY'83 Comphant Coatmg Drag Reduction

- ‘Program Review at NRL, October 24-26, 1983.

.‘Presentanon at the 36th Annual Meeting of the Fluid Dynam1cs
Division of the  American Physical Society, University of Houston,
'November 20, 1933. :

"Two-Dimensional Turbulent Boundary Layers Over R1g1d and Movmg
- Swept Wavy Surfaces," by T. K. Sengupta and S. G. Lekoudis, AIAA

Paper 84-1530, presented at.the AIAA 17th Fluid Dynamics, Plasma
Dynamics and Lasers Conference, Snowmass, Colorado, June 25-27
1984 (It was submltted for publication in the AIAA Journal).

’ "Calculanon of Two-Dimensional Incompre551ble Turbulent Boundary .

Layers Over Rigid and Moving Sinusoidal Wavy Surfaces," by T. K.
Sengupta and S. G. Lekoudis. Scheduled to appear in the AJAA .
Journal in February.1985. o ' o .

"Turbulent Boundary. Layers. Over Rigid and Moving Wavy Surfaces,"

- by T. K. Sengupta, Ph.D. Dissertation, School of Aerospace
“ Engineering, Georgia Institute of Technology, June 1984.



6.

10.

- 123-153, 1983,
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Figure 6. . Pressure drag and skin friction drag for various: phase speeds for a
series of two-dimensional waves.
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various phase speeds for turbulent flow over a wavy wall.
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Figure 9. Skin friction drag, normalized with the equivalent flat plate drag,
versus sweep angle for various phase speeds, for a series of waves.
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Pressure drag, normalized with the equiValent flat plate drag, versus
sweep angle for various phase speeds, for a series of waves.
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